101
|
Bhardwaj C, Cui Y, Hofstetter T, Liu SY, Bernstein HC, Carlson RP, Ahmed M, Hanley L. Differentiation of microbial species and strains in coculture biofilms by multivariate analysis of laser desorption postionization mass spectra. Analyst 2014; 138:6844-51. [PMID: 24067765 DOI: 10.1039/c3an01389h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
7.87 to 10.5 eV vacuum ultraviolet (VUV) photon energies were used in laser desorption postionization mass spectrometry (LDPI-MS) to analyze biofilms comprised of binary cultures of interacting microorganisms. The effect of photon energy was examined using both tunable synchrotron and laser sources of VUV radiation. Principal components analysis (PCA) was applied to the MS data to differentiate species in Escherichia coli-Saccharomyces cerevisiae coculture biofilms. PCA of LDPI-MS also differentiated individual E. coli strains in a biofilm comprised of two interacting gene deletion strains, even though these strains differed from the wild type K-12 strain by no more than four gene deletions each out of approximately 2000 genes. PCA treatment of 7.87 eV LDPI-MS data separated the E. coli strains into three distinct groups, two "pure" groups, and a mixed region. Furthermore, the "pure" regions of the E. coli cocultures showed greater variance by PCA at 7.87 eV photon energies compared to 10.5 eV radiation. This is consistent with the expectation that the 7.87 eV photoionization selects a subset of low ionization energy analytes while 10.5 eV is more inclusive, detecting a wider range of analytes. These two VUV photon energies therefore give different spreads via PCA and their respective use in LDPI-MS constitute an additional experimental parameter to differentiate strains and species.
Collapse
Affiliation(s)
- Chhavi Bhardwaj
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607-7061, USA.
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Pirro V, Oliveri P, Ferreira CR, González-Serrano AF, Machaty Z, Cooks RG. Lipid characterization of individual porcine oocytes by dual mode DESI-MS and data fusion. Anal Chim Acta 2014; 848:51-60. [PMID: 25263116 DOI: 10.1016/j.aca.2014.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/31/2014] [Accepted: 08/02/2014] [Indexed: 01/10/2023]
Abstract
The development of sensitive measurements to analyze individual cells is of relevance to elucidate specialized roles or metabolic functions of each cell under physiological and pathological conditions. Lipids play multiple and critical roles in cellular functions and the application of analytical methods in the lipidomics area is of increasing interest. In this work, in vitro maturation of porcine oocytes was studied. Two independent sources of chemical information (represented by mass spectra in the positive and negative ion modes) from single oocytes (immature oocytes, 24-h and 44-h in vitro matured oocytes) were acquired by using desorption electrospray ionization-mass spectrometry (DESI-MS). Low and mid-level data fusion strategies are presented with the aim of better exploring the large amount of chemical information contained in the two mass spectrometric lipid profiles. Data were explored by principal component analysis (PCA) within the two multi-block approaches to include information on free fatty acids, phospholipids, cholesterol-related molecules, di- and triacylglycerols. After data fusion, clearer differences among immature and in vitro matured porcine oocytes were observed, which provide novel information regarding lipid metabolism throughout oocyte maturation. In particular, changes in TAG composition, as well as increase in fatty acid metabolism and membrane complexity were evidenced during the in vitro maturation process. This information can assist the improvement of in vitro embryo production for porcine species.
Collapse
Affiliation(s)
- Valentina Pirro
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, Turin 10125, Italy.
| | - Paolo Oliveri
- Department of Pharmacy, University of Genoa, Via Brigata Salerno 13, Genoa 16147, Italy
| | | | | | - Zoltan Machaty
- Department of Animal Sciences, Purdue University, 915 W. State St., West Lafayette, IN 47907, USA
| | - Robert Graham Cooks
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
103
|
Zhang K, Han X, Li Y, Li SY, Zu Y, Wang Z, Qin L. Hand-held and integrated single-cell pipettes. J Am Chem Soc 2014; 136:10858-61. [PMID: 25036187 PMCID: PMC4133013 DOI: 10.1021/ja5053279] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
Successful single-cell isolation is a primary step for subsequent
chemical and biological analyses of single cells. Conventional single-cell
isolation methods often encounter operational complexity, limited
efficiency, deterioration of cell viability, incompetence in the isolation
of a single-cell into nanoliter liquid, and/or inability to select
single adherent cells with specific phenotypes. Here, we develop a
hand-held single-cell pipet (hSCP) that is rapid, operationally simple,
highly efficient, and inexpensive for unbiased isolation of single
viable suspended cells directly from submicroliter cell suspensions
into nanoliter droplets without the assistance of any additional equipment.
An integrated SCP (iSCP) has also been developed for selective isolation
of single suspended and adherent cells according to the fluorescence
imaging and morphological features. The isolated single cells can
be conveniently transferred into standard 96-/384-well plates, Petri
dishes, or vials for cloning, PCR, and other single-cell biochemical
assays.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Nanomedicine, Houston Methodist Research Institute , Houston, Texas 77030, United States
| | | | | | | | | | | | | |
Collapse
|
104
|
Li YT, Zhang SH, Wang L, Xiao RR, Liu W, Zhang XW, Zhou Z, Amatore C, Huang WH. Nanoelectrode for Amperometric Monitoring of Individual Vesicular Exocytosis Inside Single Synapses. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404744] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
105
|
Li YT, Zhang SH, Wang L, Xiao RR, Liu W, Zhang XW, Zhou Z, Amatore C, Huang WH. Nanoelectrode for amperometric monitoring of individual vesicular exocytosis inside single synapses. Angew Chem Int Ed Engl 2014; 53:12456-60. [PMID: 25060546 DOI: 10.1002/anie.201404744] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/10/2014] [Indexed: 01/31/2023]
Abstract
Chemical neurotransmission occurs at chemical synapses and endocrine glands, but up to now there was no means for direct monitoring of neurotransmitter exocytosis fluxes and their precise kinetics from inside an individual synapse. The fabrication of a novel finite conical nanoelectrode is reported perfectly suited in size and electrochemical properties for probing amperometrically inside what appears to be single synapses and monitoring individual vesicular exocytotic events in real time. This allowed obtaining direct and important physiological evidences which may yield important and new insights into the nature of synaptic communications.
Collapse
Affiliation(s)
- Yu-Tao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Le Trequesser Q, Devès G, Saez G, Daudin L, Barberet P, Michelet C, Delville MH, Seznec H. Single cell in situ detection and quantification of metal oxide nanoparticles using multimodal correlative microscopy. Anal Chem 2014; 86:7311-9. [PMID: 25006686 DOI: 10.1021/ac501318c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Assessing in situ nanoparticles (NPs) internalization at the level of a single cell is a difficult but critical task due to their potential use in nanomedicine. One of the main actual challenges is to control the number of internalized NPs per cell. To in situ detect, track, and above all quantify NPs in a single cell, we propose an approach based on a multimodal correlative microscopy (MCM), via the complementarity of three imaging techniques: fluorescence microscopy (FM), scanning electron microscopy (SEM), and ion beam analysis (IBA). This MCM was performed on single targeted individual primary human foreskin keratinocytes (PHFK) cells cultured and maintained on a specifically designed sample holder, to probe either dye-modified or bare NPs. The data obtained by both FM and IBA on dye-modified NPs were strongly correlated in terms of detection, tracking, and colocalization of fluorescence and metal detection. IBA techniques should therefore open a new field concerning specific studies on bare NPs and their toxicological impact on cells. Complementarity of SEM and IBA analyses provides surface (SEM) and in depth (IBA) information on the cell morphology as well as on the exact localization of the NPs. Finally, IBA not only provides in a single cell the in situ quantification of exogenous elements (NPs) but also that all the other endogenous elements and the subsequent variation of their homeostasis. This unique feature opens further insights in dose-dependent response analyses and adds the perspective of a better understanding of NPs behavior in biological specimens for toxicology or nanomedicine purposes.
Collapse
Affiliation(s)
- Quentin Le Trequesser
- Université de Bordeaux , Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175 Gradignan, France
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Jeong Y, Choi J, Lee KH. Technology advancement for integrative stem cell analyses. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:669-82. [PMID: 24874188 DOI: 10.1089/ten.teb.2014.0141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Scientists have endeavored to use stem cells for a variety of applications ranging from basic science research to translational medicine. Population-based characterization of such stem cells, while providing an important foundation to further development, often disregard the heterogeneity inherent among individual constituents within a given population. The population-based analysis and characterization of stem cells and the problems associated with such a blanket approach only underscore the need for the development of new analytical technology. In this article, we review current stem cell analytical technologies, along with the advantages and disadvantages of each, followed by applications of these technologies in the field of stem cells. Furthermore, while recent advances in micro/nano technology have led to a growth in the stem cell analytical field, underlying architectural concepts allow only for a vertical analytical approach, in which different desirable parameters are obtained from multiple individual experiments and there are many technical challenges that limit vertically integrated analytical tools. Therefore, we propose--by introducing a concept of vertical and horizontal approach--that there is the need of adequate methods to the integration of information, such that multiple descriptive parameters from a stem cell can be obtained from a single experiment.
Collapse
Affiliation(s)
- Yoon Jeong
- 1 BK21+ Department of BioNano Technology, Hanyang University , Seoul Campus, Seoul, Republic of Korea
| | | | | |
Collapse
|
108
|
Chen S, Zhang L, Long Y, Zhou F. Electroanalytical Sensors and Methods for Assays and Studies of Neurological Biomarkers. ELECTROANAL 2014. [DOI: 10.1002/elan.201400040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
109
|
Hattori T, Tamamura Y, Tokunaga K, Sakurai T, Kato R, Sawada K. Two-dimensional microchemical observation of mast cell biogenic amine release as monitored by a 128 × 128 array-type charge-coupled device ion image sensor. Anal Chem 2014; 86:4196-201. [PMID: 24731060 DOI: 10.1021/ac403657w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Available array-type, chemical-sensing image sensors generally only provide on/off responses to the sensed chemical and produce qualitative information. Therefore, there is a need for an array sensor design that can detect chemical concentration changes to produce quantitative, event-sensitive information. In this study, a 128 × 128 array-type image sensor was modified and applied to imaging of biogenic amines released from stimulated rat mast cells, providing recordable responses of the time course of their release and diffusion. The imaging tool was manufactured by an integrated circuit process, including complementary metal oxide semiconductor and charge-coupled device technology. It was fitted with an amine-sensitive membrane prepared from plasticized poly(vinyl chloride) including a hydrophobic anion, which allowed the sensor to detect amines, such as histamine and serotonin, in Tyrode's solution. As mast cells were larger in diameter than the pixel hollows, some pixels monitored amines released from single cells. The image from the array responses yielded sequential snapshots at a practical frame speed that followed amine concentration changes over time, after mast cell amine release was synchronized by chemical stimulation. This sensor was shown to be sensitive to amine release at very low stimulus concentrations and was able to detect localized spots of high amine release. The entire time course of the amine release was recorded, including maximum concentration at 4-6 s and signal disappearance at 30 s after stimulation. With further development, this sensor will increase opportunities to study a variety of biological systems, including neuronal chemical processes.
Collapse
Affiliation(s)
- Toshiaki Hattori
- Department of Electrical and Electronic Information Engineering, ‡Department of Environmental and Life Sciences, §Electronics-Inspired Interdisciplinary Research Institute, and ∥Cooperative Research Facility Center, Toyohashi University of Technology , Toyohashi 441-8580, Japan
| | | | | | | | | | | |
Collapse
|
110
|
Wang J, Trouillon R, Dunevall J, Ewing AG. Spatial resolution of single-cell exocytosis by microwell-based individually addressable thin film ultramicroelectrode arrays. Anal Chem 2014; 86:4515-20. [PMID: 24712854 PMCID: PMC4014142 DOI: 10.1021/ac500443q] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/08/2014] [Indexed: 01/24/2023]
Abstract
We report the fabrication and characterization of microwell-based individually addressable microelectrode arrays (MEAs) and their application to spatially and temporally resolved detection of neurotransmitter release across a single pheochromocytoma (PC12) cell. The microwell-based MEAs consist of 16 4-μm-width square ultramicroelectrodes, 25 3-μm-width square ultramicroelectrodes, or 36 2-μm-width square ultramicroelectrodes, all inside a 40 × 40 μm square SU-8 microwell. MEAs were fabricated on glass substrates by photolithography, thin film deposition, and reactive ion etching. The ultramicroelectrodes in each MEA are tightly defined in a 30 × 30 μm square area, which is further encased inside the SU-8 microwell. With this method, we demonstrate that these microelectrodes are stable, reproducible, and demonstrate good electrochemical properties using cyclic voltammetry. Effective targeting and culture of a single cell is achieved by combining cell-sized microwell trapping and cell-picking micropipet techniques. The surface of the microelectrodes in the MEA was coated with collagen IV to promote cell adhesion and further single-cell culture, as good adhesion between the cell membrane and the electrode surface is critical for the quality of the measurements. Imaging the spatial distribution of exocytosis at the surface of a single PC12 cell has also been demonstrated with this system. Exocytotic signals have been successfully recorded from eight independent 2-μm-wide ultramicroelectrodes from a single PC12 cell showing that the subcellular heterogeneity in single-cell exocytosis can be precisely analyzed with these microwell-based MEAs.
Collapse
Affiliation(s)
- Jun Wang
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Kemivägen
10, 41296 Gothenburg, Sweden
- Department
of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Raphaël Trouillon
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Kemivägen
10, 41296 Gothenburg, Sweden
| | - Johan Dunevall
- Department
of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Andrew G. Ewing
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Kemivägen
10, 41296 Gothenburg, Sweden
- Department
of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden
| |
Collapse
|
111
|
Schwarzkopf F, Scholl T, Ohla S, Belder D. Improving sensitivity in microchip electrophoresis coupled to ESI-MS/MS on the example of a cardiac drug mixture. Electrophoresis 2014; 35:1880-6. [DOI: 10.1002/elps.201300615] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/25/2014] [Accepted: 02/25/2014] [Indexed: 12/19/2022]
Affiliation(s)
| | - Tobias Scholl
- Institut für Analytische Chemie; Universität Leipzig; Leipzig Germany
| | - Stefan Ohla
- Institut für Analytische Chemie; Universität Leipzig; Leipzig Germany
| | - Detlev Belder
- Institut für Analytische Chemie; Universität Leipzig; Leipzig Germany
| |
Collapse
|
112
|
Gong X, Zhao Y, Cai S, Fu S, Yang C, Zhang S, Zhang X. Single cell analysis with probe ESI-mass spectrometry: detection of metabolites at cellular and subcellular levels. Anal Chem 2014; 86:3809-16. [PMID: 24641101 DOI: 10.1021/ac500882e] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Molecular analysis at cellular and subcellular levels, whether on selected molecules or at the metabolomics scale, is still a challenge now. Here we propose a method based on probe ESI mass spectrometry (PESI-MS) for single cell analysis. Detection of metabolites at cellular and subcellular levels was successfully achieved. In our work, tungsten probes with a tip diameter of about 1 μm were directly inserted into live cells to enrich metabolites. Then the enriched metabolites were directly desorbed/ionized from the tip of the probe for mass spectrometry (MS) detection. The direct desorption/ionization of the enriched metabolites from the tip of the probe greatly improved the sensitivity by a factor of about 30 fold compared to those methods that eluted the enriched analytes into a liquid phase for subsequent MS detection. We applied the PESI-MS to the detection of metabolites in single Allium cepa cells. Different kinds of metabolites, including 6 fructans, 4 lipids, and 8 flavone derivatives in single cells, have been successfully detected. Significant metabolite diversity was observed among different cells types of A. cepa bulb and different subcellular compartments of the same cell. We found that the inner epidermal cells had about 20 fold more fructans than the outer epidermal cells, while the outer epidermal cells had more lipids. We expected that PESI-MS might be a candidate in the future studies of single cell "omics".
Collapse
Affiliation(s)
- Xiaoyun Gong
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University , Beijing China
| | | | | | | | | | | | | |
Collapse
|
113
|
Trouillon R, Ewing AG. Actin controls the vesicular fraction of dopamine released during extended kiss and run exocytosis. ACS Chem Biol 2014; 9:812-20. [PMID: 24400601 PMCID: PMC3985473 DOI: 10.1021/cb400665f] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
The effect of latrunculin A, an inhibitor
of actin cross-linking,
on exocytosis in PC12 cells was investigated with single cell amperometry.
This analysis strongly suggests that the actin cytoskeleton might
be involved in regulating exocytosis, especially by mediating the
constriction of the pore. In an extended kiss-and-run release mode,
actin could actually control the fraction of neurotransmitters released
by the vesicle. This scaffold appears to contribute, with the lipid
membrane and the protein machinery, to the closing dynamics of the
pore, in competition with other forces mediating the opening of the
exocytotic channel.
Collapse
Affiliation(s)
- Raphaël Trouillon
- Department
of Chemistry and Molecular Biology, University of Gothenburg, S-41296 Gothenburg, Sweden
| | - Andrew G. Ewing
- Department
of Chemistry and Molecular Biology, University of Gothenburg, S-41296 Gothenburg, Sweden
- Department
of Chemical and Biological Engineering, Chalmers University of Technology, S-41296 Gothenburg, Sweden
| |
Collapse
|
114
|
Devonshire AS, Baradez MO, Morley G, Marshall D, Foy CA. Validation of high-throughput single cell analysis methodology. Anal Biochem 2014; 452:103-13. [PMID: 24631519 DOI: 10.1016/j.ab.2014.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/27/2014] [Accepted: 03/01/2014] [Indexed: 01/04/2023]
Abstract
High-throughput quantitative polymerase chain reaction (qPCR) approaches enable profiling of multiple genes in single cells, bringing new insights to complex biological processes and offering opportunities for single cell-based monitoring of cancer cells and stem cell-based therapies. However, workflows with well-defined sources of variation are required for clinical diagnostics and testing of tissue-engineered products. In a study of neural stem cell lines, we investigated the performance of lysis, reverse transcription (RT), preamplification (PA), and nanofluidic qPCR steps at the single cell level in terms of efficiency, precision, and limit of detection. We compared protocols using a separate lysis buffer with cell capture directly in RT-PA reagent. The two methods were found to have similar lysis efficiencies, whereas the direct RT-PA approach showed improved precision. Digital PCR was used to relate preamplified template copy numbers to Cq values and reveal where low-quality signals may affect the analysis. We investigated the impact of calibration and data normalization strategies as a means of minimizing the impact of inter-experimental variation on gene expression values and found that both approaches can improve data comparability. This study provides validation and guidance for the application of high-throughput qPCR workflows for gene expression profiling of single cells.
Collapse
|
115
|
Aerts JT, Louis KR, Crandall SR, Govindaiah G, Cox CL, Sweedler JV. Patch clamp electrophysiology and capillary electrophoresis-mass spectrometry metabolomics for single cell characterization. Anal Chem 2014; 86:3203-8. [PMID: 24559180 PMCID: PMC3964733 DOI: 10.1021/ac500168d] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
The visual selection of specific
cells within an ex vivo brain slice, combined with
whole-cell patch clamp recording and
capillary electrophoresis (CE)–mass spectrometry (MS)-based
metabolomics, yields high chemical information on the selected cells.
By providing access to a cell’s intracellular environment,
the whole-cell patch clamp technique allows one to record the cell’s
physiological activity. A patch clamp pipet is used to withdraw ∼3
pL of cytoplasm for metabolomic analysis using CE–MS. Sampling
the cytoplasm, rather than an intact isolated neuron, ensures that
the sample arises from the cell of interest and that structures such
as presynaptic terminals from surrounding, nontargeted neurons are
not sampled. We sampled the rat thalamus, a well-defined system containing
gamma-aminobutyric acid (GABA)-ergic and glutamatergic neurons. The
approach was validated by recording and sampling from glutamatergic
thalamocortical neurons, which receive major synaptic input from GABAergic
thalamic reticular nucleus neurons, as well as neurons and astrocytes
from the ventral basal nucleus and the dorsal lateral geniculate nucleus.
From the analysis of the cytoplasm of glutamatergic cells, approximately
60 metabolites were detected, none of which corresponded to the compound
GABA. However, GABA was successfully detected when sampling the cytoplasm
of GABAergic neurons, demonstrating the exclusive nature of our cytoplasmic
sampling approach. The combination of whole-cell patch clamp with
single cell cytoplasm metabolomics provides the ability to link the
physiological activity of neurons and astrocytes with their neurochemical
state. The observed differences in the metabolome of these neurons
underscore the striking cell to cell heterogeneity in the brain.
Collapse
Affiliation(s)
- Jordan T Aerts
- Beckman Institute for Advanced Science and Technology, ‡Department of Pharmacology, §Department of Molecular and Integrative Physiology, ∥Department of Chemistry, and ⊥Neuroscience Program, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | | | | | | | | | |
Collapse
|
116
|
Liu JT, Hu LS, Liu YL, Chen RS, Cheng Z, Chen SJ, Amatore C, Huang WH, Huo KF. Real-Time Monitoring of Auxin Vesicular Exocytotic Efflux from Single Plant Protoplasts by Amperometry at Microelectrodes Decorated with Nanowires. Angew Chem Int Ed Engl 2014; 53:2643-7. [DOI: 10.1002/anie.201308972] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Indexed: 01/19/2023]
|
117
|
Liu JT, Hu LS, Liu YL, Chen RS, Cheng Z, Chen SJ, Amatore C, Huang WH, Huo KF. Real-Time Monitoring of Auxin Vesicular Exocytotic Efflux from Single Plant Protoplasts by Amperometry at Microelectrodes Decorated with Nanowires. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201308972] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
118
|
Bhardwaj C, Hanley L. Ion sources for mass spectrometric identification and imaging of molecular species. Nat Prod Rep 2014; 31:756-67. [PMID: 24473154 DOI: 10.1039/c3np70094a] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2013 The ability to transfer molecular species to the gas phase and ionize them is central to the study of natural products and other molecular species by mass spectrometry (MS). MS-based strategies in natural products have focused on a few established ion sources, such as electron impact and electrospray ionization. However, a variety of other ion sources are either currently in use to evaluate natural products or show significant future promise. This review discusses these various ion sources in the context of other articles in this special issue, but is also applicable to other fields of analysis, including materials science. Ion sources are grouped based on the current understanding of their predominant ion formation mechanisms. This broad overview groups ion sources into the following categories: electron ionization and single photon ionization; chemical ionization-like and plasma-based; electrospray ionization; and, laser desorption-based. Laser desorption-based methods are emphasized with specific examples given for laser desorption postionization sources and their use in the analysis of intact microbial biofilms. Brief consideration is given to the choice of ion source for various sample types and analyses, including MS imaging.
Collapse
Affiliation(s)
- Chhavi Bhardwaj
- Department of Chemistry, University of Illinois at Chicago, mc 111, Chicago, IL 60607-7061.
| | | |
Collapse
|
119
|
Actis P, Tokar S, Clausmeyer J, Babakinejad B, Mikhaleva S, Cornut R, Takahashi Y, López Córdoba A, Novak P, Shevchuck AI, Dougan JA, Kazarian SG, Gorelkin PV, Erofeev AS, Yaminsky IV, Unwin PR, Schuhmann W, Klenerman D, Rusakov DA, Sviderskaya EV, Korchev YE. Electrochemical nanoprobes for single-cell analysis. ACS NANO 2014; 8:875-84. [PMID: 24377306 DOI: 10.1021/nn405612q] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The measurement of key molecules in individual cells with minimal disruption to the biological milieu is the next frontier in single-cell analyses. Nanoscale devices are ideal analytical tools because of their small size and their potential for high spatial and temporal resolution recordings. Here, we report the fabrication of disk-shaped carbon nanoelectrodes whose radius can be precisely tuned within the range 5-200 nm. The functionalization of the nanoelectrode with platinum allowed the monitoring of oxygen consumption outside and inside a brain slice. Furthermore, we show that nanoelectrodes of this type can be used to impale individual cells to perform electrochemical measurements within the cell with minimal disruption to cell function. These nanoelectrodes can be fabricated combined with scanning ion conductance microscopy probes, which should allow high resolution electrochemical mapping of species on or in living cells.
Collapse
Affiliation(s)
- Paolo Actis
- Department of Medicine, Imperial College London , London W12 0NN, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Incorporating β-cyclodextrin with ZnO nanorods: a potentiometric strategy for selectivity and detection of dopamine. SENSORS 2014; 14:1654-64. [PMID: 24445413 PMCID: PMC3926630 DOI: 10.3390/s140101654] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 01/21/2023]
Abstract
We describe a chemical sensor based on a simple synthesis of zinc oxide nanorods (ZNRs) for the detection of dopamine molecules by a potentiometric approach. The polar nature of dopamine leads to a change of surface charges on the ZNR surface via metal ligand bond formation which results in a measurable electrical signal. ZNRs were grown on a gold-coated glass substrate by a low temperature aqueous chemical growth (ACG) method. Polymeric membranes incorporating β-cyclodextrin (β-CD) and potassium tetrakis (4-chlorophenyl) borate was immobilized on the ZNR surface. The fabricated electrodes were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The grown ZNRs were well aligned and exhibited good crystal quality. The present sensor system displays a stable potential response for the detection of dopamine in 10−2 mol·L−1 acetic acid/sodium acetate buffer solution at pH 5.45 within a wide concentration range of 1 × 10−6 M−1 × 10−1 M, with sensitivity of 49 mV/decade. The electrode shows a good response time (less than 10 s) and excellent repeatability. This finding can contribute to routine analysis in laboratories studying the neuropharmacology of catecholamines. Moreover, the metal-ligand bonds can be further exploited to detect DA receptors, and for bio-imaging applications.
Collapse
|
121
|
Chingin K, Liang J, Chen H. Direct analysis of in vitro grown microorganisms and mammalian cells by ambient mass spectrometry. RSC Adv 2014. [DOI: 10.1039/c3ra46327c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
122
|
Kim E, Leverage WT, Liu Y, White IM, Bentley WE, Payne GF. Redox-capacitor to connect electrochemistry to redox-biology. Analyst 2014; 139:32-43. [DOI: 10.1039/c3an01632c] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
123
|
Romanova EV, Aerts JT, Croushore CA, Sweedler JV. Small-volume analysis of cell-cell signaling molecules in the brain. Neuropsychopharmacology 2014; 39:50-64. [PMID: 23748227 PMCID: PMC3857641 DOI: 10.1038/npp.2013.145] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/26/2013] [Accepted: 05/06/2013] [Indexed: 12/19/2022]
Abstract
Modern science is characterized by integration and synergy between research fields. Accordingly, as technological advances allow new and more ambitious quests in scientific inquiry, numerous analytical and engineering techniques have become useful tools in biological research. The focus of this review is on cutting edge technologies that aid direct measurement of bioactive compounds in the nervous system to facilitate fundamental research, diagnostics, and drug discovery. We discuss challenges associated with measurement of cell-to-cell signaling molecules in the nervous system, and advocate for a decrease of sample volumes to the nanoliter volume regimen for improved analysis outcomes. We highlight effective approaches for the collection, separation, and detection of such small-volume samples, present strategies for targeted and discovery-oriented research, and describe the required technology advances that will empower future translational science.
Collapse
Affiliation(s)
- Elena V Romanova
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jordan T Aerts
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Callie A Croushore
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jonathan V Sweedler
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
124
|
Choi JS, Bae S, Kim KH, Kim JYH, Sim SJ, Seo TS. Capture and culturing of single microalgae cells, and retrieval of colonies using a perforated hemispherical microwell structure. RSC Adv 2014. [DOI: 10.1039/c4ra09730k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We fabricated perforated hemispherical microwells and used them to capture and culture single microalgal cells, and to retrieve the resulting colonies with high speed and simplicity.
Collapse
Affiliation(s)
- Jong Seob Choi
- Department of Chemical and Biomolecular Engineering (BK21 Program) and Institute for The BioCentury
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon, South Korea
| | - Sunwoong Bae
- Department of Chemical and Biomolecular Engineering (BK21 Program) and Institute for The BioCentury
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon, South Korea
| | - Kyung Hoon Kim
- Department of Chemical and Biomolecular Engineering (BK21 Program) and Institute for The BioCentury
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon, South Korea
| | - Jaoon Y. H. Kim
- Department of Chemical and Biological Engineering
- Korea University
- Seoul, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering
- Korea University
- Seoul, Republic of Korea
| | - Tae Seok Seo
- Department of Chemical and Biomolecular Engineering (BK21 Program) and Institute for The BioCentury
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon, South Korea
| |
Collapse
|
125
|
|
126
|
Metto EC, Evans K, Barney P, Culbertson AH, Gunasekara DB, Caruso G, Hulvey MK, da Silva JAF, Lunte SM, Culbertson CT. An integrated microfluidic device for monitoring changes in nitric oxide production in single T-lymphocyte (Jurkat) cells. Anal Chem 2013; 85:10188-95. [PMID: 24010877 PMCID: PMC3951964 DOI: 10.1021/ac401665u] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A considerable amount of attention has been focused on the analysis of single cells in an effort to better understand cell heterogeneity in cancer and neurodegenerative diseases. Although microfluidic devices have several advantages for single cell analysis, few papers have actually demonstrated the ability of these devices to monitor chemical changes in perturbed biological systems. In this paper, a new microfluidic channel manifold is described that integrates cell transport, lysis, injection, electrophoretic separation, and fluorescence detection into a single device, making it possible to analyze individual cells at a rate of 10 cells/min in an automated fashion. The system was employed to measure nitric oxide (NO) production in single T-lymphocytes (Jurkat cells) using a fluorescent marker, 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM DA). The cells were also labeled with 6-carboxyfluorescein diacetate (6-CFDA) as an internal standard. The NO production by control cells was compared to that of cells stimulated using lipopolysaccharide (LPS), which is known to cause the expression of inducible nitric oxide synthase (iNOS) in immune-type cells. Statistical analysis of the resulting electropherograms from a population of cells indicated a 2-fold increase in NO production in the induced cells. These results compare nicely to a recently published bulk cell analysis of NO.
Collapse
Affiliation(s)
- Eve C. Metto
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Karsten Evans
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Patrick Barney
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Anne H. Culbertson
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Dulan B. Gunasekara
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA
| | - Giuseppe Caruso
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA
- Department of Chemical Science, Section of Biochemistry and Molecular Biology, The University of Catania, Italy
| | - Matthew K. Hulvey
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, USA
- Akermin, Inc. St. Louis, Missouri 63132, USA
| | - Jose Alberto Fracassi da Silva
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA
- Institute of Chemistry, State University of Campinas, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia em Bioanalítica, INCTBio
| | - Susan M. Lunte
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, USA
| | | |
Collapse
|
127
|
Cui Y, Bhardwaj C, Milasinovic S, Carlson RP, Gordon RJ, Hanley L. Molecular imaging and depth profiling of biomaterials interfaces by femtosecond laser desorption postionization mass spectrometry. ACS APPLIED MATERIALS & INTERFACES 2013; 5:9269-9275. [PMID: 23947564 DOI: 10.1021/am4020633] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mass spectrometry (MS) imaging is increasingly being applied to probe the interfaces of biomaterials with invasive microbial biofilms, human tissue, or other biological materials. Laser desorption vacuum ultraviolet postionization with ∼75 fs, 800 nm laser pulses (fs-LDPI-MS) was used to collect MS images of a yeast-Escherichia coli co-culture biofilm. The method was also used to depth profile a three-dimensionally structured, multispecies biofilm. Finally, fs-LDPI-MS analyses of yeast biofilms grown under different conditions were compared with LDPI-MS using ultraviolet, nanosecond pulse length laser desorption as well as with fs laser desorption ionization without postionization. Preliminary implications for the use of fs-LDPI-MS for the analysis of biomaterials interfaces are discussed and contrasted with established methods in MS imaging.
Collapse
Affiliation(s)
- Yang Cui
- Department of Chemistry, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | | | | | | | | | | |
Collapse
|
128
|
Iino R, Matsumoto Y, Nishino K, Yamaguchi A, Noji H. Design of a large-scale femtoliter droplet array for single-cell analysis of drug-tolerant and drug-resistant bacteria. Front Microbiol 2013; 4:300. [PMID: 24109478 PMCID: PMC3790107 DOI: 10.3389/fmicb.2013.00300] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 09/17/2013] [Indexed: 11/13/2022] Open
Abstract
Single-cell analysis is a powerful method to assess the heterogeneity among individual cells, enabling the identification of very rare cells with properties that differ from those of the majority. In this Methods Article, we describe the use of a large-scale femtoliter droplet array to enclose, isolate, and analyze individual bacterial cells. As a first example, we describe the single-cell detection of drug-tolerant persisters of Pseudomonas aeruginosa treated with the antibiotic carbenicillin. As a second example, this method was applied to the single-cell evaluation of drug efflux activity, which causes acquired antibiotic resistance of bacteria. The activity of the MexAB-OprM multidrug efflux pump system from Pseudomonas aeruginosa was expressed in Escherichia coli and the effect of an inhibitor D13-9001 were assessed at the single cell level.
Collapse
Affiliation(s)
- Ryota Iino
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo Tokyo, Japan ; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency Tokyo, Japan
| | | | | | | | | |
Collapse
|
129
|
Harink B, Le Gac S, Truckenmüller R, van Blitterswijk C, Habibovic P. Regeneration-on-a-chip? The perspectives on use of microfluidics in regenerative medicine. LAB ON A CHIP 2013; 13:3512-28. [PMID: 23877890 DOI: 10.1039/c3lc50293g] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The aim of regenerative medicine is to restore or establish normal function of damaged tissues or organs. Tremendous efforts are placed into development of novel regenerative strategies, involving (stem) cells, soluble factors, biomaterials or combinations thereof, as a result of the growing need caused by continuous population aging. To satisfy this need, fast and reliable assessment of (biological) performance is sought, not only to select the potentially interesting candidates, but also to rule out poor ones at an early stage of development. Microfluidics may provide a new avenue to accelerate research and development in the field of regenerative medicine as it has proven its maturity for the realization of high-throughput screening platforms. In addition, microfluidic systems offer other advantages such as the possibility to create in vivo-like microenvironments. Besides the complexity of organs or tissues that need to be regenerated, regenerative medicine brings additional challenges of complex regeneration processes and strategies. The question therefore arises whether so much complexity can be integrated into microfluidic systems without compromising reliability and throughput of assays. With this review, we aim to investigate whether microfluidics can become widely applied in regenerative medicine research and/or strategies.
Collapse
Affiliation(s)
- Björn Harink
- Department of Tissue Regeneration, MIRA Institute for Biomedical Engineering and Technical Medicine, PO Box 217, 7500AE Enschede, The Netherlands.
| | | | | | | | | |
Collapse
|
130
|
Kandziolka M, Charlton JJ, Kravchenko II, Bradshaw JA, Merkulov IA, Sepaniak MJ, Lavrik NV. Silicon nanopillars as a platform for enhanced fluorescence analysis. Anal Chem 2013; 85:9031-8. [PMID: 23984845 DOI: 10.1021/ac401500y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The importance of fluorescent detection in many fields is well established. While advancements in instrumentation and the development of brighter fluorophore have increased sensitivity and lowered the detection limits of the method, additional gains can be made by manipulating the local electromagnetic field. Herein we take advantage of silicon nanopillars that exhibit optical resonances and field enhancement on their surfaces and demonstrate their potential in improving performance of biomolecular fluorescent assays. We use electron beam lithography and wafer scale processes to create silicon nanoscale pillars with dimensions that can be tuned to maximize fluorescence enhancement in a particular spectral region. Performance of the nanopillar based fluorescent assay was quantified using two model bioaffinity systems (biotin-streptavidin and immunoglobulin G-antibody) as well as covalent binding of fluorescently tagged bovine serum albumin (BSA). The effects of pillar geometry and number of pillars in arrays were evaluated. Color specific and pillar diameter dependent enhancement of fluorescent signals is clearly demonstrated using green and red labels (FITC, DyLight 488, Alexa 568, and Alexa 596). The ratios of the on pillar to off pillar signals normalized by the nominal increase in surface area due to nanopillars were found to be 43, 75, and 292 for the IgG-antibody assay, streptavidin-biotin system, and covalently attached BSA, respectively. Applicability of the presented approaches to the detection of small numbers of molecules was evaluated using highly diluted labeled proteins and also control experiments without biospecific analytes. Our analysis indicates that detection of fewer than 10 tagged proteins is possible.
Collapse
Affiliation(s)
- Michael Kandziolka
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , P.O. Box 2008, Oak Ridge, Tennessee 37831, United States
| | | | | | | | | | | | | |
Collapse
|
131
|
Klepárník K, Foret F. Recent advances in the development of single cell analysis--a review. Anal Chim Acta 2013; 800:12-21. [PMID: 24120162 DOI: 10.1016/j.aca.2013.09.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/23/2013] [Accepted: 09/05/2013] [Indexed: 01/12/2023]
Abstract
Development of techniques for the analysis of the content of individual cells represents an important direction in modern bioanalytical chemistry. While the analysis of chromosomes, organelles, or location of selected proteins has been traditionally the domain of microscopic techniques, the advances in miniaturized analytical systems bring new possibilities for separations and detections of molecules inside the individual cells including smaller molecules such as hormones or metabolites. It should be stressed that the field of single cell analysis is very broad, covering advanced optical, electrochemical and mass spectrometry instrumentation, sensor technology and separation techniques. The number of papers published on single cell analysis has reached several hundred in recent years. Thus a complete literature coverage is beyond the limits of a journal article. The following text provides a critical overview of some of the latest developments with the main focus on mass spectrometry, microseparation methods, electrophoresis in capillaries and microfluidic devices and respective detection techniques for performing single cell analyses.
Collapse
Affiliation(s)
- Karel Klepárník
- Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | | |
Collapse
|
132
|
Rogeberg M, Vehus T, Grutle L, Greibrokk T, Wilson SR, Lundanes E. Separation optimization of long porous-layer open-tubular columns for nano-LC-MS of limited proteomic samples. J Sep Sci 2013; 36:2838-47. [DOI: 10.1002/jssc.201300499] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 05/31/2013] [Accepted: 05/31/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Magnus Rogeberg
- Department of Chemistry; University of Oslo; Blindern Oslo Norway
| | - Tore Vehus
- Department of Chemistry; University of Oslo; Blindern Oslo Norway
| | - Lene Grutle
- Department of Chemistry; University of Oslo; Blindern Oslo Norway
| | - Tyge Greibrokk
- Department of Chemistry; University of Oslo; Blindern Oslo Norway
| | | | - Elsa Lundanes
- Department of Chemistry; University of Oslo; Blindern Oslo Norway
| |
Collapse
|
133
|
Passarelli MK, Ewing AG. Single-cell imaging mass spectrometry. Curr Opin Chem Biol 2013; 17:854-9. [PMID: 23948695 DOI: 10.1016/j.cbpa.2013.07.017] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/03/2013] [Accepted: 07/03/2013] [Indexed: 10/26/2022]
Abstract
Single-cell imaging mass spectrometry (IMS) is a powerful technique used to map the distributions of endogenous biomolecules with subcellular resolution. Currently, secondary ion mass spectrometry is the predominant technique for single-cell IMS, thanks to its submicron lateral resolution and surface sensitivity. However, recent methodological and technological developments aimed at improving the spatial resolution of matrix assisted laser desorption ionization (MALDI) have made this technique a potential platform of single-cell IMS. MALDI opens the field of single-cell IMS to new possibilities, including single cell proteomic imaging and atmospheric pressure analyses; however, sensitivity is a challenge. In this report, we estimate the availability of proteins and lipids in a single cell and discuss strategies employed to improve sensitivity at the single-cell level.
Collapse
|
134
|
Trouillon R, Ewing AG. Amperometric measurements at cells support a role for dynamin in the dilation of the fusion pore during exocytosis. Chemphyschem 2013; 14:2295-301. [PMID: 23824748 PMCID: PMC3794367 DOI: 10.1002/cphc.201300319] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Indexed: 11/10/2022]
Abstract
Dynamin is a GTPase mechanochemical enzyme involved in the late steps of endocytosis, where it separates the endocytotic vesicle from the cell membrane. However, recent reports have emphasized its role in exocytosis. In this case, dynamin may contribute to the control of the exocytotic pore, thus suggesting a direct control on the efflux of neurotransmitters. Dynasore, a selective inhibitor of the GTPase activity of dynamin, was used to investigate the role of dynamin in exocytosis. Exocytosis was analyzed by amperometry, thus revealing that dynasore inhibits exocytosis in a dose-dependent manner. Analysis of the exocytotic peaks shows that the inhibition of the GTPase activity of dynamin leads to shorter, smaller events. This observation, together with the rapid effect of dynasore, suggests that the blocking of the GTPase induces the formation of a more narrow and short-lived fusion pore. These results suggest that the GTPase properties of dynamin are involved in the duration and kinetics of exocytotic release. Interestingly, and in strong contrast with its role in endocytosis, the mechanochemical properties of dynamin appear to contribute to the dilation and stability of the pore during exocytosis.
Collapse
Affiliation(s)
- Raphaël Trouillon
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-41296, Gothenburg, Sweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-41296, Gothenburg, Sweden
- Department of Chemical and Biological Engineering, Chalmers University of Technology, S-41296 Gothenburg, Sweden
| |
Collapse
|
135
|
Norris V, Nana GG, Audinot JN. New approaches to the problem of generating coherent, reproducible phenotypes. Theory Biosci 2013; 133:47-61. [PMID: 23794321 DOI: 10.1007/s12064-013-0185-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 06/03/2013] [Indexed: 12/01/2022]
Abstract
Fundamental, unresolved questions in biology include how a bacterium generates coherent phenotypes, how a population of bacteria generates a coherent set of such phenotypes, how the cell cycle is regulated and how life arose. To try to help answer these questions, we have developed the concepts of hyperstructures, competitive coherence and life on the scales of equilibria. Hyperstructures are large assemblies of macromolecules that perform functions. Competitive coherence describes the way in which organisations such as cells select a subset of their constituents to be active in determining their behaviour; this selection results from a competition between a process that is responsible for a historical coherence and another process responsible for coherence with the current environment. Life on the scales of equilibria describes how bacteria depend on the cell cycle to negotiate phenotype space and, in particular, to satisfy the conflicting constraints of having to grow in favourable conditions so as to reproduce yet not grow in hostile conditions so as to survive. Both competitive coherence and life on the scales deal with the problem of reconciling conflicting constraints. Here, we bring together these concepts in the common framework of hyperstructures and make predictions that may be tested using a learning program, Coco, and secondary ion mass spectrometry.
Collapse
Affiliation(s)
- Vic Norris
- Theoretical Biology Unit, University of Rouen, 76821, Mont Saint Aignan, France,
| | | | | |
Collapse
|
136
|
Hu C, Yang DP, Wang Z, Yu L, Zhang J, Jia N. Improved EIS Performance of an Electrochemical Cytosensor Using Three-Dimensional Architecture Au@BSA as Sensing Layer. Anal Chem 2013; 85:5200-6. [DOI: 10.1021/ac400556q] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Chenyi Hu
- The Education Ministry Key Laboratory of Resource Chemistry, Department of Chemistry, Life and Environmental Science College, Shanghai Normal University, Shanghai 200234, China
| | | | - Ziyi Wang
- The Education Ministry Key Laboratory of Resource Chemistry, Department of Chemistry, Life and Environmental Science College, Shanghai Normal University, Shanghai 200234, China
| | - Lili Yu
- The Education Ministry Key Laboratory of Resource Chemistry, Department of Chemistry, Life and Environmental Science College, Shanghai Normal University, Shanghai 200234, China
| | | | - Nengqin Jia
- The Education Ministry Key Laboratory of Resource Chemistry, Department of Chemistry, Life and Environmental Science College, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
137
|
Trouillon R, Ewing AG. Single cell amperometry reveals glycocalyx hinders the release of neurotransmitters during exocytosis. Anal Chem 2013; 85:4822-8. [PMID: 23544960 PMCID: PMC3696406 DOI: 10.1021/ac4008682] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The diffusional hindrance of the glycocalyx along the cell surface on exocytotic peaks, observed with single cell amperometry, was investigated. Partial digestion of the glycocalyx with neuraminidase led to the observation of faster peaks, as shown by varied peak parameters. This result indicates that diffusion of small molecules in the partially digested glycocalyx is 2.2 faster than in the intact glycocalyx. Similarly, neutralization of the negative charges present in the cell microenvironment led to faster peak kinetics. The analysis of the vesicular efflux indicates that the diffusion coefficient of dopamine at the cell surface is at most 45% of the diffusion coefficient in free solution. This study shows that the glycocalyx plays an important role in the diffusion kinetics of processes along the cell surface, including exocytotic events.
Collapse
Affiliation(s)
- Raphaël Trouillon
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-41296, Gothenburg, Sweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-41296, Gothenburg, Sweden
- Department of Chemical and Biological Engineering, Chalmers University of Technology, S-41296 Gothenburg, Sweden
| |
Collapse
|
138
|
Lu X, Cheng H, Huang P, Yang L, Yu P, Mao L. Hybridization of bioelectrochemically functional infinite coordination polymer nanoparticles with carbon nanotubes for highly sensitive and selective in vivo electrochemical monitoring. Anal Chem 2013; 85:4007-13. [PMID: 23496088 DOI: 10.1021/ac303743a] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This study demonstrates the formation of a three-dimensional conducting framework through hybridization of bioelectrochemically active infinite coordination polymer (ICP) nanoparticles with single-walled carbon nanotubes (SWNTs) for highly sensitive and selective in vivo electrochemical monitoring with combination with in vivo microdialysis. The bioelectrochemically active ICP nanoparticles are synthesized through the self-assembly process of NAD(+) and Tb(3+), in which all biosensing elements including an electrocatalyst (i.e., methylene green, MG), cofactor (i.e., β-nicotinamide adenine dinucleotide, NAD(+)), and enzyme (i.e., glucose dehydrogenase, GDH) are adaptively encapsulated. The ICP/SWNT-based biosensors are simply prepared by drop-coating the as-formed ICP/SWNT nanocomposite onto a glassy carbon substrate. Electrochemical studies demonstrate that the simply prepared ICP/SWNT-based biosensors exhibit excellent biosensing properties with a higher sensitivity and stability than the ICP-based biosensors prepared only with ICP nanoparticles (i.e., without hybridization of SWNTs). By using a GDH-based electrochemical biosensor as an example, we demonstrate a technically simple yet effective online electroanalytical platform for continuously monitoring glucose in the brain of guinea pigs with the ICP/SWNT-based biosensor as an online detector in a continuous-flow system combined with in vivo microdialysis. Under the experimental conditions employed here, the dynamic linear range for glucose with the ICP/SWNT-biosensor is from 50 to 1000 μM. Moreover, in vivo selectivity investigations with the biosensors prepared by the GDH-free ICPs reveal that ICP/SWNT-based biosensors are very selective for the measurement of glucose in the cerebral system. The basal level of glucose in the microdialysates from the striatum of guinea pigs is determined to be 0.31 ± 0.03 mM (n = 3). The study offers a simple route to the preparation of electrochemical biosensors, which is envisaged to be particularly useful for probing the chemical events involved in some physiological and pathological processes.
Collapse
Affiliation(s)
- Xulin Lu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | | | | | | | | | | |
Collapse
|
139
|
Passarelli MK, Ewing AG, Winograd N. Single-cell lipidomics: characterizing and imaging lipids on the surface of individual Aplysia californica neurons with cluster secondary ion mass spectrometry. Anal Chem 2013; 85:2231-8. [PMID: 23323749 PMCID: PMC3867296 DOI: 10.1021/ac303038j] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neurons isolated from Aplysia californica , an organism with a well-defined neural network, were imaged with secondary ion mass spectrometry, C(60)-SIMS. A major lipid component of the neuronal membrane was identified as 1-hexadecyl-2-octadecenoyl-sn-glycero-3-phosphocholine [PC(16:0e/18:1)] using tandem mass spectrometry (MS/MS). The assignment was made directly off the sample surface using a C(60)-QSTAR instrument, a prototype instrument that combines an ion source with a commercial electrospray ionization/matrix-assisted laser desorption ionization (ESI/MALDI) mass spectrometer. Normal phase liquid chromatography mass spectrometry (NP-LC-MS) was used to confirm the assignment. Cholesterol and vitamin E were also identified with in situ tandem MS analyses that were compared to reference spectra obtained from purified compounds. In order to improve sensitivity on the single-cell level, the tandem MS spectrum of vitamin E reference material was used to extract and compile all the vitamin E related peaks from the cell image. The mass spectrometry images reveal heterogeneous distributions of intact lipid species, PC(16:0e/18:1), vitamin E, and cholesterol on the surface of a single neuron. The ability to detect these molecules and determine their relative distribution on the single-cell level shows that the C(60)-QSTAR is a potential platform for studying important biochemical processes, such as neuron degeneration.
Collapse
Affiliation(s)
- Melissa K. Passarelli
- Department of Chemistry, University Park, PA 16802, USA
- Department of Chemistry and Molecular Biology, The University of Gothenburg, SE-41296 Göteborg, Sweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology, The University of Gothenburg, SE-41296 Göteborg, Sweden
- Department of Chemical and Biological Engineering, Chalmers University of Technology, S-41296 Göteborg, Sweden
| | | |
Collapse
|
140
|
Fagerer SR, Schmid T, Ibáñez AJ, Pabst M, Steinhoff R, Jefimovs K, Urban PL, Zenobi R. Analysis of single algal cells by combining mass spectrometry with Raman and fluorescence mapping. Analyst 2013; 138:6732-6. [DOI: 10.1039/c3an01135f] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
141
|
Qin H, Gao Q, Niu H, Wang Z, Zhu X, Li J, Yuan X, Wu D. An in situ electrochemical detection method of cell viability. Analyst 2013; 138:3372-5. [DOI: 10.1039/c3an00379e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|