101
|
Wang K, Chen D, Yu B, He J, Mao X, Huang Z, Yan H, Wu A, Luo Y, Zheng P, Yu J, Luo J. Eugenol alleviates transmissible gastroenteritis virus-induced intestinal epithelial injury by regulating NF-κB signaling pathway. Front Immunol 2022; 13:921613. [PMID: 36052062 PMCID: PMC9427193 DOI: 10.3389/fimmu.2022.921613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/29/2022] [Indexed: 01/13/2023] Open
Abstract
Increasing evidence supports the ability of eugenol to maintain intestinal barrier integrity and anti-inflammatory in vitro and in vivo; however, whether eugenol alleviates virus-mediated intestinal barrier damage and inflammation remains a mystery. Transmissible gastroenteritis virus (TGEV), a coronavirus, is one of the main causative agents of diarrhea in piglets and significantly impacts the global swine industry. Here, we found that eugenol could alleviate TGEV-induced intestinal functional impairment and inflammatory responses in piglets. Our results indicated that eugenol improved feed efficiency in TGEV-infected piglets. Eugenol not only increased serum immunoglobulin concentration (IgG) but also significantly decreased serum inflammatory cytokine concentration (TNF-α) in TGEV-infected piglets. In addition, eugenol also significantly decreased the expression of NF-κB mRNA and the phosphorylation level of NF-κB P65 protein in the jejunum mucosa of TGEV-infected piglets. Eugenol increased villus height and the ratio of villus height to crypt depth in the jejunum and ileum, and decreased serum D-lactic acid levels. Importantly, eugenol increased tight junction protein (ZO-1) and mRNA expression levels of nutrient transporter-related genes (GluT-2 and CaT-1) in the jejunum mucosa of TGEV-infected piglets. Meanwhile, compared with TGEV-infected IPEC-J2 cells, treatment with eugenol reduced the cell cytopathic effect, attenuated the inflammatory response. Interestingly, eugenol did not increase the expression of ZO-1 and Occludin in IPEC-J2 cells. However, western blot and immunofluorescence results showed that eugenol restored TGEV-induced down-regulation of ZO-1 and Occludin, while BAY11-7082 (The NF-κB specific inhibitor) enhanced the regulatory ability of eugenol. Our findings demonstrated that eugenol attenuated TGEV-induced intestinal injury by increasing the expression of ZO-1 and Occludin, which may be related to the inhibition of NF-κB signaling pathway. Eugenol may offer some therapeutic opportunities for coronavirus-related diseases.
Collapse
Affiliation(s)
- Kang Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
102
|
Park I, Nam H, Goo D, Wickramasuriya SS, Zimmerman N, Smith AH, Rehberger TG, Lillehoj HS. Gut Microbiota-Derived Indole-3-Carboxylate Influences Mucosal Integrity and Immunity Through the Activation of the Aryl Hydrocarbon Receptors and Nutrient Transporters in Broiler Chickens Challenged With Eimeria maxima. Front Immunol 2022; 13:867754. [PMID: 35812452 PMCID: PMC9259858 DOI: 10.3389/fimmu.2022.867754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/26/2022] [Indexed: 11/23/2022] Open
Abstract
Two studies were conducted to evaluate the effects of indole-3-carboxylate (ICOOH) as a postbiotic on maintaining intestinal homeostasis against avian coccidiosis. In the first study, an in vitro culture system was used to investigate the effects of ICOOH on the proinflammatory cytokine response of chicken macrophage cells (CMCs), gut integrity of chicken intestinal epithelial cells (IECs), differentiation of quail muscle cells (QMCs), and primary chicken embryonic muscle cells (PMCs) and anti-parasitic effect against Eimeria maxima. Cells to be tested were seeded in the 24-well plates and treated with ICOOH at concentrations of 0.1, 1.0, and 10.0 µg. CMCs were first stimulated by lipopolysaccharide (LPS) to induce an innate immune response, and QMCs and PMCs were treated with 0.5% and 2% fetal bovine serum, respectively, before they were treated with ICOOH. After 18 h of incubation, cells were harvested, and RT-PCR was performed to measure gene expression of proinflammatory cytokines of CMCs, tight junction (TJ) proteins of IECs, and muscle cell growth markers of QMCs and PMCs. In the second study, in vivo trials were carried out to study the effect of dietary ICOOH on disease parameters in broiler chickens infected with E. maxima. One hundred twenty male broiler chickens (0-day-old) were allocated into the following four treatment groups: 1) basal diet without infection (CON), 2) basal diet with E. maxima (NC), 3) ICOOH at 10.0 mg/kg feed with E. maxima (HI), and 4) ICOOH at 1.0 mg/kg feed with E. maxima (LO). Body weights (BWs) were measured on 0, 7, 14, 20, and 22 days. All groups except the CON chickens were orally infected with E. maxima on day 14. Jejunal samples were collected for lesion score and the transcriptomic analysis of cytokines and TJ proteins. In vitro, ICOOH increased the expression of TJ proteins in IECs and decreased IL-1β and IL-8 transcripts in the LPS-stimulated CMCs. In vivo, chickens on the HI diet showed reduced jejunal IL-1β, IFN-γ, and IL-10 expression and increased expression of genes activated by aryl hydrocarbon receptors and nutrient transporters in E. maxima-infected chickens. In conclusion, these results demonstrate the beneficial effects of dietary ICOOH on intestinal immune responses and barrier integrity in broiler chickens challenged with E. maxima. Furthermore, the present finding supports the notion to use microbial metabolites as novel feed additives to enhance resilience in animal agriculture.
Collapse
Affiliation(s)
- Inkyung Park
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Hyoyoun Nam
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Doyun Goo
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Samiru S. Wickramasuriya
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Noah Zimmerman
- Arm & Hammer Animal and Food Production, Waukesha, WI, United States
| | | | | | - Hyun S. Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
- *Correspondence: Hyun S. Lillehoj,
| |
Collapse
|
103
|
Ye X, Li H, Anjum K, Zhong X, Miao S, Zheng G, Liu W, Li L. Dual Role of Indoles Derived From Intestinal Microbiota on Human Health. Front Immunol 2022; 13:903526. [PMID: 35784338 PMCID: PMC9248744 DOI: 10.3389/fimmu.2022.903526] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
Endogenous indole and its derivatives (indoles), considered as promising N-substituted heterocyclic compounds, are tryptophan metabolites derived from intestinal microbiota and exhibit a range of biological activities. Recent studies indicate that indoles contribute to maintaining the biological barrier of the human intestine, which exert the anti-inflammatory activities mainly through activating AhR and PXR receptors to affect the immune system’s function, significantly improving intestinal health (inflammatory bowel disease, hemorrhagic colitis, colorectal cancer) and further promote human health (diabetes mellitus, central system inflammation, and vascular regulation). However, the revealed toxic influences cannot be ignored. Indoxyl sulfate, an indole derivative, performs nephrotoxicity and cardiovascular toxicity. We addressed the interaction between indoles and intestinal microbiota and the indoles’ effects on human health as double-edged swords. This review provides scientific bases for the correlation of indoles with diseases moreover highlights several directions for subsequent indoles-related studies.
Collapse
Affiliation(s)
- Xuewei Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
- Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Haiyi Li
- Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Komal Anjum
- Department of Medicine and pharmacy, Ocean University of China, Qingdao, China
| | - Xinye Zhong
- Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Shuping Miao
- Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Guowan Zheng
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Wei Liu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Lanjuan Li, ; Wei Liu,
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
- *Correspondence: Lanjuan Li, ; Wei Liu,
| |
Collapse
|
104
|
Zhang R, Huang G, Ren Y, Wang H, Ye Y, Guo J, Wang M, Zhu W, Yu K. Effects of Dietary Indole-3-carboxaldehyde Supplementation on Growth Performance, Intestinal Epithelial Function, and Intestinal Microbial Composition in Weaned Piglets. Front Nutr 2022; 9:896815. [PMID: 35651506 PMCID: PMC9149414 DOI: 10.3389/fnut.2022.896815] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/13/2022] [Indexed: 11/30/2022] Open
Abstract
As a microbial tryptophan metabolite, indole-3-carboxaldehyde (ICA) has been suggested to confer benefits to host, such as regulation of intestinal barrier function. This study aimed to elucidate the role of ICA in modulating intestinal homeostasis via using a weaned pig model. Twenty-four weaned piglets were randomly allocated into three groups: the control group (a basal diet), ICA100 group (the basal diet supplemented with 100 mg/kg ICA), and ICA200 group (the basal diet supplemented with 200 mg/kg ICA). The experiment lasted 14 d, and pigs from the control and ICA100 groups were slaughtered. The results showed no significant differences in the average daily gain (ADG) and average daily feed intake (ADFI) among the three groups (P > 0.05). However, the ICA100 group had a lower feed to gain ratio (F:G) (P < 0.05). Dietary ICA supplementation did not alter the villus height, crypt depth, and villus height/crypt depth ratio in the small intestine, and did not change the intestinal permeability and antioxidant parameters (P > 0.05). Intriguingly, ICA treatment significantly increased the jejunal, ileal and colonic indexes in piglets (P < 0.05). Besides, the expression of proliferating cell nuclear antigen (PCNA) in the intestine was up-regulated by ICA treatment. Moreover, in vitro experiments demonstrated that 15 μM ICA significantly accelerated the proliferation activity of IPEC-J2 cells, and increased the expression of the ICA receptor aryl hydrocarbon receptor (AHR) and the proliferation markers PCNA and Cyclin D1 (P < 0.05). In addition, dietary ICA supplementation modulated the intestinal flora, increasing the richness estimators and diversity index, decreasing the abundances of phylum Fibrobacterota and genera Alloprevotella, Prevotella, and Parabacteroides, and enriching the abundance of genera Butyrivibrio. These data reveal a beneficial role for the microbial metabolite ICA on intestinal epithelial proliferation, rather than intestinal barrier function, in weaned piglets.
Collapse
Affiliation(s)
- Ruofan Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Guowen Huang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Yuting Ren
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Haifeng Wang
- Changjia Agricultural Technology Co., Ltd., Shanghai, China
| | - Yanxin Ye
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Jiaqing Guo
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Mengting Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Kaifan Yu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
105
|
Xu Q, Zhang R, Mu Y, Song Y, Hao N, Wei Y, Wang Q, Mackay CR. Propionate Ameliorates Alcohol-Induced Liver Injury in Mice via the Gut-Liver Axis: Focus on the Improvement of Intestinal Permeability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6084-6096. [PMID: 35549256 DOI: 10.1021/acs.jafc.2c00633] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alcohol-related liver disease (ALD) is a major cause of chronic liver disease worldwide with limited therapeutic options. Here, we first revealed the promising beneficial effect of gut microbiota-derived propionate on alcoholic liver injury in mice. This effect was dependent on the modulation of homeostasis of the gut-liver axis, especially the improvement of intestinal permeability. Dietary supplementation with propionate protected against ethanol-induced loss of hepatic function and hepatic steatosis in mice. Meanwhile, propionate treatment attenuated intestinal epithelial barrier dysfunction, restored the expression of intestinal mucus layer components, suppressed intestinal inflammation, and altered intestinal microbiota dysbiosis, which inhibited the intestinal hyperpermeability and subsequently reduced lipopolysaccharide leakage in ALD mice. Furthermore, as a consequence of endotoxemia amelioration, the liver inflammation-related TLR4-NF-κB pathway was inhibited. Collectively, our results suggested that propionate supplementation may be a promising option for the prevention and treatment of ALD.
Collapse
Affiliation(s)
- Qi Xu
- School of Pharmaceutical Sciences, Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Yan Mu
- School of Pharmaceutical Sciences, Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yue Song
- School of Pharmaceutical Sciences, Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Na Hao
- School of Pharmaceutical Sciences, Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yunbo Wei
- School of Pharmaceutical Sciences, Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Quanbo Wang
- School of Pharmaceutical Sciences, Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Charles R Mackay
- School of Pharmaceutical Sciences, Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Department of Microbiology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| |
Collapse
|
106
|
Protective Effects of a Novel Probiotic Bifidobacterium pseudolongum on the Intestinal Barrier of Colitis Mice via Modulating the Pparγ/STAT3 Pathway and Intestinal Microbiota. Foods 2022; 11:foods11111551. [PMID: 35681301 PMCID: PMC9180506 DOI: 10.3390/foods11111551] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
Colitis has become a major health concern worldwide. The objective of the present study was to determine the probiotic influence of different strains of B. pseudolongum (Bp7 and Bp8) on alleviating colitis and to explore its possible potential mechanisms. Our results displayed that Bp7 and Bp8 intervention effectively reduced dextran sodium sulfate (DSS)-caused body weight loss and the release of several pro-inflammatory factors (interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α)) and increased the activities of antioxidant enzymes (T-AOC, SOD, and GSH) and the concentrations of tight junction proteins (occludin, claudin-1, and ZO-1). Moreover, Bp7 and Bp8 intervention drastically down-regulated the expression of colonic MyD88, NF-κB, iNOS and COX2 and drastically elevated the expression of colonic STAT3, Nrf2, and PPARγ. Gas chromatography-mass spectrometry results revealed that the cecal levels of isobutyric, butyric, and isovaleric acids were drastically increased in colitis mice intervened with Bp7 and Bp8. Moreover, 16S rRNA sequencing revealed that Bp7 and Bp8 intervention modulated the intestinal microbiota structure, particularly by enhancing the proportion of Eubacterium coprostanoligenes group, Marvinbryantia, Enterorhabdus, Faecalibaculum, Coriobacteriaceae UCG 002, Alistipes, and Bifidobacterium, which are relevant to the levels of cecal isobutyric acid, butyric acid, isovaleric acid, and inflammatory cytokines. Collectively, these findings suggest that Bp7 and Bp8 intervention alleviates the intestinal barrier function, possibly by blocking the secretion of proinflammatory cytokines, maintaining the intestinal physical barrier integrity, activating the PPARγ/STAT3 pathway, and modulating intestinal microbiota composition. Our study also suggested that B. pseudolongum is a promising probiotic for colitis treatment.
Collapse
|
107
|
申 玉, 李 禄, 魏 璐, 张 先, 赵 文, 刘 晓, 吴 利. [Influence of enteral feeding initiation time on intestinal flora and metabolites in very low birth weight infants: a prospective study]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:433-439. [PMID: 35527421 PMCID: PMC9044980 DOI: 10.7499/j.issn.1008-8830.2111165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVES To study the influence of enteral feeding initiation time on intestinal flora and metabolites in very low birth weight (VLBW) infants. METHODS A total of 29 VLBW infants who were admitted to the Department of Neonatology, Children's Hospital of Chongqing Medical University, from June to December, 2020, were enrolled as subjects. According to the enteral feeding initiation time after birth, the infants were divided into two groups: <24 hours (n=15) and 24-72 hours (n=14). Fecal samples were collected at weeks 2 and 4 of hospitalization, and 16S rDNA high-throughput sequencing and gas chromatography-mass spectrometry were used to analyze the microflora and short-chain fatty acids (SCFAs) respectively in fecal samples. RESULTS The analysis of microflora showed that there was no significant difference between the two groups in Chao index (reflecting the abundance of microflora) and Shannon index (reflecting the diversity of microflora) at weeks 2 and 4 after birth (P>0.05). The analysis of flora composition showed that there was no significant difference in the main microflora at the phylum and genus levels between the two groups at weeks 2 and 4 after birth (P>0.05). The comparison of SCFAs between the two groups showed that the <24 hours group had a significantly higher level of propionic acid than the 24-72 hours group at week 4 (P<0.05), while there was no significant difference in the total amount of SCFAs and the content of the other SCFAs between the two groups (P>0.05). CONCLUSIONS Early enteral feeding has no influence on the diversity and abundance of intestinal flora in VLBW infants, but enteral feeding within 24 hours can increase the level of propionic acid, a metabolite of intestinal flora.
Collapse
|
108
|
Zhang B, Jiang M, Zhao J, Song Y, Du W, Shi J. The Mechanism Underlying the Influence of Indole-3-Propionic Acid: A Relevance to Metabolic Disorders. Front Endocrinol (Lausanne) 2022; 13:841703. [PMID: 35370963 PMCID: PMC8972051 DOI: 10.3389/fendo.2022.841703] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
The increasing prevalence of metabolic syndrome has become a serious public health problem. Certain bacteria-derived metabolites play a key role in maintaining human health by regulating the host metabolism. Recent evidence shows that indole-3-propionic acid content can be used to predict the occurrence and development of metabolic diseases. Supplementing indole-3-propionic acid can effectively improve metabolic disorders and is considered a promising metabolite. Therefore, this article systematically reviews the latest research on indole-3-propionic acid and elaborates its source of metabolism and its association with metabolic diseases. Indole-3-propionic acid can improve blood glucose and increase insulin sensitivity, inhibit liver lipid synthesis and inflammatory factors, correct intestinal microbial disorders, maintain the intestinal barrier, and suppress the intestinal immune response. The study of the mechanism of the metabolic benefits of indole-3-propionic acid is expected to be a potential compound for treating metabolic syndrome.
Collapse
Affiliation(s)
- Binbin Zhang
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- College of Life Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Minjie Jiang
- Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Song
- Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Weidong Du
- Zhejiang Traditional Chinese Medicine Hospital, Hangzhou, China
| | - Junping Shi
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Department of Infectious & Hepatology Diseases, Metabolic Disease Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
109
|
What If Not All Metabolites from the Uremic Toxin Generating Pathways Are Toxic? A Hypothesis. Toxins (Basel) 2022; 14:toxins14030221. [PMID: 35324718 PMCID: PMC8953523 DOI: 10.3390/toxins14030221] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 12/21/2022] Open
Abstract
The topic of uremic toxicity has received broad attention from the nephrological community over the past few decades. An aspect that is much less often considered is the possibility that the metabolic pathways that generate uremic toxins also may produce molecules that benefit body functions. Here, we discuss this dualism based on the example of tryptophan-derived metabolites, which comprise elements that are mainly toxic, such as indoxyl sulfate, kynurenine and kynurenic acid, but also beneficial compounds, such as indole, melatonin and indole-3-propionic acid, and ambivalent (beneficial for some aspects and harmful for others) compounds such as serotonin. This dualism can also be perceived at the level of the main receptor of the tryptophan-derived metabolites, the aryl hydrocarbon receptor (AHR), which has also been linked to both harm and benefit. We hypothesize that these beneficial effects are the reason why uremic toxin generation remained preserved throughout evolution. This duality is also not unique for the tryptophan-derived metabolites, and in this broader context we discuss the remote sensing and signaling theory (RSST). The RSST proposes that transporters (e.g., organic anion transporter 1—OAT1; ATP-binding cassette transporter G—ABCG2) and drug metabolizing enzymes form a large network of proteins interacting to promote small molecule remote communication at the inter-organ (e.g., gut–liver–heart–brain–kidney) and inter-organismal (e.g., gut microbe–host) levels. These small molecules include gut microbe-derived uremic toxins as well as beneficial molecules such as those discussed here. We emphasize that this positive side of uremic metabolite production needs more attention, and that this dualism especially needs to be considered when assessing and conceiving of therapeutic interventions. These homeostatic considerations are central to the RSST and suggest that interventions be aimed at preserving or restoring the balance between positive and negative components rather than eliminating them all without distinction.
Collapse
|
110
|
Saeb A, Grundmann SM, Gessner DK, Schuchardt S, Most E, Wen G, Eder K, Ringseis R. Feeding of cuticles from Tenebrio molitor larvae modulates the gut microbiota and attenuates hepatic steatosis in obese Zucker rats. Food Funct 2022; 13:1421-1436. [PMID: 35048923 DOI: 10.1039/d1fo03920b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Insect biomass obtained from large-scale mass-rearing of insect larvae has gained considerable attention in recent years as an alternative and sustainable source of food and feed. A byproduct from mass-rearing of insect larvae is the shed cuticles - the most external components of insects which are a relevant source of the polysaccharide chitin. While it has been shown that chitin modulates the gut microbiota and ameliorates lipid metabolic disorders in obese rodent models, feeding studies dealing with isolated insects' cuticles are completely lacking. Thus, the present study tested the hypothesis that dietary insects' cuticles modulate the gut microbiome and improve hepatic lipid metabolism in obese Zucker rats. To test this hypothesis, three groups of obese Zucker rats were fed a nutrient-adequate, semisynthetic basal diet which was supplemented with either 0% (group O), 1.5% (group O1.5) or 3.0% (group O3.0) Tenebrio molitor cuticles at the expense of cellulose. Oil red O-stained liver sections showed a marked lipid accumulation, but lipid accumulation was clearly less in group O3.0 than in groups O and O1.5. In line with this, hepatic lipid concentrations were 30% lower in group O3.0 than in group O (p < 0.05). No differences were observed across the obese groups regarding liver concentrations of methionine, S-adenosylmethionine and homocysteine. Analysis of cecal microbial community at the family level revealed that the relative abundances of Bifidobacteriaceae, Coriobacteriaceae Erysipelotrichaceae, Lactobacillaceae, Prevotellaceae, Sutterellaceae, unknown Deltaproteobacteria and unknown Firmicutes were higher and those of Anaeroplasmataceae, Desulfovibrionaceae, Eubacteriaceae, Ruminococcaceae, Saccharibacteria and unknown Clostridiales were lower in group O3.0 compared to group O (p < 0.05). Cecal digesta concentrations of total short-chain fatty acids, acetate and butyrate were higher in group O3.0 than in group O (p < 0.05). Targeted plasma metabolomics revealed 53 metabolites differing between groups, amongst which two indole metabolites, indole-3-propionic acid and 3-indoxylsulfate, were markedly elevated in group O3.0 compared to groups O1.5 and O. Regarding that increased abundances of bacteria of the Actinobacteria phylum and Lactobacillaceae family in the gut have been reported to be associated with antisteatotic, hepatoprotective and antiinflammatory effects, the pronounced increases of Bifidobacteriaceae and Coriobacteriaceae (both Actinobacteria), and of Lactobacillaceae in group O3.0 might have contributed to the amelioration of fatty liver.
Collapse
Affiliation(s)
- Armaghan Saeb
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Sarah M Grundmann
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Denise K Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Sven Schuchardt
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
| | - Erika Most
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Gaiping Wen
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| |
Collapse
|
111
|
The Serum and Fecal Metabolomic Profiles of Growing Kittens Treated with Amoxicillin/Clavulanic Acid or Doxycycline. Animals (Basel) 2022; 12:ani12030330. [PMID: 35158655 PMCID: PMC8833518 DOI: 10.3390/ani12030330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary This study investigated the impact of antibiotic treatment οn the serum and fecal metabolome (the collection of all small molecules produced by the gut bacteria and the host) of young cats. Thirty 2-month-old cats with an upper respiratory tract infection were treated with either amoxicillin/clavulanic acid for 20 days or doxycycline for 28 days. In addition, another 15 control cats that did not receive antibiotics were included. Blood was collected on days 0 (before treatment), 20/28 (last day of treatment), and 300 (10 months after the end of treatment), while feces were collected on days 0, 20/28, 60, 120, and 300. Seven serum and fecal metabolites differed between cats treated with antibiotics and control cats at the end of treatment period. Ten months after treatment, no metabolites differed from healthy cats, suggesting that amoxicillin/clavulanic acid or doxycycline treatment only temporarily affects the abundance of the serum and fecal metabolome. Abstract The long-term impact of antibiotics on the serum and fecal metabolome of kittens has not yet been investigated. Therefore, the objective of this study was to evaluate the serum and fecal metabolome of kittens with an upper respiratory tract infection (URTI) before, during, and after antibiotic treatment and compare it with that of healthy control cats. Thirty 2-month-old cats with a URTI were randomly assigned to receive either amoxicillin/clavulanic acid for 20 days or doxycycline for 28 days, and 15 cats of similar age were enrolled as controls. Fecal samples were collected on days 0, 20/28, 60, 120, and 300, while serum was collected on days 0, 20/28, and 300. Untargeted and targeted metabolomic analyses were performed on both serum and fecal samples. Seven metabolites differed significantly in antibiotic-treated cats compared to controls on day 20/28, with two differing on day 60, and two on day 120. Alterations in the pattern of serum amino acids, antioxidants, purines, and pyrimidines, as well as fecal bile acids, sterols, and fatty acids, were observed in antibiotic-treated groups that were not observed in control cats. However, the alterations caused by either amoxicillin/clavulanic acid or doxycycline of the fecal and serum metabolome were only temporary and were resolved by 10 months after their withdrawal.
Collapse
|
112
|
Zhou A, Yuan Y, Yang M, Huang Y, Li X, Li S, Yang S, Tang B. Crosstalk Between the Gut Microbiota and Epithelial Cells Under Physiological and Infectious Conditions. Front Cell Infect Microbiol 2022; 12:832672. [PMID: 35155283 PMCID: PMC8829037 DOI: 10.3389/fcimb.2022.832672] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
The gastrointestinal tract (GIT) is considered the largest immunological organ, with a diverse gut microbiota, that contributes to combatting pathogens and maintaining human health. Under physiological conditions, the crosstalk between gut microbiota and intestinal epithelial cells (IECs) plays a crucial role in GIT homeostasis. Gut microbiota and derived metabolites can compromise gut barrier integrity by activating some signaling pathways in IECs. Conversely, IECs can separate the gut microbiota from the host immune cells to avoid an excessive immune response and regulate the composition of the gut microbiota by providing an alternative energy source and releasing some molecules, such as hormones and mucus. Infections by various pathogens, such as bacteria, viruses, and parasites, can disturb the diversity of the gut microbiota and influence the structure and metabolism of IECs. However, the interaction between gut microbiota and IECs during infection is still not clear. In this review, we will focus on the existing evidence to elucidate the crosstalk between gut microbiota and IECs during infection and discuss some potential therapeutic methods, including probiotics, fecal microbiota transplantation (FMT), and dietary fiber. Understanding the role of crosstalk during infection may help us to establish novel strategies for prevention and treatment in patients with infectious diseases, such as C. difficile infection, HIV, and COVID-19.
Collapse
Affiliation(s)
- An Zhou
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yi Yuan
- Institution of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Min Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yujiao Huang
- The First Clinical College, ChongQing Medical University, Chongqing, China
| | - Xin Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Shengpeng Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- *Correspondence: Shiming Yang, ; Bo Tang,
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- *Correspondence: Shiming Yang, ; Bo Tang,
| |
Collapse
|
113
|
Biological Effects of Indole-3-Propionic Acid, a Gut Microbiota-Derived Metabolite, and Its Precursor Tryptophan in Mammals' Health and Disease. Int J Mol Sci 2022; 23:ijms23031222. [PMID: 35163143 PMCID: PMC8835432 DOI: 10.3390/ijms23031222] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Actions of symbiotic gut microbiota are in dynamic balance with the host’s organism to maintain homeostasis. Many different factors have an impact on this relationship, including bacterial metabolites. Several substrates for their synthesis have been established, including tryptophan, an exogenous amino acid. Many biological processes are influenced by the action of tryptophan and its endogenous metabolites, serotonin, and melatonin. Recent research findings also provide evidence that gut bacteria-derived metabolites of tryptophan share the biological effects of their precursor. Thus, this review aims to investigate the biological actions of indole-3-propionic acid (IPA), a gut microbiota-derived metabolite of tryptophan. We searched PUBMED and Google Scholar databases to identify pre-clinical and clinical studies evaluating the impact of IPA on the health and pathophysiology of the immune, nervous, gastrointestinal and cardiovascular system in mammals. IPA exhibits a similar impact on the energetic balance and cardiovascular system to its precursor, tryptophan. Additionally, IPA has a positive impact on a cellular level, by preventing oxidative stress injury, lipoperoxidation and inhibiting synthesis of proinflammatory cytokines. Its synthesis can be diminished in the presence of different risk factors of atherosclerosis. On the other hand, protective factors, such as the introduction of a Mediterranean diet, tend to increase its plasma concentration. IPA seems to be a promising new target, linking gut health with the cardiovascular system.
Collapse
|
114
|
Chen W, Liu D, Ren C, Su X, Wong CK, Yang R. A Special Network Comprised of Macrophages, Epithelial Cells, and Gut Microbiota for Gut Homeostasis. Cells 2022; 11:cells11020307. [PMID: 35053422 PMCID: PMC8774616 DOI: 10.3390/cells11020307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/15/2022] Open
Abstract
A number of gut epithelial cells derived immunological factors such as cytokines and chemokines, which are stimulated by the gut microbiota, can regulate host immune responses to maintain a well-balance between gut microbes and host immune system. Multiple specialized immune cell populations, such as macrophages, dendritic cells (DCs), innate lymphoid cells, and T regulatory (Treg) cells, can communicate with intestinal epithelial cells (IEC) and/or the gut microbiota bi-directionally. The gut microbiota contributes to the differentiation and function of resident macrophages. Situated at the interface between the gut commensals and macrophages, the gut epithelium is crucial for gut homeostasis in microbial recognition, signaling transformation, and immune interactions, apart from being a physical barrier. Thus, three distinct but interactive components—macrophages, microbiota, and IEC—can form a network for the delicate and dynamic regulation of intestinal homeostasis. In this review, we will discuss the crucial features of gut microbiota, macrophages, and IEC. We will also summarize recent advances in understanding the cooperative and dynamic interactions among the gut microbiota, gut macrophages, and IEC, which constitute a special network for gut homeostasis.
Collapse
Affiliation(s)
- Wei Chen
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China; (W.C.); (D.L.); (C.R.); (X.S.)
| | - Dan Liu
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China; (W.C.); (D.L.); (C.R.); (X.S.)
| | - Changhao Ren
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China; (W.C.); (D.L.); (C.R.); (X.S.)
| | - Xiaomin Su
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China; (W.C.); (D.L.); (C.R.); (X.S.)
| | - Chun-Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Rongcun Yang
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China; (W.C.); (D.L.); (C.R.); (X.S.)
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Correspondence:
| |
Collapse
|
115
|
Ahmad Kendong SM, Raja Ali RA, Nawawi KNM, Ahmad HF, Mokhtar NM. Gut Dysbiosis and Intestinal Barrier Dysfunction: Potential Explanation for Early-Onset Colorectal Cancer. Front Cell Infect Microbiol 2021; 11:744606. [PMID: 34966694 PMCID: PMC8710575 DOI: 10.3389/fcimb.2021.744606] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease that commonly affects individuals aged more than 50 years old globally. Regular colorectal screening, which is recommended for individuals aged 50 and above, has decreased the number of cancer death toll over the years. However, CRC incidence has increased among younger population (below 50 years old). Environmental factors, such as smoking, dietary factor, urbanization, sedentary lifestyle, and obesity, may contribute to the rising trend of early-onset colorectal cancer (EOCRC) because of the lack of genetic susceptibility. Research has focused on the role of gut microbiota and its interaction with epithelial barrier genes in sporadic CRC. Population with increased consumption of grain and vegetables showed high abundance of Prevotella, which reduces the risk of CRC. Microbes, such as Fusobacterium nucleatum, Bacteroides fragilis and Escherichia coli deteriorate in the intestinal barrier, which leads to the infiltration of inflammatory mediators and chemokines. Gut dysbiosis may also occur following inflammation as clearly observed in animal model. Both gut dysbiosis pre- or post-inflammatory process may cause major alteration in the morphology and functional properties of the gut tissue and explain the pathological outcome of EOCRC. The precise mechanism of disease progression from an early stage until cancer establishment is not fully understood. We hypothesized that gut dysbiosis, which may be influenced by environmental factors, may induce changes in the genome, metabolome, and immunome that could destruct the intestinal barrier function. Also, the possible underlying inflammation may give impact microbial community leading to disruption of physical and functional role of intestinal barrier. This review explains the potential role of the interaction among host factors, gut microenvironment, and gut microbiota, which may provide an answer to EOCRC.
Collapse
Affiliation(s)
- Siti Maryam Ahmad Kendong
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Sarawak, Malaysia
| | - Raja Affendi Raja Ali
- Gastroenterology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Khairul Najmi Muhammad Nawawi
- Gastroenterology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hajar Fauzan Ahmad
- Department of Industrial Biotechnology, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Gambang, Malaysia.,Center for Research in Advanced Tropical Bioscience, Universiti Malaysia Pahang, Gambang, Malaysia
| | - Norfilza Mohd Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
116
|
Structural characterization and protective effects of polysaccharide from Gracilaria lemaneiformis on LPS-induced injury in IEC-6 cells. Food Chem X 2021; 12:100157. [PMID: 34816122 PMCID: PMC8593598 DOI: 10.1016/j.fochx.2021.100157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/21/2021] [Accepted: 11/08/2021] [Indexed: 02/08/2023] Open
Abstract
This study was aimed to characterize Gracilaria lemaneiformis polysaccharides and evaluate their protective effects on Lipopolysaccharide-induced injury in IEC-6 cells. The G. lemaneiformis polysaccharide was degraded by UV/H2O2 treatment and purified to three fractions named GLP-1.0 M, GLP-1.4 M and GLP-1.6 M. The purified fractions were mainly composed of galactose, glucose and xylose. The structural analysis showed that GLP-1.6 M was a typical sulfated red alga polysaccharide containing the linear backbone of β-(1 → 3)- and α-(1 → 4)-linked galactosyl residues, anhydro-galactose units. In the Lipopolysaccharide-induced IEC-6 cells model, GLP-1.6 M exerted the strongest in vitro anti-inflammatory activity by inhibiting the release and expressions of tumor necrosis factor-α, interleukin-6 and interleukin-1β by 89.93%, 67.82% and 38.06%, respectively. Meanwhile, GLP-1.6 M enhanced the intestinal barrier function via up-regulating the expressions of tight junctions and mucin. Therefore, the purified polysaccharide from G. lemaneiformis could be a promising candidate for maintaining intestinal health in the food and pharmaceutical industries.
Collapse
|
117
|
Wu Y, Li J, Ding W, Ruan Z, Zhang L. Enhanced Intestinal Barriers by Puerarin in Combination with Tryptophan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15575-15584. [PMID: 34928145 DOI: 10.1021/acs.jafc.1c05830] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The intestinal barrier is essential for maintaining human intestinal health. The growing number of studies has shown that both puerarin and tryptophan and its metabolites have a beneficial effect on the intestinal barrier. This study aims at the combination of puerarin and tryptophan or its metabolites for improving the intestinal barrier. In our study, 40 female Sprague-Dawley rats were randomly divided into five groups (n = 8) for a 4-week experiment and dextran sodium sulfate was used to induce an intestinal barrier injury in rats. Our results showed that puerarin combined with tryptophan or its metabolites (indole-3-propionic acid, IPA) improved the intestinal barrier by enhancing the mucus layer barrier, which was mainly achieved by increasing the number of goblet cells and promoting the secretion of MUC2. Both TRPM5 and VAMP8 promoted MUC2 secretion in goblet cells through exocytosis, but their mechanisms of action are different. In our study, we found that puerarin and tryptophan showed different effects on TRPM5 and VAMP8, respectively. Puerarin enhances the expression of TRPM5, and tryptophan inhibits the expression of TRPM5; however, puerarin and tryptophan have no significant effect on the expression of VAMP8.
Collapse
Affiliation(s)
- You Wu
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jiaojiao Li
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Wenjiao Ding
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Li Zhang
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
118
|
Liu F, Sun C, Chen Y, Du F, Yang Y, Wu G. Indole-3-propionic Acid-aggravated CCl 4-induced Liver Fibrosis via the TGF-β1/Smads Signaling Pathway. J Clin Transl Hepatol 2021; 9:917-930. [PMID: 34966655 PMCID: PMC8666369 DOI: 10.14218/jcth.2021.00032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/24/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND AIMS The pathogenesis of liver fibrosis involves liver damage, inflammation, oxidative stress, and intestinal dysfunction. Indole-3-propionic acid (IPA) has been demonstrated to have antioxidant, anti-inflammatory and anticancer activities, and a role in maintaining gut homeostasis. The current study aimed to investigate the role of IPA in carbon tetrachloride (CCl4)-induced liver fibrosis and explore the underlying mechanisms. METHODS The liver fibrosis model was established in male C57BL/6 mice by intraperitoneal injection of CCl4 twice weekly. IPA intervention was made orally (20 mg/kg daily). The degree of liver injury and fibrosis were assessed by serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and histopathology. Enzyme-linked immunosorbent assay and quantitative real-time polymerase chain reaction (qPCR) were used to detect the inflammatory cytokines. The malondialdehyde (MDA), glutathione, glutathione peroxidase, superoxide dismutase, and catalase were determined via commercial kits. Hepatocyte apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. The expression of mRNA and protein was assayed by qPCR, Western blotting, or immunohistochemical staining. RESULTS After IPA treatment, the ALT and AST, apoptotic cells, and pro-inflammatory factor levels were enhanced significantly. Moreover, IPA intervention up-regulated the expression of collagen I, α-smooth muscle actin, tissue inhibitor of matrix metalloproteinase-1, matrix metalloproteinase-2, transforming growth factor-β1 (TGF-β1), Smad3, and phosphorylated-Smad2/3. Additionally, IPA intervention did not affect the MDA level. Attractively, the administration of IPA remodeled the gut flora structure. CONCLUSIONS IPA aggravated CCl4-induced liver damage and fibrosis by activating HSCs via the TGF-β1/Smads signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Gang Wu
- Correspondence to: Gang Wu, Department of Infectious Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China. ORCID: https://orcid.org/0000-0002-2513-5089. Tel/Fax: +86-830-3165-625, E-mail:
| |
Collapse
|
119
|
Li X, Zhang B, Hu Y, Zhao Y. New Insights Into Gut-Bacteria-Derived Indole and Its Derivatives in Intestinal and Liver Diseases. Front Pharmacol 2021; 12:769501. [PMID: 34966278 PMCID: PMC8710772 DOI: 10.3389/fphar.2021.769501] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
The interaction between host and microorganism widely affects the immune and metabolic status. Indole and its derivatives are metabolites produced by the metabolism of tryptophan catalyzed by intestinal microorganisms. By activating nuclear receptors, regulating intestinal hormones, and affecting the biological effects of bacteria as signaling molecules, indole and its derivatives maintain intestinal homeostasis and impact liver metabolism and the immune response, which shows good therapeutic prospects. We reviewed recent studies on indole and its derivatives, including related metabolism, the influence of diets and intestinal commensal bacteria, and the targets and mechanisms in pathological conditions, especially progress in therapeutic strategies. New research insights into indoles will facilitate a better understanding of their druggability and application in intestinal and liver diseases.
Collapse
Affiliation(s)
- Xiaojing Li
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Binbin Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiyang Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhao
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
120
|
Kang JW, Zivkovic AM. The Potential Utility of Prebiotics to Modulate Alzheimer's Disease: A Review of the Evidence. Microorganisms 2021; 9:2310. [PMID: 34835436 PMCID: PMC8625457 DOI: 10.3390/microorganisms9112310] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
The gut microbiome has recently emerged as a critical modulator of brain function, with the so-called gut-brain axis having multiple links with a variety of neurodegenerative and mental health conditions, including Alzheimer's Disease (AD). Various approaches for modulating the gut microbiome toward compositional and functional states that are consistent with improved cognitive health outcomes have been documented, including probiotics and prebiotics. While probiotics are live microorganisms that directly confer beneficial health effects, prebiotics are oligosaccharide and polysaccharide structures that can beneficially modulate the gut microbiome by enhancing the growth, survival, and/or function of gut microbes that in turn have beneficial effects on the human host. In this review, we discuss evidence showing the potential link between gut microbiome composition and AD onset or development, provide an overview of prebiotic types and their roles in altering gut microbial composition, discuss the effectiveness of prebiotics in regulating gut microbiome composition and microbially derived metabolites, and discuss the current evidence linking prebiotics with health outcomes related to AD in both animal models and human trials. Though there is a paucity of human clinical trials demonstrating the effectiveness of prebiotics in altering gut microbiome-mediated health outcomes in AD, current evidence highlights the potential of various prebiotic approaches for beneficially altering the gut microbiota or gut physiology by promoting the production of butyrate, indoles, and secondary bile acid profiles that further regulate gut immunity and mucosal homeostasis, which are associated with beneficial effects on the central immune system and brain functionality.
Collapse
Affiliation(s)
| | - Angela M. Zivkovic
- Department of Nutrition, University of California, Davis, CA 95616, USA;
| |
Collapse
|
121
|
Salekeen R, Siam MHB, Sharif DI, Lustgarten MS, Billah MM, Islam KMD. In silico insights into potential gut microbial modulation of NAD+ metabolism and longevity. J Biochem Mol Toxicol 2021; 35:e22925. [PMID: 34580953 DOI: 10.1002/jbt.22925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/12/2021] [Accepted: 09/20/2021] [Indexed: 11/08/2022]
Abstract
Recent evidence has prompted the notion of gut-microbial signatures as an indirect marker of aging and aging-associated decline in humans. However, the underlying host-symbiont molecular interactions contributing to these signatures remain poorly understood. In this study, we address this gap using cheminformatic analyses to elucidate potential gut microbial metabolites that may perturb the longevity-associated NAD+ metabolic network. In silico ADMET, KEGG interaction analysis, molecular docking, molecular dynamics simulation, and molecular mechanics calculation predict a large number of safe and bioavailable microbial metabolites to be direct and/or indirect activators of NAD+-dependent sirtuin proteins. Our simulation results suggest dihydropteroate, phenylpyruvic acid, indole-3-propionic acid, phenyllactic acid, all-trans-retinoic acid, and multiple deoxy-, methyl-, and cyclic nucleotides from intestinal microbiota as the best-performing regulators of NAD+ metabolism. Retracing these molecules to their source microorganisms also suggest commensal Escherichia, Bacteroides, Bifidobacteria, and Lactobacilli to be associated with the highest number of pro-longevity metabolites. These findings from our early-stage study, therefore, provide an informatics-based context for previous evidence in the area and grant novel insights for future clinical investigation intersecting anti-aging drug discovery, probiotics, and gut microbial signatures.
Collapse
Affiliation(s)
- Rahagir Salekeen
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Md Hasanul Banna Siam
- Department of Microbiology, Faculty of Biological Science, University of Dhaka, Dhaka, Bangladesh
| | - Dilara Islam Sharif
- Department of Genetic Engineering and Biotechnology, Faculty of Life and Earth Sciences, Jagannath University, Dhaka, Bangladesh
| | - Michael S Lustgarten
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Tufts University, Boston, Massachusetts, USA
| | - Md Morsaline Billah
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Kazi Mohammed Didarul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
122
|
Caffaratti C, Plazy C, Mery G, Tidjani AR, Fiorini F, Thiroux S, Toussaint B, Hannani D, Le Gouellec A. What We Know So Far about the Metabolite-Mediated Microbiota-Intestinal Immunity Dialogue and How to Hear the Sound of This Crosstalk. Metabolites 2021; 11:406. [PMID: 34205653 PMCID: PMC8234899 DOI: 10.3390/metabo11060406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/25/2022] Open
Abstract
Trillions of microorganisms, termed the "microbiota", reside in the mammalian gastrointestinal tract, and collectively participate in regulating the host phenotype. It is now clear that the gut microbiota, metabolites, and intestinal immune function are correlated, and that alterations of the complex and dynamic host-microbiota interactions can have deep consequences for host health. However, the mechanisms by which the immune system regulates the microbiota and by which the microbiota shapes host immunity are still not fully understood. This article discusses the contribution of metabolites in the crosstalk between gut microbiota and immune cells. The identification of key metabolites having a causal effect on immune responses and of the mechanisms involved can contribute to a deeper insight into host-microorganism relationships. This will allow a better understanding of the correlation between dysbiosis, microbial-based dysmetabolism, and pathogenesis, thus creating opportunities to develop microbiota-based therapeutics to improve human health. In particular, we systematically review the role of soluble and membrane-bound microbial metabolites in modulating host immunity in the gut, and of immune cells-derived metabolites affecting the microbiota, while discussing evidence of the bidirectional impact of this crosstalk. Furthermore, we discuss the potential strategies to hear the sound of such metabolite-mediated crosstalk.
Collapse
Affiliation(s)
- Clément Caffaratti
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
| | - Caroline Plazy
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
- Service de Biochimie Biologie Moléculaire Toxicologie Environnementale, UM Biochimie des Enzymes et des Protéines, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France
- Plateforme de Métabolomique GEMELI-GExiM, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France;
| | - Geoffroy Mery
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
- Department of Infectiology-Pneumology, CHU Grenoble-Alpes, 38000 Grenoble, France
| | - Abdoul-Razak Tidjani
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
| | - Federica Fiorini
- Plateforme de Métabolomique GEMELI-GExiM, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France;
| | - Sarah Thiroux
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
| | - Bertrand Toussaint
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
- Service de Biochimie Biologie Moléculaire Toxicologie Environnementale, UM Biochimie des Enzymes et des Protéines, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France
- Plateforme de Métabolomique GEMELI-GExiM, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France;
| | - Dalil Hannani
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
| | - Audrey Le Gouellec
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
- Service de Biochimie Biologie Moléculaire Toxicologie Environnementale, UM Biochimie des Enzymes et des Protéines, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France
- Plateforme de Métabolomique GEMELI-GExiM, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France;
| |
Collapse
|
123
|
Pothuraju R, Chaudhary S, Rachagani S, Kaur S, Roy HK, Bouvet M, Batra SK. Mucins, gut microbiota, and postbiotics role in colorectal cancer. Gut Microbes 2021; 13:1974795. [PMID: 34586012 PMCID: PMC8489937 DOI: 10.1080/19490976.2021.1974795] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
An imbalance in the crosstalk between the host and gut microbiota affects the intestinal barrier function, which results in inflammatory diseases and colorectal cancer. The colon epithelium protects itself from a harsh environment and various pathogenic organisms by forming a double mucus layer, primarily comprising mucins. Recent studies are focusing on how dietary patterns alter the gut microbiota composition, which in turn regulates mucin expression and maintains the intestinal layers. In addition, modulation of gut microbiota by microbiotic therapy (involving fecal microbiota transplantation) has emerged as a significant factor in the pathologies associated with dysbiosis. Therefore, proper communication between host and gut microbiota via different dietary patterns (prebiotics and probiotics) is needed to maintain mucus composition, mucin synthesis, and regulation. Here, we review how the interactions between diet and gut microbiota and bacterial metabolites (postbiotics) regulate mucus layer functionalities and mucin expression in human health and disease.
Collapse
Affiliation(s)
- Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sanjib Chaudhary
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hemant K. Roy
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Michael Bouvet
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|