101
|
Stager M, Cerasale DJ, Dor R, Winkler DW, Cheviron ZA. Signatures of natural selection in the mitochondrial genomes of Tachycineta swallows and their implications for latitudinal patterns of the ‘pace of life’. Gene 2014; 546:104-11. [DOI: 10.1016/j.gene.2014.05.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/21/2014] [Accepted: 05/06/2014] [Indexed: 12/19/2022]
|
102
|
Janetzko J, Batey RA. Organoboron-Based Allylation Approach to the Total Synthesis of the Medium-Ring Dilactone (+)-Antimycin A1b. J Org Chem 2014; 79:7415-24. [DOI: 10.1021/jo501134d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- John Janetzko
- Davenport Research Laboratories,
Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S
3H6, Canada
| | - Robert A. Batey
- Davenport Research Laboratories,
Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S
3H6, Canada
| |
Collapse
|
103
|
Gao AH, Fu YY, Zhang KZ, Zhang M, Jiang HW, Fan LX, Nan FJ, Yuan CG, Li J, Zhou YB, Li JY. Azoxystrobin, a mitochondrial complex III Qo site inhibitor, exerts beneficial metabolic effects in vivo and in vitro. Biochim Biophys Acta Gen Subj 2014; 1840:2212-21. [DOI: 10.1016/j.bbagen.2014.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 02/08/2023]
|
104
|
Mariadassou M, Pellay FX. Identification of amino acids in mitochondrially encoded proteins that correlate with lifespan. Exp Gerontol 2014; 56:53-8. [PMID: 24657631 DOI: 10.1016/j.exger.2014.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/03/2014] [Accepted: 03/09/2014] [Indexed: 10/25/2022]
Abstract
Animals show a huge diversity in their lifespan that can vary from a few weeks to over a hundred years in vertebrates. Size is a key element in this variation and the positive correlation between size and maximum lifespan can be observed in each class of vertebrate. Some groups and species clearly stand out in this size-lifespan relationship and the ones with exceptionally long lifespan have been studied to understand the biological causes of their low aging rate. Among the potential explanations of animals' lifespan variations, mitochondria and mitochondrially encoded genes have drawn attention because of their importance in the aging process. To understand both the extent of lifespan variations and their dependence to genes and amino acid variations in mitochondrial genes and DNA (mtDNA), we analyze in a systematic way all 13 proteins encoded by mitochondria in all vertebrates for which we had information on weight, maximum lifespan and mtDNA sequence. This comparison allows us to visualize positions, and even specific amino acids, in these sequences that correlate with lifespan. With this approach, we draw a map of 356 amino acid residues, at 296 positions within the sequence, that correlate with longer or shorter lifespan. We also compared this map with the human mitochondrial polymorphism to determine its potential as a predictive tool.
Collapse
Affiliation(s)
| | - François-Xavier Pellay
- INSERM Unit 1001, Université Paris-Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, 75014 Paris, France; NAOS group/Jean-Noël Thorel, 13855 Aix-en-Provence, France.
| |
Collapse
|
105
|
Agarwal B, Dash RK, Stowe DF, Bosnjak ZJ, Camara AKS. Isoflurane modulates cardiac mitochondrial bioenergetics by selectively attenuating respiratory complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:354-65. [PMID: 24355434 DOI: 10.1016/j.bbabio.2013.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/28/2013] [Accepted: 11/13/2013] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction contributes to cardiac ischemia-reperfusion (IR) injury but volatile anesthetics (VA) may alter mitochondrial function to trigger cardioprotection. We hypothesized that the VA isoflurane (ISO) mediates cardioprotection in part by altering the function of several respiratory and transport proteins involved in oxidative phosphorylation (OxPhos). To test this we used fluorescence spectrophotometry to measure the effects of ISO (0, 0.5, 1, 2mM) on the time-course of interlinked mitochondrial bioenergetic variables during states 2, 3 and 4 respiration in the presence of either complex I substrate K(+)-pyruvate/malate (PM) or complex II substrate K(+)-succinate (SUC) at physiological levels of extra-matrix free Ca(2+) (~200nM) and Na(+) (10mM). To mimic ISO effects on mitochondrial functions and to clearly delineate the possible ISO targets, the observed actions of ISO were interpreted by comparing effects of ISO to those elicited by low concentrations of inhibitors that act at each respiratory complex, e.g. rotenone (ROT) at complex I or antimycin A (AA) at complex III. Our conclusions are based primarily on the similar responses of ISO and titrated concentrations of ETC. inhibitors during state 3. We found that with the substrate PM, ISO and ROT similarly decreased the magnitude of state 3 NADH oxidation and increased the duration of state 3 NADH oxidation, ΔΨm depolarization, and respiration in a concentration-dependent manner, whereas with substrate SUC, ISO and ROT decreased the duration of state 3 NADH oxidation, ΔΨm depolarization and respiration. Unlike AA, ISO reduced the magnitude of state 3 NADH oxidation with PM or SUC as substrate. With substrate SUC, after complete block of complex I with ROT, ISO and AA similarly increased the duration of state 3 ΔΨm depolarization and respiration. This study provides a mechanistic understanding in how ISO alters mitochondrial function in a way that may lead to cardioprotection.
Collapse
Affiliation(s)
- Bhawana Agarwal
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ranjan K Dash
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David F Stowe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, USA; Research Service, Zablocki VA Medical Center, Milwaukee, WI, USA; Department of Biomedical Engineering, Marquette University, Milwaukee, WI, USA
| | - Zeljko J Bosnjak
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
106
|
Baniulis D, Hasan SS, Stofleth JT, Cramer WA. Mechanism of enhanced superoxide production in the cytochrome b(6)f complex of oxygenic photosynthesis. Biochemistry 2013; 52:8975-83. [PMID: 24298890 DOI: 10.1021/bi4013534] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The specific rate of superoxide (O2(•-)) production in the purified active crystallizable cytochrome b6f complex, normalized to the rate of electron transport, has been found to be more than an order of magnitude greater than that measured in isolated yeast respiratory bc1 complex. The biochemical and structural basis for the enhanced production of O2(•-) in the cytochrome b6f complex compared to that in the bc1 complex is discussed. The higher rate of superoxide production in the b6f complex could be a consequence of an increased residence time of plastosemiquinone/plastoquinol in its binding niche near the Rieske protein iron-sulfur cluster, resulting from (i) occlusion of the quinone portal by the phytyl chain of the unique bound chlorophyll, (ii) an altered environment of the proton-accepting glutamate believed to be a proton acceptor from semiquinone, or (iii) a more negative redox potential of the heme bp on the electrochemically positive side of the complex. The enhanced rate of superoxide production in the b6f complex is physiologically significant as the chloroplast-generated reactive oxygen species (ROS) functions in the regulation of excess excitation energy, is a source of oxidative damage inflicted during photosynthetic reactions, and is a major source of ROS in plant cells. Altered levels of ROS production are believed to convey redox signaling from the organelle to the cytosol and nucleus.
Collapse
Affiliation(s)
- Danas Baniulis
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University , West Lafayette, Indiana 47907, United States
| | | | | | | |
Collapse
|
107
|
Xia D, Esser L, Tang WK, Zhou F, Zhou Y, Yu L, Yu CA. Structural analysis of cytochrome bc1 complexes: implications to the mechanism of function. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1827:1278-94. [PMID: 23201476 PMCID: PMC3593749 DOI: 10.1016/j.bbabio.2012.11.008] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/13/2012] [Accepted: 11/19/2012] [Indexed: 01/18/2023]
Abstract
The cytochrome bc1 complex (bc1) is the mid-segment of the cellular respiratory chain of mitochondria and many aerobic prokaryotic organisms; it is also part of the photosynthetic apparatus of non-oxygenic purple bacteria. The bc1 complex catalyzes the reaction of transferring electrons from the low potential substrate ubiquinol to high potential cytochrome c. Concomitantly, bc1 translocates protons across the membrane, contributing to the proton-motive force essential for a variety of cellular activities such as ATP synthesis. Structural investigations of bc1 have been exceedingly successful, yielding atomic resolution structures of bc1 from various organisms and trapped in different reaction intermediates. These structures have confirmed and unified results of decades of experiments and have contributed to our understanding of the mechanism of bc1 functions as well as its inactivation by respiratory inhibitors. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
Affiliation(s)
- Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
108
|
Li H, Zhu XL, Yang WC, Yang GF. Comparative Kinetics ofQiSite Inhibitors of Cytochromebc1Complex: Picomolar Antimycin and Micromolar Cyazofamid. Chem Biol Drug Des 2013; 83:71-80. [DOI: 10.1111/cbdd.12199] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/17/2013] [Accepted: 07/26/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Hui Li
- Key Laboratory of Pesticide & Chemical Biology; College of Chemistry; Ministry of Education; Central China Normal University; Wuhan 430079 China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology; College of Chemistry; Ministry of Education; Central China Normal University; Wuhan 430079 China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology; College of Chemistry; Ministry of Education; Central China Normal University; Wuhan 430079 China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology; College of Chemistry; Ministry of Education; Central China Normal University; Wuhan 430079 China
| |
Collapse
|
109
|
Sun F, Zhou Q, Pang X, Xu Y, Rao Z. Revealing various coupling of electron transfer and proton pumping in mitochondrial respiratory chain. Curr Opin Struct Biol 2013; 23:526-38. [DOI: 10.1016/j.sbi.2013.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/13/2013] [Accepted: 06/19/2013] [Indexed: 01/23/2023]
|
110
|
Lloyd RE, McGeehan JE. Structural analysis of mitochondrial mutations reveals a role for bigenomic protein interactions in human disease. PLoS One 2013; 8:e69003. [PMID: 23874847 PMCID: PMC3706435 DOI: 10.1371/journal.pone.0069003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 06/05/2013] [Indexed: 12/25/2022] Open
Abstract
Mitochondria are the energy producing organelles of the cell, and mutations within their genome can cause numerous and often severe human diseases. At the heart of every mitochondrion is a set of five large multi-protein machines collectively known as the mitochondrial respiratory chain (MRC). This cellular machinery is central to several processes important for maintaining homeostasis within cells, including the production of ATP. The MRC is unique due to the bigenomic origin of its interacting proteins, which are encoded in the nucleus and mitochondria. It is this, in combination with the sheer number of protein-protein interactions that occur both within and between the MRC complexes, which makes the prediction of function and pathological outcome from primary sequence mutation data extremely challenging. Here we demonstrate how 3D structural analysis can be employed to predict the functional importance of mutations in mtDNA protein-coding genes. We mined the MITOMAP database and, utilizing the latest structural data, classified mutation sites based on their location within the MRC complexes III and IV. Using this approach, four structural classes of mutation were identified, including one underexplored class that interferes with nuclear-mitochondrial protein interactions. We demonstrate that this class currently eludes existing predictive approaches that do not take into account the quaternary structural organization inherent within and between the MRC complexes. The systematic and detailed structural analysis of disease-associated mutations in the mitochondrial Complex III and IV genes significantly enhances the predictive power of existing approaches and our understanding of how such mutations contribute to various pathologies. Given the general lack of any successful therapeutic approaches for disorders of the MRC, these findings may inform the development of new diagnostic and prognostic biomarkers, as well as new drugs and targets for gene therapy.
Collapse
Affiliation(s)
- Rhiannon E. Lloyd
- Cellular and Molecular Neuro-Oncology Group, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - John E. McGeehan
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Science, School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
111
|
Berry EA, De Bari H, Huang LS. Unanswered questions about the structure of cytochrome bc1 complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1258-77. [PMID: 23624176 DOI: 10.1016/j.bbabio.2013.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/13/2013] [Accepted: 04/16/2013] [Indexed: 11/25/2022]
Abstract
X-ray crystal structures of bc1 complexes obtained over the last 15 years have provided a firm structural basis for our understanding of the complex. For the most part there is good agreement between structures from different species, different crystal forms, and with different inhibitors bound. In this review we focus on some of the remaining unexplained differences, either between the structures themselves or the interpretations of the structural observations. These include the structural basis for the motion of the Rieske iron-sulfur protein in response to inhibitors, a possible conformational change involving tyrosine132 of cytochrome (cyt) b, the presence of cis-peptides at the beginnings of transmembrane helices C, E, and H, the structural insight into the function of the so-called "Core proteins", different modelings of the retained signal peptide, orientation of the low-potential heme b, and chirality of the Met ligand to heme c1. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
Affiliation(s)
- Edward A Berry
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | | | | |
Collapse
|
112
|
Madeo J, Zubair A, Marianne F. A review on the role of quinones in renal disorders. SPRINGERPLUS 2013; 2:139. [PMID: 23577302 PMCID: PMC3618882 DOI: 10.1186/2193-1801-2-139] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/10/2013] [Indexed: 12/12/2022]
Abstract
Quinones are electron and proton carriers that play a primary role in the aerobic metabolism of virtually every cell in nature. Most physiological quinones are benzoquinones. They undergo highly regulated redox reactions in the mitochondria, Golgi apparatus, plasma membrane and endoplasmic reticulum. Important consequences of these electron transfer reactions are the production of and protection against reactive oxygen species (ROS). Quinones have been extensively studied for both their cytotoxic as well as cellular protective properties and they have been particularly useful in rational drug design. The role of quinones in medicine is explored in this literature review with a particular focus on renal diseases. Due to their high basal metabolism and detoxification role, the kidneys are particularly sensitive to oxidative stress. Regardless of the underlying etiology, ROS plays an important role in both acute kidney injury (AKI) and chronic kidney diseases (CKD). Depending on the oxidative state of the kidney, quinones can be nephrotoxoic or nephro-protective. Many factors play a role in the interaction between quinones and the kidney and the consequences of this are just beginning to be explored.
Collapse
Affiliation(s)
- Jennifer Madeo
- Department of Medicine, Nassau University Medical Center, 2201 Hempstead Turnpike, East Meadow, NY 11554 USA
| | | | | |
Collapse
|
113
|
Transmembrane signaling and assembly of the cytochrome b6f-lipidic charge transfer complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1295-308. [PMID: 23507619 DOI: 10.1016/j.bbabio.2013.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/27/2013] [Accepted: 03/06/2013] [Indexed: 12/30/2022]
Abstract
Structure-function properties of the cytochrome b6f complex are sufficiently unique compared to those of the cytochrome bc1 complex that b6f should not be considered a trivially modified bc1 complex. A unique property of the dimeric b6f complex is its involvement in transmembrane signaling associated with the p-side oxidation of plastoquinol. Structure analysis of lipid binding sites in the cyanobacterial b6f complex prepared by hydrophobic chromatography shows that the space occupied by the H transmembrane helix in the cytochrome b subunit of the bc1 complex is mostly filled by a lipid in the b6f crystal structure. It is suggested that this space can be filled by the domain of a transmembrane signaling protein. The identification of lipid sites and likely function defines the intra-membrane conserved central core of the b6f complex, consisting of the seven trans-membrane helices of the cytochrome b and subunit IV polypeptides. The other six TM helices, contributed by cytochrome f, the iron-sulfur protein, and the four peripheral single span subunits, define a peripheral less conserved domain of the complex. The distribution of conserved and non-conserved domains of each monomer of the complex, and the position and inferred function of a number of the lipids, suggests a model for the sequential assembly in the membrane of the eight subunits of the b6f complex, in which the assembly is initiated by formation of the cytochrome b6-subunit IV core sub-complex in a monomer unit. Two conformations of the unique lipidic chlorophyll a, defined in crystal structures, are described, and functions of the outlying β-carotene, a possible 'latch' in supercomplex formation, are discussed. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
|
114
|
Quinone-dependent proton transfer pathways in the photosynthetic cytochrome b6f complex. Proc Natl Acad Sci U S A 2013; 110:4297-302. [PMID: 23440205 DOI: 10.1073/pnas.1222248110] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As much as two-thirds of the proton gradient used for transmembrane free energy storage in oxygenic photosynthesis is generated by the cytochrome b6f complex. The proton uptake pathway from the electrochemically negative (n) aqueous phase to the n-side quinone binding site of the complex, and a probable route for proton exit to the positive phase resulting from quinol oxidation, are defined in a 2.70-Å crystal structure and in structures with quinone analog inhibitors at 3.07 Å (tridecyl-stigmatellin) and 3.25-Å (2-nonyl-4-hydroxyquinoline N-oxide) resolution. The simplest n-side proton pathway extends from the aqueous phase via Asp20 and Arg207 (cytochrome b6 subunit) to quinone bound axially to heme c(n). On the positive side, the heme-proximal Glu78 (subunit IV), which accepts protons from plastosemiquinone, defines a route for H(+) transfer to the aqueous phase. These pathways provide a structure-based description of the quinone-mediated proton transfer responsible for generation of the transmembrane electrochemical potential gradient in oxygenic photosynthesis.
Collapse
|
115
|
Meunier B, Fisher N, Ransac S, Mazat JP, Brasseur G. Respiratory complex III dysfunction in humans and the use of yeast as a model organism to study mitochondrial myopathy and associated diseases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:1346-61. [PMID: 23220121 DOI: 10.1016/j.bbabio.2012.11.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 11/21/2012] [Accepted: 11/28/2012] [Indexed: 11/25/2022]
Abstract
The bc1 complex or complex III is a central component of the aerobic respiratory chain in prokaryotic and eukaryotic organisms. It catalyzes the oxidation of quinols and the reduction of cytochrome c, establishing a proton motive force used to synthesize adenosine triphosphate (ATP) by the F1Fo ATP synthase. In eukaryotes, the complex III is located in the inner mitochondrial membrane. The genes coding for the complex III have a dual origin. While cytochrome b is encoded by the mitochondrial genome, all the other subunits are encoded by the nuclear genome. In this review, we compile an exhaustive list of the known human mutations and associated pathologies found in the mitochondrially-encoded cytochrome b gene as well as the fewer mutations in the nuclear genes coding for the complex III structural subunits and accessory proteins such as BCS1L involved in the assembly of the complex III. Due to the inherent difficulties of studying human biopsy material associated with complex III dysfunction, we also review the work that has been conducted to study the pathologies with the easy to handle eukaryotic microorganism, the yeast Saccharomyces cerevisiae. Phenotypes, biochemical data and possible effects due to the mutations are also discussed in the context of the known three-dimensional structure of the eukaryotic complex III. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
Affiliation(s)
- B Meunier
- CNRS, Centre de Génétique Moléculaire, UPR 3404, Gif-sur-Yvette, F-91198, France
| | | | | | | | | |
Collapse
|
116
|
Dikanov SA. Resolving protein-semiquinone interactions by two-dimensional ESEEM spectroscopy. ELECTRON PARAMAGNETIC RESONANCE 2012. [DOI: 10.1039/9781849734837-00103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- S. A. Dikanov
- University of Illinois at Urbana-Champaign, Department of Veterinary Clinical Medicine 190 MSB, 506 S. Mathews Ave., Urbana IL 61801 USA
| |
Collapse
|
117
|
Chen A, Raule N, Chomyn A, Attardi G. Decreased reactive oxygen species production in cells with mitochondrial haplogroups associated with longevity. PLoS One 2012; 7:e46473. [PMID: 23144696 PMCID: PMC3483264 DOI: 10.1371/journal.pone.0046473] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 08/31/2012] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is highly polymorphic, and its variations in humans may contribute to individual differences in function. Zhang and colleagues found a strikingly higher frequency of a C150T transition in the D-loop of mtDNA from centenarians and twins of an Italian population, and also demonstrated that this base substitution causes a remodeling of the mtDNA 151 replication origin in human leukocytes and fibroblasts [1]. The C150T transition is a polymorphism associated with several haplogroups. To determine whether haplogroups that carry the C150T transition display any phenotype that may be advantageous for longevity, we analyzed cybrids carrying or not the C150T transition. These cybrids were obtained by fusing cytoplasts derived from human fibroblasts with human mtDNA-less cells (ρ0 cells). We chose for cybrid construction and analysis haplogroup-matched pairs of fibroblast strains containing or not the C150T transition. In particular, we used, as one pair of mtDNA donors, a fibroblast strain of the U3a haplogroup, carrying the C150T transition and a strain of the U-K2 haplogroup, without the C150T transition, and as another pair, fibroblasts of the J2b haplogroup, carrying the C150T transition and of the J1c haplogroup, without the C150T transition. We have found no association of respiratory capacity, mtDNA level, mitochondrial gene expression level, or growth rate with the presence of the C150T transition. However, we have found that the cybrids with haplogroups that include the C150T transition have in common a lower reactive oxygen species (ROS) production rate than the haplogroup-matched cybrids without that transition. Thus, the lower ROS production rate may be a factor in the increased longevity associated with the U and the J2 haplogroups. Of further interest, we found that cybrids with the U3a haplogroup exhibited a higher respiration rate than the other cybrids examined.
Collapse
Affiliation(s)
- Ai Chen
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (A. Chen); (A. Chomyn)
| | | | - Anne Chomyn
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (A. Chen); (A. Chomyn)
| | | |
Collapse
|
118
|
Patra R, Sahoo D, Dey S, Sil D, Rath SP. Switching Orientation of Two Axial Imidazole Ligands between Parallel and Perpendicular in Low-Spin Fe(III) and Fe(II) Nonplanar Porphyrinates. Inorg Chem 2012; 51:11294-305. [DOI: 10.1021/ic300229u] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ranjan Patra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Dipankar Sahoo
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Soumyajit Dey
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Debangsu Sil
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| |
Collapse
|
119
|
Vallières C, Fisher N, Antoine T, Al-Helal M, Stocks P, Berry NG, Lawrenson AS, Ward SA, O'Neill PM, Biagini GA, Meunier B. HDQ, a potent inhibitor of Plasmodium falciparum proliferation, binds to the quinone reduction site of the cytochrome bc1 complex. Antimicrob Agents Chemother 2012; 56:3739-47. [PMID: 22547613 PMCID: PMC3393389 DOI: 10.1128/aac.00486-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 04/17/2012] [Indexed: 11/20/2022] Open
Abstract
The mitochondrial bc(1) complex is a multisubunit enzyme that catalyzes the transfer of electrons from ubiquinol to cytochrome c coupled to the vectorial translocation of protons across the inner mitochondrial membrane. The complex contains two distinct quinone-binding sites, the quinol oxidation site of the bc(1) complex (Q(o)) and the quinone reduction site (Q(i)), located on opposite sides of the membrane within cytochrome b. Inhibitors of the Q(o) site such as atovaquone, active against the bc(1) complex of Plasmodium falciparum, have been developed and formulated as antimalarial drugs. Unfortunately, single point mutations in the Q(o) site can rapidly render atovaquone ineffective. The development of drugs that could circumvent cross-resistance with atovaquone is needed. Here, we report on the mode of action of a potent inhibitor of P. falciparum proliferation, 1-hydroxy-2-dodecyl-4(1H)quinolone (HDQ). We show that the parasite bc(1) complex--from both control and atovaquone-resistant strains--is inhibited by submicromolar concentrations of HDQ, indicating that the two drugs have different targets within the complex. The binding site of HDQ was then determined by using a yeast model. Introduction of point mutations into the Q(i) site, namely, G33A, H204Y, M221Q, and K228M, markedly decreased HDQ inhibition. In contrast, known inhibitor resistance mutations at the Q(o) site did not cause HDQ resistance. This study, using HDQ as a proof-of-principle inhibitor, indicates that the Q(i) site of the bc(1) complex is a viable target for antimalarial drug development.
Collapse
Affiliation(s)
- Cindy Vallières
- Centre de Génétique Moléculaire, CNRS, FRC 3115, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Nicholas Fisher
- Centre for Tropical and Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Thomas Antoine
- Centre for Tropical and Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Mohammed Al-Helal
- Centre for Tropical and Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Paul Stocks
- Centre for Tropical and Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Neil G. Berry
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | | | - Stephen A. Ward
- Centre for Tropical and Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Paul M. O'Neill
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Giancarlo A. Biagini
- Centre for Tropical and Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Brigitte Meunier
- Centre de Génétique Moléculaire, CNRS, FRC 3115, Avenue de la Terrasse, Gif-sur-Yvette, France
| |
Collapse
|
120
|
De Liu X, Jayasena DD, Jung Y, Jung S, Kang BS, Heo KN, Lee JH, Jo C. Differential Proteome Analysis of Breast and Thigh Muscles between Korean Native Chickens and Commercial Broilers. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2012; 25:895-902. [PMID: 25049642 PMCID: PMC4093099 DOI: 10.5713/ajas.2011.11374] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 02/02/2012] [Accepted: 01/11/2012] [Indexed: 11/27/2022]
Abstract
The Korean native chickens (Woorimotdak™, KNC) and commercial broilers (Ross, CB) show obvious differences in meat flavor after cooking. To understand the contribution of protein and peptide for meat flavor, 2-dimensional (2-D) gel electrophoresis and matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry was performed. A total of 16 protein spots were differentially expressed in the breast and thigh meat between the two breeds. A total of seven protein spots were represented by different levels between KNC and CB for breast meat. Among them three protein spots (TU39149, TU40162 and TU39598) showed increases in their expressions in KNC while other four protein spots (BU40125, BU40119, BU40029 and BU39904) showed increases in CB. All nine protein spots that were represented by different levels between KNC and CB for thigh meat showed increases in their expression in KNC. Phosphoglucomutase 1 (PGM 1), myosin heavy chain (MyHC), heat shock protein B1 (HSP27), cytochrome c reductase (Enzyme Q), Glyoxylase 1, DNA methyltransferase 3B (DNA MTase 3) were identified as the main protein spots by MALDI-TOF mass spectrometry. These results can provide valuable basic information for understanding the molecular mechanism responsible for breed specific differences in meat quality, especially the meat flavour.
Collapse
Affiliation(s)
| | - Dinesh D. Jayasena
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, 305-764,
Korea
| | - Yeonkuk Jung
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, 305-764,
Korea
| | - Samooel Jung
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, 305-764,
Korea
| | - Bo Seok Kang
- Department of Poultry Science, National Institute of Animal Science, RDA, Sunghwan, 331-801,
Korea
| | - Kang Nyeong Heo
- Department of Poultry Science, National Institute of Animal Science, RDA, Sunghwan, 331-801,
Korea
| | - Jun Heon Lee
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, 305-764,
Korea
| | - Cheorun Jo
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, 305-764,
Korea
| |
Collapse
|
121
|
Kallas T. Cytochrome b 6 f Complex at the Heart of Energy Transduction and Redox Signaling. PHOTOSYNTHESIS 2012. [DOI: 10.1007/978-94-007-1579-0_21] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
122
|
Papa S, Martino PL, Capitanio G, Gaballo A, De Rasmo D, Signorile A, Petruzzella V. The oxidative phosphorylation system in mammalian mitochondria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:3-37. [PMID: 22399416 DOI: 10.1007/978-94-007-2869-1_1] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The chapter provides a review of the state of art of the oxidative phosphorylation system in mammalian mitochondria. The sections of the paper deal with: (i) the respiratory chain as a whole: redox centers of the chain and protonic coupling in oxidative phosphorylation (ii) atomic structure and functional mechanism of protonmotive complexes I, III, IV and V of the oxidative phosphorylation system (iii) biogenesis of oxidative phosphorylation complexes: mitochondrial import of nuclear encoded subunits, assembly of oxidative phosphorylation complexes, transcriptional factors controlling biogenesis of the complexes. This advanced knowledge of the structure, functional mechanism and biogenesis of the oxidative phosphorylation system provides a background to understand the pathological impact of genetic and acquired dysfunctions of mitochondrial oxidative phosphorylation.
Collapse
Affiliation(s)
- Sergio Papa
- Department of Basic Medical Sciences, University of Bari, Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|
123
|
Hasan SS, Yamashita E, Ryan CM, Whitelegge JP, Cramer WA. Conservation of lipid functions in cytochrome bc complexes. J Mol Biol 2011; 414:145-62. [PMID: 21978667 DOI: 10.1016/j.jmb.2011.09.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 09/05/2011] [Accepted: 09/14/2011] [Indexed: 11/24/2022]
Abstract
Lipid binding sites and properties are compared in two sub-families of hetero-oligomeric membrane protein complexes known to have similar functions in order to gain further understanding of the role of lipid in the function, dynamics, and assembly of these complexes. Using the crystal structure information for both complexes, we compared the lipid binding properties of the cytochrome b(6)f and bc(1) complexes that function in photosynthetic and respiratory membrane energy transduction. Comparison of lipid and detergent binding sites in the b(6)f complex with those in bc(1) shows significant conservation of lipid positions. Seven lipid binding sites in the cyanobacterial b(6)f complex overlap three natural sites in the Chlamydomonas reinhardtii algal complex and four sites in the yeast mitochondrial bc(1) complex. The specific identity of lipids is different in b(6)f and bc(1) complexes: b(6)f contains sulfoquinovosyldiacylglycerol, phosphatidylglycerol, phosphatidylcholine, monogalactosyldiacylglycerol, and digalactosyldiacylglycerol, whereas cardiolipin, phosphatidylethanolamine, and phosphatidic acid are present in the yeast bc(1) complex. The lipidic chlorophyll a and β-carotene (β-car) in cyanobacterial b(6)f, as well as eicosane in C. reinhardtii, are unique to the b(6)f complex. Inferences of lipid binding sites and functions were supported by sequence, interatomic distance, and B-factor information on interacting lipid groups and coordinating amino acid residues. The lipid functions inferred in the b(6)f complex are as follows: (i) substitution of a transmembrane helix by a lipid and chlorin ring, (ii) lipid and β-car connection of peripheral and core domains, (iii) stabilization of the iron-sulfur protein transmembrane helix, (iv) n-side charge and polarity compensation, and (v) β-car-mediated super-complex with the photosystem I complex.
Collapse
Affiliation(s)
- S Saif Hasan
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
124
|
Cramer WA, Hasan SS, Yamashita E. The Q cycle of cytochrome bc complexes: a structure perspective. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1807:788-802. [PMID: 21352799 PMCID: PMC3101715 DOI: 10.1016/j.bbabio.2011.02.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 02/08/2011] [Accepted: 02/13/2011] [Indexed: 12/01/2022]
Abstract
Aspects of the crystal structures of the hetero-oligomeric cytochrome bc(1) and b(6)f ("bc") complexes relevant to their electron/proton transfer function and the associated redox reactions of the lipophilic quinones are discussed. Differences between the b(6)f and bc(1) complexes are emphasized. The cytochrome bc(1) and b(6)f dimeric complexes diverge in structure from a core of subunits that coordinate redox groups consisting of two bis-histidine coordinated hemes, a heme b(n) and b(p) on the electrochemically negative (n) and positive (p) sides of the complex, the high potential [2Fe-2S] cluster and c-type heme at the p-side aqueous interface and aqueous phase, respectively, and quinone/quinol binding sites on the n- and p-sides of the complex. The bc(1) and b(6)f complexes diverge in subunit composition and structure away from this core. b(6)f Also contains additional prosthetic groups including a c-type heme c(n) on the n-side, and a chlorophyll a and β-carotene. Common structure aspects; functions of the symmetric dimer. (I) Quinone exchange with the bilayer. An inter-monomer protein-free cavity of approximately 30Å along the membrane normal×25Å (central inter-monomer distance)×15Å (depth in the center), is common to both bc(1) and b(6)f complexes, providing a niche in which the lipophilic quinone/quinol (Q/QH(2)) can be exchanged with the membrane bilayer. (II) Electron transfer. The dimeric structure and the proximity of the two hemes b(p) on the electrochemically positive side of the complex in the two monomer units allow the possibility of two alternate routes of electron transfer across the complex from heme b(p) to b(n): intra-monomer and inter-monomer involving electron cross-over between the two hemes b(p). A structure-based summary of inter-heme distances in seven bc complexes, representing mitochondrial, chromatophore, cyanobacterial, and algal sources, indicates that, based on the distance parameter, the intra-monomer pathway would be favored kinetically. (III) Separation of quinone binding sites. A consequence of the dimer structure and the position of the Q/QH(2) binding sites is that the p-side QH(2) oxidation and n-side Q reduction sites are each well separated. Therefore, in the event of an overlap in residence time by QH(2) or Q molecules at the two oxidation or reduction sites, their spatial separation would result in minimal steric interference between extended Q or QH(2) isoprenoid chains. (IV) Trans-membrane QH(2)/Q transfer. (i) n/p-side QH(2)/Q transfer may be hindered by lipid acyl chains; (ii) the shorter less hindered inter-monomer pathway across the complex would not pass through the center of the cavity, as inferred from the n-side antimycin site on one monomer and the p-side stigmatellin site on the other residing on the same surface of the complex. (V) Narrow p-side portal for QH(2)/Q passage. The [2Fe-2S] cluster that serves as oxidant, and whose histidine ligand serves as a H(+) acceptor in the oxidation of QH(2), is connected to the inter-monomer cavity by a narrow extended portal, which is also occupied in the b(6)f complex by the 20 carbon phytyl chain of the bound chlorophyll.
Collapse
Affiliation(s)
- William A Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
125
|
Kokhan O, Shinkarev VP. All-atom molecular dynamics simulations reveal significant differences in interaction between antimycin and conserved amino acid residues in bovine and bacterial bc1 complexes. Biophys J 2011; 100:720-728. [PMID: 21281587 DOI: 10.1016/j.bpj.2010.12.3705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/09/2010] [Accepted: 12/13/2010] [Indexed: 11/17/2022] Open
Abstract
Antimycin A is the most frequently used specific and powerful inhibitor of the mitochondrial respiratory chain. We used all-atom molecular dynamics (MD) simulations to study the dynamic aspects of the interaction of antimycin A with the Q(i) site of the bacterial and bovine bc(1) complexes embedded in a membrane. The MD simulations revealed considerable conformational flexibility of antimycin and significant mobility of antimycin, as a whole, inside the Q(i) pocket. We conclude that many of the differences in antimycin binding observed in high-resolution x-ray structures may have a dynamic origin and result from fluctuations of protein and antimycin between multiple conformational states of similar energy separated by low activation barriers, as well as from the mobility of antimycin within the Q(i) pocket. The MD simulations also revealed a significant difference in interaction between antimycin and conserved amino acid residues in bovine and bacterial bc(1) complexes. The strong hydrogen bond between antimycin and conserved Asp-228 (bovine numeration) was observed to be frequently broken in the bacterial bc(1) complex and only rarely in the bovine bc(1) complex. In addition, the distances between antimycin and conserved His-201 and Lys-227 were consistently larger in the bacterial bc(1) complex. The observed differences could be responsible for a weaker interaction of antimycin with the bacterial bc(1) complex.
Collapse
Affiliation(s)
- Oleksandr Kokhan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Vladimir P Shinkarev
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
126
|
Berry EA, Huang LS. Conformationally linked interaction in the cytochrome bc(1) complex between inhibitors of the Q(o) site and the Rieske iron-sulfur protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1349-63. [PMID: 21575592 DOI: 10.1016/j.bbabio.2011.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/01/2011] [Accepted: 04/01/2011] [Indexed: 10/18/2022]
Abstract
The modified Q cycle mechanism accounts for the proton and charge translocation stoichiometry of the bc(1) complex, and is now widely accepted. However the mechanism by which the requisite bifurcation of electron flow at the Q(o) site reaction is enforced is not clear. One of several proposals involves conformational gating of the docking of the Rieske ISP at the Q(o) site, controlled by the stage of the reaction cycle. Effects of different Q(o)-site inhibitors on the position of the ISP seen in crystals may reflect the same conformational mechanism, in which case understanding how different inhibitors control the position of the ISP may be a key to understanding the enforcement of bifurcation at the Q(o) site (Table 1). Here we examine the available structures of cytochrome bc(1) with different Q(o)-site inhibitors and different ISP positions to look for clues to this mechanism. The effect of ISP removal on binding affinity of the inhibitors stigmatellin and famoxadone suggest a "mutual stabilization" of inhibitor binding and ISP docking, however this thermodynamic observation sheds little light on the mechanism. The cd(1) helix of cytochrome b moves in such a way as to accommodate docking when inhibitors favoring docking are bound, but it is impossible with the current structures to say whether this movement of α-cd(1) is a cause or result of ISP docking. One component of the movement of the linker between E and F helices also correlates with the type of inhibitor and ISP position, and seems to be related to the H-bonding pattern of Y279 of cytochrome b. An H-bond from Y279 to the ISP, and its possible modulation by movement of F275 in the presence of famoxadone and related inhibitors, or its competition with an alternate H-bond to I269 of cytochrome b that may be destabilized by bound famoxadone, suggest other possible mechanisms. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins.
Collapse
Affiliation(s)
- Edward A Berry
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
| | | |
Collapse
|
127
|
Arechederra RL, Waheed A, Sly WS, Minteer SD. Electrically wired mitochondrial electrodes for measuring mitochondrial function for drug screening. Analyst 2011; 136:3747-52. [DOI: 10.1039/c1an15370f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
128
|
Arechederra MN, Fischer CN, Wetzel DJ, Minteer SD. Evaluation of the electron transport chain inhibition and uncoupling of mitochondrial bioelectrocatalysis with antibiotics and nitro-based compounds. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2010.09.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
129
|
Gómez-Durán A, Pacheu-Grau D, López-Pérez MJ, Montoya J, Ruiz-Pesini E. Mitochondrial pharma-Q-genomics: targeting the OXPHOS cytochrome b. Drug Discov Today 2010; 16:176-80. [PMID: 21112412 DOI: 10.1016/j.drudis.2010.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 11/19/2010] [Indexed: 01/18/2023]
Abstract
Genetic variation in human cytochrome b generates structurally different coenzyme Q binding pockets, affects the coupling efficiency of the oxidative phosphorylation system and susceptibility to different medical conditions. As modification of coupling efficiency has already been shown to have therapeutic interest, these structural differences might be used to develop new drugs and allow for personalized medicine, giving rise to a new field: mitochondrial pharmacogenomics.
Collapse
Affiliation(s)
- Aurora Gómez-Durán
- Departamento de Bioquímica, Biología Molecular y Celular, Centro de Investigaciones, Biomédicas En Red de Enfermedades Raras (CIBERER), Instituto Aragonés de Ciencias de la Salud (I+CS), Spain
| | | | | | | | | |
Collapse
|
130
|
Zheng Z, Dutton PL, Gunner MR. The measured and calculated affinity of methyl- and methoxy-substituted benzoquinones for the Q(A) site of bacterial reaction centers. Proteins 2010; 78:2638-54. [PMID: 20607696 DOI: 10.1002/prot.22779] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quinones play important roles in mitochondrial and photosynthetic energy conversion acting as intramembrane, mobile electron, and proton carriers between catalytic sites in various electron transfer proteins. They display different affinity, selectivity, functionality, and exchange dynamics in different binding sites. The computational analysis of quinone binding sheds light on the requirements for quinone affinity and specificity. The affinities of 10 oxidized, neutral benzoquinones were measured for the high affinity Q(A) site in the detergent-solubilized Rhodobacter sphaeroides bacterial photosynthetic reaction center. Multiconformation Continuum Electrostatics was then used to calculate their relative binding free energies by grand canonical Monte Carlo sampling with a rigid protein backbone, flexible ligand, and side chain positions and protonation states. Van der Waals and torsion energies, Poisson-Boltzmann continuum electrostatics, and accessible surface area-dependent ligand-solvent interactions are considered. An initial, single cycle of GROMACS backbone optimization improves the match with experiment as do coupled-ligand and side-chain motions. The calculations match experiment with an root mean square deviation (RMSD) of 2.29 and a slope of 1.28. The affinities are dominated by favorable protein-ligand van der Waals rather than electrostatic interactions. Each quinone appears in a closely clustered set of positions. Methyl and methoxy groups move into the same positions as found for the native quinone. Difficulties putting methyls into methoxy sites are observed. Calculations using a solvent-accessible surface area-dependent implicit van der Waals interaction smoothed out small clashes, providing a better match to experiment with a RMSD of 0.77 and a slope of 0.97.
Collapse
Affiliation(s)
- Zhong Zheng
- Department of Physics, City College of New York, New York, New York 10031, USA
| | | | | |
Collapse
|
131
|
Konkle ME, Elsenheimer KN, Hakala K, Robicheaux JC, Weintraub ST, Hunsicker-Wang LM. Chemical modification of the Rieske protein from Thermus thermophilus using diethyl pyrocarbonate modifies ligating histidine 154 and reduces the [2FE-2S] cluster. Biochemistry 2010; 49:7272-81. [PMID: 20684561 DOI: 10.1021/bi1007904] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Rieske proteins are a class of electron transport proteins that are intricately involved in respiratory and photosynthetic processes. One unique property of Rieske proteins is that the reduction potential is pH-dependent. The ionizable groups responding to changes in pH have recently been shown to be the two histidine residues that ligate the [2Fe-2S] cluster. To probe the chemical reactivity toward and the accessibility of the ligating histidines to small molecules, akin to the substrate quinol and the inhibitor stigmatellin, the Thermus thermophilus Rieske protein was reacted with diethyl pyrocarbonate (DEPC) over a range of pH values. The modification was followed by UV-visible, circular dichroism, and EPR spectroscopies and the end product analyzed by mass spectrometry. The ligating His154, as well as the two nonligating histidines and surface-exposed lysines, were modified. Interestingly, modification of the protein by DEPC was also found to reduce the metal cluster. The ability to control the redox state was examined by the addition of oxidants and reductants and removal of the DEPC-histidine adduct by sodium hydroxide. Characterization of the DEPC-modified Rieske protein, which remains redox active, offers a probe to analyze the effects of small molecules that inhibit the function of the bc(1) complex and that have also been shown to interact with the ligating histidines of the Rieske [2Fe-2S] cluster in crystal structures of the complex.
Collapse
Affiliation(s)
- Mary E Konkle
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas 78212, USA
| | | | | | | | | | | |
Collapse
|
132
|
Wang Q, Yu L, Yu CA. Cross-talk between mitochondrial malate dehydrogenase and the cytochrome bc1 complex. J Biol Chem 2010; 285:10408-14. [PMID: 20075069 DOI: 10.1074/jbc.m109.085787] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interactions between the mitochondrial cytochrome bc(1) complex and matrix-soluble proteins were studied by a precipitation pulldown technique. Purified, detergent-dispersed bc(1) complex was incubated with mitochondrial matrix proteins followed by dialysis in the absence of detergent. The interacting protein(s) was co-precipitated with bc(1) complex upon centrifugation. One of the matrix proteins pulled down by bc(1) complex was identified as mitochondrial malate dehydrogenase (MDH) by matrix-assisted laser desorption ionization time-of-flight mass spectrometry and confirmed by Western blotting with anti-MDH antibody. Using a cross-linking technique, subunits I, II (core I and II), and V of the bc(1) complex were identified as the interacting sites for MDH. Incubating purified MDH with the detergent dispersed bc(1) complex results in an increase of the activities of both the bc(1) complex and MDH. The effect of the bc(1) complex on the activities of MDH is unidirectional (oxaloacetate --> malate). These results suggest that the novel cross-talk between citric acid cycle enzymes and electron transfer chain complexes might play a regulatory role in mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Qiyu Wang
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | | |
Collapse
|
133
|
Lhee S, Kolling DRJ, Nair SK, Dikanov SA, Crofts AR. Modifications of protein environment of the [2Fe-2S] cluster of the bc1 complex: effects on the biophysical properties of the rieske iron-sulfur protein and on the kinetics of the complex. J Biol Chem 2009; 285:9233-48. [PMID: 20023300 DOI: 10.1074/jbc.m109.043505] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rate-determining step in the overall turnover of the bc(1) complex is electron transfer from ubiquinol to the Rieske iron-sulfur protein (ISP) at the Q(o)-site. Structures of the ISP from Rhodobacter sphaeroides show that serine 154 and tyrosine 156 form H-bonds to S-1 of the [2Fe-2S] cluster and to the sulfur atom of the cysteine liganding Fe-1 of the cluster, respectively. These are responsible in part for the high potential (E(m)(,7) approximately 300 mV) and low pK(a) (7.6) of the ISP, which determine the overall reaction rate of the bc(1) complex. We have made site-directed mutations at these residues, measured thermodynamic properties using protein film voltammetry to evaluate the E(m) and pK(a) values of ISPs, explored the local proton environment through two-dimensional electron spin echo envelope modulation, and characterized function in strains S154T, S154C, S154A, Y156F, and Y156W. Alterations in reaction rate were investigated under conditions in which concentration of one substrate (ubiquinol or ISP(ox)) was saturating and the other was varied, allowing calculation of kinetic terms and relative affinities. These studies confirm that H-bonds to the cluster or its ligands are important determinants of the electrochemical characteristics of the ISP, likely through electron affinity of the interacting atom and the geometry of the H-bonding neighborhood. The calculated parameters were used in a detailed Marcus-Brønsted analysis of the dependence of rate on driving force and pH. The proton-first-then-electron model proposed accounts naturally for the effects of mutation on the overall reaction.
Collapse
Affiliation(s)
- Sangmoon Lhee
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
134
|
Berry EA, Huang LS, Lee DW, Daldal F, Nagai K, Minagawa N. Ascochlorin is a novel, specific inhibitor of the mitochondrial cytochrome bc1 complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1797:360-70. [PMID: 20025846 DOI: 10.1016/j.bbabio.2009.12.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 12/03/2009] [Accepted: 12/08/2009] [Indexed: 11/24/2022]
Abstract
Ascochlorin is an isoprenoid antibiotic that is produced by the phytopathogenic fungus Ascochyta viciae. Similar to ascofuranone, which specifically inhibits trypanosome alternative oxidase by acting at the ubiquinol binding domain, ascochlorin is also structurally related to ubiquinol. When added to the mitochondrial preparations isolated from rat liver, or the yeast Pichia (Hansenula) anomala, ascochlorin inhibited the electron transport via CoQ in a fashion comparable to antimycin A and stigmatellin, indicating that this antibiotic acted on the cytochrome bc(1) complex. In contrast to ascochlorin, ascofuranone had much less inhibition on the same activities. On the one hand, like the Q(i) site inhibitors antimycin A and funiculosin, ascochlorin induced in H. anomala the expression of nuclear-encoded alternative oxidase gene much more strongly than the Q(o) site inhibitors tested. On the other hand, it suppressed the reduction of cytochrome b and the generation of superoxide anion in the presence of antimycin A(3) in a fashion similar to the Q(o) site inhibitor myxothiazol. These results suggested that ascochlorin might act at both the Q(i) and the Q(o) sites of the fungal cytochrome bc(1) complex. Indeed, the altered electron paramagnetic resonance (EPR) lineshape of the Rieske iron-sulfur protein, and the light-induced, time-resolved cytochrome b and c reduction kinetics of Rhodobacter capsulatus cytochrome bc(1) complex in the presence of ascochlorin demonstrated that this inhibitor can bind to both the Q(o) and Q(i) sites of the bacterial enzyme. Additional experiments using purified bovine cytochrome bc(1) complex showed that ascochlorin inhibits reduction of cytochrome b by ubiquinone through both Q(i) and Q(o) sites. Moreover, crystal structure of chicken cytochrome bc(1) complex treated with excess ascochlorin revealed clear electron densities that could be attributed to ascochlorin bound at both the Q(i) and Q(o) sites. Overall findings clearly show that ascochlorin is an unusual cytochrome bc(1) inhibitor that acts at both of the active sites of this enzyme.
Collapse
Affiliation(s)
- Edward A Berry
- SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | | | | | | | | | | |
Collapse
|
135
|
McLuskey K, Roszak AW, Zhu Y, Isaacs NW. Crystal structures of all-alpha type membrane proteins. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:723-55. [DOI: 10.1007/s00249-009-0546-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/19/2009] [Accepted: 08/26/2009] [Indexed: 01/05/2023]
|
136
|
Chen QL, Tang XS, Yao WJ, Lu SQ. Bioinformatics analysis of the complete sequences of cytochrome b of Takydromus sylvaticus and modeling the tertiary structure of encoded protein. Int J Biol Sci 2009; 5:596-602. [PMID: 19774111 PMCID: PMC2748471 DOI: 10.7150/ijbs.5.596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Accepted: 09/15/2009] [Indexed: 11/25/2022] Open
Abstract
Cytochrome b (cyt b) gene complete sequences (1143bp) of Takydromus sylvaticus were sequenced. In order to clarify the phylogenetic position of the Takydromus sylvaticus, we investigated the phylogeny of 15 Takydromus spp. distributed in East-Asia by Maximum Parsimony (MP), Bayesian Inference (BI), and Maximum Likelihood (ML) methods using DNA fragments of cyt b genes. The results supported that the Platyplacopus merged into Takydromus and negated the validity of Platyplacopus. Furthermore, the prediction of tertiary structures of cyt b exhibited the CD loop region contain two short helices forming a hairpin arrangement, namely cd1 and cd2. Thermostability analysis shows that the CD-loop region is unstable thermodynamically and may provide mobility to amino acids located at the heme, and might provide high flexibility to the top of ISP (iron-sulfur protein) and the cavity region of Qo binding site. It suggested that the two short helices of CD loop region of cyt b was a dominating portion for ISP binding site.
Collapse
Affiliation(s)
- Qi-Long Chen
- College of Life and Environment Science, Huangshan University, Huangshan, Anhui, 245021, China
| | | | | | | |
Collapse
|
137
|
Sarewicz M, Dutka M, Froncisz W, Osyczka A. Magnetic interactions sense changes in distance between heme b(L) and the iron-sulfur cluster in cytochrome bc(1). Biochemistry 2009; 48:5708-20. [PMID: 19415898 PMCID: PMC2697599 DOI: 10.1021/bi900511b] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
During the operation of cytochrome bc1, a key enzyme of biological energy conversion, the iron−sulfur head domain of one of the subunits of the catalytic core undergoes a large-scale movement from the catalytic quinone oxidation Qo site to cytochrome c1. This changes a distance between the two iron−two sulfur (FeS) cluster and other cofactors of the redox chains. Although the role and the mechanism of this movement have been intensely studied, they both remain poorly understood, partly because the movement itself is not easily traceable experimentally. Here, we take advantage of magnetic interactions between the reduced FeS cluster and oxidized heme bL to use dipolar enhancement of phase relaxation of the FeS cluster as a spectroscopic parameter which with a unique clarity and specificity senses changes in the distance between those two cofactors. The dipolar relaxation curves measured by EPR at Q-band in a glass state of frozen solution (i.e., under the conditions trapping a dynamic distribution of FeS positions that existed in a liquid phase) of isolated cytochrome bc1 were compared with the curves calculated for the FeS cluster occupying distinct positions in various crystals of cytochrome bc1. This comparison revealed the existence of a broad distribution of the FeS positions in noninhibited cytochrome bc1 and demonstrated that the average equilibrium position is modifiable by inhibitors or mutations. To explain the results, we assume that changes in the equilibrium distribution of the FeS positions are the result of modifications of the orienting potential gradient in which the diffusion of the FeS head domain takes place. The measured changes in the phase relaxation enhancement provide the first direct experimental description of changes in the strength of dipolar coupling between the FeS cluster and heme bL.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | | | | | | |
Collapse
|
138
|
A neonatal polyvisceral failure linked to a de novo homoplasmic mutation in the mitochondrially encoded cytochrome b gene. Mitochondrion 2009; 9:346-52. [PMID: 19563916 DOI: 10.1016/j.mito.2009.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 04/25/2009] [Accepted: 06/19/2009] [Indexed: 11/22/2022]
Abstract
Mutations within the mitochondrially encoded cytochrome b (MTCYB) gene are heteroplasmic and lead to severe exercise intolerance. We describe an unusual clinical presentation secondary to a novel homoplasmic mutation within MTCYB. The m.15635T>C transition (S297P) was carried by a newborn who presented with a polyvisceral failure. This mutation was responsible for a complex III deficiency. It was homoplasmic in all tissues tested and was undetectable in patient's mother. Functional analyses, including studies on patient's cybrid cell lines, demonstrate the pathogenicity of this variant. Our data show that mutations within MTCYB can be responsible for severe phenotype at birth.
Collapse
|
139
|
Evolutionary pressure on mitochondrial cytochrome b is consistent with a role of CytbI7T affecting longevity during caloric restriction. PLoS One 2009; 4:e5836. [PMID: 19503808 PMCID: PMC2688749 DOI: 10.1371/journal.pone.0005836] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 04/28/2009] [Indexed: 01/22/2023] Open
Abstract
Background Metabolism of energy nutrients by the mitochondrial electron transport chain (ETC) is implicated in the aging process. Polymorphisms in core ETC proteins may have an effect on longevity. Here we investigate the cytochrome b (cytb) polymorphism at amino acid 7 (cytbI7T) that distinguishes human mitochondrial haplogroup H from haplogroup U. Principal Findings We compared longevity of individuals in these two haplogroups during historical extremes of caloric intake. Haplogroup H exhibits significantly increased longevity during historical caloric restriction compared to haplogroup U (p = 0.02) while during caloric abundance they are not different. The historical effects of natural selection on the cytb protein were estimated with the software TreeSAAP using a phylogenetic reconstruction for 107 mammal taxa from all major mammalian lineages using 13 complete protein-coding mitochondrial gene sequences. With this framework, we compared the biochemical shifts produced by cytbI7T with historical evolutionary pressure on and near this polymorphic site throughout mammalian evolution to characterize the role cytbI7T had on the ETC during times of restricted caloric intake. Significance Our results suggest the relationship between caloric restriction and increased longevity in human mitochondrial haplogroup H is determined by cytbI7T which likely enhances the ability of water to replenish the Qi binding site and decreases the time ubisemiquinone is at the Qo site, resulting in a decrease in the average production rate of radical oxygen species (ROS).
Collapse
|
140
|
Nasiri HR, Panisch R, Madej MG, Bats JW, Lancaster CRD, Schwalbe H. The correlation of cathodic peak potentials of vitamin K(3) derivatives and their calculated electron affinities. The role of hydrogen bonding and conformational changes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:601-8. [PMID: 19265668 DOI: 10.1016/j.bbabio.2009.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 02/16/2009] [Accepted: 02/17/2009] [Indexed: 11/25/2022]
Abstract
2-methyl-1,4-naphtoquinone 1 (vitamin K(3), menadione) derivatives with different substituents at the 3-position were synthesized to tune their electrochemical properties. The thermodynamic midpoint potential (E(1/2)) of the naphthoquinone derivatives yielding a semi radical naphthoquinone anion were measured by cyclic voltammetry in the aprotic solvent dimethoxyethane (DME). Using quantum chemical methods, a clear correlation was found between the thermodynamic midpoint potentials and the calculated electron affinities (E(A)). Comparison of calculated and experimental values allowed delineation of additional factors such as the conformational dependence of quinone substituents and hydrogen bonding which can influence the electron affinities (E(A)) of the quinone. This information can be used as a model to gain insight into enzyme-cofactor interactions, particularly for enzyme quinone binding modes and the electrochemical adjustment of the quinone motif.
Collapse
Affiliation(s)
- Hamid Reza Nasiri
- Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
141
|
Berry RE, Shokhirev MN, Ho AYW, Yang F, Shokhireva TK, Zhang H, Weichsel A, Montfort WR, Walker FA. Effect of mutation of carboxyl side-chain amino acids near the heme on the midpoint potentials and ligand binding constants of nitrophorin 2 and its NO, histamine, and imidazole complexes. J Am Chem Soc 2009; 131:2313-27. [PMID: 19175316 PMCID: PMC2647857 DOI: 10.1021/ja808105d] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitrophorins (NPs) are a group of NO-carrying heme proteins found in the saliva of a blood-sucking insect from tropical Central and South America, Rhodnius prolixus, the "kissing bug". NO is kept stable for long periods of time by binding it as an axial ligand to a ferriheme center. The fact that the nitrophorins are stabilized as Fe(III)-NO proteins is a unique property because most heme proteins are readily autoreduced by excess NO and bind NO to the Fe(II) heme irreversibly (K(d)s in the picomolar range). In contrast, the nitrophorins, as Fe(III) heme centers, have K(d)s in the micromolar to nanomolar range and thus allow NO to dissociate upon dilution following injection into the tissues of the victim. This NO can cause vasodilation and thereby allow more blood to be transported to the site of the wound. We prepared 13 site-directed mutants of three major nitrophorins, NP2, NP1, and NP4, to investigate the stabilization of the ferric-NO heme center and preservation of reversible binding that facilitates these proteins' NO storage, transport, and release functions. Of the mutations in which Glu and/or Asp were replaced by Ala, most of these carboxyls show a significant role stabilizing Fe(III)-NO over Fe(II)-NO, with buried E53 of NP2 or E55 of NP1 and NP4 being the most important and partially buried D29 of NP2 or D30 of NP4 being second in importance. The pK(a)s of the carboxyl groups studied vary significantly but all are largely deprotonated at pH 7.5 except E124.
Collapse
Affiliation(s)
- Robert E. Berry
- Contribution from the Department of Chemistry and Biochemistry, The University of Arizona, PO Box 210041, Tucson, AZ 85721-0041
| | - Maxim N. Shokhirev
- Contribution from the Department of Chemistry and Biochemistry, The University of Arizona, PO Box 210041, Tucson, AZ 85721-0041
| | - Arthur Y. W. Ho
- Contribution from the Department of Chemistry and Biochemistry, The University of Arizona, PO Box 210041, Tucson, AZ 85721-0041
| | - Fei Yang
- Contribution from the Department of Chemistry and Biochemistry, The University of Arizona, PO Box 210041, Tucson, AZ 85721-0041
| | - Tatiana K. Shokhireva
- Contribution from the Department of Chemistry and Biochemistry, The University of Arizona, PO Box 210041, Tucson, AZ 85721-0041
| | - Hongjun Zhang
- Contribution from the Department of Chemistry and Biochemistry, The University of Arizona, PO Box 210041, Tucson, AZ 85721-0041
| | - Andrzej Weichsel
- Contribution from the Department of Chemistry and Biochemistry, The University of Arizona, PO Box 210041, Tucson, AZ 85721-0041
| | - William R. Montfort
- Contribution from the Department of Chemistry and Biochemistry, The University of Arizona, PO Box 210041, Tucson, AZ 85721-0041
| | - F. Ann Walker
- Contribution from the Department of Chemistry and Biochemistry, The University of Arizona, PO Box 210041, Tucson, AZ 85721-0041
| |
Collapse
|
142
|
Cyanobacterial photosystem II at 2.9-A resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 2009; 16:334-42. [PMID: 19219048 DOI: 10.1038/nsmb.1559] [Citation(s) in RCA: 889] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 01/14/2009] [Indexed: 12/11/2022]
Abstract
Photosystem II (PSII) is a large homodimeric protein-cofactor complex located in the photosynthetic thylakoid membrane that acts as light-driven water:plastoquinone oxidoreductase. The crystal structure of PSII from Thermosynechococcus elongatus at 2.9-A resolution allowed the unambiguous assignment of all 20 protein subunits and complete modeling of all 35 chlorophyll a molecules and 12 carotenoid molecules, 25 integral lipids and 1 chloride ion per monomer. The presence of a third plastoquinone Q(C) and a second plastoquinone-transfer channel, which were not observed before, suggests mechanisms for plastoquinol-plastoquinone exchange, and we calculated other possible water or dioxygen and proton channels. Putative oxygen positions obtained from a Xenon derivative indicate a role for lipids in oxygen diffusion to the cytoplasmic side of PSII. The chloride position suggests a role in proton-transfer reactions because it is bound through a putative water molecule to the Mn(4)Ca cluster at a distance of 6.5 A and is close to two possible proton channels.
Collapse
|
143
|
The Cytochrome bc 1 and Related bc Complexes: The Rieske/Cytochrome b Complex as the Functional Core of a Central Electron/Proton Transfer Complex. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_23] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
144
|
Crowley PJ, Berry EA, Cromartie T, Daldal F, Godfrey CRA, Lee DW, Phillips JE, Taylor A, Viner R. The role of molecular modeling in the design of analogues of the fungicidal natural products crocacins A and D. Bioorg Med Chem 2008; 16:10345-55. [PMID: 18996700 PMCID: PMC2784635 DOI: 10.1016/j.bmc.2008.10.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 10/07/2008] [Accepted: 10/12/2008] [Indexed: 11/18/2022]
Abstract
Extensive molecular modeling based on crystallographic data was used to aid the design of synthetic analogues of the fungicidal naturally occurring respiration inhibitors crocacins A and D, and an inhibitor binding model to the mammalian cytochrome bc(1) complex was constructed. Simplified analogues were made which showed high activity in a mitochondrial beef heart respiration assay, and which were also active against certain plant pathogens in glasshouse tests. A crystal structure was obtained of an analogue of crocacin D bound to the chicken heart cytochrome bc(1) complex, which validated the binding model and which confirmed that the crocacins are a new class of inhibitor of the cytochrome bc(1) complex.
Collapse
Affiliation(s)
- Patrick J Crowley
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG426EY, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Theodossiou TA, Papakyriakou A, Hothersall JS. Molecular modeling and experimental evidence for hypericin as a substrate for mitochondrial complex III; mitochondrial photodamage as demonstrated using specific inhibitors. Free Radic Biol Med 2008; 45:1581-90. [PMID: 18852042 DOI: 10.1016/j.freeradbiomed.2008.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 09/04/2008] [Accepted: 09/09/2008] [Indexed: 10/21/2022]
Abstract
The effect of hypericin photoactivation on mitochondria of human prostate carcinoma cells was studied using a range of mitochondrial inhibitors. Oligomycin significantly enhanced hypericin phototoxicity while atractyloside and antymicin A conferred a significant protection. Use of myxothiazol did not affect cell survival following hypericin photoactivation. These results signify a protective role for F(1)F(0)-ATP synthase running in reverse mode, and a significant photodamage at the quinone-reducing site of mitochondrial complex III. In light of these results, we performed molecular modeling of hypericin binding to complex III. This revealed three binding sites, two of which coincided with the quinol-oxidizing and quinone-reducing centers. Using submitochondrial particles we examined hypericin as a possible substrate of complex III and compared this to its natural substrate, ubiquinone-10. Our results demonstrate uniquely that hypericin is an efficient substrate for complex III, and this activity is inhibited by myxothiazol and antimycin A. We further demonstrated that hypericin photosensitization completely inactivated complex III with ubiquinone as substrate. The ability to enhance HYP potency by inhibition of F(1)F(0)-ATP synthase or depress HYP efficacy by inhibition at the Qi site of complex III provides a potential to increase the therapeutic index of HYP and amplify its PDT action in tumor cells.
Collapse
|
146
|
Breaking the Q-cycle: finding new ways to study Qo through thermodynamic manipulations. J Bioenerg Biomembr 2008; 40:501-7. [PMID: 18956237 DOI: 10.1007/s10863-008-9175-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 07/17/2008] [Indexed: 10/21/2022]
Abstract
Thirty years ago, Peter Mitchell won the Nobel Prize for proposing how electrical and proton gradients across bioenergetic membranes were the energy coupling intermediate between photosynthetic and respiratory electron transfer and cellular activities that include ATP production. A high point of his thinking was the development of the Q-cycle model that advanced our understanding of cytochrome bc (1). While the principle tenets of his Q-cycle still hold true today, Mitchell did not explain the specific mechanism that allows the Qo site to perform this Q-cycle efficiently without undue energy loss. Though much speculation on Qo site mode of molecular action and regulation has been introduced over the 30 years after Mitchell collected his Prize, no single mechanism has been universally accepted. The mystery behind the Qo site mechanism remains unsolved due to elusive kinetic intermediates during Qo site electron transfer that have not been detected spectroscopically. Therefore, to reveal the Qo mechanism, we must look beyond traditional steady-state experimental approaches by changing cytochrome bc (1) thermodynamics and promoting otherwise transient Qo site redox states.
Collapse
|
147
|
Bis-histidine-coordinated hemes in four-helix bundles: how the geometry of the bundle controls the axial imidazole plane orientations in transmembrane cytochromes of mitochondrial complexes II and III and related proteins. J Biol Inorg Chem 2008; 13:481-98. [PMID: 18418633 DOI: 10.1007/s00775-008-0372-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2008] [Accepted: 03/27/2008] [Indexed: 10/22/2022]
Abstract
Early investigation of the electron paramagnetic resonance spectra of bis-histidine-coordinated membrane-bound ferriheme proteins led to the description of a spectral signal that had only one resolved feature. These became known as "highly anisotropic low-spin" or "large g(max)" ferriheme centers. Extensive work with small-molecule model heme complexes showed that this spectroscopic signature occurs in bis-imidazole ferrihemes in which the planes of the imidazole ligands are nearly perpendicular, deltaphi = 57-90 degrees. In the last decade protein crystallographic studies have revealed the atomic structures of a number of examples of bis-histidine heme proteins. A frequent characteristic of these large g(max) ferrihemes in membrane-bound proteins is the occurrence of the heme within a four-helix bundle with a left-handed twist. The histidine ligands occur at the same level on two diametrically opposed helices of the bundle. These ligands have the same side-chain conformation and ligate heme iron on the bundle axis, resulting in a quasi-twofold symmetric structure. The two non-ligand-bearing helices also obey this symmetry, and have a conserved small residue, usually glycine, where the edge of the heme ring makes contact with the helix backbones. In many cases this small residue is preceded by a threonine or serine residue whose side-chain hydroxyl oxygen acts as a hydrogen-bond acceptor from the N(delta1) atom of the heme-ligating histidine. The deltaphi angle is thus determined by the common histidine side-chain conformation and the crossing angle of the ligand-bearing helices, in some cases constrained by hydrogen bonds to the serine/threonine residues on the non-ligand-bearing helices.
Collapse
|
148
|
Infrared spectroscopic characterization of copper–polyhistidine from 1,800 to 50 cm−1: model systems for copper coordination. J Biol Inorg Chem 2008; 14:23-34. [DOI: 10.1007/s00775-008-0421-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 08/17/2008] [Indexed: 10/21/2022]
|
149
|
Covian R, Trumpower BL. Regulatory interactions in the dimeric cytochrome bc(1) complex: the advantages of being a twin. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1777:1079-91. [PMID: 18471987 PMCID: PMC2607007 DOI: 10.1016/j.bbabio.2008.04.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 04/10/2008] [Accepted: 04/12/2008] [Indexed: 10/22/2022]
Abstract
The dimeric cytochrome bc(1) complex catalyzes the oxidation-reduction of quinol and quinone at sites located in opposite sides of the membrane in which it resides. We review the kinetics of electron transfer and inhibitor binding that reveal functional interactions between the quinol oxidation site at center P and quinone reduction site at center N in opposite monomers in conjunction with electron equilibration between the cytochrome b subunits of the dimer. A model for the mechanism of the bc(1) complex has emerged from these studies in which binding of ligands that mimic semiquinone at center N regulates half-of-the-sites reactivity at center P and binding of ligands that mimic catalytically competent binding of ubiquinol at center P regulates half-of-the-sites reactivity at center N. An additional feature of this model is that inhibition of quinol oxidation at the quinone reduction site is avoided by allowing catalysis in only one monomer at a time, which maximizes the number of redox acceptor centers available in cytochrome b for electrons coming from quinol oxidation reactions at center P and minimizes the leakage of electrons that would result in the generation of damaging oxygen radicals.
Collapse
Affiliation(s)
- Raul Covian
- Department of Biochemistry, Dartmouth Medical School Hanover, New Hampshire 03755, U.S.A
| | - Bernard L. Trumpower
- Department of Biochemistry, Dartmouth Medical School Hanover, New Hampshire 03755, U.S.A
| |
Collapse
|
150
|
Gurung B, Yu L, Yu CA. Stigmatellin induces reduction of iron-sulfur protein in the oxidized cytochrome bc1 complex. J Biol Chem 2008; 283:28087-94. [PMID: 18701458 DOI: 10.1074/jbc.m804229200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stigmatellin, a Q(P) site inhibitor, inhibits electron transfer from iron-sulfur protein (ISP) to cytochrome c1 in the bc1 complex. Stigmatellin raises the midpoint potential of ISP from 290 mV to 540 mV. The binding of stigmatellin to the fully oxidized complex, oxidized completely by catalytic amounts of cytochrome c oxidase and cytochrome c, results in ISP reduction. The extent of ISP reduction is proportional to the amount of inhibitor used and reaches a maximum when the ratio of inhibitor to enzyme complex reaches unity. A g = 2.005 EPR peak, characteristic of an organic free radical, is also observed when stigmatellin is added to the oxidized complex, and its signal intensity depends on the amount of stigmatellin. Addition of ferricyanide, a strong oxidant, to the oxidized complex also generates a g = 2.005 EPR peak that is oxidant concentration-dependent. Oxygen radicals are generated when stigmatellin is added to the oxidized complex in the absence of the exogenous substrate, ubiquinol. The amount of oxygen radical formed is proportional to the amount of stigmatellin added. Oxygen radicals are not generated when stigmatellin is added to a mutant bc1 complex lacking the Rieske iron-sulfur cluster. Based on these results, it is proposed that ISP becomes a strong oxidant upon stigmatellin binding, extracting electrons from an organic compound, likely an amino acid residue. This results in the reduction of ISP and generation of organic radicals.
Collapse
Affiliation(s)
- Buddha Gurung
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | | |
Collapse
|