101
|
Benoit R, Vernier H, Vernier JP, Joly L, Dumelié N, Wienhold FG, Crevoisier C, Delpeux S, Bernard F, Dagaut P, Berthet G. The first balloon-borne sample analysis of atmospheric carbonaceous components reveals new insights into formation processes. CHEMOSPHERE 2023; 326:138421. [PMID: 36935062 DOI: 10.1016/j.chemosphere.2023.138421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Atmospheric aerosol optical, physical, and chemical properties play a fundamental role in the Earth's climate system. A better understanding of the processes involved in their formation, evolution, and interaction with radiation and the water cycle is critical. We report the analysis of atmospheric molecules/particles collected with a new sampling system that flew under regular weather balloons for the first time. The flight took place on January 18, 2022 from Reims (France). The samples were subsequently analyzed by high-resolution mass spectrometry (Orbitrap) to specifically infer hundreds of organic components present in 4 different layers from the troposphere to the stratosphere (up to 20 km). Additional measurements of O3, CO, and aerosol concentrations a few hours before this flight took place to contextualize the sampling. After separating common species found on each filter that might be common to atmospheric layers or residuals for contaminations, we found that each sample yields significant differences in the number and size of organic species detected that should reflect the unique composition of atmospheric layers. While tropospheric samples yield significantly oxidized and saturated components, with carbon numbers below 30 that might be explained by complex organics chemistry from local and distant source emissions, the upper tropospheric and stratospheric samples were associated with increased carbon numbers (C > 30), with a significantly reduced unsaturation number for the stratosphere, that might be induced by strong UV radiations. The multimodal distributions of carbon numbers in chemical formulas observed between 15 and 20 km suggest that oligomerization and growth of organic molecules may take place in aged air masses of tropical origin that are known to carry organic compounds even several km above the tropopause where their lifetime significantly increases. In addition, the presence of organics may also reflect the extended influence of wildfires smoke injected during the spring and summer in the NH hemisphere before the in situ observations and their long-lifetime in the upper troposphere and stratosphere.
Collapse
Affiliation(s)
| | - Hazel Vernier
- LPC2E, UMR 7328 CNRS-Université d'Orléans-CNES, Orléans, France
| | - Jean-Paul Vernier
- NASA Langley Research Center, Hampton, VA, USA; National Institute of Aerospace, Hampton, VA, USA
| | - Lilian Joly
- GSMA, UMR 7331 CNRS-Université de Reims Champagne-Ardenne, Reims, France
| | - Nicolas Dumelié
- GSMA, UMR 7331 CNRS-Université de Reims Champagne-Ardenne, Reims, France
| | | | - Cyril Crevoisier
- Laboratoire de Météorologie Dynamique (LMD/IPSL), CNRS, Ecole Polytechnique, Université Paris-Saclay, Palaiseau, France
| | | | | | | | - Gwenaël Berthet
- LPC2E, UMR 7328 CNRS-Université d'Orléans-CNES, Orléans, France
| |
Collapse
|
102
|
Ning C, Gao Y, Zhang H, Yu H, Cao R, Chen J. Urban particulate water-soluble organic matter in winter: Size-resolved molecular characterization, role of the S-containing compounds on haze formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162657. [PMID: 36878301 DOI: 10.1016/j.scitotenv.2023.162657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Water-soluble organic matter (WSOM), as a group of ubiquitous components in atmospheric PM, plays a crucial role in global climate change and carbon cycle. In this study, the size-resolved molecular characterization of WSOM in the range of 0.010-18 μm PM was studied to gain insights into their formation processes. The CHO, CHNO, CHOS, CHNOS compounds were identified by the ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry in ESI source mode. A bimodal pattern of the PM mass concentrations was found in the accumulation and coarse mode. The increasing mass concentration of PM was mainly attributed to the growth of large-size PM with the occurrence of haze. Both Aiken-mode (70.5-75.6 %) and coarse-mode (81.7-87.9 %) particles were proven the main carriers of the CHO compounds, the majority of which were indicated to be the saturated fatty acids and their oxidized derivatives. The S-containing (CHOS and CHNOS) compounds in accumulation-mode (71.5-80.9 %) increased significantly in hazy days, where organosulfates (C11H20O6S, C12H22O7S) and nitrooxy-organosulfates (C9H19NO8S, C9H17NO8S) were confirmed in majority. The S-containing compounds in accumulation-mode particle with high oxygen content (6-8 oxygen atoms), unsaturation degree (DBE < 4), and reactivity could facilitate the particle agglomeration and accelerate the haze formation.
Collapse
Affiliation(s)
- Cuiping Ning
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Yuan Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Haijun Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haoran Yu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Cao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
103
|
Zheng P, Chen Y, Wang Z, Liu Y, Pu W, Yu C, Xia M, Xu Y, Guo J, Guo Y, Tian L, Qiao X, Huang DD, Yan C, Nie W, Worsnop DR, Lee S, Wang T. Molecular Characterization of Oxygenated Organic Molecules and Their Dominating Roles in Particle Growth in Hong Kong. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7764-7776. [PMID: 37155674 DOI: 10.1021/acs.est.2c09252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Oxygenated organic molecules (OOMs) are critical intermediates linking volatile organic compound oxidation and secondary organic aerosol (SOA) formation. Yet, the understanding of OOM components, formation mechanism, and impacts are still limited, especially for urbanized regions with a cocktail of anthropogenic emissions. Herein, ambient measurements of OOMs were conducted at a regional background site in South China in 2018. The molecular characteristics of OOMs revealed dominant nitrogen-containing products, and the influences of different factors on OOM composition and oxidation state were elucidated. Positive matrix factorization analysis resolved the complex OOM species to factors featured with fingerprint species from different oxidation pathways. A new method was developed to identify the key functional groups of OOMs, which successfully classified the majority species into carbonyls (8%), hydroperoxides (7%), nitrates (17%), peroxyl nitrates (10%), dinitrates (13%), aromatic ring-retaining species (6%), and terpenes (7%). The volatility estimation of OOMs was improved based on their identified functional groups and was used to simulate the aerosol growth process contributed by the condensation of those low-volatile OOMs. The results demonstrate the predominant role of OOMs in contributing sub-100 nm particle growth and SOA formation and highlight the importance of dinitrates and anthropogenic products from multistep oxidation.
Collapse
Affiliation(s)
- Penggang Zheng
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Yi Chen
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Zhe Wang
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Yuliang Liu
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Wei Pu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Chuan Yu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Men Xia
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Yang Xu
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Jia Guo
- Environmental Central Facility, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Yishuo Guo
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100084, China
| | - Linhui Tian
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau 999078, China
| | - Xiaohui Qiao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Dan Dan Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Chao Yan
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Wei Nie
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Douglas R Worsnop
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
- Aerodyne Research Inc., Billerica, Massachusetts 01821, United States
| | - Shuncheng Lee
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
104
|
Lockhart JPA, Bodipati B, Rizvi S. Investigating the Association Reactions of HOCH 2CO and HOCHCHO with O 2: A Quantum Computational and Master Equation Study. J Phys Chem A 2023; 127:4302-4316. [PMID: 37146175 DOI: 10.1021/acs.jpca.2c08163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Glycolaldehyde, HOCH2CHO, is an important multifunctional atmospheric trace gas formed in the oxidation of ethylene and isoprene and emitted directly from burning biomass. The initial step in the atmospheric photooxidation of HOCH2CHO yields HOCH2CO and HOCHCHO radicals; both of these radicals react rapidly with O2 in the troposphere. This study presents a comprehensive theoretical investigation of the HOCH2CO + O2 and HOCHCHO + O2 reactions using high-level quantum chemical calculations and energy-grained master equation simulations. The HOCH2CO + O2 reaction results in the formation of a HOCH2C(O)O2 radical, while the HOCHCHO + O2 reaction yields (HCO)2 + HO2. Density functional theory calculations have identified two open unimolecular pathways associated with the HOCH2C(O)O2 radical that yield HCOCOOH + OH or HCHO + CO2 + OH products; the former novel bimolecular product pathway has not been previously reported in the literature. Master equation simulations based on the potential energy surface calculated here for the HOCH2CO + O2 recombination reaction support experimental product yield data from the literature and indicate that, even at total pressures of 1 atm, the HOCH2CO + O2 reaction yields ∼11% OH at 298 K.
Collapse
Affiliation(s)
- J P A Lockhart
- Department of Chemistry, Adelphi University, One South Avenue, Garden City, New York 11530, United States
| | - B Bodipati
- Department of Chemistry, Adelphi University, One South Avenue, Garden City, New York 11530, United States
| | - S Rizvi
- Department of Chemistry, Adelphi University, One South Avenue, Garden City, New York 11530, United States
| |
Collapse
|
105
|
Pye HOT, Place BK, Murphy BN, Seltzer KM, D’Ambro EL, Allen C, Piletic IR, Farrell S, Schwantes RH, Coggon MM, Saunders E, Xu L, Sarwar G, Hutzell WT, Foley KM, Pouliot G, Bash J, Stockwell WR. Linking gas, particulate, and toxic endpoints to air emissions in the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM). ATMOSPHERIC CHEMISTRY AND PHYSICS 2023; 23:5043-5099. [PMID: 39872401 PMCID: PMC11770585 DOI: 10.5194/acp-23-5043-2023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Chemical mechanisms describe the atmospheric transformations of organic and inorganic species and connect air emissions to secondary species such as ozone, fine particles, and hazardous air pollutants (HAPs) like formaldehyde. Recent advances in our understanding of several chemical systems and shifts in the drivers of atmospheric chemistry warrant updates to mechanisms used in chemical transport models such as the Community Multiscale Air Quality (CMAQ) modeling system. This work builds on the Regional Atmospheric Chemistry Mechanism version 2 (RACM2) and develops the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM) version 1.0, which demonstrates a fully coupled representation of chemistry leading to ozone and secondary organic aerosol (SOA) with consideration of HAPs. CRACMMv1.0 includes 178 gas-phase species, 51 particulate species, and 508 reactions spanning gas-phase and heterogeneous pathways. To support estimation of health risks associated with HAPs, nine species in CRACMM cover 50 % of the total cancer and 60 % of the total non-cancer emission-weighted toxicity estimated for primary HAPs from anthropogenic and biomass burning sources in the US, with the coverage of toxicity higher (>80 %) when secondary formaldehyde and acrolein are considered. In addition, new mechanism species were added based on the importance of their emissions for the ozone, organic aerosol, or atmospheric burden of total reactive organic carbon (ROC): sesquiterpenes, furans, propylene glycol, alkane-like low- to intermediate-volatility organic compounds (9 species), low- to intermediate-volatility oxygenated species (16 species), intermediate-volatility aromatic hydrocarbons (2 species), and slowly reacting organic carbon. Intermediate- and lower-volatility organic compounds were estimated to increase the coverage of anthropogenic and biomass burning ROC emissions by 40 % compared to current operational mechanisms. Autoxidation, a gas-phase reaction particularly effective in producing SOA, was added for C10 and larger alkanes, aromatic hydrocarbons, sesquiterpenes, and monoterpene systems including second-generation aldehydes. Integrating the radical and SOA chemistry put additional constraints on both systems and enabled the implementation of previously unconsidered SOA pathways from phenolic and furanone compounds, which were predicted to account for ~ 30 % of total aromatic hydrocarbon SOA under typical atmospheric conditions. CRACMM organic aerosol species were found to span the atmospherically relevant range of species carbon number, number of oxygens per carbon, and oxidation state with a slight high bias in the number of hydrogens per carbon. In total, 11 new emitted species were implemented as precursors to SOA compared to current CMAQv5.3.3 representations, resulting in a bottom-up prediction of SOA, which is required for accurate source attribution and the design of control strategies. CRACMMv1.0 is available in CMAQv5.4.
Collapse
Affiliation(s)
- Havala O. T. Pye
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Bryan K. Place
- Oak Ridge Institute for Science and Engineering (ORISE), Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Benjamin N. Murphy
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Karl M. Seltzer
- Oak Ridge Institute for Science and Engineering (ORISE), Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
- Office of Air and Radiation, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Emma L. D’Ambro
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Christine Allen
- General Dynamics Information Technology, Research Triangle Park, North Carolina, USA
| | - Ivan R. Piletic
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Sara Farrell
- Oak Ridge Institute for Science and Engineering (ORISE), Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Rebecca H. Schwantes
- Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado, USA
| | - Matthew M. Coggon
- Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado, USA
| | - Emily Saunders
- Office of Chemical Safety and Pollution Prevention, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Lu Xu
- Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado, USA
- Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado Boulder, Boulder, Colorado, USA
| | - Golam Sarwar
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - William T. Hutzell
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Kristen M. Foley
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - George Pouliot
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Jesse Bash
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | | |
Collapse
|
106
|
Chen T, Zhang P, Chu B, Ma Q, Ge Y, He H. Synergistic Effects of SO 2 and NH 3 Coexistence on SOA Formation from Gasoline Evaporative Emissions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6616-6625. [PMID: 37055378 DOI: 10.1021/acs.est.3c01921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Vehicular evaporative emissions make an increasing contribution to anthropogenic sources of volatile organic compounds (VOCs), thus contributing to secondary organic aerosol (SOA) formation. However, few studies have been conducted on SOA formation from vehicle evaporative VOCs under complex pollution conditions with the coexistence of NOx, SO2, and NH3. In this study, the synergistic effects of SO2 and NH3 on SOA formation from gasoline evaporative VOCs with NOx were examined using a 30 m3 smog chamber with the aid of a series of mass spectrometers. Compared with the systems involving SO2 or NH3 alone, SO2 and NH3 coexistence had a greater promotion effect on SOA formation, which was larger than the cumulative effect of the two promotions alone. Meanwhile, contrasting effects of SO2 on the oxidation state (OSc) of SOA in the presence or absence of NH3 were observed, and SO2 could further increase the OSc with the coexistence of NH3. The latter was attributed to the synergistic effects of SO2 and NH3 coexistence on SOA formation, wherein N-S-O adducts can be formed from the reaction of SO2 with N-heterocycles generated in the presence of NH3. Our study contributes to the understanding of SOA formation from vehicle evaporative VOCs under highly complex pollution conditions and its atmospheric implications.
Collapse
Affiliation(s)
- Tianzeng Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Peng Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanli Ge
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Innovation Center for Engineering Science and Advanced Technology, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
107
|
Brean J, Rowell A, Beddows DCS, Shi Z, Harrison RM. Estimates of Future New Particle Formation under Different Emission Scenarios in Beijing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4741-4750. [PMID: 36930743 PMCID: PMC10061929 DOI: 10.1021/acs.est.2c08348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
New particle formation (NPF) is a leading source of particulate matter by number and a contributor to particle mass during haze events. Reductions in emissions of air pollutants, many of which are NPF precursors, are expected in the move toward carbon neutrality or net-zero. Expected changes to pollutant emissions are used to investigate future changes to NPF processes, in comparison to a simulation of current conditions. The projected changes to SO2 emissions are key in changing future NPF number, with different scenarios producing either a doubling or near total reduction in sulfuric acid-amine particle formation rates. Particle growth rates are projected to change little in all but the strictest emission control scenarios. These changes will reduce the particle mass arising by NPF substantially, thus showing a further cobenefit of net-zero policies. Major uncertainties remain in future NPF including the volatility of oxygenated organic molecules resulting from changes to NOx and amine emissions.
Collapse
Affiliation(s)
- James Brean
- School
of Geography, Earth & Environmental
Sciences University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Alex Rowell
- School
of Geography, Earth & Environmental
Sciences University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - David C. S. Beddows
- School
of Geography, Earth & Environmental
Sciences University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Zongbo Shi
- School
of Geography, Earth & Environmental
Sciences University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Roy M. Harrison
- School
of Geography, Earth & Environmental
Sciences University of Birmingham, Birmingham B15 2TT, United Kingdom
- Department
of Environmental Sciences, Faculty of Meteorology, Environment and
Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
108
|
Zhang Z, Wang C, Zhao Y, Zhao Y, Li G, Xie H, Jiang L. Autoxidation Mechanism and Kinetics of Methacrolein in the Atmosphere. J Phys Chem A 2023; 127:2819-2829. [PMID: 36939326 DOI: 10.1021/acs.jpca.3c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Elucidating the autoxidation of volatile organic compounds (VOCs) is crucial to understanding the formation mechanism of secondary organic aerosols, but it has been proven to be challenging due to the complexity of reactions under atmospheric conditions. Here, we report a comprehensive theoretical study of atmospheric autoxidation in VOCs exemplified by the atmospherically important methacrolein (MACR), a major oxidation product of isoprene. The results indicate that the Cl-adducts and H-abstraction products of MACR readily react with O2 and undergo subsequent isomerizations via H-shift and cyclization, forming a large variety of lowly and highly oxygenated organic molecules. In particular, the first- and third-generation oxidation products derived from the Cl-adducts and the methyl-H-abstraction complexes are dominated in the atmospheric autoxidation, for which the fractional yields are remarkably affected by the NO concentration. The present findings have important implications for a systematical understanding of the oxidation processes of isoprene-derived compounds in the atmospheric environments.
Collapse
Affiliation(s)
- Zhaoyan Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Chong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yingqi Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Ya Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
109
|
Hu Z, Di Q, Liu B, Li Y, He Y, Zhu Q, Xu Q, Dagaut P, Hansen N, Sarathy SM, Xing L, Truhlar DG, Wang Z. Elucidating the photodissociation fingerprint and quantifying the determination of organic hydroperoxides in gas-phase autoxidation. Proc Natl Acad Sci U S A 2023; 120:e2220131120. [PMID: 36848575 PMCID: PMC10013783 DOI: 10.1073/pnas.2220131120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/12/2023] [Indexed: 03/01/2023] Open
Abstract
Hydroperoxides are formed in the atmospheric oxidation of volatile organic compounds, in the combustion autoxidation of fuel, in the cold environment of the interstellar medium, and also in some catalytic reactions. They play crucial roles in the formation and aging of secondary organic aerosols and in fuel autoignition. However, the concentration of organic hydroperoxides is seldom measured, and typical estimates have large uncertainties. In this work, we developed a mild and environmental-friendly method for the synthesis of alkyl hydroperoxides (ROOH) with various structures, and we systematically measured the absolute photoionization cross-sections (PICSs) of the ROOHs using synchrotron vacuum ultraviolet-photoionization mass spectrometry (SVUV-PIMS). A chemical titration method was combined with an SVUV-PIMS measurement to obtain the PICS of 4-hydroperoxy-2-pentanone, a typical molecule for combustion and atmospheric autoxidation ketohydroperoxides (KHPs). We found that organic hydroperoxide cations are largely dissociated by loss of OOH. This fingerprint was used for the identification and accurate quantification of the organic peroxides, and it can therefore be used to improve models for autoxidation chemistry. The synthesis method and photoionization dataset for organic hydroperoxides are useful for studying the chemistry of hydroperoxides and the reaction kinetics of the hydroperoxy radicals and for developing and evaluating kinetic models for the atmospheric autoxidation and combustion autoxidation of the organic compounds.
Collapse
Affiliation(s)
- Zhihong Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230029, P. R. China
| | - Qimei Di
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230029, P. R. China
| | - Bingzhi Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230029, P. R. China
| | - Yanbo Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230029, P. R. China
| | - Yunrui He
- Energy and Power Engineering Institute, Henan University of Science and Technology, Luoyang, Henan471003, China
| | - Qingbo Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230029, P. R. China
| | - Qiang Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230029, P. R. China
| | - Philippe Dagaut
- CNRS, Institut National des Sciences de l’Ingénierie et des Systèmes, Institut de Combustion, Aérothermique, Réactivité et Environnement, Orléans45071, cedex 2, France
| | - Nils Hansen
- Combustion Research Facility, Sandia National Laboratories, Livermore, CA94551
| | - S. Mani Sarathy
- King Abdullah University of Science and Technology, Clean Combustion Research Center, Thuwal23955-6900, Saudi Arabia
| | - Lili Xing
- Energy and Power Engineering Institute, Henan University of Science and Technology, Luoyang, Henan471003, China
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN55455-0431
| | - Zhandong Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230029, P. R. China
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui230026, P. R. China
| |
Collapse
|
110
|
Yue H, Zhang C, Lin X, Wen Z, Zhang W, Mostafa S, Luo PL, Zhang Z, Hemberger P, Fittschen C, Tang X. Dimeric Product of Peroxy Radical Self-Reaction Probed with VUV Photoionization Mass Spectrometry and Theoretical Calculations: The Case of C 2H 5OOC 2H 5. Int J Mol Sci 2023; 24:ijms24043731. [PMID: 36835141 PMCID: PMC9965172 DOI: 10.3390/ijms24043731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Organic peroxy radicals (RO2) as key intermediates in tropospheric chemistry exert a controlling influence on the cycling of atmospheric reactive radicals and the production of secondary pollutants, such as ozone and secondary organic aerosols (SOA). Herein, we present a comprehensive study of the self-reaction of ethyl peroxy radicals (C2H5O2) by using advanced vacuum ultraviolet (VUV) photoionization mass spectrometry in combination with theoretical calculations. A VUV discharge lamp in Hefei and synchrotron radiation at the Swiss Light Source (SLS) are employed as the photoionization light sources, combined with a microwave discharge fast flow reactor in Hefei and a laser photolysis reactor at the SLS. The dimeric product, C2H5OOC2H5, as well as other products, CH3CHO, C2H5OH and C2H5O, formed from the self-reaction of C2H5O2 are clearly observed in the photoionization mass spectra. Two kinds of kinetic experiments have been performed in Hefei by either changing the reaction time or the initial concentration of C2H5O2 radicals to confirm the origins of the products and to validate the reaction mechanisms. Based on the fitting of the kinetic data with the theoretically calculated results and the peak area ratios in the photoionization mass spectra, a branching ratio of 10 ± 5% for the pathway leading to the dimeric product C2H5OOC2H5 is measured. In addition, the adiabatic ionization energy (AIE) of C2H5OOC2H5 is determined at 8.75 ± 0.05 eV in the photoionization spectrum with the aid of Franck-Condon calculations and its structure is revealed here for the first time. The potential energy surface of the C2H5O2 self-reaction has also been theoretically calculated with a high-level of theory to understand the reaction processes in detail. This study provides a new insight into the direct measurement of the elusive dimeric product ROOR and demonstrates its non-negligible branching ratio in the self-reaction of small RO2 radicals.
Collapse
Affiliation(s)
- Hao Yue
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Cuihong Zhang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School, University of Science and Technology of China, Hefei 230026, China
- Univ. Lille, CNRS, UMR 8522-PC2A–Physicochimie des Processus de Combustion et de I’Atmosphère, F-59000 Lille, France
| | - Xiaoxiao Lin
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Zuoying Wen
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Weijun Zhang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Sabah Mostafa
- Univ. Lille, CNRS, UMR 8522-PC2A–Physicochimie des Processus de Combustion et de I’Atmosphère, F-59000 Lille, France
| | - Pei-Ling Luo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Zihao Zhang
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Patrick Hemberger
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Christa Fittschen
- Univ. Lille, CNRS, UMR 8522-PC2A–Physicochimie des Processus de Combustion et de I’Atmosphère, F-59000 Lille, France
- Correspondence: (C.F.); (X.T.)
| | - Xiaofeng Tang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Correspondence: (C.F.); (X.T.)
| |
Collapse
|
111
|
Hasan G, Salo VT, Golin Almeida T, Valiev RR, Kurtén T. Computational Investigation of Substituent Effects on the Alcohol + Carbonyl Channel of Peroxy Radical Self- and Cross-Reactions. J Phys Chem A 2023; 127:1686-1696. [PMID: 36753050 PMCID: PMC9969516 DOI: 10.1021/acs.jpca.2c08927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Organic peroxy radicals (RO2) are key intermediates in atmospheric chemistry and can undergo a large variety of both uni- and bimolecular reactions. One of the least understood reaction classes of RO2 are their self- and cross-reactions: RO2 + R'O2. In our previous work, we have investigated how RO2 + R'O2 reactions can lead to the formation of ROOR' accretion products through intersystem crossings and subsequent recombination of a triplet intermediate complex 3(RO···OR'). Accretion products can potentially have very low saturation vapor pressures, and may therefore participate in the formation of aerosol particles. In this work, we investigate the competing H-shift channel, which leads to the formation of more volatile carbonyl and alcohol products. This is one of the main, and sometimes the dominant, RO2 + R'O2 reaction channels for small RO2. We investigate how substituents (R and R' groups) affect the H-shift barriers and rates for a set of 3(RO···OR') complexes. The variation in barrier heights and rates is found to be surprisingly small, and most computed H-shift rates are fast: around 108-109 s-1. We find that the barrier height is affected by three competing factors: (1) the weakening of the breaking C-H bond due to interactions with adjacent functional groups; (2) the overall binding energy of the 3(RO···OR'), which tends to increase the barrier height; and (3) the thermodynamic stability of the reaction products. We also calculated intersystem crossing rate coefficients (ISC) for the same systems and found that most of them were of the same order of magnitude as the H-shift rates. This suggests that both studied channels are competitive for small and medium-sized RO2. However, for complex enough R or R' groups, the binding energy effect may render the H-shift channel uncompetitive with intersystem crossings (and thus ROOR' formation), as the rate of the latter, while variable, seems to be largely independent of system size. This may help explain the experimental observation that accretion product formation becomes highly effective for large and multifunctional RO2.
Collapse
Affiliation(s)
- Galib Hasan
- Department
of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland,Institute
for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland,
| | - Vili-Taneli Salo
- Department
of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland,Institute
for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Thomas Golin Almeida
- Department
of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland,Institute
for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Rashid R. Valiev
- Department
of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland,Institute
for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Theo Kurtén
- Department
of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland,Institute
for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland,
| |
Collapse
|
112
|
Kammer J, Simon L, Ciuraru R, Petit JE, Lafouge F, Buysse P, Bsaibes S, Henderson B, Cristescu SM, Durand B, Fanucci O, Truong F, Gros V, Loubet B. New particle formation at a peri-urban agricultural site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159370. [PMID: 36244494 DOI: 10.1016/j.scitotenv.2022.159370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
New Particle Formation (NPF) is a major source of ultrafine particles that affect both air quality and climate. Despite emissions from agricultural activities having a strong potential to lead to NPF, little is known about NPF within agricultural environments. The aim of the present study was to investigate the occurrence of NPF events at an agricultural site, and any potential relationship between agricultural emissions and NPF events. A field campaign was conducted for 3 months at the FR-Gri-ICOS site (France), at an experimental farm 25 km west of Paris city centre. 16 NPF events have been identified from the analysis of particle number size distributions; 8 during the daytime, and 8 during the night-time. High solar radiation and ozone mixing ratios were observed during the days NPF occurred, suggesting photochemistry plays a key role in daytime NPF. These events were also associated with higher levels of VOCs such as isoprene, methanol, or toluene compared to non-event days. However, ammonia levels were lower during daytime NPF events, contributing to the hypothesis that daytime NPF events were not related to agricultural activities. On the other hand, temperature and ozone were lower during the nights when NPF events were observed, whereas relative humidity was higher. During these nights, higher concentrations of NO2 and ammonia were observed. As a result, agricultural activities, in particular the spreading of fertiliser on surrounding crops, are suspected to contribute to night-time NPF events. Finally, all the identified NPF events were also observed at SIRTA monitoring station 20 km from the FR-Gri ICOS site, showing that both night-time and daytime NPF events were regional processes. We hypothesise that night-time NPF may be related to fertiliser spreading over a regional scale, as opposed to the local activities at the farm. To our knowledge, this is the first time night-time NPF has been observed in the agricultural context.
Collapse
Affiliation(s)
- Julien Kammer
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France; Aix Marseille Univ, CNRS, LCE, Marseille, France.
| | - Leila Simon
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Raluca Ciuraru
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Jean-Eudes Petit
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Florence Lafouge
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Pauline Buysse
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Sandy Bsaibes
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Ben Henderson
- Department of Analytical Chemistry and Chemometrics, IMM, Radboud University, Nijmegen, the Netherlands
| | - Simona M Cristescu
- Department of Analytical Chemistry and Chemometrics, IMM, Radboud University, Nijmegen, the Netherlands
| | - Brigitte Durand
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Oliver Fanucci
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Francois Truong
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Valerie Gros
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Benjamin Loubet
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| |
Collapse
|
113
|
Fárník M. Bridging Gaps between Clusters in Molecular-Beam Experiments and Aerosol Nanoclusters. J Phys Chem Lett 2023; 14:287-294. [PMID: 36598955 PMCID: PMC9841566 DOI: 10.1021/acs.jpclett.2c03417] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Clusters in molecular beam experiments can mimic aerosol nanoclusters and provide molecular-level details for various processes relevant to atmospheric aerosol research. Aerosol nanoclusters, particles of sizes below 10 nm, are difficult to investigate in ambient atmosphere and thus represent a gap in our understanding of the new particle formation process. Recent field measurements and laboratory experiments are closing this gap; however, experiments with clusters in molecular beams are rarely involved. Yet, they can offer an unprecedented detailed insight into the processes including particles in this size range. In this Perspective, we discuss several up-to-date molecular beam experiments with clusters and demonstrate that the investigated clusters approach aerosol nanoclusters in terms of their complexity and chemistry. We examine remaining gaps between atmospheric aerosols and clusters in molecular beams and speculate about future experiments bridging these gaps.
Collapse
|
114
|
Wang S, Zhao Y, Chan AWH, Yao M, Chen Z, Abbatt JPD. Organic Peroxides in Aerosol: Key Reactive Intermediates for Multiphase Processes in the Atmosphere. Chem Rev 2023; 123:1635-1679. [PMID: 36630720 DOI: 10.1021/acs.chemrev.2c00430] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Organic peroxides (POs) are organic molecules with one or more peroxide (-O-O-) functional groups. POs are commonly regarded as chemically labile termination products from gas-phase radical chemistry and therefore serve as temporary reservoirs for oxidative radicals (HOx and ROx) in the atmosphere. Owing to their ubiquity, active gas-particle partitioning behavior, and reactivity, POs are key reactive intermediates in atmospheric multiphase processes determining the life cycle (formation, growth, and aging), climate, and health impacts of aerosol. However, there remain substantial gaps in the origin, molecular diversity, and fate of POs due to their complex nature and dynamic behavior. Here, we summarize the current understanding on atmospheric POs, with a focus on their identification and quantification, state-of-the-art analytical developments, molecular-level formation mechanisms, multiphase chemical transformation pathways, as well as environmental and health impacts. We find that interactions with SO2 and transition metal ions are generally the fast PO transformation pathways in atmospheric liquid water, with lifetimes estimated to be minutes to hours, while hydrolysis is particularly important for α-substituted hydroperoxides. Meanwhile, photolysis and thermolysis are likely minor sinks for POs. These multiphase PO transformation pathways are distinctly different from their gas-phase fates, such as photolysis and reaction with OH radicals, which highlights the need to understand the multiphase partitioning of POs. By summarizing the current advances and remaining challenges for the investigation of POs, we propose future research priorities regarding their origin, fate, and impacts in the atmosphere.
Collapse
Affiliation(s)
- Shunyao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai200444, China
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, OntarioM5S 3E5, Canada
| | - Yue Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Arthur W H Chan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, OntarioM5S 3E5, Canada
- School of the Environment, University of Toronto, Toronto, OntarioM5S 3E8, Canada
| | - Min Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Zhongming Chen
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing100871, China
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, OntarioM5S 3H6, Canada
| |
Collapse
|
115
|
Tian L, Huang DD, Li YJ, Yan C, Nie W, Wang Z, Wang Q, Qiao L, Zhou M, Zhu S, Liu Y, Guo Y, Qiao X, Zheng P, Jing S, Lou S, Wang H, Huang C. Enigma of Urban Gaseous Oxygenated Organic Molecules: Precursor Type, Role of NO x, and Degree of Oxygenation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:64-75. [PMID: 36516990 DOI: 10.1021/acs.est.2c05047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Oxidation of volatile organic compounds (VOCs) forms oxygenated organic molecules (OOMs), which contribute to secondary pollution. Herein, we present measurement results of OOMs using chemical ionization mass spectrometry with nitrate as the reagent ion in Shanghai. Compared to those in forests and laboratory studies, OOMs detected at this urban site were of relatively lower degree of oxygenation. This was attributed to the high NOx concentrations (∼44 ppb), which overall showed a suppression on the propagation reactions. As another result, a large fraction of nitrogenous OOMs (75%) was observed, and this fraction further increased to 84% under a high NO/VOC ratio. By applying a novel framework on OOM categorization and supported by VOC measurements, 50 and 32% OOMs were attributed to aromatic and aliphatic precursors, respectively. Furthermore, aromatic OOMs are more oxygenated (effective oxygen number, nOeff = 4-6) than aliphatic ones (nOeff = 3-4), which can be partly explained by the difference in initiation mechanisms and points to possible discrimination in termination reactions. This study highlights the roles of NOx in OOM formation in urban areas, as well as the formation of nitrogenous products that might show discrimination between aromatic and aliphatic VOCs.
Collapse
Affiliation(s)
- Linhui Tian
- Department of Civil and Environmental Engineering, and Centre for Regional Oceans, Faculty of Science and Technology, University of Macau, Macau, Taipa 999078, China
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Dan Dan Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Yong Jie Li
- Department of Civil and Environmental Engineering, and Centre for Regional Oceans, Faculty of Science and Technology, University of Macau, Macau, Taipa 999078, China
| | - Chao Yan
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Wei Nie
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Zhe Wang
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology (HKUST), Hong Kong SAR 999077, China
| | - Qian Wang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Liping Qiao
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Min Zhou
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Shuhui Zhu
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Yuliang Liu
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Yishuo Guo
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaohui Qiao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of Environment, Tsinghua University, Beijing 100084, China
| | - Penggang Zheng
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology (HKUST), Hong Kong SAR 999077, China
| | - Sheng'ao Jing
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Shengrong Lou
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Hongli Wang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Cheng Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
116
|
Bilsback KR, He Y, Cappa CD, Chang RYW, Croft B, Martin RV, Ng NL, Seinfeld JH, Pierce JR, Jathar SH. Vapors Are Lost to Walls, Not to Particles on the Wall: Artifact-Corrected Parameters from Chamber Experiments and Implications for Global Secondary Organic Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:53-63. [PMID: 36563184 DOI: 10.1021/acs.est.2c03967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Atmospheric models of secondary organic aerosol (OA) (SOA) typically rely on parameters derived from environmental chambers. Chambers are subject to experimental artifacts, including losses of (1) particles to the walls (PWL), (2) vapors to the particles on the wall (V2PWL), and (3) vapors to the wall directly (VWL). We present a method for deriving artifact-corrected SOA parameters and translating these to volatility basis set (VBS) parameters for use in chemical transport models (CTMs). Our process involves combining a box model that accounts for chamber artifacts (Statistical Oxidation Model with a TwO-Moment Aerosol Sectional model (SOM-TOMAS)) with a pseudo-atmospheric simulation to develop VBS parameters that are fit across a range of OA mass concentrations. We found that VWL led to the highest percentage change in chamber SOA mass yields (high NOx: 36-680%; low NOx: 55-250%), followed by PWL (high NOx: 8-39%; low NOx: 10-37%), while the effects of V2PWL are negligible. In contrast to earlier work that assumed that V2PWL was a meaningful loss pathway, we show that V2PWL is an unimportant SOA loss pathway and can be ignored when analyzing chamber data. Using our updated VBS parameters, we found that not accounting for VWL may lead surface-level OA to be underestimated by 24% (0.25 μg m-3) as a global average or up to 130% (9.0 μg m-3) in regions of high biogenic or anthropogenic activity. Finally, we found that accurately accounting for PWL and VWL improves model-measurement agreement for fine mode aerosol mass concentrations (PM2.5) in the GEOS-Chem model.
Collapse
Affiliation(s)
- Kelsey R Bilsback
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado80523, United States
- PSE Healthy Energy, Oakland, California94612, United States
| | - Yicong He
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado80523, United States
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing100084, China
| | - Christopher D Cappa
- Department of Civil and Environmental Engineering, University of California, Davis, California95616, United States
| | - Rachel Ying-Wen Chang
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
| | - Betty Croft
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
| | - Randall V Martin
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
- Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, Missouri63130, United States
| | - Nga Lee Ng
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia30332, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - John H Seinfeld
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California91125, United States
| | - Jeffrey R Pierce
- Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado80523, United States
| | - Shantanu H Jathar
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado80523, United States
| |
Collapse
|
117
|
Gao Y, Lu K, Zhang Y. Review of technologies and their applications for the speciated detection of RO 2 radicals. J Environ Sci (China) 2023; 123:487-499. [PMID: 36522008 DOI: 10.1016/j.jes.2022.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 06/17/2023]
Abstract
Peroxy radicals (RO2), which are formed during the oxidation of volatile organic compounds, play an important role in atmospheric oxidation reactions. Therefore, the measurement of RO2, especially distinct species of RO2 radicals, is important and greatly helps the exploration of atmospheric chemistry mechanisms. Although the speciated detection of RO2 radicals remains challenging, various methods have been developed to study them in detail. These methods can be divided into spectroscopy and mass spectrometry technologies. The spectroscopy methods contain laser-induced fluorescence (LIF), UV-absorption spectroscopy, cavity ring-down spectroscopy (CRDS) and matrix isolation and electron spin resonance (MIESR). The mass spectrometry methods contain chemical ionization atmospheric pressure interface time-of-flight mass spectrometry (CI-APi-TOF), chemical ionization mass spectrometry (CIMS), CI-Orbitrap-MS and the third-generation proton transfer reaction-time-of-flight mass spectrometer (PTR3). This article reviews technologies for the speciated detection of RO2 radicals and the applications of these methods. In addition, a comparison of these techniques and the reaction mechanisms of some key species are discussed. Finally, possible gaps are proposed that could be filled by future research into speciated RO2 radicals.
Collapse
Affiliation(s)
- Yue Gao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
118
|
Peng C, Deng C, Lei T, Zheng J, Zhao J, Wang D, Wu Z, Wang L, Chen Y, Liu M, Jiang J, Ye A, Ge M, Wang W. Measurement of atmospheric nanoparticles: Bridging the gap between gas-phase molecules and larger particles. J Environ Sci (China) 2023; 123:183-202. [PMID: 36521983 DOI: 10.1016/j.jes.2022.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 06/17/2023]
Abstract
Atmospheric nanoparticles are crucial components contributing to fine particulate matter (PM2.5), and therefore have significant effects on visibility, climate, and human health. Due to the unique role of atmospheric nanoparticles during the evolution process from gas-phase molecules to larger particles, a number of sophisticated experimental techniques have been developed and employed for online monitoring and characterization of the physical and chemical properties of atmospheric nanoparticles, helping us to better understand the formation and growth of new particles. In this paper, we firstly review these state-of-the-art techniques for investigating the formation and growth of atmospheric nanoparticles (e.g., the gas-phase precursor species, molecular clusters, physicochemical properties, and chemical composition). Secondly, we present findings from recent field studies on the formation and growth of atmospheric nanoparticles, utilizing several advanced techniques. Furthermore, perspectives are proposed for technique development and improvements in measuring atmospheric nanoparticles.
Collapse
Affiliation(s)
- Chao Peng
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chenjuan Deng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ting Lei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Zheng
- School of Environment Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jun Zhao
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
| | - Dongbin Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhijun Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Lin Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Yan Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyuan Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingkun Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Anpei Ye
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
119
|
Liu S, Wang Y, Xu X, Wang G. Effects of NO 2 and RH on secondary organic aerosol formation and light absorption from OH oxidation of ο-xylene. CHEMOSPHERE 2022; 308:136541. [PMID: 36150487 DOI: 10.1016/j.chemosphere.2022.136541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Ο-xylene is an important aromatic volatile organic compound (VOC) in the atmosphere over urban areas. In this work, the effect of nitrogen dioxide (NO2) concentration and relative humidity (RH) on the mass concentration of secondary organic aerosols (SOA) formed from ο-xylene OH oxidization was investigated in a photooxidation chamber. The ο-xylene SOA mass concentration increased from 54.2 μg m-3 to 127.2 μg m-3 during dry conditions, but decreased from 177.7 μg m-3 to 146.5 μg m-3 during high RH conditions when the initial NO2 concentration increased form 0 ppbv to about 900 ppbv. An increase in the ratio of [NO3-]/[Org] and a decrease in the oxidation state of carbon (OSC) of SOA suggested that acid-catalyzed heterogeneous reaction was responsible for enhancing SOA formation with increasing NO2 concentrations in dry conditions. In contrast, in humid conditions, the high molecular diffusion capacity of SOA could promote the reactivity of OH towards the interior of SOA, and the enhancement of nitrous acid (HONO) formation under high NO2 conditions could promote the SOA aging processes and be responsible for the decreasing trend of SOA formation with NO2. Light absorption by SOA was also measured, and both NO2 and RH enhanced the mass absorption coefficient (MACλ = 365 nm) value for the optical properties of ο-xylene SOA. The highest MACλ = 365 nm value of ο-xylene SOA was 0.89 m2 g-1, observed during humid conditions with an initial NO2 concentration of 862 ppbv, which was 3.9 times higher than in the experiment conducted in the absence of NO2 under dry conditions. The formation of nitrogen-containing organic compounds (NOCs) and humic-like substances (HULIS) were responsible for the increased MACλ = 365 nm values of ο-xylene derived SOA. This study provides new insight into the effect of NO2 on SOA formation through the change in ο-xylene photooxidation under different RH conditions, and the complex effect of multiple environmental factors on SOA formation was also important and should not be ignored.
Collapse
Affiliation(s)
- Shijie Liu
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 210062, China; Institute of Eco-Chongming, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Yiqian Wang
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 210062, China
| | - Xinbei Xu
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 210062, China
| | - Gehui Wang
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 210062, China; Institute of Eco-Chongming, 3663 North Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
120
|
Shi X, Tang R, Dong Z, Liu H, Xu F, Zhang Q, Zong W, Cheng J. A neglected pathway for the accretion products formation in the atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157494. [PMID: 35914590 DOI: 10.1016/j.scitotenv.2022.157494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/09/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Highly oxygenated organic molecules (HOM) formed by the autoxidation of α-pinene initiated by OH radicals play an important role in new particle formation. It is believed that the accretion products, ROOR´, formed by the self- and cross-reaction of peroxy radicals (RO2 + R'O2 reactions), have extremely low volatility and are more likely to participate in nucleation. However, the mechanism of ROOR´ formation has not been fully demonstrated by experiment or theoretical calculation. Herein, we propose a novel mechanism of RO2 reacting with α-pinene (RO2 + α-pinene reactions) that have much lower potential barriers and larger rate constants than the reaction of RO2 with R'O2, which explains the ROOR´ formation found in the mass spectrometry experiments. The ROOR´ resulting from the reaction of RO2 with α-pinene can produce HOM dimers and trimers with a higher oxygen-to‑carbon (O/C) ratio through a autoxidation chain. We also demonstrated that the presence of NOx and HO2 radical will reduce the RO2 concentration, but cannot completely inhibit the formation of HOM monomers and ROOR´. Even if one or both of RO2 radicals are acyl peroxy radicals (RC(O)O2), the potential barriers of the reactions between RC(O)O2 and α-pinene (RC(O)O2 + α-pinene reactions) are lower than that of RO2 reacting with RC(O)O2 (RO2 + RC(O)O2 reactions) or RC(O)O2 self-reactions (RC(O)O2 + RC(O)O2 reactions). The current work revealed, for the first time, a mechanism of RO2/RC(O)O2 reacting with α-pinene in the atmosphere, which provides new insight into the atmospheric chemistry of accretion products as SOA precursors.
Collapse
Affiliation(s)
- Xiangli Shi
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China
| | - Ruoyu Tang
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China
| | - Zuokang Dong
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China
| | - Houfeng Liu
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China
| | - Fei Xu
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China.
| | - Jiemin Cheng
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China
| |
Collapse
|
121
|
Lyu X, Guo H, Zou Q, Li K, Xiong E, Zhou B, Guo P, Jiang F, Tian X. Evidence for Reducing Volatile Organic Compounds to Improve Air Quality from Concurrent Observations and In Situ Simulations at 10 Stations in Eastern China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15356-15364. [PMID: 36314604 DOI: 10.1021/acs.est.2c04340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ground-level ozone (O3) has been an emerging air pollution in China and interacts with fine particulate matters (PM2.5). We synthesized observations of O3 and its precursors in two summer months of 2020 at 10 sites in the Zhejiang province, East China and simulated the in situ photochemistry. O3 pollution in the northeastern Zhejiang province was more serious than that in the southwest. The site-average daytime O3 increment correlated well (R2 = 0.73) with the total reactivity of volatile organic compounds (VOCs) and carbon monoxide toward the hydroxyl radical (OH) in urban areas. Model simulation revealed that the main function of nitrogen oxides (NOx) at the rural sites where isoprene accounted for >85% of OH reactivity of VOCs was to facilitate the radical cycling. With NOx reduction from 0 to 90%, the self-reactions between peroxy radicals (Self-Rxns), a proven pathway for secondary organic aerosol formation, were intensified by up to 23-fold in a NOx-rich environment. In contrast, reducing VOCs could weaken the Self-Rxns while reducing O3 production rate and atmospheric oxidation capacity. This study observes and simulates O3 chemistry based on extensive measurements in typical Chinese cities, highlighting the necessity of reducing VOCs for co-benefit of O3 and PM2.5.
Collapse
Affiliation(s)
- Xiaopu Lyu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 00000, China
| | - Hai Guo
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 00000, China
| | - Qiaoli Zou
- Zhejiang Ecological and Environmental Monitoring Centre, Hangzhou 310012, China
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Hangzhou 3100212, China
| | - Ke Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Enyu Xiong
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 00000, China
| | - Beining Zhou
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 00000, China
| | - Peiwen Guo
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 00000, China
| | - Fei Jiang
- International Institute for Earth System Science, Nanjing University, Nanjing 210023, China
| | - Xudong Tian
- Zhejiang Ecological and Environmental Monitoring Centre, Hangzhou 310012, China
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Hangzhou 3100212, China
| |
Collapse
|
122
|
Cai R, Huang W, Meder M, Bourgain F, Aizikov K, Riva M, Bianchi F, Ehn M. Improving the Sensitivity of Fourier Transform Mass Spectrometer (Orbitrap) for Online Measurements of Atmospheric Vapors. Anal Chem 2022; 94:15746-15753. [DOI: 10.1021/acs.analchem.2c03403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Runlong Cai
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Wei Huang
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Melissa Meder
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Frederic Bourgain
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne 69626, France
| | | | - Matthieu Riva
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne 69626, France
| | - Federico Bianchi
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Mikael Ehn
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
123
|
Ke Y, Gall BK, Dewey NS, Rotavera B, Ferreira EM. Multigram Synthesis of a Combustion-Relevant δ-Ketohydroperoxide through Sulfonylhydrazine Substitution. Chemistry 2022; 28:e202202266. [PMID: 35945143 PMCID: PMC9643622 DOI: 10.1002/chem.202202266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 01/11/2023]
Abstract
A synthesis of a δ-ketohydroperoxide is described, addressing potential functional-group compatibilities in these elusive species relevant to combustion and atmospheric chemistries. The hydroperoxide is installed via sulfonylhydrazine substitution, which was found to be more effective than displacement of secondary halides. As part of this protocol, it was observed that 1,2-dimethoxyethane is an advantageous medium for the reaction, avoiding the formation of a tetrahydrofuran hydroperoxide side product. This discovery facilitated the multigram synthesis (6 steps, 41 % yield overall) and discrete characterization of the target δ-ketohydroperoxide.
Collapse
Affiliation(s)
- Yan‐Ting Ke
- Department of ChemistryUniversity of GeorgiaAthensGeorgia30602United States
| | - Bradley K. Gall
- Department of ChemistryUniversity of GeorgiaAthensGeorgia30602United States
| | - Nicholas S. Dewey
- Department of ChemistryUniversity of GeorgiaAthensGeorgia30602United States
| | - Brandon Rotavera
- Department of ChemistryUniversity of GeorgiaAthensGeorgia30602United States
- College of EngineeringUniversity of GeorgiaAthensGeorgia30602United States
| | - Eric M. Ferreira
- Department of ChemistryUniversity of GeorgiaAthensGeorgia30602United States
| |
Collapse
|
124
|
Wen Z, Yue H, Zhang Y, Lin X, Ma Z, Zhang W, Wang Z, Zhang C, Fittschen C, Tang X. Self-reaction of C2H5O2 and its cross-reaction with HO2 studied with vacuum ultraviolet photoionization mass spectrometry. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
125
|
Shen H, Vereecken L, Kang S, Pullinen I, Fuchs H, Zhao D, Mentel TF. Unexpected significance of a minor reaction pathway in daytime formation of biogenic highly oxygenated organic compounds. SCIENCE ADVANCES 2022; 8:eabp8702. [PMID: 36269820 PMCID: PMC9586481 DOI: 10.1126/sciadv.abp8702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Secondary organic aerosol (SOA), formed by oxidation of volatile organic compounds, substantially influence air quality and climate. Highly oxygenated organic molecules (HOMs), particularly those formed from biogenic monoterpenes, contribute a large fraction of SOA. During daytime, hydroxyl radicals initiate monoterpene oxidation, mainly by hydroxyl addition to monoterpene double bonds. Naturally, related HOM formation mechanisms should be induced by that reaction route, too. However, for α-pinene, the most abundant atmospheric monoterpene, we find a previously unidentified competitive pathway under atmospherically relevant conditions: HOM formation is predominately induced via hydrogen abstraction by hydroxyl radicals, a generally minor reaction pathway. We show by observations and theoretical calculations that hydrogen abstraction followed by formation and rearrangement of alkoxy radicals is a prerequisite for fast daytime HOM formation. Our analysis provides an accurate mechanism and yield, demonstrating that minor reaction pathways can become major, here for SOA formation and growth and related impacts on air quality and climate.
Collapse
Affiliation(s)
- Hongru Shen
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Luc Vereecken
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Sungah Kang
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iida Pullinen
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Hendrik Fuchs
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Physikalisches Institut, Universität zu Köln, 50932 Köln, Germany
| | - Defeng Zhao
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
- Shanghai Frontiers Science Center of Atmosphere-Ocean Interaction, Fudan University, Shanghai 200438, China
- Institute of Eco-Chongming (IEC), 20 Cuiniao Rd., Chongming, Shanghai 202162, China
- IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China
| | - Thomas F. Mentel
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
126
|
Pytel K, Marcinkowska R, Rutkowska M, Zabiegała B. Recent advances on SOA formation in indoor air, fate and strategies for SOA characterization in indoor air - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156948. [PMID: 35753459 DOI: 10.1016/j.scitotenv.2022.156948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Recent studies proves that indoor air chemistry differs in many aspects from atmospheric one. People send up to 90 % of their life indoors being exposed to pollutants present in gas, particle and solid phase. Particle phase indoor is composed of particles emitted from various sources, among which there is an indoor source - secondary chemical reactions leading to formation of secondary organic aerosol (SOA). Lately, researchers' attentions turned towards the ultrafine particles, for there are still a lot of gaps in knowledge concerning this field of study, while there is evidence of negative influence of ultrafine particles on human health. Presented review sums up current knowledge about secondary particle formation in indoor environment and development of analytical techniques applied to study those processes. The biggest concern today is studying ROS, for their lifetime in indoor air is very short due to reactions at the very beginning of terpene oxidation process. Another interesting aspect that is recently discovered is monoterpene autooxidation process that leads to HOMs formation that in turn can influence SOA formation yield. A complex studies covering gas phase and particle phase characterization, but also toxicological studies are crucial to fully understand indoor air chemistry leading to ultrafine particle formation.
Collapse
Affiliation(s)
- Klaudia Pytel
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańnsk, Poland
| | - Renata Marcinkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańnsk, Poland
| | - Małgorzata Rutkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańnsk, Poland
| | - Bożena Zabiegała
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańnsk, Poland.
| |
Collapse
|
127
|
Chen Y, Tan Y, Zheng P, Wang Z, Zou Z, Ho KF, Lee S, Wang T. Effect of NO 2 on nocturnal chemistry of isoprene: Gaseous oxygenated products and secondary organic aerosol formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156908. [PMID: 35753484 DOI: 10.1016/j.scitotenv.2022.156908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
As one of the most abundant non-methane hydrocarbon in the atmosphere, isoprene has attracted lots of attention on its oxidation processes and environmental effects. However, less is known about the nocturnal chemistry of isoprene with multiple oxidants coexisting in the atmosphere. Besides, though highly oxygenated molecules (HOMs) have recently been recognized to contribute to secondary organic aerosol (SOA) formation, the specific contribution of measured HOMs on SOA formation in isoprene oxidation has not been well established. In this study, the oxidation of isoprene was simulated under dark and various NO2/O3 conditions. Plenty of oxidation products were identified by combining two state-of-the-art time-of-flight mass spectrometers, and more species with high C and N numbers and low volatilities were detected under high NO2 conditions. The nocturnal oxidation of isoprene was found to be governed by synergic effects of multiple oxidants, including O3, NO3•, and •OH at the same time, and the oxidation proportions changed with NO2. NO2 promoted the formation of most N-containing products especially N2 products, because of the decisive role of NO3• on their formation. Nevertheless, some products such as C5H10O3-5, C5H11NO6, and C10H16N2O10,11 showed a better correlation with HO2NO2 rather than NO2/O3, indicating the importance of HO2• chemistry on the oxidation products formation. Though the concentration of measured oxygenated products was dominated by volatile and semi-volatile organic compounds, the low- and extremely low-volatile organic compounds contributed over 97 % to the SOA formation potential. However, challenges still exist in accurately simulating SOA formation from the measured oxygenated molecules to match the measurement, and further comprehensive characterization of oxidation products in both gas and aerosol phases at the molecular level is needed.
Collapse
Affiliation(s)
- Yi Chen
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong 999077, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Yan Tan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China; School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Penggang Zheng
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Zhe Wang
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong 999077, China.
| | - Zhouxing Zou
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Kin-Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Shuncheng Lee
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
128
|
Chen T, Zhang P, Ma Q, Chu B, Liu J, Ge Y, He H. Smog Chamber Study on the Role of NO x in SOA and O 3 Formation from Aromatic Hydrocarbons. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13654-13663. [PMID: 36136046 DOI: 10.1021/acs.est.2c04022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
China is facing dual pressures to reduce both PM2.5 and O3 pollution, the crucial precursors of which are NOx and VOCs. In our study, the role of NOx in both secondary organic aerosol (SOA, the important constituent of PM2.5) and O3 formation was examined in our 30 m3 indoor smog chamber. As revealed in the present study, the NOx level can obviously affect the OH concentration and volatility distribution of gas-phase oxidation products and thus O3 and SOA formation. Reducing the NOx concentration to the NOx-sensitive regime can inhibit O3 formation (by 42%), resulting in the reduction of oxidation capacity, which suppresses the SOA formation (by 45%) by inhibiting the formation of O- and N-containing gas-phase oxidation products with low volatility. The contribution of these oxidation products to the formation of SOA was also estimated, and the results could substantially support the trend of SOA yield with NOx at different VOC levels. The atmospheric implications of NOx in the coordinated control of PM2.5 and O3 are also discussed.
Collapse
Affiliation(s)
- Tianzeng Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Peng Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanli Ge
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
129
|
Edwards KC, Klodt AL, Galeazzo T, Schervish M, Wei J, Fang T, Donahue NM, Aumont B, Nizkorodov SA, Shiraiwa M. Effects of Nitrogen Oxides on the Production of Reactive Oxygen Species and Environmentally Persistent Free Radicals from α-Pinene and Naphthalene Secondary Organic Aerosols. J Phys Chem A 2022; 126:7361-7372. [PMID: 36194388 PMCID: PMC9574922 DOI: 10.1021/acs.jpca.2c05532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reactive oxygen species (ROS) and environmentally persistent free radicals (EPFR) play an important role in chemical transformation of atmospheric aerosols and adverse aerosol health effects. This study investigated the effects of nitrogen oxides (NOx) during photooxidation of α-pinene and naphthalene on the EPFR content and ROS formation from secondary organic aerosols (SOA). Electron paramagnetic resonance (EPR) spectroscopy was applied to quantify EPFR content and ROS formation. While no EPFR were detected in α-pinene SOA, we found that naphthalene SOA contained about 0.7 pmol μg-1 of EPFR, and NOx has little influence on EPFR concentrations and oxidative potential. α-Pinene and naphthalene SOA generated under low NOx conditions form OH radicals and superoxide in the aqueous phase, which was lowered substantially by 50-80% for SOA generated under high NOx conditions. High-resolution mass spectrometry analysis showed the substantial formation of nitroaromatics and organic nitrates in a high NOx environment. The modeling results using the GECKO-A model that simulates explicit gas-phase chemistry and the radical 2D-VBS model that treats autoxidation predicted reduced formation of hydroperoxides and enhanced formation of organic nitrates under high NOx due to the reactions of peroxy radicals with NOx instead of their reactions with HO2. Consistently, the presence of NOx resulted in the decrease of peroxide contents and oxidative potential of α-pinene SOA.
Collapse
Affiliation(s)
- Kasey C Edwards
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Alexandra L Klodt
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Tommaso Galeazzo
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Meredith Schervish
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Jinlai Wei
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Ting Fang
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Neil M Donahue
- Departments of Chemistry, Chemical Engineering, Engineering and Public Policy, Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Bernard Aumont
- CNRS, LISA, Univ of Paris Est Creteil and University Paris Cité, F-94010 Créteil, France
| | - Sergey A Nizkorodov
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
130
|
Wang C, Liu Y, Huang T, Feng Y, Wang Z, Lu R, Jiang S. Sulfuric acid-dimethylamine particle formation enhanced by functional organic acids: an integrated experimental and theoretical study. Phys Chem Chem Phys 2022; 24:23540-23550. [PMID: 36129069 DOI: 10.1039/d2cp01671k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atmospheric new particle formation (NPF), which has been observed globally in clean and polluted environments, is an important source of boundary-layer aerosol particles and cloud condensation nuclei, but the fundamental mechanisms leading to multi-component aerosol formation have not been well understood. Here, we use experiments and quantum chemical calculations to better understand the involvement of carboxylic acids in initial NPF from gas phase mixtures of carboxylic acid, sulfuric acid (SA), dimethylamine, and water. A turbulent flow tube coupled to an ultrafine condensation particle counter with particle size magnifier has been set up to measure NPF. Experimental results show that pyruvic acid (PA), succinic acid (SUA), and malic acid (MA) can enhance sulfuric acid-dimethylamine nucleation in the order PA < SUA < MA with a greater enhancement observed at lower SA concentrations. Computational results indicate that the carboxylic and hydroxyl groups are related to the enhancement. This experiment-theory study shows the formation of multi-component aerosol particles and the role of the organic functional group, which may aid in understanding the role of organics in aerosol nucleation and growth in polluted areas, and help to choose organic molecules of specific structures for simulation.
Collapse
Affiliation(s)
- Chunyu Wang
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China. .,School of Chemistry and Material Engineering, Chaohu University, Hefei, Anhui, 238024, China
| | - Yirong Liu
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Teng Huang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Yajuan Feng
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Zhongquan Wang
- Department of Physics, Huainan Normal University, Huainan, Anhui, 232001, China
| | - Runqi Lu
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Shuai Jiang
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
131
|
Campbell SJ, Wolfer K, Gallimore PJ, Giorio C, Häussinger D, Boillat MA, Kalberer M. Characterization and Quantification of Particle-Bound Criegee Intermediates in Secondary Organic Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12945-12954. [PMID: 36054832 PMCID: PMC9494744 DOI: 10.1021/acs.est.2c04101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The ozonolysis of alkenes contributes substantially to the formation of secondary organic aerosol (SOA), which are important modulators of air quality and the Earth's climate. Criegee intermediates (CIs) are abundantly formed through this reaction. However, their contributions to aerosol particle chemistry remain highly uncertain. In this work, we present the first application of a novel methodology, using spin traps, which simultaneously quantifies CIs produced from the ozonolysis of volatile organic compounds in the gas and particle phases. Only the smallest CI with one carbon atom was detected in the gas phase of a β-caryophyllene ozonolysis reaction system. However, multiple particle-bound CIs were observed in β-caryophyllene SOA. The concentration of the most abundant CI isomer in the particle phase was estimated to constitute ∼0.013% of the SOA mass under atmospherically relevant conditions. We also demonstrate that the lifetime of CIs in highly viscous SOA particles is at least on the order of minutes, substantially greater than their gas-phase lifetime. The confirmation of substantial concentrations of large CIs with elongated lifetimes in SOA raises new questions regarding their influence on the chemical evolution of viscous SOA particles, where CIs may be a previously underestimated source of reactive species.
Collapse
Affiliation(s)
- Steven J. Campbell
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Department
of Environmental Sciences, University of
Basel, Basel, Klingelbergstrasse 27, Basel 4056, Switzerland
| | - Kate Wolfer
- Department
of Environmental Sciences, University of
Basel, Basel, Klingelbergstrasse 27, Basel 4056, Switzerland
| | - Peter J. Gallimore
- Department
of Earth and Environmental Sciences, University
of Manchester, Manchester M13 9PS, United Kingdom
| | - Chiara Giorio
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Daniel Häussinger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Marc-Aurèle Boillat
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Markus Kalberer
- Department
of Environmental Sciences, University of
Basel, Basel, Klingelbergstrasse 27, Basel 4056, Switzerland
| |
Collapse
|
132
|
Berndt T. Peroxy Radical and Product Formation in the Gas-Phase Ozonolysis of α-Pinene under Near-Atmospheric Conditions: Occurrence of an Additional Series of Peroxy Radicals O,O-C 10H 15O(O 2) yO 2 with y = 1-3. J Phys Chem A 2022; 126:6526-6537. [PMID: 36074727 DOI: 10.1021/acs.jpca.2c05094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ozonolysis of α-pinene, C10H16, and other monoterpenes is considered to be one of the important chemical process in the atmosphere leading to condensable vapors, which are relevant to aerosol formation and, finally, for Earth's radiation budget. The formation of peroxy (RO2) radicals, O,O-C10H15(O2)xO2 with x = 0-3, and closed-shell products has been probed from the ozonolysis of α-pinene for close to atmospheric reaction conditions. (The "O,O" in the chemical formulas indicates the two carbonyl groups formed in the ozonolysis.) An additional series of RO2 radicals, O,O-C10H15O(O2)yO2 with y = 1-3, emerged in the presence of NO additions of (1.7-50) × 109 molecules cm-3, whose formation can be explained via different processes starting from alkoxy (RO) radicals, such as the RO-driven autoxidation. The main closed-shell product is a substance with the composition C10H16O3, probably pinonic acid, obtained with a molar yield (lower limit) of 0.26+0.27-0.14 independent of NO. Total molar product yields accounted for up to 0.71+0.72-0.38 indicating reasonable detection sensitivity of the analytical technique applied. For the isomeric O,O-C10H15O2 radicals, an average rate coefficient k(RO2 + NO) = (1.5 ± 0.3) × 10-11 cm3 molecule-1 s-1 at 295 ± 2 K was determined. Product analysis showed a lowering in the formation of highly oxygenated organic molecules (HOMs) by a factor of ∼2.2 when adding 5 × 1010 molecules cm-3 of NO. The comparison with former results revealed that total HOM suppression by NO in the α-pinene ozonolysis is slightly stronger than in the OH + α-pinene reaction.
Collapse
Affiliation(s)
- Torsten Berndt
- Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
133
|
Liu J, D'Ambro EL, Lee BH, Schobesberger S, Bell DM, Zaveri RA, Zelenyuk A, Thornton JA, Shilling JE. Monoterpene Photooxidation in a Continuous-Flow Chamber: SOA Yields and Impacts of Oxidants, NO x, and VOC Precursors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12066-12076. [PMID: 35976919 DOI: 10.1021/acs.est.2c02630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Monoterpene photooxidation plays an important role in secondary organic aerosol (SOA) formation in the atmosphere. The low-volatility products can enhance new particle formation and particle growth and thus influence climate feedback. Here, we present the results of α-pinene and Δ-3-carene photooxidation experiments conducted in continuous-flow mode in an environmental chamber under several reaction conditions. The roles of oxidants, addition of NO, and VOC molecular structure in influencing SOA yield are illustrated. SOA yield from α-pinene photooxidation shows a weak dependence on H2O2 concentration, which is a proxy for HO2 concentration. The high O/C ratios observed in the α-pinene photooxidation products suggest the production of highly oxygenated organic molecules (HOM). Addition of ozone to the chamber during low-NOx photooxidation experiments leads to higher SOA yield. With the addition of NO, the production of N-containing HOMs is enhanced and the SOA yield shows a modest, nonlinear dependence on the input NO concentration. Carene photooxidation leads to higher SOA yield than α-pinene under similar reaction conditions, which agrees with the lower volatility retrieved from evaporation kinetics experiments. These results improve the understanding of SOA formation from monoterpene photooxidation and could be applied to refine the representation of biogenic SOA formation in models.
Collapse
Affiliation(s)
- Jiumeng Liu
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Emma L D'Ambro
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Ben Hwan Lee
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Siegfried Schobesberger
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - David M Bell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Rahul A Zaveri
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Alla Zelenyuk
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Joel A Thornton
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - John E Shilling
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
134
|
Zhao Q, Møller KH, Chen J, Kjaergaard HG. Cost-Effective Implementation of Multiconformer Transition State Theory for Alkoxy Radical Unimolecular Reactions. J Phys Chem A 2022; 126:6483-6494. [PMID: 36053271 DOI: 10.1021/acs.jpca.2c04328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alkoxy radicals are important intermediates in the gas-phase oxidation of volatile organic compounds (VOCs) determining the nature of the first-generation products. An accurate description of their chemistry under atmospheric conditions is essential for understanding the atmospheric oxidation of VOCs. Unfortunately, experimental measurements of the rate coefficients of unimolecular alkoxy radical reactions are scarce, especially for larger systems. As has previously been done for peroxy radical hydrogen shift reactions, we present a cost-effective approach to the practical implementation of multiconformer transition state theory (MC-TST) for alkoxy radical unimolecular (H-shift and decomposition) reactions. Specifically, we test the optimal approach for the conformational sampling as well as the best value for a cutoff of high-energy conformers. In order to obtain accurate rate coefficients at a reduced computational cost, an energy cutoff is employed to reduce the required number of high-level calculations. The rate coefficients obtained with the developed theoretical approach are compared to available experimental rate coefficients for both 1,5 H-shifts and decomposition reactions. For all but one of the reactions tested, the calculated MC-TST rate coefficients agree with experimental results to within a factor of 7. The discrepancy for the final reaction is about a factor of 15, but part of the discrepancy is caused by pressure effects, which are not included in MC-TST. Thus, for the fastest alkoxy reactions, deviation from the high-pressure limit even at 1 bar should be considered.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shanxi, Xi'an710049, China.,Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| | - Kristian H Møller
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| | - Jing Chen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| |
Collapse
|
135
|
He J, Zhang H, Wang W, Ma Y, Yang M, He Y, Liu Z, Yu K, Jiang J. Probing autoxidation of oleic acid at air-water interface: A neglected and significant pathway for secondary organic aerosols formation. ENVIRONMENTAL RESEARCH 2022; 212:113232. [PMID: 35398317 DOI: 10.1016/j.envres.2022.113232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/27/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Fatty acids have been proposed to be a potential source of precursors for SOAs, but the autoxidation process was neglected in the oxidation studies. Here, the autoxidation of oleic acid was explored using microdroplet mass spectrometry. Bulk solution, concentration and solvent composition experiments provided direct evidences for that the autoxidation occurred at or near the air-water interface. The kinetic data showed an acceleration at this interface and was comparable to ozonation, indicating that autoxidation is an important pathway for SOAs formation. In addition, intermediates/products were captured and identified using tandem mass spectrometry, spin-trapping and quenched agents. The autoxidation mechanism was divided into addition intermediates (AIs) and Criegee intermediates (CIs) pathways mediated by hydroxyl radicals (OH). The CI chemistry which is ubiquitous in gas phase was observed at the air-water interface, and this leaded to the mass/volume loss of aerosols. Inversely, the AI chemistry caused the increase of mass, density and hygroscopicity of aerosols. AI chemistry was dominated compared to CI chemistry, but varied by concerning aerosol sizes, ultraviolet light (UV) and charge. Moreover, the MS approach of selectively probing the interfacial substances at the scale of sub-seconds opens new opportunities to study heterogeneous chemistry in atmosphere.
Collapse
Affiliation(s)
- Jing He
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China.
| | - Wenxin Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Yingxue Ma
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Miao Yang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Yuwei He
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Zhuo Liu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Kai Yu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Jie Jiang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China.
| |
Collapse
|
136
|
Ding L, Wang L, Nian L, Tang M, Yuan R, Shi A, Shi M, Han Y, Liu M, Zhang Y, Xu Y. Non-targeted screening of volatile organic compounds in a museum in China Using GC-Orbitrap mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155277. [PMID: 35447177 DOI: 10.1016/j.scitotenv.2022.155277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Non-targeted analysis (NTA) was used in identifying volatile organic compounds (VOCs) in a museum in China with the gas chromatograph (GC)-Orbitrap-mass spectrometer (MS). Approximately 230 VOCs were detected, of which 117 were observed at 100% frequency across all sampling sites. Although some were common in indoor environments, most of the detected VOCs were rarely reported in previous studies on museum environments. Some of the detected VOCs were found to be associated with the materials used in furnishings and the chemicals applied in conservation treatment. Spearman's correlation analysis showed that several classes of VOCs were well correlated, suggesting their common sources. Compared with compounds in outdoor air, indoor VOCs had a lower level of unsaturation and more portions of chemically reduced compounds. Hierarchical cluster analysis (HCA) were performed. The results suggested that the sampling adsorbents chosen may have a large impact and that a single type of adsorbent may not be sufficient to cover a wide range of compounds in NTA studies. The MonoTrap adsorbent containing octadecylsilane (ODS) and activated carbon (AC) is suitable for aliphatic polar compounds that contain low levels of oxygen, whereas the MonoTrap ODS and silica gel are good at sampling aliphatic and aromatic hydrocarbons with limited polarity. Principle component analysis (PCA) showed that the indoor VOCs changed significantly at different times in the museum; this may have been caused by the removal of artifacts and refurbishment of the gallery between sampling events. A comparison with compounds identified by chamber emission tests showed that decorative materials may have been one of the main sources of indoor VOCs in the museum. The VOCs identified in the present study are likely to be present in other similar museums; therefore, further examination may be warranted of their potential impacts on cultural heritage artifacts, museum personnel, and visitors.
Collapse
Affiliation(s)
- Li Ding
- National Museum of China, Beijing, China
| | - Luyang Wang
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Luying Nian
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Ming Tang
- National Museum of China, Beijing, China
| | - Rui Yuan
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Anmei Shi
- National Museum of China, Beijing, China
| | - Meng Shi
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Ying Han
- National Museum of China, Beijing, China
| | - Min Liu
- National Museum of China, Beijing, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Ying Xu
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China; Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX, USA.
| |
Collapse
|
137
|
Li J, Xie X, Li L, Wang X, Wang H, Jing S, Ying Q, Qin M, Hu J. Fate of Oxygenated Volatile Organic Compounds in the Yangtze River Delta Region: Source Contributions and Impacts on the Atmospheric Oxidation Capacity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11212-11224. [PMID: 35925776 DOI: 10.1021/acs.est.2c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Community Multiscale Air Quality model (CMAQv5.2) was implemented to investigate the sources and sinks of oxygenated volatile organic compounds (OVOCs) during a high O3 and high PM2.5 season in the Yangtze River Delta (YRD) region, based on constraints from observations. The model tends to overpredict non-oxygenated VOCs and underpredict OVOCs, which has been improved with adjusted emissions of all VOCs. The OVOCs in the YRD are dominated by ketones, aldehydes, and alcohols. Ketones and aldehydes mainly originate from direct emissions and secondary formation in the northern YRD, and primarily originate from secondary formation in the southern part influenced by biogenic emissions. The concentration of secondary organic aerosols (SOA) produced by OVOCs is 0.5-1.5 μg/m3, with 40-80% originated from organic nitrates, 20-70% originated from dicarbonyls, and 0-20% originated from isoprene epoxydiols. The influences of OVOCs on the atmospheric oxidation capacity are dominated by the OH• pathway during the day (∼350%) and by the NO3• pathway at night (∼150%). Consequently, O3 is enhanced by 30-70% in the YRD. Aerosols are also enhanced by 50-140%, 20-80%, and ∼20% for SOA, nitrate, and sulfate, respectively.
Collapse
Affiliation(s)
- Jingyi Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiaodong Xie
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Lin Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xueying Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Hongli Wang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Sheng'ao Jing
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Qi Ying
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843-3136, United States
| | - Momei Qin
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jianlin Hu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
138
|
Skyttä A, Gao J, Cai R, Ehn M, Ahonen LR, Kurten T, Wang Z, Rissanen MP, Kangasluoma J. Isomer-Resolved Mobility-Mass Analysis of α-Pinene Ozonolysis Products. J Phys Chem A 2022; 126:5040-5049. [PMID: 35862553 PMCID: PMC9358649 DOI: 10.1021/acs.jpca.2c03366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Highly oxygenated organic molecules (HOMs) are important sources of atmospheric aerosols. Resolving the molecular-level formation mechanisms of these HOMs from freshly emitted hydrocarbons improves the understanding of aerosol properties and their influence on the climate. In this study, we measure the electrical mobility and mass-to-charge ratio of α-pinene oxidation products using a secondary electrospray-differential mobility analyzer-mass spectrometer (SESI-DMA-MS). The mass-mobility spectrum of the oxidation products is measured with seven different reagent ions generated by the electrospray. We analyzed the mobility-mass spectra of the oxidation products C9-10H14-18O2-6. Our results show that acetate and chloride yield the highest charging efficiencies. Analysis of the mobility spectra suggests that the clusters have 1-5 isomeric structures (i.e., ion-molecule cluster structures with distinct mobilities), and the number is affected by the reagent ion. Most of the isomers are likely cluster isomers originating from binding of the reagent ion to different sites of the molecule. By comparing the number of observed isomers and measured mobilities and collision cross sections between standard pinanediol and pinonic acid to the values observed for C10H18O2 and C10H16O3 produced from oxidation of α-pinene, we confirm that pinanediol and pinonic acid are the only isomers for these elemental compositions in our experimental conditions. Our study shows that the SESI-DMA-MS produces new information from the first steps of oxidation of α-pinene.
Collapse
Affiliation(s)
- Aurora Skyttä
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jian Gao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Runlong Cai
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mikael Ehn
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Lauri R Ahonen
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Theo Kurten
- Department of Chemistry and Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, 00014 Helsinki, Finland
| | - Zhibin Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Matti P Rissanen
- Aerosol Physics Laboratory, Department of Physics, Tampere University, 33720 Tampere, Finland
| | - Juha Kangasluoma
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, FI-00014 Helsinki, Finland.,Karsa Ltd., A. I. Virtasen aukio 1, 00560 Helsinki, Finland
| |
Collapse
|
139
|
Li M, Li J, Zhu Y, Chen J, Andreae MO, Pöschl U, Su H, Kulmala M, Chen C, Cheng Y, Zhao J. Highly oxygenated organic molecules with high unsaturation formed upon photochemical aging of soot. Chem 2022. [DOI: 10.1016/j.chempr.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
140
|
Salo VT, Valiev R, Lehtola S, Kurtén T. Gas-Phase Peroxyl Radical Recombination Reactions: A Computational Study of Formation and Decomposition of Tetroxides. J Phys Chem A 2022; 126:4046-4056. [PMID: 35709531 PMCID: PMC9251773 DOI: 10.1021/acs.jpca.2c01321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
The recombination
(“dimerization”) of peroxyl radicals
(RO2•) is one of the pathways suggested in the literature
for the formation of peroxides (ROOR′, often referred to as
dimers or accretion products in the literature) in the atmosphere.
It is generally accepted that these dimers play a major role in the
first steps of the formation of submicron aerosol particles. However,
the precise reaction pathways and energetics of RO2•
+ R′O2• reactions are still unknown. In this
work, we have studied the formation of tetroxide intermediates (RO4R′): their formation from two peroxyl radicals and
their decomposition to triplet molecular oxygen (3O2) and a triplet pair of alkoxyl radicals (RO•). We
demonstrate this mechanism for several atmospherically relevant primary
and secondary peroxyl radicals. The potential energy surface corresponds
to an overall singlet state. The subsequent reaction channels of the
alkoxyl radicals include, but are not limited to, their dimerization
into ROOR′. Our work considers the multiconfigurational character
of the tetroxides and the intermediate phases of the reaction, leading
to reliable mechanistic insights for the formation and decomposition
of the tetroxides. Despite substantial uncertainties in the computed
energetics, our results demonstrate that the barrier heights along
the reaction path are invariably small for these systems. This suggests
that the reaction mechanism, previously validated at a multireference
level only for methyl peroxyl radicals, is a plausible pathway for
the formation of aerosol-relevant larger peroxides in the atmosphere.
Collapse
Affiliation(s)
- Vili-Taneli Salo
- Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland
| | - Rashid Valiev
- Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland
| | - Susi Lehtola
- Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland.,Molecular Sciences Software Institute, Blacksburg, Virginia 24061, United States
| | - Theo Kurtén
- Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland
| |
Collapse
|
141
|
Fu Z, Xie HB, Elm J, Liu Y, Fu Z, Chen J. Atmospheric Autoxidation of Organophosphate Esters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6944-6955. [PMID: 34793133 DOI: 10.1021/acs.est.1c04817] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Organophosphate esters (OPEs), widely used as flame retardants and plasticizers, have frequently been identified in the atmosphere. However, their atmospheric fate and toxicity associated with atmospheric transformations are unclear. Here, we performed quantum chemical calculations and computational toxicology to investigate the reaction mechanism of peroxy radicals of OPEs (OPEs-RO2•), key intermediates in determining the atmospheric chemistry of OPEs, and the toxicity of the reaction products. TMP-RO2• (R1) and TCPP-RO2• (R2) derived from trimethyl phosphate and tris(2-chloroisopropyl) phosphate, respectively, are selected as model systems. The results indicate that R1 and R2 can follow an H-shift-driven autoxidation mechanism under low NO concentration ([NO]) conditions, clarifying that RO2• from esters can follow an autoxidation mechanism. The unexpected autoxidation mechanism can be attributed to the distinct role of the ─(O)3P(═O) phosphate-ester group in facilitating the H-shift of OPEs-RO2• from commonly encountered ─OC(═O)─ and ─ONO2 ester groups in the atmosphere. Under high [NO] conditions, NO can mediate the autoxidation mechanism to form organonitrates and alkoxy radical-related products. The products from the autoxidation mechanism have low volatility and aquatic toxicity compared to their corresponding parent compounds. The proposed autoxidation mechanism advances our current understanding of the atmospheric RO2• chemistry and the environmental risk of OPEs.
Collapse
Affiliation(s)
- Zihao Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jonas Elm
- Department of Chemistry and iClimate, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Yang Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhiqiang Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
142
|
Hu W, Zhou H, Chen W, Ye Y, Pan T, Wang Y, Song W, Zhang H, Deng W, Zhu M, Wang C, Wu C, Ye C, Wang Z, Yuan B, Huang S, Shao M, Peng Z, Day DA, Campuzano-Jost P, Lambe AT, Worsnop DR, Jimenez JL, Wang X. Oxidation Flow Reactor Results in a Chinese Megacity Emphasize the Important Contribution of S/IVOCs to Ambient SOA Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6880-6893. [PMID: 34898185 DOI: 10.1021/acs.est.1c03155] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Oxygenated volatile organic compounds (OVOCs) and secondary organic aerosol (SOA) formation potential of ambient air in Guangzhou, China was investigated using a field-deployed oxidation flow reactor (OFR). The OFR was used to mimic hours to weeks of atmospheric exposure to hydroxyl (OH) radicals within the 2-3 min residence time. A comprehensive investigation on the variation of VOCs and OVOCs as a function of OH exposure is shown. Substantial formation of organic acids and nitrogen-containing OVOC species were observed. Maximum SOA formation in the OFR was observed following 1-4 equiv days' OH exposure. SOA produced from known/measured VOC/IVOC precursors such as single-ring aromatics and long-chain alkanes can account for 52-75% of measured SOA under low NOx and 26-60% under high NOx conditions based on laboratory SOA yield parametrizations. To our knowledge, this is the first time that the contribution (8-20%) of long-chain (C8-C20) alkane oxidation to OFR SOA formation was quantified from direct measurement. By additionally estimating contribution from unmeasured semivolatile and intermediate volatility compounds (S/IVOCs) that are committed with C8-C20 alkanes, 64-100% of the SOA formation observed in the OFR can be explained, signifying the important contribution of S/IVOCs such as large cyclic alkanes to ambient SOA.
Collapse
Affiliation(s)
- Weiwei Hu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640. China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, Guangdong 510640, China
- Guangdong-Hong Kong-Macao, Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou, Guangdong 510640. China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Chinese Academy of Science, Guangzhou, Guangdong 510640. China
| | - Huaishan Zhou
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Chen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqing Ye
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640. China
| | - Tianle Pan
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingkun Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Song
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640. China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, Guangdong 510640, China
- Guangdong-Hong Kong-Macao, Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou, Guangdong 510640. China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Chinese Academy of Science, Guangzhou, Guangdong 510640. China
| | - Huina Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Deng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Zhu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaomin Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, Guangdong 511443, China
| | - Caihong Wu
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, Guangdong 511443, China
| | - Chenshuo Ye
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, Guangdong 511443, China
| | - Zelong Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, Guangdong 511443, China
| | - Bin Yuan
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, Guangdong 511443, China
| | - Shan Huang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, Guangdong 511443, China
| | - Min Shao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, Guangdong 511443, China
| | - Zhe Peng
- Cooperative Institute for Research in the Environmental Sciences (CIRES), University of Colorado at Boulder, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Douglas A Day
- Cooperative Institute for Research in the Environmental Sciences (CIRES), University of Colorado at Boulder, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Pedro Campuzano-Jost
- Cooperative Institute for Research in the Environmental Sciences (CIRES), University of Colorado at Boulder, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Andrew T Lambe
- Aerodyne Research Inc., Billerica, Massachusetts 01821, United States
| | - Douglas R Worsnop
- Aerodyne Research Inc., Billerica, Massachusetts 01821, United States
| | - Jose L Jimenez
- Cooperative Institute for Research in the Environmental Sciences (CIRES), University of Colorado at Boulder, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640. China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, Guangdong 510640, China
- Guangdong-Hong Kong-Macao, Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou, Guangdong 510640. China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Chinese Academy of Science, Guangzhou, Guangdong 510640. China
| |
Collapse
|
143
|
Yin K, Mai S, Zhao J. Atmospheric Sulfuric Acid Dimer Formation in a Polluted Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6848. [PMID: 35682431 PMCID: PMC9180914 DOI: 10.3390/ijerph19116848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 11/17/2022]
Abstract
New particle formation (NPF) contributes significantly to atmospheric particle number concentrations and cloud condensation nuclei (CCN). In sulfur-rich environments, field measurements have shown that sulfuric acid dimer formation is likely the critical step in NPF. We investigated the dimer formation process based upon the measured sulfuric acid monomer and dimer concentrations, along with previously reported amine concentrations in a sulfur-rich atmosphere (Atlanta, USA). The average sulfuric acid concentration was in the range of 1.7 × 107-1.4 × 108 cm-3 and the corresponding neutral dimer concentrations were 4.1 × 105-5.0 × 106 cm-3 and 2.6 × 105-2.7 × 106 cm-3 after sub-collision and collision ion-induced clustering (IIC) corrections, respectively. Two previously proposed acid-base mechanisms (namely AA and AB) were employed to respectively estimate the evaporation rates of the dimers and the acid-amine complexes. The results show evaporation rates of 0.1-1.3 s-1 for the dimers based on the simultaneously measured average concentrations of the total amines, much higher than those (1.2-13.1 s-1) for the acid-amine complexes. This indicates that the mechanism for dimer formation is likely AA through the formation of more volatile dimers in the initial step of the cluster formation.
Collapse
Affiliation(s)
- Ke Yin
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai 519082, China; (K.Y.); (S.M.)
| | - Shixin Mai
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai 519082, China; (K.Y.); (S.M.)
| | - Jun Zhao
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai 519082, China; (K.Y.); (S.M.)
- Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Zhuhai 519082, China
- Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China
| |
Collapse
|
144
|
Berndt T, Chen J, Kjærgaard ER, Møller KH, Tilgner A, Hoffmann EH, Herrmann H, Crounse JD, Wennberg PO, Kjaergaard HG. Hydrotrioxide (ROOOH) formation in the atmosphere. Science 2022; 376:979-982. [PMID: 35617402 DOI: 10.1126/science.abn6012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Organic hydrotrioxides (ROOOH) are known to be strong oxidants used in organic synthesis. Previously, it has been speculated that they are formed in the atmosphere through the gas-phase reaction of organic peroxy radicals (RO2) with hydroxyl radicals (OH). Here, we report direct observation of ROOOH formation from several atmospherically relevant RO2 radicals. Kinetic analysis confirmed rapid RO2 + OH reactions forming ROOOH, with rate coefficients close to the collision limit. For the OH-initiated degradation of isoprene, global modeling predicts molar hydrotrioxide formation yields of up to 1%, which represents an annual ROOOH formation of about 10 million metric tons. The atmospheric lifetime of ROOOH is estimated to be minutes to hours. Hydrotrioxides represent a previously omitted substance class in the atmosphere, the impact of which needs to be examined.
Collapse
Affiliation(s)
- Torsten Berndt
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318 Leipzig, Germany
| | - Jing Chen
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Eva R Kjærgaard
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Kristian H Møller
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Andreas Tilgner
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318 Leipzig, Germany
| | - Erik H Hoffmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318 Leipzig, Germany
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318 Leipzig, Germany
| | - John D Crounse
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paul O Wennberg
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.,Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
145
|
Chen L, Huang Y, Xue Y, Jia Z, Wang W. Kinetic and Mechanistic Investigations of OH-Initiated Atmospheric Degradation of Methyl Butyl Ketone. J Phys Chem A 2022; 126:2976-2988. [PMID: 35536543 DOI: 10.1021/acs.jpca.2c01126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methyl butyl ketone (MBK, 2-hexanone) is a common atmospheric oxygenated volatile organic compound (OVOC) owing to broad industrial applications, but its atmospheric oxidation mechanism remains poorly understood. Herein, the detailed mechanisms and kinetic properties of MBK oxidation initiated by OH radicals and subsequent transformation of the resulting intermediates are performed by employing quantum chemical and kinetic modeling methods. The calculations show that H-abstraction at the C4 position of MBK is more favorable than those at the other positions, with the total rate coefficient of k(T) = 4.13 × 10-14 exp(1576/T) cm3 molecule-1 s-1 at 273-400 K. The dominant pathway of unimolecular degradation of the C-centered alkyl radical is 1,2-acyl group migration. For the isomerization of the peroxy radical RO2, 1,5- and 1,6-H shifts are more favorable than 1,3- and 1,4-H shifts. The multiconformer rate coefficient kMC-TST of the first H-shift of the RO2 radical is estimated to be 1.40 × 10-3 s-1 at room temperature. Compared to the H-shifts of analogous aliphatic RO2 radicals, it can be concluded that the carbonyl group enhances the H-shift rates by as much as 2-4 orders of magnitude. The rate coefficients of the RO2 radical reaction with the HO2 radical exhibit a weakly negative temperature dependence, and the pseudo-first-order rate constant k'HO2 = kHO2[HO2] is calculated to be 3.32-22.10 × 10-3 s-1 at ambient temperature. The bimolecular reaction of the RO2 radical with NO leads to the formation of 3-oxo-butanal as the main product with the formation concentration of 2.2-7.4 μg/m3 in urban areas. The predicted pseudo-first-order rate constant k'NO = kNO[NO] is 2.20-9.98 s-1 at room temperature. By comparing the kMC-TST, k'HO2, and k'NO, it can be concluded that reaction with NO is the dominant removal pathway for the RO2 radical formed from the OH-initiated oxidation of MBK. These findings are expected to deepen our understanding of the photochemical oxidation of ketones under realistic atmospheric conditions.
Collapse
Affiliation(s)
- Long Chen
- State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, China.,CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Yu Huang
- State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, China.,CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Yonggang Xue
- State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, China.,CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Zhihui Jia
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Wenliang Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| |
Collapse
|
146
|
Endo Y, Sakamoto Y, Kajii Y, Enami S. Decomposition of multifunctionalized α-alkoxyalkyl-hydroperoxides derived from the reactions of Criegee intermediates with diols in liquid phases. Phys Chem Chem Phys 2022; 24:11562-11572. [PMID: 35506905 DOI: 10.1039/d2cp00915c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxidation of volatile organic compounds in the atmosphere produces organic hydroperoxides (ROOHs) that typically possess not only -OOH but also other functionalities such as -OH and -C(O). Because of their high hydrophilicity and low volatility, such multifunctionalized ROOHs are expected to be taken up in atmospheric condensed phases such as aerosols and fog/cloud droplets. However, the characteristics of ROOHs that control their fates and lifetimes in liquid phases are poorly understood. Here, we report a study of the liquid-phase decomposition kinetics of multifunctionalized α-alkoxyalkyl-hydroperoxides (α-AHs) that possessed an ether, a carbonyl, a hydroperoxide, and two hydroxy groups. These ROOHs were synthesized by ozonolysis of α-terpineol in water in the presence of 1,3-propanediol, 1,4-butanediol, or 1,5-pentanediol. Their decomposition products were detected as chloride anion adducts by electrospray mass spectrometry as a function of reaction time. Experiments using H218O and D2O revealed that hemiacetal species were α-AH decomposition products that further transformed into other products. The result that the rate coefficients (k) of the decomposition of C15 α-AHs increased exponentially from pH 5.0 to 3.9 was consistent with an H+-catalyzed decomposition mechanism. The temperature dependence of k and an Arrhenius plot yielded activation energies (Ea) of 15.7 ± 0.8, 15.0 ± 2.4, and 15.9 ± 0.3 kcal mol-1 for the decomposition of α-AHs derived from the reaction of α-terpineol CIs with 1,3-propanediol, 1,4-butanediol, and 1,5-pentanediol, respectively. The determined Ea values were compared with those of related ROOHs. We found that alkyl chain length is not a critical factor for the decomposition mechanism, whereas the presence of additional -OH groups would modulate the reaction barriers to decomposition via the formation of hydrogen-bonding with surrounding water molecules. The derived Ea values for the decomposition of the multifunctionalized, terpenoid-derived α-AHs will facilitate atmospheric modeling by serving as representative values for ROOHs in atmospheric condensed phases.
Collapse
Affiliation(s)
- Yasuyuki Endo
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Yosuke Sakamoto
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan.,Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8316, Japan.,National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan.
| | - Yoshizumi Kajii
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan.,Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8316, Japan.,National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan.
| | - Shinichi Enami
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan.
| |
Collapse
|
147
|
He Y, Lambe AT, Seinfeld JH, Cappa CD, Pierce JR, Jathar SH. Process-Level Modeling Can Simultaneously Explain Secondary Organic Aerosol Evolution in Chambers and Flow Reactors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6262-6273. [PMID: 35504037 DOI: 10.1021/acs.est.1c08520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Secondary organic aerosol (SOA) data gathered in environmental chambers (ECs) have been used extensively to develop parameters to represent SOA formation and evolution. The EC-based parameters are usually constrained to less than one day of photochemical aging but extrapolated to predict SOA aging over much longer timescales in atmospheric models. Recently, SOA has been increasingly studied in oxidation flow reactors (OFRs) over aging timescales of one to multiple days. However, these OFR data have been rarely used to validate or update the EC-based parameters. The simultaneous use of EC and OFR data is challenging because the processes relevant to SOA formation and evolution proceed over very different timescales, and both reactor types exhibit distinct experimental artifacts. In this work, we show that a kinetic SOA chemistry and microphysics model that accounts for various processes, including wall losses, aerosol phase state, heterogeneous oxidation, oligomerization, and new particle formation, can simultaneously explain SOA evolution in EC and OFR experiments, using a single consistent set of SOA parameters. With α-pinene as an example, we first developed parameters by fitting the model output to the measured SOA mass concentration and oxygen-to-carbon (O:C) ratio from an EC experiment (<1 day of aging). We then used these parameters to simulate SOA formation in OFR experiments and found that the model overestimated SOA formation (by a factor of 3-16) over photochemical ages ranging from 0.4 to 13 days, when excluding the abovementioned processes. By comprehensively accounting for these processes, the model was able to explain the observed evolution in SOA mass, composition (i.e., O:C), and size distribution in the OFR experiments. This work suggests that EC and OFR SOA data can be modeled consistently, and a synergistic use of EC and OFR data can aid in developing more refined SOA parameters for use in atmospheric models.
Collapse
Affiliation(s)
- Yicong He
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Andrew T Lambe
- Aerodyne Research Inc., Billerica, Massachusetts 01821, United States
| | - John H Seinfeld
- Divison of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Christopher D Cappa
- Department of Civil and Environmental Engineering, University of California Davis, Davis, California 95616, United States
| | - Jeffrey R Pierce
- Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado 80521, United States
| | - Shantanu H Jathar
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
148
|
Daub CD, Zakai I, Valiev R, Salo VT, Gerber RB, Kurtén T. Energy transfer, pre-reactive complex formation and recombination reactions during the collision of peroxy radicals. Phys Chem Chem Phys 2022; 24:10033-10043. [PMID: 35415732 DOI: 10.1039/d1cp04720e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this paper we study collisions between polyatomic radicals - an important process in fields ranging from biology to combustion. Energy transfer, formation of intermediate complexes and recombination reactions are treated, with applications to peroxy radicals in atmospheric chemistry. Multi-reference perturbation theory, supplemented by coupled-cluster calculations, describes the potential energy surfaces with high accuracy, including the interaction of singlet and triplet spin states during radical recombination. Our multi-reference molecular dynamics (MD) trajectories on methyl peroxy radicals confirm the reaction mechanism postulated in earlier studies. Specifically, they show that if suitable pre-reactive complexes are formed, they will rapidly lead to the formation and subsequent decomposition of tetroxide intermediates. However, generating multi-reference MD trajectories is exceedingly computationally demanding, and we cannot adequately sample the whole conformational space. To answer this challenge, we promote the use of a novel simplified semi-empirical MD methodology. It assumes the collision is governed by two states, a singlet (S0) and a triplet (T1) state. The method predicts differences between collisions on S0 and T1 surfaces, and qualitatively includes not only pre-reactive complex formation, but also recombination processes such as tetroxide formation. Finally, classical MD simulations using force-fields for non-reactive collisions are employed to generate thousands of collision trajectories, to verify that the semi-empirical method is sampling collisions adequately, and to carry out preliminary investigations of larger systems. For systems with low activation energies, the experimental rate coefficient is surprisingly well reproduced by simply multiplying the gas-kinetic collision rate by the simulated probability for long-lived complex formation.
Collapse
Affiliation(s)
| | - Itai Zakai
- Department of Chemistry, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Rashid Valiev
- Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki 00014, Finland.
| | - Vili-Taneli Salo
- Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki 00014, Finland.
| | - R Benny Gerber
- Department of Chemistry, Hebrew University of Jerusalem, Jerusalem, Israel. .,Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Theo Kurtén
- Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki 00014, Finland.
| |
Collapse
|
149
|
Humes M, Wang M, Kim S, Machesky JE, Gentner DR, Robinson AL, Donahue NM, Presto AA. Limited Secondary Organic Aerosol Production from Acyclic Oxygenated Volatile Chemical Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4806-4815. [PMID: 35394777 PMCID: PMC9022650 DOI: 10.1021/acs.est.1c07354] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Volatile chemical products (VCPs) have recently been identified as potentially important unconventional sources of secondary organic aerosol (SOA), in part due to the mitigation of conventional emissions such as vehicle exhaust. Here, we report measurements of SOA production in an oxidation flow reactor from a series of common VCPs containing oxygenated functional groups and at least one oxygen within the molecular backbone. These include two oxygenated aromatic species (phenoxyethanol and 1-phenoxy-2-propanol), two esters (butyl butyrate and butyl acetate), and four glycol ethers (carbitol, methyl carbitol, butyl carbitol, and hexyl carbitol). We measured gas- and particle-phase products with a suite of mass spectrometers and particle-sizing instruments. Only the aromatic VCPs produce SOA with substantial yields. For the acyclic VCPs, ether and ester functionality promotes fragmentation and hinders autoxidation, whereas aromatic rings drive SOA formation in spite of the presence of ether groups. Therefore, our results suggest that a potential strategy to reduce urban SOA from VCPs would be to reformulate consumer products to include less oxygenated aromatic compounds.
Collapse
Affiliation(s)
- Mackenzie
B. Humes
- Department
of Chemical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Mingyi Wang
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Sunhye Kim
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Jo E. Machesky
- Department
of Chemical & Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Drew R. Gentner
- Department
of Chemical & Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Allen L. Robinson
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Neil M. Donahue
- Department
of Chemical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Albert A. Presto
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
150
|
Wang K, Wang W, Fan C, Li J, Lei T, Zhang W, Shi B, Chen Y, Liu M, Lian C, Wang Z, Ge M. Reactions of C 12-C 14 n-Alkylcyclohexanes with Cl Atoms: Kinetics and Secondary Organic Aerosol Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4859-4870. [PMID: 35319183 DOI: 10.1021/acs.est.1c08958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Long-chain alkanes are a type of intermediate volatility organic compound (IVOC) in the atmosphere and a potential source of secondary organic aerosols (SOAs). C12-C14 n-alkylcyclohexanes are important compositions of IVOCs, with considerable concentrations and emission rates. The reaction rate constants and SOA formation of the reactions of C12-C14 n-alkylcyclohexanes with Cl atoms were investigated in the present study. The reaction rate constants of the long-chain alkanes obtained via the relative-rate method at 298 ± 0.2 K (in units of ×10-10 cm3 molecule-1 s-1) were as follows: khexylcyclohexane = 5.11 ± 0.28, kheptylcyclohexane = 5.56 ± 0.30, and koctylcyclohexane = 5.74 ± 0.31. The gas-phase products of the reactions were identified as mainly small molecules of aldehydes, ketones, and acids. The particle-phase products were mostly monomers and oligomers, but there were still trimers even under high-NOx conditions. Moreover, under high-NOx conditions (urban atmosphere), the SOA yields of hexylcyclohexane are higher than that under low-NOx conditions (remote atmosphere), indicating that more attention should be given to the SOA formation of Cl-initiated n-alkylcyclohexane oxidations in polluted regions. This research can further clarify the oxidation processes and SOA formation of n-alkylcyclohexanes in the atmosphere.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Cici Fan
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Junling Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| | - Ting Lei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wenyu Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bo Shi
- Hebei Normal University, Shijiazhuang 050010, P. R. China
| | - Yan Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mingyuan Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chaofan Lian
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhe Wang
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR 999077, P. R. China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|