101
|
Zhu Y, Cai J, Xu L, Li G, Liu Y. Two Robust Isoreticular Metal–Organic Frameworks with Different Interpenetration Degrees Exhibiting Disparate Breathing Behaviors. Inorg Chem 2022; 61:10957-10964. [DOI: 10.1021/acs.inorgchem.2c01545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yueying Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jun Cai
- Beijing Institute of Applied Meteorology, Beijing 100029, P. R. China
| | - Liren Xu
- Beijing Institute of Applied Meteorology, Beijing 100029, P. R. China
| | - Guanghua Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
102
|
Szufla M, Choroś A, Nitek W, Matoga D. A Porous Sulfonated 2D Zirconium Metal-Organic Framework as a Robust Platform for Proton Conduction. Chemistry 2022; 28:e202200835. [PMID: 35510822 DOI: 10.1002/chem.202200835] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Indexed: 11/06/2022]
Abstract
By using the strategy of pre-assembly chlorosulfonation applied to a linker precursor, the first sulfonated zirconium metal-organic framework (JUK-14) with two-dimensional (2D) structure, was synthesized. Single-crystal X-ray diffraction reveals that the material is built of Zr6 O4 (OH)4 (COO)8 oxoclusters, doubly 4-connected by angular dicarboxylates, and stacked in layers spaced 1.5 nm apart by the presence of sulfonic groups. JUK-14 exhibits excellent hydrothermal stability, permanent porosity confirmed by gas adsorption studies, and shows high (>10-4 S/cm) and low (<10-8 S/cm) proton conductivity under humidified and anhydrous conditions, respectively. Post-synthesis inclusion of imidazole improves the overall conductivity increasing it to 1.7×10-3 S/cm at 60 °C and 90 % relative humidity, and by 3 orders of magnitude at 160 °C. The combination of 2D porous nature with robustness of zirconium MOFs offers new opportunities for exploration of the material towards energy and environmental applications.
Collapse
Affiliation(s)
- Monika Szufla
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Gronostajowa 2, Poland
| | - Aleksandra Choroś
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Gronostajowa 2, Poland
| | - Wojciech Nitek
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Gronostajowa 2, Poland
| | - Dariusz Matoga
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Gronostajowa 2, Poland
| |
Collapse
|
103
|
Huang DS, Zhu HL, Zhao ZH, Huang JR, Liao PQ, Chen XM. A Stable and Low-Cost Metal-Azolate Framework with Cyclic Tricopper Active Sites for Highly Selective CO 2 Electroreduction to C 2+ Products. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Da-Shuai Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hao-Lin Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhen-Hua Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jia-Run Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
104
|
Song X, Wang Y, Wang C, Wang D, Zhuang G, Kirlikovali KO, Li P, Farha OK. Design Rules of Hydrogen-Bonded Organic Frameworks with High Chemical and Thermal Stabilities. J Am Chem Soc 2022; 144:10663-10687. [PMID: 35675383 DOI: 10.1021/jacs.2c02598] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs), self-assembled from strategically pre-designed molecular tectons with complementary hydrogen-bonding patterns, are rapidly evolving into a novel and important class of porous materials. In addition to their common features shared with other functionalized porous materials constructed from modular building blocks, the intrinsically flexible and reversible H-bonding connections endow HOFs with straightforward purification procedures, high crystallinity, solution processability, and recyclability. These unique advantages of HOFs have attracted considerable attention across a broad range of fields, including gas adsorption and separation, catalysis, chemical sensing, and electrical and optical materials. However, the relatively weak H-bonding interactions within HOFs can potentially limit their stability and potential use in further applications. To that end, this Perspective highlights recent advances in the development of chemically and thermally robust HOF materials and systematically discusses relevant design rules and synthesis strategies to access highly stable HOFs.
Collapse
Affiliation(s)
- Xiyu Song
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yao Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Chen Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Dong Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Guowei Zhuang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Kent O Kirlikovali
- Department of Chemistry, International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Peng Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Omar K Farha
- Department of Chemistry, International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
105
|
Demakov PA, Fedin VP. Layered trans-1,4-Cyclohexanedicarboxylates of Divalent Metals: Synthesis, Crystal Structures, and Thermal Properties. RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s1070328422050049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
106
|
Hu J, Zhang H, Feng Z, Luo QR, Wu CM, Zhong YH, Li JR, Chung LH, Liao WM, He J. Flexible side arms of ditopic linker as effective tools to boost proton conductivity of Ni8-pyrazolate metal-organic framework. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
107
|
Zhang H, Yin XB. Mixed-Ligand Metal-Organic Frameworks for All-in-One Theranostics with Controlled Drug Delivery and Enhanced Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26528-26535. [PMID: 35641317 DOI: 10.1021/acsami.2c06873] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mixed-ligand metal-organic frameworks (MOFs) multiply the properties and improve the versatility of conventional MOFs for theranostic applications. A tumor targeting and tumoral microenvironment-responsive system is significant for specific and efficient cancer theranostics. Herein, we report a kind of versatile mixed-porphyrin ligand MOF as a multifunctional matrix for multimodality-imaging-guided synergistic therapy. Tetrakis(4-carboxyphenyl)porphyrin (TCPP) shows the properties of fluorescence (FL) and photodynamic therapy (PDT), while Mn-TCPP owns magically the properties of T1-weighted magnetic resonance (MR) imaging and photothermal conversion for photothermal imaging and photothermal therapy (PTT). Because of the same coordination capacity and mode of TCPP and Mn-TCPP to Zr4+ ions, MOFs with adjustable ligand ratios were easily prepared. The mixed-ligand MOFs exhibited a high drug loading capacity for 10-hydroxycamptothecin (HCPT, 65%). After modification with hyaluronic acid (HA) through a disulfide bond (-S-S-), the MOF-S-S-HA composites possess enhanced PDT and tumor-targeted redox-responsive drug release properties due to the -S-S- bond. Thus, excellent fluorescence, MR, and photothermal trimodality imaging, redox-responsive drug release, and enhanced PDT/PTT are integrated together in the mixed-ligand MOFs as "all-in-one" theranostic agents.
Collapse
Affiliation(s)
- Hui Zhang
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA and College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
- Shanghai Institute of Quality Inspection and Technical Research, Shanghai 201114, P. R. China
- Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xue-Bo Yin
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA and College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
- Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
108
|
Loukopoulos E, Angeli GK, Kouvidis K, Tsangarakis C, Trikalitis PN. Accessing 14-Connected Nets: Continuous Breathing, Hydrophobic Rare-Earth Metal Organic Frameworks Based on 14-c Hexanuclear Clusters with High Affinity for Non-Polar Vapors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22242-22251. [PMID: 35535746 DOI: 10.1021/acsami.2c05961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Highly connected metal organic frameworks (MOFs) in which at least one building block has connectivity higher than twelve are very rare and much desirable. We report here the first examples of isostructural 14-connected MOFs, RE-frt-MOF-1, constructed from the assembly of 14-c hexanuclear rare-earth clusters, [RE6(μ3-X)8(COO)12]2- (RE: Y3+, Tb3+, Dy3+, Ho3+, Er3+, Yb3+ and X: OH-/F-) with a tritopic carboxylate-based organic linker. This linker serves as a 3-c and 4-c organic node resulting in the formation of a unique, trinodal (3,4,14)-c framework. RE-frt-MOF-1 are stable in air and alkaline aqueous solutions and show an intriguingly continuous, reversible breathing behavior, between a wide and a narrow-pore phase, upon guest removal. Crystallinity is retained during breathing, and single-crystal X-ray diffraction shed light into the associated structural transformation. Vapor sorption studies performed on Y-frt-MOF-1 revealed a high affinity for non-polar vapors such as n-hexane, cyclohexane, and benzene, displaying type I isotherms with high uptake at low relative pressures (<10-3 p/p0), associated with the hydrophobic nature of the 1D channels and also with their rhombic shape. In contrast, polar vapors such as acetonitrile and ethanol show type V isotherms due to favorable vapor-vapor interactions. Notably these vapors, except cyclohexane, trigger the transition from the narrow to the wide pore phase, accompanied by a remarkable increase in uptake, reaching 70.6, 109, 100.4, and 87.7% for n-hexane, benzene, acetonitrile, and ethanol, respectively.
Collapse
Affiliation(s)
- Edward Loukopoulos
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| | - Giasemi K Angeli
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| | | | | | | |
Collapse
|
109
|
Liu L, Chen Q, Lv J, Li Y, Wang K, Li JR. Stable Metal-Organic Frameworks for Fluorescent Detection of Tetracycline Antibiotics. Inorg Chem 2022; 61:8015-8021. [PMID: 35544341 DOI: 10.1021/acs.inorgchem.2c00754] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rapid detection of antibiotics in agricultural products is of great significance. In this work, two stable fluorescent metal-organic frameworks (MOFs), BUT-178 and BUT-179, are synthesized and used to detect tetracycline antibiotics. Among them, BUT-179 exhibits better performance in the detection of different tetracycline antibiotics in water and eggs. The limits of detection of BUT-179 toward tetracycline, aureomycin, oxytetracycline, and doxycycline all reach the nanomolar level. Furthermore, the cycling tests confirm that BUT-179 can be easily recovered and repeatedly used without an obvious performance loss. This work demonstrates the excellent application potential of MOFs for food safety, especially the fluorescence detection of antibiotics in foods.
Collapse
Affiliation(s)
- Lu Liu
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Qiang Chen
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Jie Lv
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yaping Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Kecheng Wang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|
110
|
Peng J, Liu Z, Wu Y, Xian S, Li Z. High-Performance Selective CO 2 Capture on a Stable and Flexible Metal-Organic Framework via Discriminatory Gate-Opening Effect. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21089-21097. [PMID: 35477298 DOI: 10.1021/acsami.2c04779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Selective CO2 capture is of great significance for environmental protection and industrial demand. Here, we report a stable and flexible metal-organic framework (MOF) with excellent water/moisture stability, namely, ZnDatzBdc, that enables high-performance selective CO2 capture from N2 and CH4 via a discriminatory gate-opening effect. ZnDatzBdc shows reversible structural transformation between the open-phase (OP) state and the close-phase (CP) state, owing to the synergistic effect of breakage/re-formation of intraframework hydrogen bonds and the rotation of the phenyl rings. Significantly, ZnDatzBdc exhibits S-shaped isotherms toward CO2, resulting in a large CO2 theoretical working capacity of 94.9 cm3/cm3 under typical pressure vacuum swing adsorption (PVSA) operations, which outperforms other flexible MOFs showing the CO2 selective gate-opening effect except for the miosture-sensitive ELM-11. In addition, CO2 uptake of ZnDatzBdc is well maintained upon multiple water/moisture exposure, indicating its excellent stability. Moreover, ZnDatzBdc establishes remarkable CO2 selectivity with ultrahigh uptake ratios of CO2/N2 (107 at 273 K and 129 at 298 K) and CO2/CH4 (35 at 273 K and 44 at 298 K) at 100 kPa. The in situ gas sorption PXRD experiment verifies that the gate-opening effect takes place in the atmospheric environment of CO2 but not for N2 or CH4. Molecular simulation suggests the selective gate-opening of CO2 comes from its strong electrostatic interactions with the amino groups. Furthermore, effective breakthrough performance and easy regeneration are further confirmed. Hence, combined with excellent separation performance and remarkable stability, ZnDatzBdc can serve as a potential industrial adsorbent for selective CO2 capture.
Collapse
Affiliation(s)
- Junjie Peng
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zewei Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Ying Wu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shikai Xian
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Xili, Nanshan, Shenzhen 518055, P. R. China
| | - Zhong Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- The Key Laboratory of Enhanced Heat Transfer and Energy Conversation Ministry of Education, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
111
|
Zhang X, Fu J, Wang G, Hu H, Zhang DS, Zhang YZ, Zhang YK, Zhang ZW, Zhou WF, Li TT, Lv D, Geng L. Structure modulation, selective dye adsorption and catalytic CO2 transformation of four pillared-layer metal-organic frameworks. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
112
|
Zhang X, Li T, Cao QL, Wang YJ, Hou WL, Wei J, Tian GH, Hu H, Sheng J, Geng L, Zhang DS, Zhang YZ, Li Q. Constructing [Co6(μ3-OH)6]-based pillar-layered MOF with open metal sites via steric-hindrance effect on ligand for CO2 adsorption and fixation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
113
|
Nguyen HL. Metal-Organic Frameworks Can Photocatalytically Split Water-Why Not? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200465. [PMID: 35393683 DOI: 10.1002/adma.202200465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The opinion is provided about the stability and photocatalytic capability of metal-organic frameworks in photocatalytic overall water splitting.
Collapse
Affiliation(s)
- Ha L Nguyen
- Department of Chemistry, University of California Berkeley, Berkeley, CA, 94720, USA
- Joint UAEU-UC Berkeley Laboratories for Materials Innovations, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| |
Collapse
|
114
|
Negro C, Escamilla P, Bruno R, Ferrando‐Soria J, Armentano D, Pardo E. Metal-Organic Frameworks as Unique Platforms to Gain Insight of σ-Hole Interactions for the Removal of Organic Dyes from Aquatic Ecosystems. Chemistry 2022; 28:e202200034. [PMID: 35188315 PMCID: PMC9314587 DOI: 10.1002/chem.202200034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Indexed: 11/08/2022]
Abstract
The combination of high crystallinity and rich host-guest chemistry in metal-organic frameworks (MOFs), have situated them in an advantageous position, with respect to traditional porous materials, to gain insight on specific weak noncovalent supramolecular interactions. In particular, sulfur σ-hole interactions are known to play a key role in the biological activity of living beings as well as on relevant molecular recognitions processes. However, so far, they have been barely explored. Here, we describe both how the combination of the intrinsic features of MOFs, especially the possibility of using single-crystal X-ray crystallography (SCXRD), can be an extremely valuable tool to gain insight on sulfur σ-hole interactions, and how their rational exploitation can be enormously useful in the efficient removal of harmful organic molecules from aquatic ecosystems. Thus, we have used a MOF, prepared from the amino acid L-methionine and possessing channels decorated with -CH2 CH2 SCH3 thioalkyl chains, to remove a family of organic dyes at very low concentrations (10 ppm) from water. This MOF is able to efficiently capture the four dyes in a very fast manner, reaching within five minutes nearly the maximum removal. Remarkably, the crystal structure of the different organic dyes within MOFs channels could be determined by SCXRD. This has enabled us to directly visualize the important role sulfur σ-hole interactions play on the removal of organic dyes from aqueous solutions, representing one of the first studies on the rational exploitation of σ-hole interactions for water remediation.
Collapse
Affiliation(s)
- Cristina Negro
- Instituto de Ciencia Molecular (ICMOL)Universitat de ValènciaPaterna46980, ValènciaSpain
| | - Paula Escamilla
- Instituto de Ciencia Molecular (ICMOL)Universitat de ValènciaPaterna46980, ValènciaSpain
| | - Rosaria Bruno
- Dipartimento di Chimica e Tecnologie ChimicheUniversità della Calabria87030Rende, CosenzaItaly
| | - Jesus Ferrando‐Soria
- Instituto de Ciencia Molecular (ICMOL)Universitat de ValènciaPaterna46980, ValènciaSpain
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie ChimicheUniversità della Calabria87030Rende, CosenzaItaly
| | - Emilio Pardo
- Instituto de Ciencia Molecular (ICMOL)Universitat de ValènciaPaterna46980, ValènciaSpain
| |
Collapse
|
115
|
Hsieh PF, Law ZX, Lin CH, Tsai DH. Understanding Solvothermal Growth of Metal-Organic Framework Colloids for CO 2 Capture Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4415-4424. [PMID: 35357172 DOI: 10.1021/acs.langmuir.2c00165] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A quantitative study of the synthesis of metal-organic framework (MOF) colloids via a solvothermal growth process was demonstrated using electrospray-differential mobility analysis (ES-DMA), a gas-phase electrophoresis approach. HKUST-1, a copper-based MOF (Cu-MOF), was selected as the representative MOF of the study. The effects of the synthetic parameters, including ligand concentration (CBTC), synthetic temperature (Ts), and synthetic time (ts) versus material properties of the Cu-MOF, were successfully characterized based on the mobility size distributions measured by ES-DMA. The results show that the mobility size of Cu-MOF was proportional to Ts, ts, and CBTC during the solvothermal growth. X-ray diffraction and Brunauer-Emmett-Teller analyses were employed complementarily to the ES-DMA, confirming that the increase in mobility size of Cu-MOF was correlated to the increase in crystallinity (i.e., larger specific surface area and crystallite size). The results of CO2 pulse adsorption show that the synthesized Cu-MOF possessed a good CO2 adsorption ability under 1 atm, 35 °C, and the cumulative amount of CO2 uptake was proportional to the measured mobility size of Cu-MOF. The work provides a proof of concept for the controlled synthesis of MOF colloids with the support of gas-phase electrophoretic analysis, and the quantitative methodology is useful for the development of MOF-based applications in CO2 capture and utilization.
Collapse
Affiliation(s)
- Pei-Fang Hsieh
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan R.O.C
| | - Zhi Xuan Law
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan R.O.C
| | - Chia-Her Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan R.O.C
| | - De-Hao Tsai
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan R.O.C
| |
Collapse
|
116
|
Li T, Jia X, Chen H, Chang Z, Li L, Wang Y, Li J. Tuning the Pore Environment of MOFs toward Efficient CH 4/N 2 Separation under Humid Conditions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15830-15839. [PMID: 35319192 DOI: 10.1021/acsami.2c01156] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adsorption separation technology using adsorbents is promising as an alternative to the energy-demanding cryogenic distillation of natural gas (CH4/N2) separation. Although a few adsorbents, such as metal-organic frameworks (MOFs), with high performance for CH4/N2 separation, have been reported, it is still challenging to target the desired adsorbents for the actual CH4/N2 separation under humid conditions because the adsorption capacity and selectivity of the adsorbents might be mainly dampened by water vapor. Except for the high CH4 uptake and CH4/N2 selectivity, the adsorption material should simultaneously have excellent stability against moisture and relatively low-water absorption affinity. Here, we tuned the ligands and metal sites of reticular MOFs, Zn-benzene-1,4-dicarboxylic acid-1,4-diazabicyclo[2.2.2]octane (Zn-BDC-DABCO) (DMOF), affording a series of isostructural MOFs (DMOF-N, DMOF-A1, DMOF-A2, and DMOF-A3). Because of the finely engineered pore size and introduced aromatic rings in the functional DMOF, gas sorption results reveal that the materials show improved performance with a benchmark CH4 uptake of 37 cm3/g and a high CH4/N2 adsorption selectivity of 7.2 for DMOF-A2 at 298 K and 1.0 bar. Moisture stability experiments show that DMOF-A2 is a robust MOF with low water vapor capacity even at ∼40% relative humidity (RH) because of the presence of more hydrophobic aromatic rings. Breakthrough experiments verify the excellent CH4/N2 separation performances of DMOF-A2 under high humidity.
Collapse
Affiliation(s)
- Tong Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan 030024, China
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaoxia Jia
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan 030024, China
| | - Hui Chen
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan 030024, China
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zeyu Chang
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan 030024, China
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Libo Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan 030024, China
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yong Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jinping Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan 030024, China
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
117
|
Albalad J, Hernández-López L, Carné-Sánchez A, Maspoch D. Surface chemistry of metal-organic polyhedra. Chem Commun (Camb) 2022; 58:2443-2454. [PMID: 35103260 DOI: 10.1039/d1cc07034g] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic polyhedra (MOPs) are discrete, intrinsically-porous architectures that operate at the molecular regime and, owing to peripheral reactive sites, exhibit rich surface chemistry. Researchers have recently exploited this reactivity through post-synthetic modification (PSM) to generate specialised molecular platforms that may overcome certain limitations of extended porous materials. Indeed, the combination of modular solubility, orthogonal reactive sites, and accessible cavities yields a highly versatile molecular platform for solution to solid-state applications. In this feature article, we discuss representative examples of the PSM chemistry of MOPs, from proof-of-concept studies to practical applications, and highlight future directions for the MOP field.
Collapse
Affiliation(s)
- Jorge Albalad
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, SA 5000, Australia.
| | - Laura Hernández-López
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, Barcelona Institute of Science and Technology, Bellaterra 08193, Barcelona, Spain.
| | - Arnau Carné-Sánchez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, Barcelona Institute of Science and Technology, Bellaterra 08193, Barcelona, Spain.
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, Barcelona Institute of Science and Technology, Bellaterra 08193, Barcelona, Spain. .,ICREA, 08010 Barcelona, Spain
| |
Collapse
|
118
|
Zhao D, Yu K, Han X, He Y, Chen B. Recent progress on porous MOFs for process-efficient hydrocarbon separation, luminescent sensing, and information encryption. Chem Commun (Camb) 2022; 58:747-770. [PMID: 34979539 DOI: 10.1039/d1cc06261a] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metal-organic frameworks (MOFs), as an emerging class of porous materials, excel in designability, regulatability, and modifiability in terms of their composition, topology, pore size, and surface chemistry, thus affording a huge potential for addressing environment and energy-related challenges. In particular, MOFs can be applied as porous adsorbents for the purification of industrially important hydrocarbons through certain process-efficient separation schemes based on selectivity-reversed adsorption and multicomponent separation. Moreover, the vast combination possibilities and controllable and engineerable luminescent units of MOFs make them a versatile platform to develop functionally tailored materials for luminescent sensing and optical data encryption. In this feature article, we summarize the recent progress in the use of porous MOFs for the separation and purification of acetylene (C2H2) and ethylene (C2H4) based on selectivity-reversed adsorption and multicomponent separation strategies. Moreover, we highlight the advances over the past three years in the field of MOF-based luminescent materials for thermometry, turn-on sensing, and information encryption.
Collapse
Affiliation(s)
- Dian Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Kuangli Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Xue Han
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Yabing He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698, USA.
| |
Collapse
|
119
|
Jeong S, Zhang L, Kim J, Gong J, Choi J, Ok KM, Lee Y, Kwon S, Lee H. Conformational Adaptation of β‐Peptide Foldamers for the Formation of Metal–Peptide Frameworks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202108364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Seoneun Jeong
- Center for Multiscale Chiral Architectures Department of Chemistry KAIST 291 Daehak-ro, Yuseong-gu Daejeon 34141 Korea
| | - Lianjin Zhang
- Center for Multiscale Chiral Architectures Department of Chemistry KAIST 291 Daehak-ro, Yuseong-gu Daejeon 34141 Korea
| | - Jaewook Kim
- Center for Multiscale Chiral Architectures Department of Chemistry KAIST 291 Daehak-ro, Yuseong-gu Daejeon 34141 Korea
| | - Jintaek Gong
- Center for Multiscale Chiral Architectures Department of Chemistry KAIST 291 Daehak-ro, Yuseong-gu Daejeon 34141 Korea
| | - Jonghoon Choi
- Department of Chemistry Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Korea
| | - Kang Min Ok
- Department of Chemistry Sogang University 35 Baekbeom-ro, Mapo-gu Seoul 04107 Korea
| | - Yunho Lee
- Department of Chemistry Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Korea
| | - Sunbum Kwon
- Department of Chemistry Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul 06974 Korea
| | - Hee‐Seung Lee
- Center for Multiscale Chiral Architectures Department of Chemistry KAIST 291 Daehak-ro, Yuseong-gu Daejeon 34141 Korea
| |
Collapse
|
120
|
Li WL, Li TR, Du X, Zhao JP, liu F. Hexahydric Components Metal Organic Frameworks Constructed by Multiple Ligands and Mixed-Valence Ions. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00291d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we report two multi-component MOFs [CH3NH2CH3]2[FeIII2MII10(tz)11(HCO2)12(btc)5/3] (MII10 = FeII10 for 1 and MII10 = FeII2CoII8 for 2) obtained by solvothermal assembling formate, benzene-1,3,5-tricarboxylate (btc) and 1,2,4 triazole...
Collapse
|
121
|
Xiong C, Xiao YH, Liu Q, Chen L, He CT, Liu QY, Wang YL. Robust metal–organic framework with abundant large electronegative sites for removal of CO 2 from a ternary C 2H 2/C 2H 4/CO 2 mixture. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01175a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a MOF with cavities decorated with high-density electronegative F and O sites for the challenging separation of a ternary equimolar mixture of C2H2, C2H4, and CO2 is presented.
Collapse
Affiliation(s)
- Cheng Xiong
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Yan-Hong Xiao
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Qingyou Liu
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ling Chen
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Chun-Ting He
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Qing-Yan Liu
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Yu-Ling Wang
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
122
|
Lai Q, Chu ZQ, Xiao X, Dai D, Song T, Luo TY, Tang W, Feng X, Zhang Z, Li T, Xiao H, Su J, Liu C. Two-Dimensional Zr/Hf-Hydroxamate Metal-Organic Frameworks. Chem Commun (Camb) 2022; 58:3601-3604. [DOI: 10.1039/d2cc00213b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel two-dimensional kagome metal-organic frameworks with mononuclear Zr4+/Hf4+ nodes chelated by benzene-1,4-dihydroxamate linkers were synthesized. The MOFs, namely SUM-1, are chemically robust and kinetically favorable, as confirmed by theoretical and...
Collapse
|
123
|
Hongxiao L, Fan L, Chen H, Zhang X, Gao Y. Nanochannel-Based {BaZn}-Organic Framework for Catalytic Activity on Cycloaddition Reaction of Epoxides with CO2 and Deacetalization-Knoevenagel Condensation. Dalton Trans 2022; 51:3546-3556. [DOI: 10.1039/d1dt04231a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Because of the integrated properties from chemically dissimilar metals, microporous heterometallic MOFs have wider potential applicability, which prompts us to explore the tendency collocation of different metal cations in the...
Collapse
|
124
|
Li Z, Choquesillo-Lazarte D, Fraile J, Viñas C, Teixidor F, Planas JG. Rational design of carborane-based Cu 2-paddle wheel coordination polymers for increased hydrolytic stability. Dalton Trans 2021; 51:1137-1143. [PMID: 34939634 DOI: 10.1039/d1dt04065k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new unsymmetric carborane-based dicarboxylic linker provided a 1D Cu2-paddle wheel coordination polymer (2) with much higher hydrolytic stability than the corresponding 2D Cu2-paddle wheel polymer (1), obtained from a related more symmetrical carborane-based linker. Both 1 and 2 were used as efficient heterogeneous catalysts for a model aza-Michael reaction but only 2 can be reused several times without significant degradation in catalytic activity.
Collapse
Affiliation(s)
- Zhen Li
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Spain.
| | - Duane Choquesillo-Lazarte
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-Universidad de Granada, Avda. de las Palmeras 4, 18100 - Armilla, Granada, Spain
| | - Julio Fraile
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Spain.
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Spain.
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Spain.
| | - José G Planas
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Spain.
| |
Collapse
|
125
|
Jin JK, Wu K, Liu XY, Huang GQ, Huang YL, Luo D, Xie M, Zhao Y, Lu W, Zhou XP, He J, Li D. Building a Pyrazole-Benzothiadiazole-Pyrazole Photosensitizer into Metal-Organic Frameworks for Photocatalytic Aerobic Oxidation. J Am Chem Soc 2021; 143:21340-21349. [PMID: 34878287 DOI: 10.1021/jacs.1c10008] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Charge separation plays a crucial role in regulating photochemical properties and therefore warrants consideration in designing photocatalysts. Metal-organic frameworks (MOFs) are emerging as promising candidates for heterogeneous photocatalysis due to their structural designability and tunability of photon absorption. Herein, we report the design of a pyrazole-benzothiadiazole-pyrazole organic molecule bearing a donor-acceptor-donor conjugated π-system for fast charge separation. Further attempts to integrate such a photosensitizer into MOFs afford a more effective heterogeneous photocatalyst (JNU-204). Under visible-light irradiation, three aerobic oxidation reactions involving different oxygenation pathways were achieved on JNU-204. Recycling experiments were conducted to demonstrate the stability and reusability of JNU-204 as a robust heterogeneous photocatalyst. Furthermore, we illustrate its applications in the facile synthesis of pyrrolo[2,1-a]isoquinoline-containing heterocycles, core skeletons of a family of marine natural products. JNU-204 is an exemplary MOF platform with good photon absorption, suitable band gap, fast charge separation, and extraordinary chemical stability for proceeding with aerobic oxidation reactions under visible-light irradiation.
Collapse
Affiliation(s)
- Ji-Kang Jin
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Kun Wu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Xin-Yi Liu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Guo-Quan Huang
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Yong-Liang Huang
- Department of Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Dong Luo
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Mo Xie
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Yifang Zhao
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510665, P. R. China
| | - Weigang Lu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Jian He
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
126
|
Mahato D, Fajal S, Samanta P, Mandal W, Ghosh SK. Selective and Sensitive Fluorescence Turn-On Detection of Cyanide Ions in Water by Post Metallization of a MOF. Chempluschem 2021; 87:e202100426. [PMID: 34898033 DOI: 10.1002/cplu.202100426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/29/2021] [Indexed: 12/29/2022]
Abstract
Owing to detrimental impact of cyanide ion (CN- ) towards the entire living system as well as its availability in drinking water, it has become very important developing potential sensory materials for the selective and sensitive recognition of CN- ions in water. In the domain of sensory materials, luminescent metal-organic frameworks (LMOFs) have been considered as a promising candidate owing to their unique host-guest interaction, where MOFs can serve as an ideal scaffold for encapsulating relevant guest molecules rendering specific functionality. In this study, a post-synthetically modified MOF (viz., CuCl2 @MOF-867) was applied to recognize cyanide (CN- ) ions in water via "turn-on" response. The bipyridyl functionalities in MOF-867 were used to perform post-synthetic metalation to infiltrate CuCl2 inside porous architecture of the MOF. Moreover, a CuCl2 @MOF-867 based probe demonstrated highly selective and sensitive aqueous phase recognition of CN- ions even in the presence of other interfering anions such as Br- , NO3 - , I- , SO4 2- , OAc- , SCN- , NO2 - , etc. The selective binding of CN- ions to the copper-metal center has led to the generation of stable Cu(CN)2 species. This phenomenon has further resulted in a fluorescence turn-on response. The aqueous phase cyanide detection by the rationally modified MOF system exhibited very low limit of detection (0.19 μM), which meets the standardized limit stated by World Health Organization (WHO) that is 1.9 μM.
Collapse
Affiliation(s)
- Debanjan Mahato
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Partha Samanta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Writakshi Mandal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| |
Collapse
|
127
|
Zhang S, Ma S, Hao X, Wang Y, Cao B, Han B, Zhang H, Kong X, Xu B. Controllable preparation of crystalline red phosphorus and its photocatalytic properties. NANOSCALE 2021; 13:18955-18960. [PMID: 34779477 DOI: 10.1039/d1nr06530k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Single-element phosphorus has received extensive attention in recent years because of its remarkable photocatalytic properties. In the present experiment, amorphous red phosphorus was controllably transformed into [P12(4)]P2[and Hittorf's phosphorus structures by performing bismuth catalysis. The temperature-controllable chemical vapor transport reaction realized the conversion of more than 90% of amorphous red phosphorus to single-phase crystalline red phosphorus. Under very mild ultrasonic treatment, the high-quality [P12(4)]P2[microbelts and Hittorf's phosphorus microrods were stripped into a few layers of nanobelts and sheet-like structures, respectively. As non-metallic catalysts, their rapid photocatalytic degradations of pollutants (methyl orange) and high hydrogen evolution rates revealed the rapid charge transfer and application potential of the crystalline red phosphorus catalyst. The results of this work could provide new ideas for the development of phosphorus-based crystalline photocatalytic systems.
Collapse
Affiliation(s)
- Shuai Zhang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China.
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Shufang Ma
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China.
| | - Xiaodong Hao
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China.
| | - Yunting Wang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China.
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Ben Cao
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China.
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Bin Han
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China.
| | - Hao Zhang
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Xingang Kong
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Bingshe Xu
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China.
- Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| |
Collapse
|
128
|
Jeong S, Zhang L, Kim J, Gong J, Choi J, Ok KM, Lee Y, Kwon S, Lee HS. Conformational Adaptation of β-Peptide Foldamers for the Formation of Metal-Peptide Frameworks. Angew Chem Int Ed Engl 2021; 61:e202108364. [PMID: 34469030 DOI: 10.1002/anie.202108364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/22/2021] [Indexed: 11/06/2022]
Abstract
Metal-coordinated frameworks derived from small peptidic ligands have received much attention thanks to peptides' vast structural and functional diversity. Various peptides with partial conformational preferences have been used to build metal-peptide frameworks, however, the use of conformationally constrained β-peptide foldamers has not been explored yet. Herein we report the first metal-coordination-mediated assembly of β-peptide foldamers with 12-helical folding propensity. The coordination of Ag+ to the terminal pyridyl moieties afforded a set of metal-peptide frameworks with unique entangled topologies. Interestingly, formation of the network structures was accompanied by notable conformational distortions of the foldamer ligands. As the first demonstration of new metal-peptide frameworks built from modular β-peptide foldamers, we anticipate that this work will be an important benchmark for further structural evolution and mechanistic investigation.
Collapse
Affiliation(s)
- Seoneun Jeong
- Center for Multiscale Chiral Architectures, Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Lianjin Zhang
- Center for Multiscale Chiral Architectures, Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Jaewook Kim
- Center for Multiscale Chiral Architectures, Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Jintaek Gong
- Center for Multiscale Chiral Architectures, Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Jonghoon Choi
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Kang Min Ok
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Korea
| | - Yunho Lee
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Sunbum Kwon
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| | - Hee-Seung Lee
- Center for Multiscale Chiral Architectures, Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| |
Collapse
|