101
|
Liang YQ, Huang GY, Zhao JL, Shi WJ, Hu LX, Tian F, Liu SS, Jiang YX, Ying GG. Transcriptional alterations induced by binary mixtures of ethinylestradiol and norgestrel during the early development of zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2017; 195:60-67. [PMID: 28219785 DOI: 10.1016/j.cbpc.2017.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 12/19/2022]
Abstract
Synthetic estrogens and progestins are commonly used in human and veterinary medicine. After use, they reach aquatic environments via discharge of wastewaters from human and animals, thus posing potential risks to organisms. So far, very little is known about their combined effects in aquatic organisms. The aim of this study was to investigate the effects of binary mixtures of ethinylestradiol (EE2) and norgestrel (NGT) on embryonic zebrafish (Danio rerio) by measuring transcriptional alterations. Zebrafish embryos were exposed to EE2 and NGT alone or in combination at concentrations between 36 and 5513ngL-1 for 96h post-fertilization (hpf). The results showed that most of gene transcriptions of hypothalamic-pituitary-gonadal axis (e.g., Pgr, Mprα, Esr1, Esr2a, Vtg1, Ar, Cyp11b, Star, Gnrh3 and Fshb) and circadian rhythm signaling (e.g., Cry1a, Cry2a, Cry2b, Per3, Arntl1b, Arntl2, Clock1a, Cry3 and Cry4) displayed most pronounced alterations in the mixtures as compared to single EE2 and NGT exposures. This finding suggests exposure to the binary mixtures of EE2 and NGT produced significantly enhanced effects in fish as compared to single chemical exposures, and their coexistence could have significant environmental implications.
Collapse
Affiliation(s)
- Yan-Qiu Liang
- State Key Laboratory of Organic Geochemistry, CAS Research Centre of PRD Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Guo-Yong Huang
- State Key Laboratory of Organic Geochemistry, CAS Research Centre of PRD Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Jian-Liang Zhao
- State Key Laboratory of Organic Geochemistry, CAS Research Centre of PRD Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Wen-Jun Shi
- State Key Laboratory of Organic Geochemistry, CAS Research Centre of PRD Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Li-Xin Hu
- State Key Laboratory of Organic Geochemistry, CAS Research Centre of PRD Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Fei Tian
- State Key Laboratory of Organic Geochemistry, CAS Research Centre of PRD Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Shuang-Shuang Liu
- State Key Laboratory of Organic Geochemistry, CAS Research Centre of PRD Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Yu-Xia Jiang
- State Key Laboratory of Organic Geochemistry, CAS Research Centre of PRD Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Guang-Guo Ying
- State Key Laboratory of Organic Geochemistry, CAS Research Centre of PRD Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
102
|
Siegenthaler PF, Zhao Y, Zhang K, Fent K. Reproductive and transcriptional effects of the antiandrogenic progestin chlormadinone acetate in zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 223:346-356. [PMID: 28118999 DOI: 10.1016/j.envpol.2017.01.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/06/2017] [Accepted: 01/15/2017] [Indexed: 06/06/2023]
Abstract
Chlormadinone acetate (CMA) is a frequently used progestin with antiandrogenic activity in humans. Residues may enter the aquatic environment but potential adverse effects in fish are unknown. While our previous work focused on effects of CMA in vitro and in zebrafish eleuthero-embryos, the present study reports on reproductive and transcriptional effects in adult female and male zebrafish (Danio rerio). We performed a reproductive study using breeding groups of zebrafish. After 15 days of pre-exposure, we exposed zebrafish to different measured concentrations between 6.4 and 53,745 ng/L CMA for 21 days and counted produced eggs daily to determine fecundity. Additionally, transcriptional effects of CMA in brains, livers, and gonads were analyzed. CMA induced a slight but statistically significant reduction in fecundity at 65 ng/L and 53,745 ng/L compared to pre-exposure. Furthermore, we observed differential expression for gene transcripts of steroid hormone receptors, genes related to the hypothalamic-pituitary-gonadal axis, and steroidogenesis. In particular, we found a significant decrease of transcript levels of vitellogenin (vtg1) in ovaries and liver, and of cyp2k7 in the liver of males, as well as a significant increase of transcripts of the progesterone receptor (pgr) in testes, and cyp2k1 in the liver of females. The observed effects were weaker than those of other very potent progestins, which is probably related to the lack of interaction of CMA with the zebrafish progesterone receptor.
Collapse
Affiliation(s)
- Patricia Franziska Siegenthaler
- University of Applied Sciences and Arts Northwestern Switzerland, FHNW, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Yanbin Zhao
- University of Applied Sciences and Arts Northwestern Switzerland, FHNW, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Kun Zhang
- University of Applied Sciences and Arts Northwestern Switzerland, FHNW, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, FHNW, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland; Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental System Sciences, CH-8092 Zürich, Switzerland.
| |
Collapse
|
103
|
Liu H, Yang X, Yin C, Wei M, He X. Development of predictive models for predicting binding affinity of endocrine disrupting chemicals to fish sex hormone-binding globulin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 136:46-54. [PMID: 27816713 DOI: 10.1016/j.ecoenv.2016.10.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/23/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
Disturbing the transport process is a crucial pathway for endocrine disrupting chemicals (EDCs) exerting disrupting endocrine function. However, this mechanism has not received enough attention compared with that of hormones receptors and synthetase. Recently, we have explored the interaction between EDCs and sex hormone-binding globulin of human (hSHBG). In this study, interactions between EDCs and sex hormone-binding globulin of eight fish species (fSHBG) were investigated by employing classification methods and quantitative structure-activity relationships (QSAR). In the modeling, the relative binding affinity (RBA) of a chemical with 17β-estradiol binding to fSHBG was selected as the endpoint. Classification models were developed for two fish species, while QSAR models were established for the other six fish species. Statistical results indicated that the models had satisfactory goodness of fit, robustness and predictive ability, and that application domain covered a large number of endogenous and exogenous steroidal and non-steroidal chemicals. Additionally, by comparing the log RBA values, it was found that the same chemical may have different affinities for fSHBG from different fish species, thus species diversity should be taken into account. However, the affinity of fSHBG showed a high correlation for fishes within the same Order (i.e., Salmoniformes, Cypriniformes, Perciformes and Siluriformes), thus the fSHBG binding data for one fish species could be used to extrapolate other fish species in the same Order.
Collapse
Affiliation(s)
- Huihui Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China.
| | - Xianhai Yang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Jiang-wang-miao Street, Nanjing 210042, China.
| | - Cen Yin
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Mengbi Wei
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Xiao He
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| |
Collapse
|
104
|
Leusch FDL, Neale PA, Hebert A, Scheurer M, Schriks MCM. Analysis of the sensitivity of in vitro bioassays for androgenic, progestagenic, glucocorticoid, thyroid and estrogenic activity: Suitability for drinking and environmental waters. ENVIRONMENT INTERNATIONAL 2017; 99:120-130. [PMID: 28017361 DOI: 10.1016/j.envint.2016.12.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 05/08/2023]
Abstract
The presence of endocrine disrupting chemicals in the aquatic environment poses a risk for ecosystem health. Consequently there is a need for sensitive tools, such as in vitro bioassays, to monitor endocrine activity in environmental waters. The aim of the current study was to assess whether current in vitro bioassays are suitable to detect endocrine activity in a range of water types. The reviewed assays included androgenic (n=11), progestagenic (n=6), glucocorticoid (n=5), thyroid (n=5) and estrogenic (n=8) activity in both agonist and antagonist mode. Existing in vitro bioassay data were re-evaluated to determine assay sensitivity, with the calculated method detection limit compared with measured hormonal activity in treated wastewater, surface water and drinking water to quantify whether the studied assays were sufficiently sensitive for environmental samples. With typical sample enrichment, current in vitro bioassays are sufficiently sensitive to detect androgenic activity in treated wastewater and surface water, with anti-androgenic activity able to be detected in most environmental waters. Similarly, with sufficient enrichment, the studied mammalian assays are able to detect estrogenic activity even in drinking water samples. Fewer studies have focused on progestagenic and glucocorticoid activity, but some of the reviewed bioassays are suitable for detecting activity in treated wastewater and surface water. Even less is known about (anti)thyroid activity, but the available data suggests that the more sensitive reviewed bioassays are still unlikely to detect this type of activity in environmental waters. The findings of this review can help provide guidance on in vitro bioassay selection and required sample enrichment for optimised detection of endocrine activity in environmental waters.
Collapse
Affiliation(s)
- Frederic D L Leusch
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Gold Coast, Qld, 4222, Australia.
| | - Peta A Neale
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Gold Coast, Qld, 4222, Australia
| | | | | | | |
Collapse
|
105
|
Siegenthaler PF, Bain P, Riva F, Fent K. Effects of antiandrogenic progestins, chlormadinone and cyproterone acetate, and the estrogen 17α-ethinylestradiol (EE2), and their mixtures: Transactivation with human and rainbowfish hormone receptors and transcriptional effects in zebrafish (Danio rerio) eleuthero-embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 182:142-162. [PMID: 27907851 DOI: 10.1016/j.aquatox.2016.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
Synthetic progestins act as endocrine disrupters in fish but their risk to the environment is not sufficiently known. Here, we focused on an unexplored antiandrogenic progestin, chlormadinone acetate (CMA), and the antiandrogenic progestin cyproterone acetate (CPA). The aim was to evaluate whether their in vitro interaction with human and rainbowfish (Melanotaenia fluviatilis) sex hormone receptors is similar. Furthermore, we investigated their activity in zebrafish (Danio rerio) eleuthero-embryos. First, we studied agonistic and antagonistic activities of CMA, CPA, and 17α-ethinylestradiol (EE2), in recombinant yeast expressing either the human progesterone (PGR), androgen (AR), or estrogen receptor. The same compounds were also investigated in vitro in a stable transfection cell system expressing rainbowfish nuclear steroid receptors. For human receptors, both progestins exhibited progestogenic, androgenic and antiestrogenic activity with no antiandrogenic or estrogenic activity. In contrast, interactions with rainbowfish receptors showed no progestogenic, but antiandrogenic, antiglucocorticoid, and some antiestrogenic activity. Thus, interaction with and transactivation of human and rainbowfish PGR and AR were distinctly different. Second, we analyzed transcriptional alterations in zebrafish eleuthero-embryos at 96 and 144h post fertilization after exposure to CPA, CMA, EE2, and binary mixtures of CMA and CPA with EE2, mimicking the use in oral contraceptives. CMA led to slight down-regulation of the ar transcript, while CPA down-regulated ar and pgr transcripts. EE2 exposure resulted in significant transcriptional alterations of several genes, including esr1, pgr, vtg1, cyp19b, and gonadotropins (fshb, lhb). The mixture activity of CMA and EE2 followed the independent action model, while CPA and EE2 mixtures showed additive action in transcriptional alterations. Third, we analyzed the interactions of binary mixtures of CMA and CPA, and of CMA and EE2 for their joint activity in vitro and in eleuthero-embryos. Both mixtures behaved according to the concentration addition model in their in vitro interaction with human and rainbowfish receptors, often showing antagonism. In zebrafish eleuthero-embryos, binary mixtures of CMA and EE2 showed the same expression patterns as EE2 alone, indicating an independent action in vivo. Our study demonstrates that CMA and CPA interact distinctly with human and rainbowfish receptors, suggesting that activities of these and possibly additional environmental steroids determined with yeast expressing human receptors cannot simply be translated to fish. The lack of agonistic activities of both progestins to rainbowfish PGR and AR is the probable reason for the low activity found in zebrafish eleuthero-embryos.
Collapse
Affiliation(s)
- Patricia Franziska Siegenthaler
- University of Applied Sciences and Arts Northwestern Switzerland (FHNW), School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Peter Bain
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Land and Water Flagship, PMB2, Glen Osmond, 5064 South Australia, Australia
| | - Francesco Riva
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Environmental Biomarkers Unit, Department of Environmental Health Sciences, Via La Masa 19, I-20156 Milan, Italy
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland (FHNW), School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland; Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental System Sciences, CH-8092 Zürich, Switzerland.
| |
Collapse
|
106
|
Hinfray N, Tebby C, Garoche C, Piccini B, Bourgine G, Aït-Aïssa S, Kah O, Pakdel F, Brion F. Additive effects of levonorgestrel and ethinylestradiol on brain aromatase ( cyp19a1b ) in zebrafish specific in vitro and in vivo bioassays. Toxicol Appl Pharmacol 2016; 307:108-114. [DOI: 10.1016/j.taap.2016.07.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/25/2016] [Accepted: 07/30/2016] [Indexed: 10/21/2022]
|
107
|
Frankel TE, Meyer MT, Orlando EF. Aqueous exposure to the progestin, levonorgestrel, alters anal fin development and reproductive behavior in the eastern mosquitofish (Gambusia holbrooki). Gen Comp Endocrinol 2016; 234:161-9. [PMID: 26795917 DOI: 10.1016/j.ygcen.2016.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 01/18/2023]
Abstract
Endogenous progestogens are important regulators of vertebrate reproduction. Synthetic progestins are components of human contraceptive and hormone replacement pharmaceuticals. Both progestogens and progestins enter the environment through a number of sources, and have been shown to cause profound effects on reproductive health in various aquatic vertebrates. Progestins are designed to bind human progesterone receptors, but they also have been shown to strongly activate androgen receptors in fish. Levonorgestrel (LNG) activates fish androgen receptors and induces development of male secondary sex characteristics in females of other species. Although behavior has been postulated to be a sensitive early indicator of exposure to certain environmental contaminants, no such research on the reproductive behavior of gestagen-exposed fish has been conducted to date. The goal of our study was to examine the exposure effects of a human contraceptive progestin, LNG, on the reproductive development and behavior of the viviparous eastern mosquitofish (Gambusia holbrooki). Internal fertilization is a requisite characteristic of viviparous species, and is enabled by an androgen driven elongation of the anal fin into the male gonopodium (i.e., phallus). In this study, we exposed adult mosquitofish to ethanol (EtOH control), 10ng/L, and 100ng/L LNG for 8d using a static replacement exposure design. After 8d, a subset of males and females from each treatment were examined for differences in the 4:6 anal fin ratio. In addition, paired social interaction trials were performed using individual control males and control females or females treated 10ng/L or 100ng/L LNG. Female mosquitofish exposed to LNG were masculinized as evidenced by the elongation of the anal fin rays, a feature normal to males and abnormal to females. LNG caused significant increases in the 4:6 anal fin ratios of female mosquitofish in both the 10ng/L and 100ng/L treatments, although these differences were not significant between the two treatments. LNG caused significant increases in the 4:6 anal fin ratio of males exposed to 100ng/L, with no effects observed in the 10ng/L treatment. In addition, the reproductive behavior of control males paired with female mosquitofish exposed to 100ng/L LNG was also altered, for these males spent more time exhibiting no reproductive behavior, had decreased attending behavior, and a lower number of gonopodial thrusts compared to control males paired to control female mosquitofish. Given the rapid effects on both anal fin morphology and behavior observed in this study, the mosquitofish is an excellent sentinel species for the detection of exposure to LNG and likely other 19-nortestosterone derived contraceptive progestins in the environment.
Collapse
Affiliation(s)
- Tyler E Frankel
- University of Maryland, Department of Animal and Avian Sciences, College Park 20742, USA.
| | - Michael T Meyer
- U.S. Geological Survey, Organic Geochemistry Research Laboratory, 4821 Quail Crest Place, Lawrence, KS 66049, USA.
| | - Edward F Orlando
- University of Maryland, Department of Animal and Avian Sciences, College Park 20742, USA
| |
Collapse
|
108
|
Lorenz C, Opitz R, Trubiroha A, Lutz I, Zikova A, Kloas W. The synthetic gestagen levonorgestrel directly affects gene expression in thyroid and pituitary glands of Xenopus laevis tadpoles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:63-73. [PMID: 27262936 DOI: 10.1016/j.aquatox.2016.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 06/05/2023]
Abstract
The synthetic gestagen levonorgestrel (LNG) was previously shown to perturb thyroid hormone-dependent metamorphosis in Xenopus laevis. However, so far the mechanisms underlying the anti-metamorphic effects of LNG remained unknown. Therefore, a series of in vivo and ex vivo experiments was performed to identify potential target sites of LNG action along the pituitary-thyroid axis of X. laevis tadpoles. Prometamorphic tadpoles were treated in vivo with LNG (0.01-10nM) for 72h and brain-pituitary and thyroid tissue was analyzed for marker gene expression. While no treatment-related changes were observed in brain-pituitary tissue, LNG treatment readily affected thyroidal gene expression in tadpoles including decreased slc5a5 and iyd mRNA expression and a strong induction of dio2 and dio3 expression. When using an ex vivo organ explant culture approach, direct effects of LNG on both pituitary and thyroid gland gene expression were detecTable Specifically, treatment of pituitary explants with 10nM LNG strongly stimulated dio2 expression and concurrently suppressed tshb expression. In thyroid glands, ex vivo LNG treatment induced dio2 and dio3 mRNA expression in a thyrotropin-independent manner. When thyroid explants were cultured in thyrotropin-containing media, LNG caused similar gene expression changes as seen after 72h in vivo treatment including a very strong repression of thyrotropin-induced slc5a5 expression. Concerning the anti-thyroidal activity of LNG as seen under in vivo conditions, our ex vivo data provide clear evidence that LNG directly affects expression of genes important for thyroidal iodide handling as well as genes involved in negative feedback regulation of pituitary tshb expression.
Collapse
Affiliation(s)
- Claudia Lorenz
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany.
| | - Robert Opitz
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany; Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| | - Achim Trubiroha
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany; Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| | - Ilka Lutz
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany
| | - Andrea Zikova
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany
| | - Werner Kloas
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany; Department of Endocrinology, Institute of Biology, Humboldt University Berlin, Germany
| |
Collapse
|
109
|
Svensson J, Mustafa A, Fick J, Schmitz M, Brunström B. Developmental exposure to progestins causes male bias and precocious puberty in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:316-323. [PMID: 27348263 DOI: 10.1016/j.aquatox.2016.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/08/2016] [Accepted: 06/12/2016] [Indexed: 06/06/2023]
Abstract
Progestins are aquatic contaminants that in low concentrations can impair fish reproduction. The mechanisms are likely multiple since different progestins interact with other steroid receptors in addition to progesterone receptors. Puberty is the process when animals first acquire the capability to reproduce and it comprises maturation of sperm and eggs. In zebrafish, puberty is initiated around 45days post fertilization (dpf) in females and around 53-55 dpf in males, and is marked by increased production of pituitary gonadotropins. We exposed juvenile zebrafish from 20 to 80 dpf to the androgenic progestin levonorgestrel at concentrations of 5.5, 79 and 834ngL(-1) and to the non-androgenic progestin progesterone at concentrations of 3.7, 77 and 1122ngL(-1), during sexual differentiation and puberty. Levonorgestrel exposure caused 100% males even at the lowest concentration tested whereas progesterone did not affect the sex ratio. Transcript levels of the gonadal genes amh, CYP11B and CYP19a1a indicated that the masculinizing effect of levonorgestrel occurred very rapidly. Transcript concentrations of gonadotropins in pituitaries were low in control fish at 44 dpf, but high at 55 dpf and onward. In fish exposed to levonorgestrel or progesterone gonadotropin transcript concentrations were high already at 44 dpf, indicating that both progestins caused precocious puberty. Gonad histology at 50 dpf confirmed a well advanced sexual maturation, but only in males. Our results show that progestins can affect sexual development in fish and that the androgenic progestin levonorgestrel induces a male phenotype at concentrations similar to those detected in aquatic environments.
Collapse
Affiliation(s)
- Johan Svensson
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, SE-75 236, Uppsala, Sweden.
| | - Arshi Mustafa
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, SE-75 236 Uppsala, Sweden
| | - Jerker Fick
- Department of Chemistry, Umeå University, Linnaeus väg 6, Umeå, SE-90 187, Sweden
| | - Monika Schmitz
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, SE-75 236 Uppsala, Sweden
| | - Björn Brunström
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, SE-75 236, Uppsala, Sweden
| |
Collapse
|
110
|
Wammer KH, Anderson KC, Erickson PR, Kliegman S, Moffatt ME, Berg SM, Heitzman JA, Pflug NC, McNeill K, Martinovic-Weigelt D, Abagyan R, Cwiertny DM, Kolodziej EP. Environmental Photochemistry of Altrenogest: Photoisomerization to a Bioactive Product with Increased Environmental Persistence via Reversible Photohydration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7480-7488. [PMID: 27356268 DOI: 10.1021/acs.est.6b02608] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Despite its wide use as a veterinary pharmaceutical, environmental fate data is lacking for altrenogest, a potent synthetic progestin. Here, it is reported that direct photolysis of altrenogest under environmentally relevant conditions was extremely efficient and rapid (half-life ∼25 s). Photolysis rates (observed rate constant kobs = 2.7 ± 0.2 × 10(-2) s(-1)) were unaffected by changes in pH or temperature but were sensitive to oxygen concentrations (N2-saturated kobs = 9.10 ± 0.32 × 10(-2) s(-1); O2-saturated kobs = 1.38 ± 0.11 × 10(-2) s(-1)). The primary photoproduct was identified as an isomer formed via an internal 2 + 2 cycloaddition reaction; the triplet lifetime (8.4 ± 0.2 μs) and rate constant (8 × 10(4) s(-1)) of this reaction were measured using transient absorption spectroscopy. Subsequent characterization determined that this primary cycloaddition photoproduct undergoes photohydration. The resultant photostable secondary photoproducts are subject to thermal dehydration in dark conditions, leading to reversion to the primary cycloaddition photoproduct on a time scale of hours to days, with the photohydration and dehydration repeatable over several light/dark cycles. This dehydration reaction occurs more rapidly at higher temperatures and is also accelerated at both high and low pH values. In vitro androgen receptor (AR)-dependent gene transcriptional activation cell assays and in silico nuclear hormone receptor screening revealed that certain photoproducts retain significant androgenic activity, which has implications for exposure risks associated with the presence and cycling of altrenogest and its photoproducts in the environment.
Collapse
Affiliation(s)
- Kristine H Wammer
- Department of Chemistry, University of St. Thomas , St. Paul, Minnesota 55105, United States
| | - Kyler C Anderson
- Department of Chemistry, University of St. Thomas , St. Paul, Minnesota 55105, United States
| | - Paul R Erickson
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich , CH-8092 Zürich, Switzerland
| | - Sarah Kliegman
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich , CH-8092 Zürich, Switzerland
| | - Marianna E Moffatt
- Department of Chemistry, University of St. Thomas , St. Paul, Minnesota 55105, United States
| | - Stephanie M Berg
- Department of Chemistry, University of St. Thomas , St. Paul, Minnesota 55105, United States
| | - Jackie A Heitzman
- Department of Biology, University of St. Thomas , St. Paul, Minnesota 55105, United States
| | - Nicholas C Pflug
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich , CH-8092 Zürich, Switzerland
| | | | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , 9500 Gilman, La Jolla, California 92093-0747, United States
| | - David M Cwiertny
- Department of Civil and Environmental Engineering, University of Iowa , Iowa City, Iowa 52242, United States
| | - Edward P Kolodziej
- Interdisciplinary Arts and Sciences, University of Washington, Tacoma , Tacoma, Washington 98402 United States
- Department of Civil and Environmental Engineering, University of Washington , Seattle, Washington 98195-2700 United States
| |
Collapse
|
111
|
Frankel TE, Meyer MT, Kolpin DW, Gillis AB, Alvarez DA, Orlando EF. Exposure to the Contraceptive Progestin, Gestodene, Alters Reproductive Behavior, Arrests Egg Deposition, and Masculinizes Development in the Fathead Minnow (Pimephales promelas). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5991-5999. [PMID: 27129041 DOI: 10.1021/acs.est.6b00799] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Endogenous progestogens and pharmaceutical progestins enter the environment through wastewater treatment plant effluent and agricultural field runoff. Lab studies demonstrate strong, negative exposure effects of these chemicals on aquatic vertebrate reproduction. Behavior can be a sensitive, early indicator of exposure to environmental contaminants associated with altered reproduction yet is rarely examined in ecotoxicology studies. Gestodene is a human contraceptive progestin and a potent activator of fish androgen receptors. Our objective was to test the effects of gestodene on reproductive behavior and associated egg deposition in the fathead minnow. After only 1 day, males exposed to ng/L of gestodene were more aggressive and less interested in courtship and mating, and exposed females displayed less female courtship behavior. Interestingly, 25% of the gestodene tanks contained a female that drove the male out of the breeding tile and displayed male-typical courtship behaviors toward the other female. Gestodene decreased or arrested egg deposition with no observed gonadal histopathology. Together, these results suggest that effects on egg deposition are primarily due to altered reproductive behavior. The mechanisms by which gestodene disrupts behavior are unknown. Nonetheless, the rapid and profound alterations of the reproductive biology of gestodene-exposed fish suggest that wild populations could be similarly affected.
Collapse
Affiliation(s)
- Tyler E Frankel
- Department of Animal and Avian Sciences, University of Maryland , College Park, Maryland 20742, United States
| | - Michael T Meyer
- Organic Geochemistry Research Laboratory, U.S. Geological Survey , 4821 Quail Crest Place, Lawrence, Kansas 66049, United States
| | - Dana W Kolpin
- Iowa Water Science Center, U.S. Geological Survey , 400 S. Clinton Street, Iowa City, Iowa 52240, United States
| | - Amanda B Gillis
- Department of Animal and Avian Sciences, University of Maryland , College Park, Maryland 20742, United States
| | - David A Alvarez
- Columbia Environmental Research Center, U.S. Geological Survey , 4200 New Haven Road, Columbia, Missouri 65201, United States
| | - Edward F Orlando
- Department of Animal and Avian Sciences, University of Maryland , College Park, Maryland 20742, United States
| |
Collapse
|
112
|
King OC, van de Merwe JP, McDonald JA, Leusch FDL. Concentrations of levonorgestrel and ethinylestradiol in wastewater effluents: Is the progestin also cause for concern? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:1378-85. [PMID: 26554634 DOI: 10.1002/etc.3304] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 09/15/2015] [Accepted: 11/09/2015] [Indexed: 05/15/2023]
Abstract
Synthetic hormones have been widely reported in treated sewage effluents, and consequently receiving aquatic environments. Ethinylestradiol (EE2) is a potent synthetic estrogen commonly used in conjunction with levonorgestrel in oral contraceptive pills. Both EE2 and levonorgestrel have been identified in the aquatic environment, but although there is a significant amount of literature on EE2, there is much less information on levonorgestrel. Using Australian prescription data as well as excretion and predicted wastewater removal rates, the concentrations of EE2 and levonorgestrel in Australian wastewater were calculated at 0.1 ng/L to 0.5 ng/L and 0.2 ng/L to 0.6 ng/L, respectively. Both compounds were analyzed in treated wastewater and surface water grab samples from 3 Southeast Queensland, Australia sites. The predicted no-effect concentration (PNEC) for EE2 of 0.1 ng/L was exceeded at most sites, with EE2 concentrations up to 2 ng/L in treated effluent, albeit quickly diluted to 0.1 ng/L to 0.2 ng/L in the receiving environment. A provisional PNEC for levonorgestrel of 0.1 ng/L derived in the present study was slightly lower than predicted effluent concentrations of 0.2 ng/L to 0.6 ng/L, indicating a potential risk of endocrine-related effects in exposed aquatic species. The detection limit for levonorgestrel in the present study was 2.5 ng/L, and all samples were below detection limit. The present study's results suggest that improvements in analytical capabilities for levonorgestrel are warranted to more accurately quantify the risk of this compound in the receiving environment. Environ Toxicol Chem 2016;35:1378-1385. © 2015 SETAC.
Collapse
Affiliation(s)
- Olivia C King
- Smart Water Research Centre, Australian Rivers Institute, Griffith School of Environment, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - Jason P van de Merwe
- Smart Water Research Centre, Australian Rivers Institute, Griffith School of Environment, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - James A McDonald
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Frederic D L Leusch
- Smart Water Research Centre, Australian Rivers Institute, Griffith School of Environment, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| |
Collapse
|
113
|
Blanco M, Fernandes D, Medina P, Blázquez M, Porte C. Drospirenone intake alters plasmatic steroid levels and cyp17a1 expression in gonads of juvenile sea bass. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:541-548. [PMID: 26995450 DOI: 10.1016/j.envpol.2016.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/26/2016] [Accepted: 03/02/2016] [Indexed: 06/05/2023]
Abstract
Drospirenone (DRO) is one of the most widely used progestins in contraceptive treatments and hormone replacement therapies. The pharmacokinetics and potential toxicological effects of DRO were investigated in juvenile sea bass (Dicentrarchus labrax) exposed through the diet (0.01-10 μg DRO/g) for up to 31 days. DRO was detected in the blood (4-27 ng/mL) of fish exposed to the highest concentration, with no significant bioaccumulation over time and no alteration of hepatic metabolizing enzymes, namely, CYP1A and CYP3A-catalysed activities and UDP-glucuronyltransferase (UGT). Pregnenolone (P5), progesterone (P4), 17α-hydroxyprogesterone (17P4), 17α-hydroxypregnenolone (17P5), androstenedione (AD) and testosterone (T) were determined in plasma and gene expression of cyp17a1, cyp19a1a and cyp11β analysed by qRT-PCR in gonads. The significant increase in plasmatic levels of 17P5, 17P4 and AD detected after 31 days exposure to 10 ng DRO/g together with the increased expression of cyp17a1 in females evidence the ability of DRO to alter steroid synthesis at low intake concentrations (7 ng DRO/day). However, the potential consequences of this steroid shift for female reproduction remain to be investigated.
Collapse
Affiliation(s)
- Maria Blanco
- Environmental Chemistry Department, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - Denise Fernandes
- Environmental Chemistry Department, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain; CIMA, University of Algarve, FCT, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Paula Medina
- Instituto de Ciencias del Mar, ICM-CSIC, Passeig Maritim 37-49, 08003 Barcelona, Spain; University of Antofagasta, Av. Angamos 601, Antofagasta, Chile
| | - Mercedes Blázquez
- Instituto de Ciencias del Mar, ICM-CSIC, Passeig Maritim 37-49, 08003 Barcelona, Spain.
| | - Cinta Porte
- Environmental Chemistry Department, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain.
| |
Collapse
|
114
|
Cano-Nicolau J, Garoche C, Hinfray N, Pellegrini E, Boujrad N, Pakdel F, Kah O, Brion F. Several synthetic progestins disrupt the glial cell specific-brain aromatase expression in developing zebra fish. Toxicol Appl Pharmacol 2016; 305:12-21. [PMID: 27245768 DOI: 10.1016/j.taap.2016.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 01/14/2023]
Abstract
The effects of some progestins on fish reproduction have been recently reported revealing the hazard of this class of steroidal pharmaceuticals. However, their effects at the central nervous system level have been poorly studied until now. Notwithstanding, progesterone, although still widely considered primarily a sex hormone, is an important agent affecting many central nervous system functions. Herein, we investigated the effects of a large set of synthetic ligands of the nuclear progesterone receptor on the glial-specific expression of the zebrafish brain aromatase (cyp19a1b) using zebrafish mechanism-based assays. Progesterone and 24 progestins were first screened on transgenic cyp19a1b-GFP zebrafish embryos. We showed that progesterone, dydrogesterone, drospirenone and all the progesterone-derived progestins had no effect on GFP expression. Conversely, all progestins derived from 19-nortesterone induced GFP in a concentration-dependent manner with EC50 ranging from the low nM range to hundreds nM. The 19-nortestosterone derived progestins levonorgestrel (LNG) and norethindrone (NET) were further tested in a radial glial cell context using U251-MG cells co-transfected with zebrafish ER subtypes (zfERα, zfERβ1 or zfERβ2) and cyp19a1b promoter linked to luciferase. Progesterone had no effect on luciferase activity while NET and LNG induced luciferase activity that was blocked by ICI 182,780. Zebrafish-ERs competition assays showed that NET and LNG were unable to bind to ERs, suggesting that the effects of these compounds on cyp19a1b require metabolic activation prior to elicit estrogenic activity. Overall, we demonstrate that 19-nortestosterone derived progestins elicit estrogenic activity by inducing cyp19a1b expression in radial glial cells. Given the crucial role of radial glial cells and neuro-estrogens in early development of brain, the consequences of exposure of fish to these compounds require further investigation.
Collapse
Affiliation(s)
- Joel Cano-Nicolau
- Team NEED, Institut de recherche en Santé Environnement et Travail (Irset), INSERM U1085, Université de Rennes 1, Campus de Beaulieu, SFR Biosit, 35042 Rennes cedex, France
| | - Clémentine Garoche
- Unité d'Ecotoxicologie in vitro et in vivo, Institut National de l'Environnement Industriel et des Risques (INERIS), BP 2, 60550 Verneuil-en-Halatte, France
| | - Nathalie Hinfray
- Unité d'Ecotoxicologie in vitro et in vivo, Institut National de l'Environnement Industriel et des Risques (INERIS), BP 2, 60550 Verneuil-en-Halatte, France
| | - Elisabeth Pellegrini
- Team NEED, Institut de recherche en Santé Environnement et Travail (Irset), INSERM U1085, Université de Rennes 1, Campus de Beaulieu, SFR Biosit, 35042 Rennes cedex, France
| | - Noureddine Boujrad
- TREK, Institut de recherche en Santé Environnement et Travail (Irset), INSERM U1085, Université de Rennes 1, Campus de Beaulieu, SFR Biosit, 35042 Rennes cedex, France
| | - Farzad Pakdel
- TREK, Institut de recherche en Santé Environnement et Travail (Irset), INSERM U1085, Université de Rennes 1, Campus de Beaulieu, SFR Biosit, 35042 Rennes cedex, France
| | - Olivier Kah
- Team NEED, Institut de recherche en Santé Environnement et Travail (Irset), INSERM U1085, Université de Rennes 1, Campus de Beaulieu, SFR Biosit, 35042 Rennes cedex, France.
| | - François Brion
- Unité d'Ecotoxicologie in vitro et in vivo, Institut National de l'Environnement Industriel et des Risques (INERIS), BP 2, 60550 Verneuil-en-Halatte, France.
| |
Collapse
|
115
|
A label-free colorimetric progesterone aptasensor based on the aggregation of gold nanoparticles. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1861-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
116
|
Rossier NM, Chew G, Zhang K, Riva F, Fent K. Activity of binary mixtures of drospirenone with progesterone and 17α-ethinylestradiol in vitro and in vivo. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 174:109-122. [PMID: 26930480 DOI: 10.1016/j.aquatox.2016.02.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/27/2016] [Accepted: 02/14/2016] [Indexed: 06/05/2023]
Abstract
Despite potential exposure of aquatic organisms to mixtures of steroid hormones, very little is known on their joint activity in fish. Drospirenone (DRS) is a new synthetic progestin used in contraceptive pills in combination with 17α-ethinylestradiol (EE2). Here we systematically analyzed effects of DRS in binary mixtures with progesterone (P4) and EE2. First, we determined the in vitro activity of single compounds in recombinant yeast assays that express the human progesterone, androgen, or estrogen receptor, followed by determination of mixture activities of DRS and P4, DRS and EE2, as well as medroxyprogesterone acetate (MPA) and dydrogesterone (DDG). Mixtures of DRS and P4, as well as of DRS and EE2 showed additive progestogenic and androgenic activities. However, DDG and MPA showed non-additive progestogenic and androgenic activities. We then analyzed the in vivo activity of single compounds and mixtures of DRS and P4, as well as DRS and EE2, by assessing transcriptional changes of up to 14 selected target genes in zebrafish embryos at 48h post fertilization (hpf), and in eleuthero-embryos at 96hpf and 144hpf. DRS, P4, and EE2 led to significant transcriptional alteration of genes, including those encoding hormone receptors (pgr, esr1), a steroidogenic enzyme (hsd17b3), and estrogenic markers (vtg1, cyp19b), in particular at 144 hpf. In general, DRS showed stronger transcriptional changes than P4. In mixtures of DRS and P4, they were mainly non-additive (antagonistic interaction). In mixtures of DRS and EE2, transcriptional responses of esr1, vtg1 and cyp19b were dominated by EE2, suggesting an antagonistic interaction or independent action. Equi-effective mixtures of DRS and EE2, based on progesterone receptor transcripts, showed antagonistic interactions. Our data suggest that interactions in mixtures assessed in vitro in recombinant yeast cannot be translated to the in vivo situation. The receptor-based responses did not correspond well to the transcriptional responses in embryos which are much more complex due to the interplay between hormonal pathways, receptor crosstalk, and hormonal feedback loops.
Collapse
Affiliation(s)
- Nadine Madeleine Rossier
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland; University of Basel, Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Geraldine Chew
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Kun Zhang
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Francesco Riva
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Environmental Biomarkers Unit, Department of Environmental Health Sciences, Via La Masa 19, I-20156 Milan, Italy
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland; Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental System Sciences, CH-8092 Zürich, Switzerland.
| |
Collapse
|
117
|
Sangster JL, Ali JM, Snow DD, Kolok AS, Bartelt-Hunt SL. Bioavailability and Fate of Sediment-Associated Progesterone in Aquatic Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:4027-4036. [PMID: 26938708 DOI: 10.1021/acs.est.5b06082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The environmental fate and bioavailability of progesterone, a steroid hormone known to cause endocrine-disrupting effects in aquatic organisms, is of growing concern due to its occurrence in the environment in water and sediment influenced by wastewater treatment plant and paper mill effluents, as well as livestock production. The objective of this study was to evaluate the fate of progesterone in two natural sediments and the corresponding alteration of gene expression in three steroid-responsive genes; vitellogenin, androgen receptor and estrogen receptor alpha. When exposed to progesterone-spiked sand, fathead minnows (Pimephales promelas) exhibited significant reductions in the expression of vitellogenin and androgen receptor expression. In contrast, fish exposed to progesterone associated with the silty loam sediment did not show a biological response at 7 days and only realized a significant reduction in vitellogenin. In both sediments, progesterone degradation resulted in the production of androgens including androsteinedione, testosterone, and androstadienedione, as well as the antiestrogen, testolactone. Differences in compound fate resulted in organism exposure to different suites of metabolites either in water or associated with the sediment. Results from this study suggest that environmental progestagens will lead to defeminization at environmentally relevant concentrations, and that exposure is influenced by sediment properties.
Collapse
Affiliation(s)
- Jodi L Sangster
- Department of Civil Engineering, University of Nebraska-Lincoln, Peter Kiewit Institute , Omaha, Nebraska 68182-0178, United States
| | - Jonathan M Ali
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska - Medical Center , 986805 Nebraska Medical Center, Omaha, Nebraska 68198-6805, United States
| | - Daniel D Snow
- Nebraska Water Center and School of Natural Resources, University of Nebraska-Lincoln , Lincoln, Nebraska 68583-0844, United States
| | - Alan S Kolok
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska - Medical Center , 986805 Nebraska Medical Center, Omaha, Nebraska 68198-6805, United States
- Department of Biology, 6001 Dodge Street, University of Nebraska at Omaha , Omaha, Nebraska 68182-0040, United States
| | - Shannon L Bartelt-Hunt
- Department of Civil Engineering, University of Nebraska-Lincoln, Peter Kiewit Institute , Omaha, Nebraska 68182-0178, United States
| |
Collapse
|
118
|
Säfholm M, Jansson E, Fick J, Berg C. Molecular and histological endpoints for developmental reproductive toxicity in Xenopus tropicalis: Levonorgestrel perturbs anti-Müllerian hormone and progesterone receptor expression. Comp Biochem Physiol C Toxicol Pharmacol 2016; 181-182:9-18. [PMID: 26689642 DOI: 10.1016/j.cbpc.2015.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/02/2015] [Accepted: 12/07/2015] [Indexed: 02/02/2023]
Abstract
There is an increasing concern regarding the risks associated with developmental exposure to endocrine disrupting chemicals and the consequences for reproductive capability. The present study aimed to refine the Xenopus (Silurana) tropicalis test system for developmental reproductive toxicity by characterising molecular and histological features of sexual development, and to explore effects of exposure to the progestagen levonorgestrel (LNG). Larvae were exposed to LNG (0, 3, 30, 300 ng/L) over the first three weeks of development, encompassing the beginning of gonadal differentiation. mRNA levels of amh (anti-Müllerian hormone), amhr2 (amh receptor 2), ipgr (intracellular progesterone receptor), mpgr beta (membrane progesterone receptor beta), and cyp19a1 (cytochrome p450 19a1) were quantified in larvae and juveniles (4 weeks post-metamorphosis). Relative cyp19a1 and amh expression was used as a molecular marker for phenotypic sex of larvae. Gonadal and Müllerian duct development were characterised histologically in juveniles. Compared to controls, LNG exposure increased the expression of amh and ipgr in male larvae. In juveniles, mpgr beta expression was increased in both sexes and amhr2 expression was decreased in males, implying persistent effects of developmental progestagen exposure on amh and pgr expression signalling. No effects of LNG on the gonadal or Müllerian duct development were found, implying that the exposure window was not critical with regard to these endpoints. In juveniles, folliculogenesis had initiated and the Müllerian ducts were larger in females than in males. This new knowledge on sexual development in X. tropicalis is useful in the development of early life-stage endpoints for developmental reproductive toxicity.
Collapse
Affiliation(s)
- Moa Säfholm
- Uppsala University, Department of Organismal Biology, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| | - Erika Jansson
- Uppsala University, Department of Organismal Biology, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| | - Jerker Fick
- Umeå University, Department of Chemistry, KBC 6A, Linnaeus väg 6, 901 87 Umeå, Sweden.
| | - Cecilia Berg
- Uppsala University, Department of Organismal Biology, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| |
Collapse
|
119
|
Progestins alter photo-transduction cascade and circadian rhythm network in eyes of zebrafish (Danio rerio). Sci Rep 2016; 6:21559. [PMID: 26899944 PMCID: PMC4761927 DOI: 10.1038/srep21559] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/27/2016] [Indexed: 12/13/2022] Open
Abstract
Environmental progestins are implicated in endocrine disruption in vertebrates. Additional targets that may be affected in organisms are poorly known. Here we report that progesterone (P4) and drospirenone (DRS) interfere with the photo-transduction cascade and circadian rhythm network in the eyes of zebrafish. Breeding pairs of adult zebrafish were exposed to P4 and DRS for 21 days with different measured concentrations of 7–742 ng/L and 99-13´650 ng/L, respectively. Of totally 10 key photo-transduction cascade genes analyzed, transcriptional levels of most were significantly up-regulated, or normal down-regulation was attenuated. Similarly, for some circadian rhythm genes, dose-dependent transcriptional alterations were also observed in the totally 33 genes analyzed. Significant alterations occurred even at environmental relevant levels of 7 ng/L P4. Different patterns were observed for these transcriptional alterations, of which, the nfil3 family displayed most significant changes. Furthermore, we demonstrate the importance of sampling time for the determination and interpretation of gene expression data, and put forward recommendations for sampling strategies to avoid false interpretations. Our results suggest that photo-transduction signals and circadian rhythm are potential targets for progestins. Further studies are required to assess alterations on the protein level, on physiology and behavior, as well as on implications in mammals.
Collapse
|
120
|
Affiliation(s)
- Susan D. Richardson
- Department of Chemistry and
Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Susana Y. Kimura
- Department of Chemistry and
Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
121
|
Burkina V, Sakalli S, Rasmussen MK, Zamaratskaia G, Koba O, Thai GP, Grabic R, Randak T, Zlabek V. Does dexamethasone affect hepatic CYP450 system of fish? Semi-static in-vivo experiment on juvenile rainbow trout. CHEMOSPHERE 2015; 139:155-162. [PMID: 26117200 DOI: 10.1016/j.chemosphere.2015.06.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/01/2015] [Accepted: 06/16/2015] [Indexed: 06/04/2023]
Abstract
Effects of aquatic pollutants on fish are of increasing concern. Pharmaceutical-based contaminants are prioritized for further study in environmental risk assessment using several approaches. Dexamethasone (DEX) was one such contaminant recognised for its effect on fish health status. Thus, we carried out an in vivo experiment to identify potential effects of DEX on rainbow trout. Fish were exposed to 3, 30, 300 and 3000ngL(-1) DEX in a semi-static system over a period of 42d. The concentrations of DEX that fish were exposed to was confirmed by LC-LC-MS/MS. Using hepatic microsomes, we determined cytochrome P450 content, activities of ethoxyresorufin O-deethylase (EROD), p-nitrophenol hydroxylase (PNPH), 7-benzyloxy-4-trifluoromethylcoumarin O-debenzylase (BFCOD) and benzyloxyquinoline O-debenzylase (BQOD), as well as protein expression. Our results showed that fish do not change the catalytic activity of CYP450-mediated reactions after high DEX concentration exposure. These results disagree with mammalian studies, where DEX is a well-known inducer of CYP450. We showed a significant effect of DEX exposure on CYP450-mediated reactions (EROD, BCFOD, BQOD and PNPH) when expressed as amount of product formed per min per nmol total CYP450 at 3, 30 and 300ngL(-1) after 21d exposure. Moreover, BFCOD and BQ activities showed matching trends in all groups. Western blot analysis showed induction of CYP3A-like protein in the presence of the lowest environmentally relevant concentration of DEX. Based on these findings, continued investigation of the effect of DEX on fish using a battery of complementary biomarkers of exposure and effect is highly relevant.
Collapse
Affiliation(s)
- Viktoriia Burkina
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Sidika Sakalli
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | | | - Galia Zamaratskaia
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic; Swedish University of Agricultural Sciences, Uppsala BioCenter, Department of Food Science, P.O. Box 7051, SE-750 07 Uppsala, Sweden.
| | - Olga Koba
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Giang Pham Thai
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Roman Grabic
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Tomas Randak
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Vladimir Zlabek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| |
Collapse
|
122
|
Fent K. Progestins as endocrine disrupters in aquatic ecosystems: Concentrations, effects and risk assessment. ENVIRONMENT INTERNATIONAL 2015; 84:115-30. [PMID: 26276056 DOI: 10.1016/j.envint.2015.06.012] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/09/2015] [Accepted: 06/25/2015] [Indexed: 05/04/2023]
Abstract
In aquatic ecosystems, progesterone (P4) and synthetic progestins (gestagens) originate from excretion by humans and livestock. Synthetic progestins are used for contraception and as P4 for medical treatments as well. Despite significant use, their ecotoxicological implications are poorly understood. Only about 50% of the progestins in use have been analyzed for their environmental occurrence and effects in aquatic organisms. Here we critically summarize concentrations and effects of progestins in aquatic systems. P4 and progestins were mostly detected when analyzed for, and they occurred in the low ng/L range in wastewater and surface water. In animal farm waste and runoff, they reached up to several μg/L. P4 and synthetic progestins act through progesterone receptors but they also interact with other steroid hormone receptors. They act on the hypothalamus-pituitary-gonad axis, lead to oocyte maturation in female and sperm motility in male fish. Additionally, other pathways are affected as well, including the circadian rhythm. Effects of P4, mifepristone and eleven synthetic progestins have been studied in fish and a few compounds in frogs and mussels. Environmental risks may be associated with P4, dydrogesterone and medroxyprogesterone acetate, where transcriptional effects were found at highest environmental levels. Reproductive effects occurred at higher levels. However, norethindrone, levonorgestrel and norgestrel compromised reproduction at environmental (ng/L) concentrations. Thus, some of the progestins are very active endocrine disrupters. This review summarizes the current state of the art and highlights risks for fish. Further research is needed into environmental concentrations and effects of non-investigated progestins, unexplored modes of action, and the activity of mixtures of progestins and other steroids to fully assess their environmental risks.
Collapse
Affiliation(s)
- Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland; Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental Systems Science, CH-8092 Zürich, Switzerland.
| |
Collapse
|
123
|
Hua J, Han J, Guo Y, Zhou B. The progestin levonorgestrel affects sex differentiation in zebrafish at environmentally relevant concentrations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 166:1-9. [PMID: 26163149 DOI: 10.1016/j.aquatox.2015.06.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/26/2015] [Accepted: 06/27/2015] [Indexed: 06/04/2023]
Abstract
Synthetic progestins have become widespread environmental contaminants and may cause adverse effects on fish. In the present study, we investigated the effects of levonorgestrel (LNG) on sex differentiation in zebrafish (Danio rerio). Embryos were exposed to LNG at environmentally relevant concentrations (0, 1, 10, 33, and 100ng/L) and allowed to develop until sexual maturity. Histological examination at 63 days post fertilization (dpf) caused complete sex reversal and 100% males were observed in the 10, 33 and 100ng/L treatments; gross morphological and histological examination of gonads at 142dpf further confirmed 100% males at these exposure concentrations. The results indicate androgenic activity of LNG, and masculinization during zebrafish gonadal differentiation. The mRNA expression levels of genes involved in fish sex differentiation and gonadal development were examined at 28 and 42dpf. Down-regulation of the mRNA expression of aromatase (e.g., cyp19a1a, cyp19a1b), the forkhead transcription factor gene L2 (foxl2) and the Fushi tarazu factor-1d (nr5a1b) were observed. In contrast, transcription of the doublesex and mab-3-related transcription factor 1 (dmrt1) gene was up-regulated. Androgen receptor (ar) mRNA expression was significantly down-regulated at 28 and 42dpf. Co-exposure to flutamide (an androgen antagonist) and LNG, led to a decrease in the sex inversion potency of LNG. Our study has demonstrated that environmentally relevant concentrations of LNG could alter sex differentiation and gonadal development in zebrafish. Our results also suggest a potentially high ecological risk of LNG to fish populations in LNG-contaminated aquatic environments.
Collapse
Affiliation(s)
- Jianghuan Hua
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Han
- Biology Institute of Shangdong Academy of Sciences, Jinan 250014, China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
124
|
Zhao Y, Castiglioni S, Fent K. Environmental Progestins Progesterone and Drospirenone Alter the Circadian Rhythm Network in Zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:10155-10164. [PMID: 26161812 DOI: 10.1021/acs.est.5b02226] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Progestins alter hormone homeostasis and may result in reproductive effects in humans and animals. Thus far, studies in fish have focused on the hypothalamic-pituitary-gonadal (HPG)-axis and reproduction, but other effects have little been investigated. Here we report that progesterone (P4) and drospirenone (DRS) interfere with regulation of the circadian rhythm in fish. Breeding pairs of adult zebrafish were exposed to P4 and DRS at concentrations between 7 and 13 650 ng/L for 21 days. Transcriptional analysis revealed significant and dose-dependent alterations of the circadian rhythm network in the brain with little effects in the gonads. Significant alterations of many target transcripts occurred even at environmental relevant concentrations of 7 ng/L P4 and at 99 ng/L DRS. They were fully consistent with the well-described circadian rhythm negative/positive feedback loops. Transcriptional alterations of the circadian rhythm network were correlated with those in the HPG-Liver-axis. Fecundity was decreased at 742 (P4) and 2763 (DRS) ng/L. Dose-dependent alterations in the circadian rhythm network were also observed in F1 eleuthero-embryos. Our results suggest a potential target of environmental progestins, the circadian rhythm network, in addition to the adverse reproductive effects. Forthcoming studies should show whether the transcriptional alterations in circadian rhythm translate into physiological effects.
Collapse
Affiliation(s)
- Yanbin Zhao
- †University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Sara Castiglioni
- ‡IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Environmental Biomarkers Unit, Department of Environmental Health Sciences, Via La Masa 19, I-20156, Milan, Italy
| | - Karl Fent
- †University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
- §Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental System Sciences, CH-8092 Zürich, Switzerland
| |
Collapse
|
125
|
Dimastrogiovanni G, Fernandes D, Bonastre M, Porte C. Progesterone is actively metabolized to 5α-pregnane-3,20-dione and 3β-hydroxy-5α-pregnan-20-one by the marine mussel Mytilus galloprovincialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 165:93-100. [PMID: 26026673 DOI: 10.1016/j.aquatox.2015.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/15/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
Progesterone (P4) and synthetic progestins enter the aquatic environment through wastewater treatment plant effluents and agricultural run-off, posing potential risks to aquatic organisms due to their biological activity. P4 is a precursor of a number of steroids in vertebrates, including estrogens and androgens. Mussels Mytilus galloprovincialis were exposed to P4 at the ng to low μg/L range (0.02-10μg/L) for 7 days with the aim of (a) assessing potential alterations on endogenous steroids as a consequence of exposure, and (b) describing the enzymatic pathways involved in P4 metabolism in mussels. No significant alteration of the levels of testosterone (T) and estradiol (E2) was observed in mantle/gonad tissue of exposed mussels, in spite of a 5.6-fold increase in immunoreactive T in those exposed to 10μg P4/L, which was attributed to cross-reactivity. P4 was actively metabolized to 5α-pregnane-3,20-dione (5α-DHP) and 3β-hydroxy-5α-pregnan-20-one (3β,20-one) in digestive gland, with no evidence for the synthesis of 17α-hydroxyprogesterone or androstenedione. The metabolism of P4 to 5α-DHP was not altered by exposure. Histological examination of the gonads suggested that exposure to 10μg/L P4 induced gamete maturation and release in mussels. Nonetheless, environmental concentrations of P4 are unlikely to have an endocrine action in mussels.
Collapse
Affiliation(s)
| | - Denise Fernandes
- Environmental Chemistry Department, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain; FCT, CIMA, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Marta Bonastre
- Environmental Chemistry Department, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Cinta Porte
- Environmental Chemistry Department, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
126
|
Overturf MD, Anderson JC, Pandelides Z, Beyger L, Holdway DA. Pharmaceuticals and personal care products: A critical review of the impacts on fish reproduction. Crit Rev Toxicol 2015; 45:469-91. [PMID: 25945515 DOI: 10.3109/10408444.2015.1038499] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Research in environmental toxicology involving pharmaceuticals and personal care products (PPCPs) has increased greatly over the last 10-15 years. Much research has been focused on the endocrine-disrupting potential of PPCPs, as they relate to negative population impacts of aquatic organisms. This review assesses the current data on the reported effects of PPCPs on fish reproduction with an emphasis on fecundity, a predictor of population effects. Studies of both individual PPCPs and PPCP mixtures are presented. As the majority of individual PPCP studies reviewed demonstrate negative effects on fish fecundity, we relate these findings to detected surface water concentrations of these compounds. Very few studies involving PPCP mixtures have been conducted; however, the need for these types of studies is warranted as fish are most likely exposed to mixtures of PPCPs in the wild. In addition, laboratory and field assessments of wastewater treatment plant (WWTP) effluents, a major source of PPCPs, are reviewed. Much of the data provided from these assessments are variable and do not generally demonstrate negative impacts on reproduction, or the studies are unable to directly associate observed effects with WWTP effluents. Finally, future research considerations are outlined to provide an avenue into understanding how wild populations of fish are affected by PPCPs. These considerations are aimed at determining the adaptation potential of fish exposed to mixtures of PPCPs over multiple generations. As global use of PPCPs continually rises, the need to discern the effects of chronic exposure to PPCPs is greatly increased.
Collapse
Affiliation(s)
- Matthew D Overturf
- Faculty of Science, University of Ontario Institute of Technology , Oshawa, ON , Canada
| | | | | | | | | |
Collapse
|