101
|
Activation of Peracetic Acid with CuFe2O4 for Rhodamine B Degradation: Activation by Cu and the Contribution of Acetylperoxyl Radicals. Molecules 2022; 27:molecules27196385. [PMID: 36234920 PMCID: PMC9571141 DOI: 10.3390/molecules27196385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 12/01/2022] Open
Abstract
Advanced oxidation processes (AOPs) demonstrate great micropollutant degradation efficiency. In this study, CuFe2O4 was successfully used to activate peracetic acid (PAA) to remove Rhodamine B. Acetyl(per)oxyl radicals were the dominant species in this novel system. The addition of 2,4-hexadiene (2,4-HD) and Methanol (MeOH) significantly inhibited the degradation efficiency of Rhodamine B. The ≡Cu2+/≡Cu+ redox cycle dominated PAA activation, thereby producing organic radicals (R-O˙) including CH3C(O)O˙ and CH3C(O)OO˙, which accounted for the degradation of Rhodamine B. Increasing either the concentration of CuFe2O4 (0–100 mg/L) or PAA (10–100 mg/L) promoted the removal efficiency of this potent system. In addition, weakly acid to weakly alkali pH conditions (6–8) were suitable for pollutant removal. The addition of Humid acid (HA), HCO3−, and a small amount of Cl− (10–100 mmol·L−1) slightly inhibited the degradation of Rhodamine B. However, degradation was accelerated by the inclusion of high concentrations (200 mmol·L−1) of Cl−. After four iterations of catalyst recycling, the degradation efficiency remained stable and no additional functional group characteristic peaks were observed. Taking into consideration the reaction conditions, interfering substances, system stability, and pollutant-removal efficiency, the CuFe2O4/PAA system demonstrated great potential for the degradation of Rhodamine B.
Collapse
|
102
|
Peroxyacetic Acid Pretreatment: A Potentially Promising Strategy towards Lignocellulose Biorefinery. Molecules 2022; 27:molecules27196359. [PMID: 36234896 PMCID: PMC9573572 DOI: 10.3390/molecules27196359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
The stubborn and complex structure of lignocellulose hinders the valorization of each component of cellulose, hemicellulose, and lignin in the biorefinery industries. Therefore, efficient pretreatment is an essential and prerequisite step for lignocellulose biorefinery. Recently, a considerable number of studies have focused on peroxyacetic acid (PAA) pretreatment in lignocellulose fractionation and some breakthroughs have been achieved in recent decades. In this article, we aim to highlight the challenges of PAA pretreatment and propose a roadmap towards lignocellulose fractionation by PAA for future research. As a novel promising pretreatment method towards lignocellulosic fractionation, PAA is a strong oxidizing agent that can selectively remove lignin and hemicellulose from lignocellulose, retaining intact cellulose for downstream upgrading. PAA in lignocellulose pretreatment can be divided into commercial PAA, chemical activation PAA, and enzymatic in-situ generation of PAA. Each PAA for lignocellulose fractionation shows its own advantages and disadvantages. To meet the theme of green chemistry, enzymatic in-situ generation of PAA has aroused a great deal of enthusiasm in lignocellulose fractionation. Furthermore, mass balance and techno-economic analyses are discussed in order to evaluate the feasibility of PAA pretreatment in lignocellulose fractionation. Ultimately, some perspectives and opportunities are proposed to address the existing limitations in PAA pretreatment towards biomass biorefinery valorization. In summary, from the views of green chemistry, enzymatic in-situ generation of PAA will become a cutting-edge topic research in the lignocellulose fractionation in future.
Collapse
|
103
|
Bell J, Wen Y, Ma X, McDonald TJ, Huang CH, Sharma VK. Interaction of peracetic acid with chromium(III): Understanding degradation of coexisting organic pollutants in water. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129537. [PMID: 35999741 DOI: 10.1016/j.jhazmat.2022.129537] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/22/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Peracetic acid (PAA, CH3C(O)OOH) has gained significant attention for its use in wastewater disinfection. Wastewater usually contains both metal ions and organic pollutants and understanding reactions after adding PAA to such contaminated water is needed. This paper presents results regarding the effect of interactions between chromium(III) (Cr(III)) and PAA on the degradation of selected pharmaceuticals, mainly trimethoprim (TMP). The degradation of pharmaceuticals by PAA, PAA-Cr(III), and H2O2-Cr(III) under different conditions was examined (pH = 6.0-10.0 and molar ratios of PAA to Cr(III)). The degradation rate of TMP by PAA-Cr(III) was greater than by PAA and H2O2-Cr(III) under alkaline conditions. Degradation studies using quenching agents and probing molecules, and spectroscopic measurements (UV-visible and electron paramagnetic resonance) suggest •OH as the major radical species and Cr(IV)/Cr(V) as additional reactive species. The oxidized products of TMP by PAA-Cr(III) were identified and possible pathways proposed. Degradation of other pharmaceuticals having different molecular structures by PAA-Cr(III) and H2O2-Cr(III) systems were also investigated. Most of the pharmaceuticals degraded at faster rates by PAA-Cr(III) and H2O2-Cr(III) than by PAA alone, suggesting that co-present metal ions may play a significant role in PAA oxidation in water treatment.
Collapse
Affiliation(s)
- Joshua Bell
- Department of Water Management and Hydrological Science, Texas A&M University, College Station, TX 77843, USA; Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 212 Adriance Lab Rd., 1266 TAMU, College Station, TX 77843, USA
| | - Yinghao Wen
- Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Xingmao Ma
- Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Thomas J McDonald
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 212 Adriance Lab Rd., 1266 TAMU, College Station, TX 77843, USA
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 212 Adriance Lab Rd., 1266 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
104
|
Wu L, Li Z, Cheng P, She Y, Wang W, Tian Y, Ma J, Sun Z. Efficient activation of peracetic acid by mixed sludge derived biochar: Critical role of persistent free radicals. WATER RESEARCH 2022; 223:119013. [PMID: 36041369 DOI: 10.1016/j.watres.2022.119013] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Peracetic acid (PAA)-based advanced oxidation processes (AOPs) were increasingly identified as the alternative scheme in wastewater treatment. Cost-effective and easily available catalyst for activation of PAA was in urgent demand for promoting engineering application process. In this study, a new type of biochar catalyst derived from pyrolysis of mixture of primary sludge (PSD) and secondary sludge (SSD) was prepared and showed effective PAA activation ability. The degradation of p-chlorophenol (4-CP) improved with PAA activation by mixed sludge derived biochar (PS-SDBC) than secondary sludge derived biochar (S-SDBC) and primary sludge derived biochar (P-SDBC), and the highest removal efficiency achieved by PS-SDBC with the PSD/SSD ratio of 5/5 (kobs=0.057 1/(M·min), pH 9). Correlation analysis firstly indicated that persistent free radicals (PFRs) rather than chemical composition and material structure dominated PAA activation and organic radicals (RO•) was proved to be the major reactive species through electron paramagnetic resonance (EPR) detection. The mixture of PSD and SSD caused the synergy of inorganic metals and organic matters through pyrolysis processes, resulting in larger specific surface area (SSA) (110.71 m2/g), more abundant electron-donating groups (e.g., C = O, -OH) and massive defects (ID/IG = 1.519) of PS-SDBC than P-SDBC and S-SDBC, which eventually promoted PFRs formation. A fascinating phenomenon was observed in PS-SDBC/PAA system that the active sites of PFRs could be regenerated by RO• attacking onto PS-SDBC, which contributed to the wide pH applicability and continuous stability of PS-SDBC/PAA system in practical wastewater treatment. This study not only significantly deepened the understanding of the reaction mechanism between PAA and biochar, but also provided a potential PAA-based AOPs for micropollutants removal in wastewater.
Collapse
Affiliation(s)
- Liying Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhuoyu Li
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Pingtong Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuecheng She
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiqiang Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
105
|
Luukkonen T, von Gunten U. Oxidation of organic micropollutant surrogate functional groups with peracetic acid activated by aqueous Co(II), Cu(II), or Ag(I) and geopolymer-supported Co(II). WATER RESEARCH 2022; 223:118984. [PMID: 36027766 DOI: 10.1016/j.watres.2022.118984] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/25/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Peracetic acid (PAA) in combination with transition metals has recently gained increasing attention for organic micropollutant abatement. In this study, aqueous Co(II), Cu(II), and Ag(I) were compared for their capacity to activate PAA. Co(II) outperformed Cu(II) or Ag(I) and the optimum conditions were 0.05 mM of Co(II), 0.4 mM of PAA, and pH 3. However, due to a wider applicability in water treatment, pH 7 (i.e., bicarbonate buffer) was selected for detailed investigations. The abatement of different micropollutant surrogates could be described with a second-order rate equation (observed second-order rate constants, kobs were in the range of 42-132 M-1 s-1). For the para-substituted phenols, there was a correlation between the observed second-order rate constants of the corresponding phenolates and the Hammett constants (R2 = 0.949). In all oxidation experiments, the reaction rate decreased significantly after 1-2 min, which coincided with the depletion of PAA but also with the deactivation of the Co(II) catalyst by oxidation to Co(III) and subsequent precipitation. It was demonstrated that Co(II) immobilized on a geopolymer-foam performed approximately similarly as aqueous Co(II) but without deactivation due to Co(III) precipitation. This provides a potential option for the further development of heterogeneous catalytic Co(II)/PAA advanced oxidation processes utilizing geopolymers as a catalyst support material.
Collapse
Affiliation(s)
- Tero Luukkonen
- University of Oulu, Fibre and Particle Engineering Research Unit, P.O. Box 8000, FI-90014, Finland; Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf CH-8600, Switzerland.
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf CH-8600, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Lausanne (EPFL), Lausanne 1015, Switzerland.
| |
Collapse
|
106
|
Wang J, Kim J, Ashley DC, Sharma VK, Huang CH. Peracetic Acid Enhances Micropollutant Degradation by Ferrate(VI) through Promotion of Electron Transfer Efficiency. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11683-11693. [PMID: 35880779 DOI: 10.1021/acs.est.2c02381] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ferrate(VI) and peracetic acid (PAA) are two oxidants of growing importance in water treatment. Recently, our group found that simultaneous application of ferrate(VI) and PAA led to much faster degradation of micropollutants compared to that by a single oxidant, and this paper systematically evaluated the underlying mechanisms. First, we used benzoic acid and methyl phenyl sulfoxide as probe compounds and concluded that Fe(IV)/Fe(V) was the main reactive species, while organic radicals [CH3C(O)O•/CH3C(O)OO•] had negligible contribution. Second, we removed the coexistent hydrogen peroxide (H2O2) in PAA stock solution with free chlorine and, to our surprise, found the second-order reaction rate constant between ferrate(VI) and PAA to be only about 1.44 ± 0.12 M-1s-1 while that of H2O2 was as high as (2.01 ± 0.12) × 101 M-1s-1 at pH 9.0. Finally, further experiments on ferrate(VI)-bisulfite and ferrate(VI)-2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic)acid systems confirmed that PAA was not an activator for ferrate(VI). Rather, PAA could enhance the oxidation capacity of Fe(IV)/Fe(V), making their oxidation outcompete self-decay. This study, for the first time, reveals the ability of PAA to promote electron transfer efficiency between high-valent metals and organic contaminants and confirms the benefits of co-application of ferrate(VI) and PAA for alkaline wastewater treatment.
Collapse
Affiliation(s)
- Junyue Wang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Juhee Kim
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Daniel C Ashley
- Department of Chemistry and Biochemistry, Spelman College, Atlanta, Georgia 30314, United States
| | - Virender K Sharma
- Department of Environment and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843, United States
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
107
|
Kong D, Zhao Y, Fan X, Wang X, Li J, Wang X, Nan J, Ma J. Reduced Graphene Oxide Triggers Peracetic Acid Activation for Robust Removal of Micropollutants: The Role of Electron Transfer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11707-11717. [PMID: 35930744 DOI: 10.1021/acs.est.2c02636] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Peracetic acid (PAA) serves as a potent and low-toxic oxidant for contaminant removal. Radical-mediated catalytic PAA oxidation processes are typically non-selective, rendering weakened oxidation efficacy under complex water matrices. Herein, we explored the usage of reduced graphene oxide (rGO) for PAA activation via a non-radical pathway. Outperforming the most catalytic PAA oxidation systems, the rGO-PAA system exhibits near-complete removal of typical micropollutants (MPs) within a short time (<2 min). Non-radical direct electron transfer (DET) from MPs to PAA plays a decisive role in the MP degradation, where accelerated DET is achieved by a higher potential of the rGO-PAA reactive surface complexes. Benefitting from DET, the rGO-PAA system shows robust removal of multiple MPs under complex water matrices and with low toxicity. Notably, in the DET regime, the electrostatic attraction of rGO to both PAA and target MP is a critical prerequisite for achieving efficient oxidation, depending on the conditions of solution pH and MP pKa. A heatmap model building on such an electrostatic interaction is further established as guidance for regulating the performance of the DET-mediated PAA oxidation systems. Overall, our work unveils the imperative role of DET for rGO-activated PAA oxidation, expanding the knowledge of PAA-based water treatment strategies.
Collapse
Affiliation(s)
- Dezhen Kong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinru Fan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xianshi Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jiaxuan Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaoxiong Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
108
|
Xing D, Shao S, Yang Y, Zhou Z, Jing G, Zhao X. Mechanistic insights into the efficient activation of peracetic acid by pyrite for the tetracycline abatement. WATER RESEARCH 2022; 222:118930. [PMID: 35944409 DOI: 10.1016/j.watres.2022.118930] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Recently, iron-based heterogenous catalysts have received much attention in the activation of peracetic acid (PAA) for generating reactive radicals to degrade organic pollutants, yet the PAA activation efficiency is compromised by the slow transformation from Fe(III) to Fe(II). Herein, considering the electron-donating ability of reducing sulfur species, a novel advanced oxidation process by combining pyrite and PAA (simplified as pyrite/PAA) for the abatement of tetracycline (TC) is proposed in this study. In the pyrite/PAA process, TC can be completely removed within 30 min under neutral conditions by the synergy of homogeneous and heterogenous Fe(II) species. CH3C(O)OO• is the main radical generated from the pyrite/PAA process responsible for TC abatement. The excellent activation properties of pyrite can be attributed to the superior electron-donating ability of reducing sulfur species to facilitate the reduction of Fe(III). Meanwhile, the complexation of leached Fe2+ with TC favors PAA activation and concomitant TC abatement. In addition, the degradation pathways of TC and the toxicity of the degradation intermediates are analyzed. The pyrite/PAA process shows an excellent TC abatement efficacy in the pH range of 4.0∼10.0. The coexistence of Cl-, HCO3-, and HPO42- exhibits negligible effect on TC abatement, while the HA slightly inhibits the abatement rate of TC. This study highlights the efficient activation of PAA by pyrite and the important role of sulfur in promoting the conversion of Fe(III) to Fe(II) in the pyrite/PAA process.
Collapse
Affiliation(s)
- Danying Xing
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Shujing Shao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Yuyan Yang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Zuoming Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Guohua Jing
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Xiaodan Zhao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
109
|
Hou K, Pi Z, Chen F, He L, Yao F, Chen S, Li X, Dong H, Yang Q. Sulfide enhances the Fe(II)/Fe(III) cycle in Fe(III)-peroxymonosulfate system for rapid removal of organic contaminants: Treatment efficiency, kinetics and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128970. [PMID: 35462188 DOI: 10.1016/j.jhazmat.2022.128970] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/30/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
The activation of peroxymonosulfate (PMS) by Fe(II) or Fe(III) for environmental decontamination is severely limited by the low conversion rate from Fe(III) to Fe(II). Here, we found that this puzzling problem could virtually be solved by introducing trace amounts of S2-. With the addition of 0.2 mM S2-, the bisphenol A (BPA) degradation efficiency and total organic carbon (TOC) removal in PMS/Fe(III) system were improved by 3.8 and 6.0 times, respectively. Meanwhile, the kobs and PMS utilization efficiency also markedly increased by 650% and 160%, respectively. The constructed PMS/Fe(III)/S2- system exhibited a good applicability to a wide pH range (3.2 ~ 9.5) and high resistance to humic acid, Cl- and NO3-. The main reactive oxidant species in PMS/Fe(III)/S2- system were identified by scavenging experiments, electron paramagnetic resonance measurement, chemical probe approach, and 18O isotope-labeling technique. The identification results revealed that FeIVO2+ was the primary reactive oxidant species, while •OH, SO4•-, O2•- and 1O2 were also involved in the degradation of BPA. Finally, the generalizability of PMS/Fe(III)/S2- system was evaluated by varying the target pollutants, oxidants, and reducing S species. The construction of PMS/Fe(III)/S2- system provides some insights into the treatment of organic wastewaters containing S2-, e.g., from refineries and tanneries.
Collapse
Affiliation(s)
- Kunjie Hou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Zhoujie Pi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Fei Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| | - Li He
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Fubing Yao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Shengjie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| |
Collapse
|
110
|
Li Y, Dong H, Xiao J, Li L, Chu D, Hou X, Xiang S, Dong Q. Insights into a novel CuS/percarbonate/tetraacetylethylenediamine process for sulfamethazine degradation in alkaline medium. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128999. [PMID: 35486998 DOI: 10.1016/j.jhazmat.2022.128999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/04/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
This work presents a novel CuS/percarbonate/tetraacetylethylenediamine (CuS/SPC/TAED) process for the degradation of sulfamethazine (SMT). Results indicated that the CuS/SPC/TAED process enabled the efficient generation of peracetic acid (PAA), which can be efficiently activated by CuS in alkaline reaction media, and 93.6% of SMT was degraded in 30 min. Mechanism study revealed that the available reactive oxygen species (ROS) including hydroxyl radical (•OH), carbonate radical (CO3•-), superoxide radical (O2•-), singlet oxygen (1O2), and organic radicals (R-O•). Among them, R-O• (acetyloxyl radical (CH3CO2•) and acetylperoxyl radical (CH3CO3•)) were confirmed to be the primary species that contributed to SMT degradation. Simultaneously, the role of sulfur species and carbonate ions were explored. It was found that the reductive O2•- and sulfur species rendered the efficient redox of Cu species. Besides, the effects of key influencing factors including SPC/TAED mole ratio, CuS dosage, initial pH, temperature, and nontarget matrix constituents on SMT degradation were examined. Finally, the degradation intermediates of SMT was identified, and the toxicity of these products was estimated by quantitative structure-activity relationship (QSAR) analysis. Overall, this work offers a new and simple strategy for antibiotic-polluted water remediation.
Collapse
Affiliation(s)
- Yangju Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Junyang Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Long Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Dongdong Chu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xiuzhen Hou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shuxue Xiang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Qixia Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
111
|
Chen L, Duan J, Du P, Sun W, Lai B, Liu W. Accurate identification of radicals by in-situ electron paramagnetic resonance in ultraviolet-based homogenous advanced oxidation processes. WATER RESEARCH 2022; 221:118747. [PMID: 35728498 DOI: 10.1016/j.watres.2022.118747] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/28/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Accurate identification of radicals in advanced oxidation processes (AOPs) is important to study the mechanisms on radical production and subsequent oxidation-reduction reaction. The commonly applied radical quenching experiments cannot provide direct evidences on generation and evolution of radicals in AOPs, while electron paramagnetic resonance (EPR) is a cutting-edge technology to identify radicals based on spectral characteristics. However, the complexity of EPR spectrum brings uncertainty and inconsistency to radical identification and mechanism clarification. This work presented a comprehensive study on identification of radicals by in-situ EPR analysis in four typical UV-based homogenous AOPs, including UV/H2O2, UV/peroxodisulfate (and peroxymonosulfate), UV/peracetic acid and UV/IO4- systems. Radical formation mechanism was also clarified based on EPR results. A reliable EPR method using organic solvents was proposed to identify alkoxy and alkyl radicals (CH3C(=O)OO·, CH3C(=O)O· and ·CH3) in UV/PAA system. Two activation pathways for radical production were proposed in UV/IO4- system, in which the produced IO3·, IO4·, ·OH and hydrated electron were precisely detected. It is interesting that addition of specific organic solvents can effectively identify oxygen-center and carbon-center radicals. A key parameter in EPR spectrum for 5,5-dimethyl-1-pyrroline N-oxide (DMPO) spin adduct, AH, is ranked as: ·CH3 (23 G) >·OH (15 G) >IO3· (12.9 G) >O2·- (11 G) ≥·OOH (9-11 G) ≥IO4· (9-10 G) ≥SO4·- (9-10 G) >CH3C(=O)OO· (8.5 G) > CH3C(=O)O· (7.5 G). This study will give a systematic method on identification of radicals in AOPs, and shed light on the insightful understanding of radical production mechanism.
Collapse
Affiliation(s)
- Long Chen
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Jun Duan
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Penghui Du
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Weiliang Sun
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge 70803, LA, USA
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
112
|
Chen F, Liu LL, Wu JH, Rui XH, Chen JJ, Yu Y. Single-Atom Iron Anchored Tubular g-C 3 N 4 Catalysts for Ultrafast Fenton-Like Reaction: Roles of High-Valency Iron-Oxo Species and Organic Radicals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202891. [PMID: 35679161 DOI: 10.1002/adma.202202891] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Single-atom catalysts have emerged as an efficient oxidant activator for eliminating organic pollutants in Fenton-like systems. However, the complex preparation, single active site, lack of understanding of the fundamental mechanism, and harsh pH conditions currently limit their practical applications. In this work, single-atom iron anchored nitrogen-rich g-C3 N4 nanotubes (FeCNs) are designed and synthesized by a facile approach, and eco-friendly peracetic acid (PAA) is selected as the oxidant for Fenton-like reactions. The constructed heterogenous system achieves an enhanced degradation of various organic contaminants over a wide pH range of 3.0-9.0, exhibiting an ultrahigh and stable catalytic activity, outperforming equivalent quantities of pristine g-C3 N4 by 75 times. The 18 O isotope-labeling technique, probe method, and theoretical calculations demonstrate that the efficient catalytic activity relies on the high-valency iron-oxo species coupled with organic radicals generated by PAA. An increase in electron transport from the contaminant to the formed "metastable PAA/FeCN catalyst surface complex" is detected. A double driving mechanism for the tubular g-C3 N4 regulated by a single Fe site and PAA activation is proposed. This work opens an avenue for developing novel catalysts with the coexistence of multiple active units and providing opportunities for significantly improving catalytic efficiency.
Collapse
Affiliation(s)
- Fei Chen
- Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026, China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Lian-Lian Liu
- Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026, China
| | - Jing-Hang Wu
- Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026, China
| | - Xian-Hong Rui
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jie-Jie Chen
- Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026, China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, National Synchrotron Radiation Laboratory, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
113
|
Review of Advanced Oxidation Processes Based on Peracetic Acid for Organic Pollutants. WATER 2022. [DOI: 10.3390/w14152309] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In recent years, the removal of organic pollutants from water and wastewater has attracted more attention to different advanced oxidation processes (AOPs). There has been increasing interest in using peroxyacetic acid (PAA), an emerging oxidant with low or no toxic by-products, yet the promotion and application are limited by unclear activation mechanisms and complex preparation processes. This paper synthesized the related research results reported on the removal of organic pollutants by PAA-based AOPs. Based on the research of others, this paper not only introduced the preparation method and characteristics of PAA but also summarized the mechanism and reactivity of PAA activated by the free radical pathway and discussed the main influencing factors. Furthermore, the principle and application of the newly discovered methods of non-radical activation of PAA in recent years were also reviewed for the first time. Finally, the shortcomings and development of PAA-based AOPs were discussed and prospected. This review provides a reference for the development of activated PAA technology that can be practically applied to the treatment of organic pollutants in water.
Collapse
|
114
|
Zhao Y, Zhao Y, Yu X, Kong D, Fan X, Wang R, Luo S, Lu D, Nan J, Ma J. Peracetic acid integrated catalytic ceramic membrane filtration for enhanced membrane fouling control: Performance evaluation and mechanism analysis. WATER RESEARCH 2022; 220:118710. [PMID: 35687976 DOI: 10.1016/j.watres.2022.118710] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/22/2022] [Accepted: 05/31/2022] [Indexed: 05/09/2023]
Abstract
Endowing ceramic membrane (CM) catalytic reactivity can enhance membrane fouling control in the aid of in situ oxidation process. Peracetic acid (PAA) oxidant holds great prospect to integrate with CM for membrane fouling control, owing to the prominent advantages of high oxidation efficacy and easy activation. Herein, this study, for the first time, presented a PAA/CM catalytic filtration system achieving highly-efficient protein fouling alleviation. A FeOCl functionalized CM (FeOCl-CM) was synthesized, possessing high hydrophilicity, low surface roughness, and highly-efficient activation towards PAA oxidation. Using bovine serum albumin (BSA) as the model protein foulant, the PAA/FeOCl-CM catalytic filtration notably alleviated fouling occurring in both membrane pores and surface, and halved the flux reduction degree as compared with the conventional CM filtration. The PAA/FeOCl-CM catalytic oxidation allows quick and complete disintegration of BSA particles, via the breakage of the amide I and II bands and the ring opening of the aromatic amino acids (e.g., Tryptophan, Tyrosine). In-depth investigation revealed that the in situ generated •OH and 1O2 were the key reactive species towards BSA degradation during catalytic filtration, while the organic radical oxidation and the direct electron transfer pathway from BSA to PAA via FeOCl-CM played minor roles. Overall, our findings highlight a new PAA/CM catalytic filtration strategy for achieving highly-efficient membrane fouling control and provide an understanding of the integrated PAA catalytic oxidation - membrane filtration behaviors.
Collapse
Affiliation(s)
- Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanxin Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xin Yu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dezhen Kong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinru Fan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Runzhi Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shuangjiang Luo
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Dongwei Lu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
115
|
Chen J, Song T, Long S, Zhu KJ, Pavlostathis SG. Effect of peracetic acid solution on a nitrifying culture: Kinetics, inhibition, cellular and transcriptional responses. WATER RESEARCH 2022; 219:118543. [PMID: 35561624 DOI: 10.1016/j.watres.2022.118543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Peracetic acid (PAA) has been widely used as a disinfectant in many industries. However, information related to the potential inhibitory effect of PAA solutions (PAA and H2O2) on biological wastewater treatment processes is very limited. The work reported here assessed the effect of PAA and H2O2 solutions on nitrification kinetics and inhibition, cellular level responses and gene expression of a suspended-growth nitrifying culture. The initial ammonia removal and nitrate production rates significantly decreased at 1/0.14 to 3/0.42 mg/L PAA/H2O2. H2O2 up to 3 mg/L did not impact nitrification, cell viability or related respiratory activities; thus, the impact of the PAA solution is attributed to PAA alone or in some combination with H2O2. Nitrification inhibition by PAA was predominantly related to enzyme inhibition, rather than to loss of cell viability and/or cell lysis. PAA and H2O2 negatively affected Nitrosomonas but resulted in Nitrosospira enrichment. Most nitrogen metabolism-related genes (e.g., hydroxylamine oxidoreductase and nitrite oxidoreductase genes) as well as oxidase genes (e.g., cytochrome c oxidase, catalase-peroxidase, and peroxidase genes) were upregulated in PAA- and H2O2-amended cultures. Major ATPase genes were downregulated while ATP synthase genes upregulated under the effect of PAA and/or H2O2. Upregulation of ATP-dependent protease genes indicates protein damage predominantly caused by PAA rather than H2O2. The transcriptional level of genes related to cell division and DNA repair did not show a particular pattern; thus, cell division functionality and DNA integrity were not significantly affected by PAA or H2O2. The results of this study have significant implications in the design and operation of effective biological nitrogen removal systems for the treatment of PAA-bearing wastewater.
Collapse
Affiliation(s)
- Jinchen Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0512, United States
| | - Tianze Song
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332-0230, United States
| | - Sha Long
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0512, United States; College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Kevin J Zhu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0512, United States
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0512, United States.
| |
Collapse
|
116
|
Evaluation of Fe2+/Peracetic Acid to Degrade Three Typical Refractory Pollutants of Textile Wastewater. Catalysts 2022. [DOI: 10.3390/catal12070684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In this work, the degradation performance of Fe2+/PAA/H2O2 on three typical pollutants (reactive black 5, ANL, and PVA) in textile wastewater was investigated in comparison with Fe2+/H2O2. Therein, Fe2+/PAA/H2O2 had a high removal on RB5 (99%) mainly owing to the contribution of peroxyl radicals and/or Fe(IV). Fe2+/H2O2 showed a relatively high removal on PVA (28%) mainly resulting from ·OH. Fe2+/PAA/H2O2 and Fe2+/H2O2 showed comparative removals on ANL. Additionally, Fe2+/PAA/H2O2 was more sensitive to pH than Fe2+/H2O2. The coexisting anions (20–2000 mg/L) showed inhibition on their removals and followed an order of HCO3− > SO42− > Cl−. Humic acid (5 and 10 mg C/L) posed notable inhibition on their removals following an order of reactive black 5 (RB5) > ANL > PVA. In practical wastewater effluent, PVA removal was dramatically inhibited by 88%. Bioluminescent bacteria test results suggested that the toxicity of Fe2+/PAA/H2O2 treated systems was lower than that of Fe2+/H2O2. RB5 degradation had three possible pathways with the proposed mechanisms of hydroxylation, dehydrogenation, and demethylation. The results may favor the performance evaluation of Fe2+/PAA/H2O2 in the advanced treatment of textile wastewater.
Collapse
|
117
|
Yang SR, He CS, Xie ZH, Li LL, Xiong ZK, Zhang H, Zhou P, Jiang F, Mu Y, Lai B. Efficient activation of PAA by FeS for fast removal of pharmaceuticals: The dual role of sulfur species in regulating the reactive oxidized species. WATER RESEARCH 2022; 217:118402. [PMID: 35417819 DOI: 10.1016/j.watres.2022.118402] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
As peracetic acid (PAA) is being increasingly used as an alternative disinfectant, efficient activation of PAA by low-cost and environmentally friendly catalysts over a wide pH range is potentially useful for simultaneous sterilization and pharmaceutical degradation in wastewater, such as hospital wastewater. In this study, peracetic acid (PAA) was successfully activated by low-cost and environmental-friendly FeS (25 mg/L) for efficient oxidative removal of three pharmaceuticals over a wide pH range (3.0∼9.0) as indicated by 80∼100% removal rate within 5 min. As expected, Fe(II) rather than sulfur species was the primary reactive site for PAA activation, while unlike the homogeneous Fe2+/PAA system with organic radicals (R-O·) and ·OH as the dominant reactive oxidized species (ROS), ·OH is the key reactive species in the FeS/PAA system. Interestingly and surprisingly, in-depth investigation revealed the dual role of sulfur species in regulating the reactive oxidized species: (1) S(-II) and its conversion product H2S (aq) played a significant role in Fe(II) regeneration with a result of accelerated PAA activation; (2) however, the R-O· generated in the initial seconds of the FeS/PAA process was supposed to be quickly consumed by sulfur species, resulting in ·OH as the dominant ROS over the whole process. The selective reaction of sulfur species with R-O· instead of ·OH was supported by the obviously lower Gibbs free energy of CH3COO· and sulfur species than ·OH, suggesting the preference of CH3COO· to react with sulfur species with electron transfer. After treatment with the FeS/PAA system, the products obtained from the three pharmaceuticals were detoxified and even facilitated the growth of E. coli probably due to the supply of numerous carbon sources by activated PAA. This study significantly advances the understanding of the reaction between PAA and sulfur-containing catalysts and suggests the practical application potential of the FeS/PAA process combined with biotreatment processes.
Collapse
Affiliation(s)
- Shu-Run Yang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuan-Shu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Zhi-Hui Xie
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Ling-Li Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhao-Kun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Feng Jiang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Yang Mu
- Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
118
|
Xie M, Zhang C, Zheng H, Zhang G, Zhang S. Peroxyl radicals from diketones enhanced the indirect photochemical transformation of carbamazepine: Kinetics, mechanisms, and products. WATER RESEARCH 2022; 217:118424. [PMID: 35429883 DOI: 10.1016/j.watres.2022.118424] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/19/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
In surface waters, photogenerated transients (e.g., hydroxyl radicals, carbonate radicals, singlet oxygen and the triplet states of dissolved organic matter) are known to play a role in the transformation of biorecalcitrant carbamazepine (CBZ). Small diketones, such as acetylacetone (AcAc) and butanedione (BD), are naturally abundant and have been proven to be effective precursors of carbon and oxygen centered radicals. However, the photochemical kinetics and mechanisms of coexisting diketones and CBZ are barely known. Herein, the effects of AcAc and BD on the photochemical conversion of CBZ were investigated compared with H2O2 which was the main ·OH precursor in the environment. An enhancing effect was observed for the degradation of CBZ by the addition of diketones. The enhancing effect of diketones was pH-dependent and much more significant than H2O2 under simulated solar irradiation. On the basis of the identification of transient species and the competition kinetic model, organic peroxyl radicals were found to play a dominant role in CBZ photodegradation, and the second-order rate constants of the reaction between CBZ and peroxyl radicals were determined to be approximately 107-108 M-1s-1. Furthermore, mutagenic acridine was found to be the major cumulative intermediate with a yield of > 30% in the presence of diketones, which might be an environmental concern. This work indicates that the coexistence of diketones and persistent organic pollutants might lead to some detrimental effects on aquatic environments if the water is exposed to sunlight.
Collapse
Affiliation(s)
- Min Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chengyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongcen Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Guoyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
119
|
Wu J, Zheng X, Wang Y, Liu H, Wu Y, Jin X, Chen P, Lv W, Liu G. Activation of peracetic acid via Co 3O 4 with double-layered hollow structures for the highly efficient removal of sulfonamides: Kinetics insights and assessment of practical applications. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128579. [PMID: 35247737 DOI: 10.1016/j.jhazmat.2022.128579] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Sulfonamides (SAs) have been of ecotoxicological concern for ambient ecosystems due to their widespread application in the veterinary industry. Herein, we developed a powerful advanced oxidation peracetic acid (PAA) activation process for the remediation of SAs by Co3O4 with double-layered hollow structures (Co3O4 DLHSs). Systematic characterization results revealed that the polyporous hollow hierarchical structure endows Co3O4 DLHSs with abundant active reaction sites and enhanced mass transfer rate, which were conducive for improving the PAA activation efficiency. Laser flash photolysis experiment and mechanism studies indicated that organic radical species were dominant reactive species for SAs removal. The present system is also highly effective under natural water matrices and trace SAs concentration (20 μg/L) condition. More importantly, the chlorella acute toxicity of the SAs solution was eliminated during mineralization process, supporting this catalytic system may be efficaciously applied for the remediation of SAs contamination in ambient waterways.
Collapse
Affiliation(s)
- Jianqing Wu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoshan Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingfei Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| | - Haijin Liu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, Xinxiang 453007, China
| | - Yuliang Wu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoyu Jin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ping Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenying Lv
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guoguang Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
120
|
Zhang L, Chen J, Zhang Y, Xu Y, Zheng T, Zhou X. Highly efficient activation of peracetic acid by nano-CuO for carbamazepine degradation in wastewater: The significant role of H 2O 2 and evidence of acetylperoxy radical contribution. WATER RESEARCH 2022; 216:118322. [PMID: 35339049 DOI: 10.1016/j.watres.2022.118322] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Peracetic acid (PAA)-based advanced oxidation processes (AOPs) has attracted increasing attentions towards contaminant degradation in the wastewater treatment. Herein, we report the efficient activation of PAA by nano-CuO (nCuO/PAA) to degrade carbamazepine (CBZ) for the first time. Rapid degradation of CBZ was observed in the nCuO/PAA system at neutral initial pH. A new scavenging experiment with Mn2+ as a specific scavenger was developed to distinguish the dominant role of CH3C(O)OO● for CBZ degradation in the nCuO/PAA process. The oxidation of CBZ by CH3C(O)OO● was verified to proceed via the electrons transfer, and the acute and chronic toxicity of the transformation products was significantly reduced. The efficient activation of PAA by nCuO was found to be realized through continuous conversion of Cu(II) to Cu(I), which was significantly boosted by co-existing H2O2. The nCuO/PAA process was slightly affected by the water matrices, and maintained high efficiency in real water samples. The findings obtained in this study provide new insights into the catalytic formation of CH3C(O)OO● from PAA and facilitate the development and application of PAA-based AOPs in wastewater treatment.
Collapse
Affiliation(s)
- Longlong Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tinglu Zheng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| |
Collapse
|
121
|
Duan J, Chen L, Ji H, Li P, Li F, Liu W. Activation of peracetic acid by metal-organic frameworks (ZIF-67) for efficient degradation of sulfachloropyridazine. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
122
|
Dai C, Li S, Duan Y, Leong KH, Liu S, Zhang Y, Zhou L, Tu Y. Mechanisms and product toxicity of activated carbon/peracetic acid for degradation of sulfamethoxazole: implications for groundwater remediation. WATER RESEARCH 2022; 216:118347. [PMID: 35395496 DOI: 10.1016/j.watres.2022.118347] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Carbon-based materials activated peracetic acid (PAA) to repair groundwater is an environmentally friendly and low-cost technology to overcome secondary pollution problems. In this study, thermally modified activated carbon (AC600) was applied to activate PAA to degrade sulfamethoxazole (SMX). And the effect of groundwater pH, chloride ion (Cl-), bicarbonate (HCO3-), sulfate ion (SO42-), and natural organic matter (NOM) on SMX removal by AC600/PAA process was studied in detail. PAA could be effectively activated by AC600. Increasing AC600 dose (10-100mg/L) or PAA dosages (0.065-0.39 mM) generally enhanced the SMX removal, the excellent performance in SMX removal was achieved at 50 mg/L AC600 and 0.26 mM PAA. The removal of SMX was well-described by second-order kinetic, with the rate constant (kobs) of 10.79 M-1s-1, both much greater than the removal constants of PAA alone (0.034 M-1s-1) and AC600 alone (1.774 M-1s-1). R-O·(CH3C(O)OO·, CH3C(O)O·) and electron-transfer process were proved to be responsible for the removal of SMX while HO· and 1O2 made little to no contribution to the novel PAA/AC600 system, which differs from typical advanced oxidation processes. The SMX can be removed effectively over a wide pH range (3-9), exhibiting a remarkable pH-tolerant performance. Sulfate ion (SO42-), dissolved oxygen (DO), NOM displayed negligible influence on the SMX removal. Bicarbonate (HCO3-) exerted an inhibitory effect on SMX abatement, while chloride ion (Cl-) promoted the removal of SMX. This showed excellent anti-interference capacity and satisfactory decontamination performance under actual groundwater conditions. Furthermore, the degradation pathways of SMX were proposed, there was no obvious difference in the acute toxicity of the mixed products during the degradation process. It will facilitate further research of metal-free catalyst/PAA system as a new strategy for groundwater in-situ remediation technology.
Collapse
Affiliation(s)
- Chaomeng Dai
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P.R. China
| | - Si Li
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P.R. China
| | - Yanping Duan
- Institute of Urban Studies, School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, P.R. China; Yangtze River Delta Urban Wetland Ecosystem National Field Observation and Research Station, Shanghai 200234, P.R. China.
| | - Kah Hon Leong
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, 31900, Kampar, Perak, Malaysia
| | - Shuguang Liu
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P.R. China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, P.R. China
| | - Lang Zhou
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 E. Dean Keeton St., Stop C1786, Austin, TX 78712, USA
| | - Yaojen Tu
- Institute of Urban Studies, School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, P.R. China; Yangtze River Delta Urban Wetland Ecosystem National Field Observation and Research Station, Shanghai 200234, P.R. China
| |
Collapse
|
123
|
Degradation of Benzotriazole UV Stabilizers in PAA/d-Electron Metal Ions Systems-Removal Kinetics, Products and Mechanism Evaluation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103349. [PMID: 35630827 PMCID: PMC9145517 DOI: 10.3390/molecules27103349] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 11/30/2022]
Abstract
Benzotriazole UV stabilizers (BUVs) have gained popularity, due to their absorption properties in the near UV range (200–400 nm). They are used in the technology for manufacturing plastics, protective coatings, and cosmetics, to protect against the destructive influence of UV radiation. These compounds are highly resistant to biological and chemical degradation. As a result of insufficient treatment by sewage treatment plants, they accumulate in the environment and in the tissues of living organisms. BUVs have adverse effects on living organisms. This work presents the use of peracetic acid in combination with d-electron metal ions (Fe2+, Co2+), for the chemical oxidation of five UV filters from the benzotriazole group: 2-(2-hydroxy-5-methylphenyl)benzotriazole (UV-P), 2-tert-butyl-6-(5-chloro-2H-benzotriazol-2-yl)-4-methylphenol (UV-326), 2,4-di-tert-butyl-6-(5-chloro-2H-benzotriazol-2-yl)phenol (UV-327), 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV-328), and 2-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol (UV-329). The oxidation procedure has been optimized based on the design of experiments (DoE) methodology. The oxidation of benzotriazoles follows first order kinetics. The oxidation products of each benzotriazole were investigated, and the oxidation mechanisms of the tested compounds were proposed.
Collapse
|
124
|
Shahi A, Vafaei Molamahmood H, Faraji N, Long M. Quantitative structure-activity relationship for the oxidation of organic contaminants by peracetic acid using GA-MLR method. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114747. [PMID: 35196632 DOI: 10.1016/j.jenvman.2022.114747] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Peracetic acid (PAA) is considered as an effective and powerful oxidant for eliminating organic contaminants in wastewater treatment. The second-order rate constant (kapp) for the reaction of PAA with organic contaminants is practically important for evaluating their removal efficiency in wastewater treatment, but only limited numbers of kapp values are available. In this study, 70 organic compounds with various structures were selected, and the kapp of PAA with each organic compound was used to develop two quantitative structure-activity relationship (QSAR) models based on three kinds of descriptors including constitutional, quantum chemical, and the PaDEL descriptors. The genetic algorithm (GA) was applied to select the molecular descriptors, then the models developed by multiple linear regression (MLR). The most important descriptors that explain the reactivity of organic compounds with PAA are the EHOMO for the model with the constitutional and quantum chemical descriptors. The maxHdsCH and minHdCH2 are two most important descriptors for the model with only PaDEL descriptors. The developed models can be used to predict kapp for a wide range of organic contaminants. The accuracy of the developed models was proved by the internal, external validation and the Y-scrambling technique. The developed QSAR models using the GA-MLR method can be used as a screening tool for predicting the elimination of organic contaminants by PAA and increasing the understanding of chemical pollutant fate.
Collapse
Affiliation(s)
- Ali Shahi
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hamed Vafaei Molamahmood
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Naser Faraji
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mingce Long
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
125
|
Yuan N, Li H, Qian J. Determination of peracetic acid in the presence of hydrogen peroxide based on the catalytic oxidation of ABTS. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
126
|
Kim J, Wang J, Ashley DC, Sharma VK, Huang CH. Enhanced Degradation of Micropollutants in a Peracetic Acid-Fe(III) System with Picolinic Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4437-4446. [PMID: 35319885 DOI: 10.1021/acs.est.1c08311] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Activation of peracetic acid (PAA) with iron species is an emerging advanced oxidation process (AOP). This study investigates the use of the chelating agent picolinic acid (PICA) to extend the pH range and enhance the performance of the PAA-Fe(III) AOP. Compared to the PAA-Fe(III) system, the PAA-Fe(III)-PICA system degrades various micropollutants (MPs: methylene blue, naproxen, sulfamethoxazole, carbamazepine, trimethoprim, diclofenac, and bisphenol-A) much more rapidly at higher pH, achieving almost complete removal of parent compounds within 10 min. PAA significantly outperforms the coexistent H2O2 and is the key oxidant for rapid compound degradation. Other chelating agents, EDTA, NTA, citric acid, proline, and nicotinic acid, could not enhance MP degradation in the PAA-Fe(III) system, while 2,6-pyridinedicarboxylic acid with a structure similar to PICA moderately enhanced MP degradation. Experiments with scavengers (tert-butyl alcohol and methyl phenyl sulfoxide) and a probe compound (benzoic acid) confirmed that high-valent iron species [Fe(IV) and/or Fe(V)], rather than radicals, are the major reactive species contributing to MP degradation. The oxidation products of methylene blue, naproxen, and sulfamethoxazole by PAA-Fe(III)-PICA were characterized and supported the proposed mechanism. This work demonstrates that PICA is an effective complexing ligand to assist the Fenton reaction of PAA by extending the applicable pH range and accelerating the catalytic ability of Fe(III).
Collapse
Affiliation(s)
- Juhee Kim
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Junyue Wang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Daniel C Ashley
- Department of Chemistry and Biochemistry, Spelman College, Atlanta, Georgia 30314, United States
| | - Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843, United States
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
127
|
Du P, Wang J, Sun G, Chen L, Liu W. Hydrogen atom abstraction mechanism for organic compound oxidation by acetylperoxyl radical in Co(II)/peracetic acid activation system. WATER RESEARCH 2022; 212:118113. [PMID: 35091222 DOI: 10.1016/j.watres.2022.118113] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Peracetic acid (PAA) has been widely used as an alternative disinfectant in wastewater treatment, and PAA-based advanced oxidation processes (AOPs) have drawn increasing attention recently. Among the generated reactive species after PAA activation, acetylperoxyl radical (CH3CO3•) plays an important role in organic compounds degradation. However, little is known about the reaction mechanism on CH3CO3• attack due to the challenging of experimental analysis. In this study, a homogeneous PAA activation system was built up using Co(II) as an activator at neutral pH to generate CH3CO3• for phenol degradation. More importantly, reaction mechanism on CH3CO3•-driven oxidation of phenol is elucidated at the molecular level. CH3CO3• with lower electrophilicity index but much larger Waals molecular volume holds different phenol oxidation route compared with the conventional •OH. Direct evidences on CH3CO3• formation and attack mechanism are provided through integrated experimental and theoretical results, indicating that hydrogen atom abstraction (HAA) is the most favorable route in the initial step of CH3CO3•-driven phenol oxidation. HAA reaction step is found to produce phenoxy radicals with a low energy barrier of 4.78 kcal mol-1 and free energy change of -12.21 kcal mol-1. The generated phenoxy radicals will undergo further dimerization to form 4-phenoxyphenol and corresponding hydroxylated products, or react with CH3CO3• to generate catechol and hydroquinone. These results significantly promote the understanding of CH3CO3•-driven organic pollutant degradation and are useful for further development of PAA-based AOPs in environmental applications.
Collapse
Affiliation(s)
- Penghui Du
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Science and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Junjian Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Guodong Sun
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Long Chen
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Science and Engineering, Peking University, Beijing 100871, PR China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Science and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing 100871, PR China.
| |
Collapse
|
128
|
Dai C, Han Y, Duan Y, Lai X, Fu R, Liu S, Leong KH, Tu Y, Zhou L. Review on the contamination and remediation of polycyclic aromatic hydrocarbons (PAHs) in coastal soil and sediments. ENVIRONMENTAL RESEARCH 2022; 205:112423. [PMID: 34838568 DOI: 10.1016/j.envres.2021.112423] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
The rapid economic and population growth in coastal areas is causing increasingly serious polycyclic aromatic hydrocarbons (PAHs) pollution in these regions. This review compared the PAHs pollution characteristics of different coastal areas, including industrial zones, commercial ports, touristic cities, aquacultural & agricultural areas, oil & gas exploitation areas and megacities. Currently there are various treatment methods to remediate soils and sediments contaminated with PAHs. However, it is necessary to provide a comprehensive overview of all the available remediation technologies up to date, so appropriate technologies can be selected to remediate PAHs pollution. In view of that, we analyzed the characteristics of the remediation mechanism, summarized the remediation methods for soil or sediments in coastal areas, which were physical repair, chemical oxidation, bioremediation and integrated approaches. Besides, this review also reported the development of new multi-functional green and sustainable systems, namely, micro-nano bubble (MNB), biochar, reversible surfactants and peracetic acid. While physical repair, expensive but efficient, was regarded as a suitable method for the PAHs remediation in coastal areas because of land shortage, integrated approaches would produce better results. The ultimate aim of the review was to ensure the successful restructuring of PAHs contaminated soil and sediments in coastal areas. Due to the environment heterogeneity, PAHs pollution in coastal areas remains as a daunting challenge. Therefore, new and suitable technologies are still needed to address the environmental issue.
Collapse
Affiliation(s)
- Chaomeng Dai
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Yueming Han
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Yanping Duan
- Institute of Urban Studies, School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Rd., Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Observation and Research Station, Shanghai, 200234, China.
| | - Xiaoying Lai
- College of Management and Economics, Tianjin University, Tianjin, 300072, PR China
| | - Rongbing Fu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Shuguang Liu
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Kah Hon Leong
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar, 31900, Perak, Malaysia
| | - Yaojen Tu
- Institute of Urban Studies, School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Rd., Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Observation and Research Station, Shanghai, 200234, China
| | - Lang Zhou
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 E. Dean Keeton St., Stop C1786, Austin, TX, 78712, USA
| |
Collapse
|
129
|
Abstract
An electro-Fe2+-activated peracetic acid (EC/Fe2+/PAA) process was established for organic dye removal in water. The operation factors such as the PAA dosage, Fe2+ amount, current density, and pH were investigated on methylene blue (MB) removal for the synergistic EC/Fe2+/PAA system. Efficient MB decolorization (98.97% and 0.06992 min−1) was achieved within 30 min under 5.4 mmol L−1 PAA, 30 μmol L−1 Fe2+, 15 mA cm−2 current intensity, and pH 2.9. Masking tests affirmed that the dominating radicals were hydroxyl radicals (OH), organic radicals (CH3CO2·, CH3CO3·), and singlet oxygen (1O2), which were generated from the activated PAA by the synergetic effect of EC and Fe2+. The influence of inorganic ions and natural organic matter on the MB removal was determined. Moreover, the efficacy of the EC/Fe2+/PAA was confirmed by decontaminating other organic pollutants, such as antibiotic tetracycline and metronidazole. The studied synergy process offers a novel, advanced oxidation method for PAA activation and organic wastewater treatment.
Collapse
|
130
|
Meng L, Chen J, Kong D, Ji Y, Lu J, Yin X, Zhou Q. Transformation of bromide and formation of brominated disinfection byproducts in peracetic acid oxidation of phenol. CHEMOSPHERE 2022; 291:132698. [PMID: 34715107 DOI: 10.1016/j.chemosphere.2021.132698] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Peracetic acid (PAA) has attracted increasing attention in wastewater treatment as a disinfectant. However, the transformation of bromide (Br-) during PAA oxidation of bromide-containing wastewater has not been fully explored. This study showed that Br- could be oxidized by PAA to free bromine which reacted with phenol to form organic bromine. At pH 7.0, more than 35.2% inorganic Br- was converted to organic bromines in 4 h. At acidic conditions, the conversion ratio was even higher, reaching 69.9% at pH 2.8. Most of the organic bromines were presented as bromophenols (i.e., 2-bromophenol, 4-bromophenol, and 2,4-dibromophenol), while regulated brominated disinfection byproducts (Br-DBPs, i.e., bromoform and bromoacetic acids) only accounted for a tiny fraction of total organic bromine. Similar results were observed when PAA was applied to natural organic matter (NOM) or wastewater in presence of Br-. The organic bromine yield reached 56.6 μM in the solution containing 0.1 mM Br- and 2 mg/L NOM initially. Among them, only 1.00 μM bromoform and 0.16 μM dibromoacetic acid were found. Similarly, regulated Br-DBPs only accounted for 28.3% of the organic bromine in a real wastewater effluent treated with PAA. All these data show that monitoring regulated DBPs cannot fully indicate the potential environmental risk of the application of PAA to wastewater.
Collapse
Affiliation(s)
- Liang Meng
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Chen
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Deyang Kong
- Nanjing Institute of Environmental Science, Ministry of Environmental Protection of PRC, Nanjing, 210042, China
| | - Yuefei Ji
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junhe Lu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiaoming Yin
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Quansuo Zhou
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
131
|
Deng J, Liu S, Fu Y, Liu Y. Heat-activated peracetic acid for degradation of diclofenac: kinetics, influencing factors and mechanism. ENVIRONMENTAL TECHNOLOGY 2022:1-9. [PMID: 35225731 DOI: 10.1080/09593330.2022.2048086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
ABSTRACTHeat-activated peracetic acid (PAA) was used to degrade diclofenac (DCF) in this study. Electron paramagnetic resonance and radical scavenging experiments proved that organic radicals (i.e. CH3C(=O)O• and CH3C(=O)OO•) were the primary active species for DCF removal in the heat/PAA process. The degradation efficiency of DCF increased with the increase of temperature or initial PAA concentration in the heat/PAA process, and the optimal reaction pH for DCF removal was neutral. The presence of NO3- or SO42- insignificantly affected DCF degradation, while Cl- was favourable for DCF removal in this process. In contrast, an obvious inhibition on the removal of DCF was observed with the addition of natural organic matter, which might be responsible for the lower DCF removal in real waters. Finally, dechlorination, formylation, dehydrogenation and hydroxylation were proposed to be four degradation pathways of DCF in the heat/PAA system based on the five detected transformation products.
Collapse
Affiliation(s)
- Jiewen Deng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Shenglan Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Yongsheng Fu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Yiqing Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| |
Collapse
|
132
|
Huang B, Xiong Z, Zhou P, Zhang H, Pan Z, Yao G, Lai B. Ultrafast degradation of contaminants in a trace cobalt(II) activated peroxymonosulfate process triggered through borate: Indispensable role of intermediate complex. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127641. [PMID: 34742611 DOI: 10.1016/j.jhazmat.2021.127641] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/08/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Among all homogeneous catalysts, cobalt ions show the highest catalytic performance for the activation of peroxymonosulfate (PMS). Herein, we report a Co2+/PMS/H3BO3 system that can effectively generate reactive oxygen species (ROS) with ultra-low Co2+ dosage (5 μg/L). Co2+/PMS/H3BO3 system showed ultrafast reactivity and wide applicability for various pollutants. Sulfamethoxazole (SMX, 2 mg/L) could be completely removed within 5 min, and the corresponding kobs reached up to 1.1239 min-1. The introduction of H3BO3 significantly promoted the generation of ROS. The turnover frequency (TOF) calculated through dividing kobs by the cobalt ions concentration is as high as 224.78 min-1, which is much higher than most of the current research. Through a series of theoretical and experimental analyses, the complex of H2BO3--MS (HSO5B(OH)3-) was inferred to be the key substance that led to the excellent performance of the system. This work provides new insights into the Co2+/PMS system in the presence of borate buffer.
Collapse
Affiliation(s)
- Bingkun Huang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University, Yibin, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Water Safety and Water Pollution Control Engineering Technology Research Center in Sichuan Province, Haitian Water Group, China; Yibin Institute of Industrial Technology, Sichuan University, Yibin, China.
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University, Yibin, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University, Yibin, China
| | - Zhicheng Pan
- Water Safety and Water Pollution Control Engineering Technology Research Center in Sichuan Province, Haitian Water Group, China
| | - Gang Yao
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Institute of Environmental Engineering, RWTH Aachen University, Germany
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Water Safety and Water Pollution Control Engineering Technology Research Center in Sichuan Province, Haitian Water Group, China; Yibin Institute of Industrial Technology, Sichuan University, Yibin, China
| |
Collapse
|
133
|
Zhang P, Zhang X, Zhao X, Jing G, Zhou Z. Activation of peracetic acid with zero-valent iron for tetracycline abatement: The role of Fe(II) complexation with tetracycline. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127653. [PMID: 34801301 DOI: 10.1016/j.jhazmat.2021.127653] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/10/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Peracetic acid (PAA) is an excellent oxidant that can produce multiple carbon-centered radicals (R•C). A novel advanced oxidation process (AOP) that combines PAA and nanoscale zero-valent iron (i.e. nZVI/PAA) is constructed to evaluate its performance toward tetracycline (TC) abatement. The nZVI/PAA process shows excellent abatement efficacy for TC in the pH range of 3.5-7.5. The presence of humic acid, HPO42- and HCO3- exerts inhibitory effects on TC abatement, while the presence of Cl- displays negligible influence in the nZVI/PAA process. Nanoscale zero-valent iron (nZVI) exhibits excellent reusability with no apparent variation in crystallinity. CH3C(O)OO• is the predominant active radical that contributes to TC abatement, in which leakage of Fe(II) from the nZVI surface is crucial for a radical generation. Due to the strong complexation tendency of TC towards Fe(II), the Fe(II)-TC complexes are formed, which significantly accelerates the PAA decomposition and TC abatement compared to free Fe(II). In addition, the degradation intermediates of TC are identified, and a possible degradation pathway is proposed. These results will be useful for the application of PAA-based AOPs in the treatment of water containing organic micropollutants.
Collapse
Affiliation(s)
- Pengyu Zhang
- Department of Environment Science & Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Xianfa Zhang
- Department of Environment Science & Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Xiaodan Zhao
- Department of Environment Science & Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Guohua Jing
- Department of Environment Science & Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China.
| | - Zuoming Zhou
- Department of Environment Science & Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| |
Collapse
|
134
|
Zong Y, Zhang H, Shao Y, Ji W, Zeng Y, Xu L, Wu D. Surface-mediated periodate activation by nano zero-valent iron for the enhanced abatement of organic contaminants. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126991. [PMID: 34482081 DOI: 10.1016/j.jhazmat.2021.126991] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/06/2021] [Accepted: 08/19/2021] [Indexed: 05/21/2023]
Abstract
Periodate (PI)-based advanced oxidation processes have recently received increasing attentions. Herein, PI was readily activated by nano zero-valent iron (nZVI) and subsequently led to the enhanced oxidation of organic contaminants, with the removal performance of sulfadiazine (SDZ) in the nZVI/PI process even higher than that in the nZVI/peroxydisulfate process under identical conditions. Kinetic experiments indicated that the decay of SDZ was susceptible to the dosage of nZVI and PI, but was barely affected by pH values (4.0-7.0) under buffered conditions, suggesting the promising performance of the nZVI/PI process in a relatively wide pH range. Selective degradation of contaminants and 18O-isotope labeling assays collectively demonstrated that iodate radical (•IO3), high-valent iron-oxo species (Fe(IV)) and hydroxyl radical (•OH) were responsible for the abatement of organic contaminants. More importantly, due to the relatively weak steric hindrance effect of PI, PI easily adsorbed on the surface of nZVI and no iron leaching was detected throughout the reaction, implying that PI activation induced by nZVI was a surface-mediated process. Besides, PI was not transformed into harmful reactive iodine species. This study proposed an environmental-friendly approach for PI activation and shed new lights on the PI-based processes.
Collapse
Affiliation(s)
- Yang Zong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Yufei Shao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Wenjie Ji
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Yunqiao Zeng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Longqian Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
135
|
Zhou R, Fu Y, Zhou G, Wang S, Liu Y. Heterogeneous degradation of organic contaminants by peracetic acid activated with FeCo2S4 modified g-C3N4: Identification of reactive species and catalytic mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
136
|
Spencer-Williams I, Theobald A, Cypcar CC, Casson LW, Haig SJ. Examining the antimicrobial efficacy of granulated tetraacetylethylenediamine derived peracetic acid and commercial peracetic acid in urban wastewaters. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10688. [PMID: 35118781 DOI: 10.1002/wer.10688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/16/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The ever-increasing need for access to safe water has meant that alternative water sources and innovative water reclamation approaches are often required to meet the global water demand. As a result, many wastewater treatment facilities have faced regulatory pressure to seek alternative disinfection methods that ensure public health safety, while adhering to regulations that set limits on carcinogenic disinfection by-products (DBPs). Peracetic acid (PAA) is an emerging wastewater disinfectant in the United States that has been widely used in other industries such as food sanitization and does not produce carcinogenic DBPs. However, several factors such as transport, storage, and physical and chemical effects have stymied its widespread use in wastewater markets. Therefore, the purpose of this study was to examine the antimicrobial efficacy of an on-site generated PAA compared against a commercially available PAA. Antimicrobial efficacy was assessed using standard fecal contamination indicators (i.e., total coliforms and Escherichia coli) in six urban wastewater treatment facilities ranging in size and treatment processes. Overall, few statistical differences were found between the antimicrobial efficacies of on-site generated PAA and commercially available PAA; however, before becoming more widely utilized, the on-site PAA should be tested against emerging fecal contamination indicators (e.g., human norovirus and enterovirus) and be assessed in terms of economic and sustainability impacts. PRACTITIONER POINTS: Alternative Ct approaches should be considered when using disinfectants like PAA. On-site generated PAA can achieve the same level of disinfection as commercial PAA. On-site generation of PAA may help further its use as a wastewater disinfectant.
Collapse
Affiliation(s)
- Isaiah Spencer-Williams
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | - Leonard W Casson
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah-Jane Haig
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
137
|
Liu T, Chen J, Li N, Xiao S, Huang CH, Zhang L, Xu Y, Zhang Y, Zhou X. Unexpected Role of Nitrite in Promoting Transformation of Sulfonamide Antibiotics by Peracetic Acid: Reactive Nitrogen Species Contribution and Harmful Disinfection Byproduct Formation Potential. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1300-1309. [PMID: 34965096 DOI: 10.1021/acs.est.1c06026] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peracetic acid (PAA) is an emerging oxidant and disinfectant for wastewater (WW) treatment due to limited harmful disinfection byproduct (DBP) formation. Nitrite (NO2-) is a ubiquitous anion in water, but the impact of NO2- on PAA oxidation and disinfection has been largely overlooked. This work found for the first time that NO2- could significantly promote the oxidation of sulfonamide antibiotics (SAs) by PAA. Unexpectedly, the reactive nitrogen species (RNS), for example, peroxynitrite (ONOO-), rather than conventional organic radicals (R-O•) or reactive oxygen species (ROS), played major roles in SAs degradation. A kinetic model based on first-principles was developed to elucidate the reaction mechanism and simulate reaction kinetics of the PAA/NO2- process. Structural activity assessment and quantum chemical calculations showed that RNS tended to react with an aromatic amine group, resulting in more conversion of NO2--N to organic-N. The formation of nitrated and nitrosated byproducts and the enhancement of trichloronitromethane formation potential might be a prevalent problem in the PAA/NO2- process. This study provides new insights into the reaction of PAA with NO2- and sheds light on the potential risks of PAA in WW treatment in the presence of NO2-.
Collapse
Affiliation(s)
- Tongcai Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Nan Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shaoze Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Longlong Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
138
|
Zhou R, Zhou G, Liu Y, Wang S, Fu Y. Cobalt doped graphitic carbon nitride as an effective catalyst for peracetic acid to degrade sulfamethoxazole. RSC Adv 2022; 12:13810-13819. [PMID: 35541433 PMCID: PMC9082621 DOI: 10.1039/d2ra00821a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/30/2022] [Indexed: 12/25/2022] Open
Abstract
An efficient advanced oxidation process (AOP) for sulfamethoxazole (SMX) removal: peracetic acid activated with cobalt doped graphitic carbon nitride.
Collapse
Affiliation(s)
- Runyu Zhou
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Gaofeng Zhou
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Yiqing Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Shixiang Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Yongsheng Fu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| |
Collapse
|
139
|
Wang J, Wang Z, Cheng Y, Cao L, Xie P, Ma J. Molybdenum disulfide (MoS2) promoted sulfamethoxazole degradation in the Fe(III)/peracetic acid process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
140
|
Hu J, Li T, Zhang X, Ren H, Huang H. Degradation of steroid estrogens by UV/peracetic acid: Influencing factors, free radical contribution and toxicity analysis. CHEMOSPHERE 2022; 287:132261. [PMID: 34555579 DOI: 10.1016/j.chemosphere.2021.132261] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Steroid estrogens (SEs) are a group of refractory organic micropollutants detected in secondary effluent frequently. The advanced oxidation processes (AOPs) are usually used to deep remove the SEs from the secondary effluent. Herein, we first investigated the UV/peracetic acid (PAA), a PAA-based AOP, to degrade SEs. Using estrone (E1), 17β-estradiol (E2), estriol (E3), and 17α-ethinyl estradiol (EE2) as representatives, the results showed that UV can effectively activate PAA to enhance the degradation of the four SEs, which degradation followed the pseudo-first-order kinetics (R2 > 0.99), and the rate constant (kobs) of degradation increased with increasing the PAA dosage in the range investigated. Little pH dependence was also observed in the degradation of SEs by UV/PAA. Furthermore, the degradation of SEs was improved in the presence of coexisting substrates (Cl-, HCO- 3, NO- 3, and HA) in relatively low concentrations. Quenching experiments revealed that the carbon-centered radicals (R-C•) produced from the UV/PAA process were recognized as the predominant contributors to the degradation of the four SEs. Also, we found that the estrogenic activity decreased by more than 94%, but the acute toxicity inhibition increased to 37% in the solution after 30 min UV/PAA treatment. In addition, the 130% additional total organic carbon (TOC) was generated after UV/PAA process. These findings obtained in this work will facilitate the development of the UV/PAA process as a promising strategy for the deep removal of SEs in secondary effluent.
Collapse
Affiliation(s)
- Jun Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Tong Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
141
|
Deng J, Wang H, Fu Y, Liu Y. Phosphate-induced activation of peracetic acid for diclofenac degradation: Kinetics, influence factors and mechanism. CHEMOSPHERE 2022; 287:132396. [PMID: 34597644 DOI: 10.1016/j.chemosphere.2021.132396] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/12/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Activating peroxides to produce active substances is the key to advanced oxidation processes (AOPs), but this usually requires energy or is accompanied by additional contaminants. In this study, diclofenac (DCF) was effectively removed by peracetic acid (PAA) in phosphate buffer (PBS). According to the results of radical scavenging experiments and electron paramagnetic resonance (EPR), hydroxyl radical (•OH) and organic radicals (i.e., CH3C(=O)OO• and CH3C(=O)O•) generated from PBS-activated PAA might be the dominant reactive species responsible for DCF degradation. At neutral pH, PBS/PAA system exhibited the best degradation efficiency on DCF. Presence of NO3-, SO42- and Cl- had little effect on the removal of DCF, while HCO3- and natural organic matter (NOM) significantly inhibited DCF degradation in PBS/PAA system, resulting in the lower degradation efficiency of DCF in natural waters than that in ultrapure water. Finally, four possible degradation pathways, including hydroxylation, formylation, dehydrogenation and dechlorination, were proposed based on the detected reaction products. This study suggests that PBS used to control solution pH should be applied cautiously in PAA-based AOPs.
Collapse
Affiliation(s)
- Jiewen Deng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Hongbin Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China; School of Architecture and Civil Engineering, Chengdu University, 610106, China
| | - Yongsheng Fu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yiqing Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| |
Collapse
|
142
|
Fabrication of Adsorbed Fe(III) and Structurally Doped Fe(III) in Montmorillonite/TiO2 Composite for Photocatalytic Degradation of Phenol. MINERALS 2021. [DOI: 10.3390/min11121381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Fe(III)-doped montmorillonite (Mt)/TiO2 composites were fabricated by adding Fe(III) during or after the aging of TiO2/Ti(OH)4 sol–gel in Mt, named as xFe-Mt/(1 − x)Fe-TiO2 and Fe/Mt/TiO2, respectively. In the xFe-Mt/(1 − x)Fe-TiO2, Fe(III) cations were expected to be located in the structure of TiO2, in the Mt, and in the interface between them, while Fe(III) ions are physically adsorbed on the surfaces of the composites in the Fe/Mt/TiO2. The narrower energy bandgap (Eg) lower photo-luminescence intensity were observed for the composites compared with TiO2. Better photocatalytic performance for phenol degradation was observed in the Fe/Mt/TiO2. The 94.6% phenol degradation was due to greater charge generation and migration capacity, which was confirmed by photocurrent measurements and electrochemical impedance spectroscopy (EIS). The results of the energy-resolved distribution of electron traps (ERDT) suggested that the Fe/Mt/TiO2 possessed a larger amorphous rutile phase content in direct contact with crystal anatase than that of the xFe-Mt/(1 − x)Fe-TiO2. This component is the fraction that is mainly responsible for the photocatalytic phenol degradation by the composites. As for the xFe-Mt/(1 − x)Fe-TiO2, the active rutile phase was followed by isolated amorphous phases which had larger (Eg) and which did not act as a photocatalyst. Thus, the physically adsorbed Fe(III) enhanced light adsorption and avoided charge recombination, resulting in improved photocatalytic performance. The mechanism of the photocatalytic reaction with the Fe(III)-doped Mt/TiO2 composite was proposed.
Collapse
|
143
|
Peracetic acid enhanced electrochemical advanced oxidation for organic pollutant elimination. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119317] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
144
|
Lin J, Zou J, Cai H, Huang Y, Li J, Xiao J, Yuan B, Ma J. Hydroxylamine enhanced Fe(II)-activated peracetic acid process for diclofenac degradation: Efficiency, mechanism and effects of various parameters. WATER RESEARCH 2021; 207:117796. [PMID: 34736001 DOI: 10.1016/j.watres.2021.117796] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
In this study, a commonly used reducing agent, hydroxylamine (HA), was introduced into Fe(II)/PAA process to improve its oxidation capacity. The HA/Fe(II)/PAA process possessed high oxidation performance for diclofenac degradation even with trace Fe(II) dosage (i.e., 1 μM) at pH of 3.0 to 6.0. Based on electron paramagnetic resonance technology, methyl phenyl sulfoxide (PMSO)-based probe experiments and alcohol quenching experiments, FeIVO2+ and carbon-centered radicals (R-O•) were considered as the primary reactive species responsible for diclofenac elimination. HA accelerated the redox cycle of Fe(III)/Fe(II) and itself was gradually decomposed to N2, N2O, NO2- and NO3-, and the environmentally friendly gas of N2 was considered as the major decomposition product of HA. Four possible degradation pathways of diclofenac were proposed based on seven detected intermediate products. Both elevated dosages of Fe(II) and PAA promoted diclofenac removal. Cl-, HCO3- and SO42- had negligible impacts on diclofenac degradation, while humic acid exhibited an inhibitory effect. The oxidation capacity of HA/Fe(II)/PAA process in natural water matrices and its application to degrade various micropollutants were also investigated. This study proposed a promising strategy for improving the Fe(II)/PAA process and highlighted its potential application in water treatment.
Collapse
Affiliation(s)
- Jinbin Lin
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Jing Zou
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China.
| | - Hengyu Cai
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Yixin Huang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Jiawen Li
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Junyang Xiao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Baoling Yuan
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, China
| |
Collapse
|
145
|
Wang Z, Fu Y, Peng Y, Wang S, Liu Y. HCO3–/CO32– enhanced degradation of diclofenac by Cu(Ⅱ)-activated peracetic acid: Efficiency and mechanism. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119434] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
146
|
Kiejza D, Kotowska U, Polińska W, Karpińska J. Peracids - New oxidants in advanced oxidation processes: The use of peracetic acid, peroxymonosulfate, and persulfate salts in the removal of organic micropollutants of emerging concern - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148195. [PMID: 34380254 DOI: 10.1016/j.scitotenv.2021.148195] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/12/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
In recent years, there has been increasing interest in using of advanced oxidation processes in water and wastewater decontamination. As a new oxidants peracids, mainly peracetic acid (PAA) and peracid salts, i.e. peroxymonosulfate (PMS) and persulfate (PS) are used. The degradation process of organic compounds takes place with the participation of radicals, including hydroxyl (•OH) and sulfate (SO4•-) radicals derived from the peracids activation processes. Peracids can be activated in homogeneous systems (UV radiation, d-electron metal ions, e.g. Fe2+, Co2+, Mn2+, base, ozonolysis, thermolysis, radiolysis), or using heterogeneous activation (metals with zero oxidation state, metal oxides, quinones, activated carbon, semiconductors). As a result of oxidation, products of a lower mass than the parent compounds, less toxic, and more susceptible to biodegradation are formed. An important task is to investigate the effect of the peracid activation method and matrix composition on the efficiency of contamination removal. The article presents the latest information about the application of peracids in the removal of organic micropollutants of emerging concern (mainly focuses on endocrine disrupted compounds). The most important information on peracetic acid, peroxymonosulfate and persulfate salts, and methods of their activation are presented. Current uses of these oxidants in organic micropollutants removal are also described. Information was collected on the factors influencing the oxidation process and the effectiveness of pollutant removal. This paper compares PAA, PMS and PS-based processes for the first time in terms of kinetics and efficiency.
Collapse
Affiliation(s)
- Dariusz Kiejza
- Doctoral School of Exact and Natural Sciences, University of Bialystok, Ciołkowskiego 1K St., 15-245 Białystok, Poland
| | - Urszula Kotowska
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K St., 15-245 Bialystok, Poland.
| | - Weronika Polińska
- Doctoral School of Exact and Natural Sciences, University of Bialystok, Ciołkowskiego 1K St., 15-245 Białystok, Poland
| | - Joanna Karpińska
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K St., 15-245 Bialystok, Poland
| |
Collapse
|
147
|
Liu B, Guo W, Jia W, Wang H, Si Q, Zhao Q, Luo H, Jiang J, Ren N. Novel Nonradical Oxidation of Sulfonamide Antibiotics with Co(II)-Doped g-C 3N 4-Activated Peracetic Acid: Role of High-Valent Cobalt-Oxo Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12640-12651. [PMID: 34464118 DOI: 10.1021/acs.est.1c04091] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, we report that Co(II)-doped g-C3N4 can efficiently trigger peracetic acid (PAA) oxidation of various sulfonamides (SAs) in a wide pH range. Quite different from the traditional radical-generating or typical nonradical-involved (i.e., singlet oxygenation and mediated electron transfer) catalytic systems, the PAA activation follows a novel nonradical pathway with unprecedented high-valent cobalt-oxo species [Co(IV)] as the dominant reactive species. Our experiments and density functional theory calculations indicate that the Co atom fixated into the nitrogen pots of g-C3N4 serves as the main active site, enabling dissociation of the adsorbed PAA and conversion of the coordinated Co(II) to Co(IV) via a unique two-electron transfer mechanism. Considering Co(IV) to be highly electrophilic in nature, different substituents (i.e., five-membered and six-membered heterocyclic moieties) on the SAs could affect their nucleophilicity, thus leading to the differences in degradation efficiency and transformation pathway. Also, benefiting from the selective oxidation of Co(IV), the established oxidative system exhibits excellent anti-interference capacity and achieves satisfactory decontamination performance under actual water conditions. This study provides a new nonradical approach to degrade SAs by efficiently activating PAA via heterogeneous cobalt-complexed catalysts.
Collapse
Affiliation(s)
- Banghai Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenrui Jia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qishi Si
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haichao Luo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
148
|
Zhu J, Wang S, Li H, Qian J, Lv L, Pan B. Degradation of phosphonates in Co(II)/peroxymonosulfate process: Performance and mechanism. WATER RESEARCH 2021; 202:117397. [PMID: 34246991 DOI: 10.1016/j.watres.2021.117397] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/14/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
The increased release of phosphonates to natural waters causes global concern due to their potential threat to the aquatic environment. It is curial to mineralize phosphonates to orthophosphate (PO43-) before they are thoroughly removed from wastewater via conventional biological treatment. In this study, we systematically investigated the performance and mechanism of degradation of phosphonates in Co(II)-triggered peroxymonosulfate (PMS) activation process. The degradation efficiency of various phosphonates is highly dependent on their coordination with Co(II). Using 1-hydroxyethane 1,1-diphosphonic acid (HEDP) as a target pollutant, the Co(II)/PMS process is effective in a broad solution pH range from 5.0 to 10.0. Multiple experimental results imply that Co(II)-PMS complex is the primary reactive species, while hydroxyl radicals (HO•), sulfate radicals (SO4•-), singlet oxygen (1O2) and Co(III) play as the secondary reactive species for the degradation of HEDP. The presence of Cl-, HCO3-, and natural organic matters (NOM) inhibits the degradation of HEDP. However, in real water samples, the selectivity and efficiency for HEDP removal in the Co(II)/PMS process are higher than that in free radicals-mediated advanced oxidation processes. This study not only sheds new lights on the mechanism of Co(II)-triggered PMS activation process, but also provides feasible technology for the degradation of phosphonates in wastewater.
Collapse
Affiliation(s)
- Jinglin Zhu
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shu Wang
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongchao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Jieshu Qian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lu Lv
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
149
|
Li M, Sun J, Mei Q, Wei B, An Z, Cao H, Zhang C, Xie J, Zhan J, Wang W, He M, Wang Q. Acetaminophen degradation by hydroxyl and organic radicals in the peracetic acid-based advanced oxidation processes: Theoretical calculation and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126250. [PMID: 34492993 DOI: 10.1016/j.jhazmat.2021.126250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/10/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
The research on the mechanisms and kinetics of radical oxidation in peracetic acid-based advanced oxidation processes was relatively limited. In this work, HO• and organic radicals mediated reactions of acetaminophen (ACT) were investigated, and the reactivities of important organic radicals (CH3COO• and CH3COOO•) were calculated. The results showed that initiated reaction rate constants of ACT are in the order: CH3COO• (5.44 × 1010 M-1 s-1) > HO• (7.07 × 109 M-1 s-1) > CH3O• (1.57 × 107 M-1 s-1) > CH3COOO• (3.65 × 105 M-1 s-1) >> •CH3 (5.17 × 102 M-1 s-1) > CH3C•O (1.17 × 102 M-1 s-1) > CH3OO• (11.80 M-1 s-1). HO•, CH3COO• and CH3COOO• play important roles in ACT degradation. CH3COO• is another important radical in the hydroxylation of aromatic compounds in addition to HO•. Reaction rate constants of CH3COO• and aromatic compounds are 1.40 × 106 - 6.25 × 1010 M-1 s-1 with addition as the dominant pathway. CH3COOO• has high reactivity to phenolate and aniline only among the studied aromatic compounds, and it was more selective than CH3COO•. CH3COO•-mediated hydroxylation of aromatic compounds could produce their hydroxylated products with higher toxicity.
Collapse
Affiliation(s)
- Mingxue Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Jianfei Sun
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, PR China
| | - Qiong Mei
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Bo Wei
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Zexiu An
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Haijie Cao
- Institute of Materials for Energy and Environment, School of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Chao Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Jinhua Zhan
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, Jinan 250100, PR China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Qiao Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
150
|
Liu B, Guo W, Wang H, Zheng S, Si Q, Zhao Q, Luo H, Ren N. Peroxymonosulfate activation by cobalt(II) for degradation of organic contaminants via high-valent cobalt-oxo and radical species. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125679. [PMID: 33823482 DOI: 10.1016/j.jhazmat.2021.125679] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
The reaction between Co(II) and PMS is an appealing advanced oxidation process (AOP), where multiple reactive oxidizing species (ROS) including high-valent cobalt-oxo [Co(IV)], sulfate radical (SO4•-), and hydroxy radical (•OH) are intertwined together for degrading pollutants. However, the relative contribution of various ROS and the influences of nontarget matrix constituents, on the degradation process are still unclear and yet to be answered. In this study, we confirmed the generation Co(IV) as dominant intermediate oxidant at acid medium by using methyl phenyl sulfoxide (PMSO) as a probe compound. Using chemical scavenging methods, the role of SO4•- and •OH was also identified, and the major ROS were converted from Co(IV) to radical species with the increase of PMS/Co(II) molar ratio as well as pH value. In addition, we found that their contributions to the abatement of organic contaminants are highly dependent on both their available amount and substrate-specific reactivity. Generally, organic substrates with low ionization potential (IP) are prone to react with Co(IV). More interestingly, in contrast to radical-based oxidation, Co(IV) exhibited the great resistance to humic acid (HA) and background ions. This study might shed new light on the PMS activation by cobalt(II) for degradation of organic contaminants.
Collapse
Affiliation(s)
- Banghai Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Shanshan Zheng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qishi Si
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Haichao Luo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|