101
|
Zhao H, Zong Y, Sun Y, An G, Wang J. An Organocatalytic System for Z-Alkene Synthesis via a Hydrogen-Bonding-Assisted Photoinduced Electron Donor-Acceptor Complex. Org Lett 2024; 26:1739-1744. [PMID: 38367258 DOI: 10.1021/acs.orglett.4c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
A general catalytic donor for the combination of a photoinduced electron donor-acceptor (EDA) complex and energy transfer was developed. This mild and metal-free protocol allows facile access to various Z-alkenes. Mechanism studies revealed that the organophotocatalyst, 4-CzIPN, formed a distinct three-component EDA complex with redox-active esters and (C6H5O)2P(O)OH to trigger the photoredox catalysis. The E → Z isomerization was achieved via electron exchange energy transfer from 4-CzIPN.
Collapse
Affiliation(s)
- Hui Zhao
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang 150080, P. R.China
| | - Yingxiao Zong
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, College of Chemistry and Chemical Engineering, Hexi University, Zhangye, Gansu 734000, P. R. China
| | - Yue Sun
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang 150080, P. R.China
| | - Guanghui An
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang 150080, P. R.China
| | - Junke Wang
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, College of Chemistry and Chemical Engineering, Hexi University, Zhangye, Gansu 734000, P. R. China
| |
Collapse
|
102
|
Lewis NB, Bisbey RP, Westendorff KS, Soudackov AV, Surendranath Y. A molecular-level mechanistic framework for interfacial proton-coupled electron transfer kinetics. Nat Chem 2024; 16:343-352. [PMID: 38228851 DOI: 10.1038/s41557-023-01400-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/15/2023] [Indexed: 01/18/2024]
Abstract
Electrochemical proton-coupled electron transfer (PCET) reactions can proceed via an outer-sphere electron transfer to solution (OS-PCET) or through an inner-sphere mechanism by interfacial polarization of surface-bound active sites (I-PCET). Although OS-PCET has been extensively studied with molecular insight, the inherent heterogeneity of surfaces impedes molecular-level understanding of I-PCET. Herein we employ graphite-conjugated carboxylic acids (GC-COOH) as molecularly well-defined hosts of I-PCET to isolate the intrinsic kinetics of I-PCET. We measure I-PCET rates across the entire pH range, uncovering a V-shaped pH-dependence that lacks the pH-independent regions characteristic of OS-PCET. Accordingly, we develop a mechanistic model for I-PCET that invokes concerted PCET involving hydronium/water or water/hydroxide donor/acceptor pairs, capturing the entire dataset with only four adjustable parameters. We find that I-PCET is fourfold faster with hydronium/water than water/hydroxide, while both reactions display similarly high charge transfer coefficients, indicating late proton transfer transition states. These studies highlight the key mechanistic distinctions between I-PCET and OS-PCET, providing a framework for understanding and modelling more complex multistep I-PCET reactions critical to energy conversion and catalysis.
Collapse
Affiliation(s)
- Noah B Lewis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ryan P Bisbey
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Karl S Westendorff
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Yogesh Surendranath
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
103
|
McCarver GA, Yildirim T, Zhou W. Hetero-bimetallic paddlewheel complexes for enhanced CO 2 reduction selectivity in MOFs: a first principles study. Phys Chem Chem Phys 2024; 26:7627-7637. [PMID: 38363117 DOI: 10.1039/d3cp05694e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The reduction of carbon dioxide (CO2) into value-added feedstock materials, fine chemicals, and fuels represents a crucial approach for meeting contemporary chemical demands while reducing dependence on petrochemical sources. Optimizing catalysts for the CO2 reduction reaction (CO2RR) can entail employing first principles methodology to identify catalysts possessing desirable attributes, including the ability to form diverse products or selectively produce a limited set of products, or exhibit favorable reaction kinetics. In this study, we investigate CO2RR on bimetallic Cu-based paddlewheel complexes, aiming to understand the impact metal substitution with Mn(II), Co(II), or Ni(II) has on bimetallic paddlewheel metal-organic frameworks. Substituting one of the Cu sites of the paddlewheel complex with Mn results in a more catalytically active Cu center, poised to produce substantial quantities of formic acid (HCOOH) and smaller quantities of methane (CH4) with a suppressed production of C2 products such as ethanol (CH3CH2OH) or ethylene (C2H4). Moreover, the presence of Mn significantly reduces the limiting potential for CO2 reduction from 2.22 eV on the homo-bimetallic Cu paddlewheel complex to 1.19 eV, thereby necessitating a smaller applied potential. Conversely, within the Co-substituted paddlewheel complex, the Co site emerges as the primary catalytic center, selectively yielding CH4 as the sole reduced CO2 product, with a limiting potential of 1.22 eV. Notably, the Co site faces significant competition from H2 production due to a lower limiting potential of 0.81 eV for hydrogen reduction. Our examination of the Cu-Ni paddlewheel complex, featuring a Ni substituent site, reveals two catalytically active centers, each promoting distinct reductive processes. Both the Ni and Cu sites exhibit a propensity for HCOOH formation, with the Ni site favoring further reduction to CH4, whereas the Cu site directs the reaction towards methanol (CH3OH) production. This study holds significance in informing and streamlining future experimental efforts for synthesizing and evaluating novel catalysts with superior capabilities for CO2 reduction.
Collapse
Affiliation(s)
- Gavin A McCarver
- National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland 20899-6102, USA.
| | - Taner Yildirim
- National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland 20899-6102, USA.
| | - Wei Zhou
- National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland 20899-6102, USA.
| |
Collapse
|
104
|
Ahn S, Son M, Singh V, Yun A, Baik MH, Byon HR. Stabilization of Naphthalene Diimide Anions by Ion Pair Formation in Nonaqueous Organic Redox Flow Batteries. J Am Chem Soc 2024; 146:4521-4531. [PMID: 38346143 DOI: 10.1021/jacs.3c11176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
In redox flow batteries, a compelling strategy for enhancing the charge capacity of redox-active organic molecules involves storing multiple electrons within a single molecule. However, this approach poses unique challenges such as chemical instability by forming radicals, elevated energy requirements, and unsustainable charge concentration. Ion pairing is a possible solution to achieve charge neutrality and engineer redox potential shifts but has received limited attention. In this study, we demonstrate that Li+ can stabilize naphthalene diimide (NDI) anions dissolved in acetonitrile and significantly shift the second cathodic potential close to the first. Our findings, supported by density functional theory calculations and Fourier transform infrared spectroscopy, indicate that dimeric NDI species form stable ion pairs with Li+. Conversely, K+ ions exhibit weak interactions, and cyclic voltammograms confirm significant potential shifts when stronger Lewis acids and solvents with lower donor numbers are employed. Galvanostatic examinations reveal a single voltage plateau with Li+, which indicates a rapid redox process involving doubly charged NDI2- with Li+. These aggregated ion pairs offer the additional benefits of hindering crossover events, contributing to excellent cyclability, and suppressing undesirable side reactions even after 1000 redox cycles.
Collapse
Affiliation(s)
- Seongmo Ahn
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Mina Son
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Vikram Singh
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ariyeong Yun
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Hye Ryung Byon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
105
|
Chen C, Jin H, Wang P, Sun X, Jaroniec M, Zheng Y, Qiao SZ. Local reaction environment in electrocatalysis. Chem Soc Rev 2024; 53:2022-2055. [PMID: 38204405 DOI: 10.1039/d3cs00669g] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Beyond conventional electrocatalyst engineering, recent studies have unveiled the effectiveness of manipulating the local reaction environment in enhancing the performance of electrocatalytic reactions. The general principles and strategies of local environmental engineering for different electrocatalytic processes have been extensively investigated. This review provides a critical appraisal of the recent advancements in local reaction environment engineering, aiming to comprehensively assess this emerging field. It presents the interactions among surface structure, ions distribution and local electric field in relation to the local reaction environment. Useful protocols such as the interfacial reactant concentration, mass transport rate, adsorption/desorption behaviors, and binding energy are in-depth discussed toward modifying the local reaction environment. Meanwhile, electrode physical structures and reaction cell configurations are viable optimization methods in engineering local reaction environments. In combination with operando investigation techniques, we conclude that rational modifications of the local reaction environment can significantly enhance various electrocatalytic processes by optimizing the thermodynamic and kinetic properties of the reaction interface. We also outline future research directions to attain a comprehensive understanding and effective modulation of the local reaction environment.
Collapse
Affiliation(s)
- Chaojie Chen
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Huanyu Jin
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Pengtang Wang
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Xiaogang Sun
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry & Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
| | - Yao Zheng
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shi-Zhang Qiao
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
106
|
Park H, Park JH. Electrochemical Characterization of Neurotransmitters in a Single Submicron Droplet. BIOSENSORS 2024; 14:102. [PMID: 38392021 PMCID: PMC10886559 DOI: 10.3390/bios14020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Single-entity electrochemistry, which employs electrolysis during the collision of single particles on ultramicroelectrodes, has witnessed significant advancements in recent years, enabling the observation and characterization of individual particles. Information on a single aqueous droplet (e.g., size) can also be studied based on the redox species contained therein. Dopamine, a redox-active neurotransmitter, is usually present in intracellular vesicles. Similarly, in the current study, the electrochemical properties of neurotransmitters in submicron droplets were investigated. Because dopamine oxidation is accompanied by proton transfer, unique electrochemical properties of dopamine were observed in the droplet. We also investigated the electrochemical properties of the adsorbed droplets containing DA and the detection of oxidized dopamine by the recollision phenomenon.
Collapse
Affiliation(s)
| | - Jun Hui Park
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
107
|
Shen D, Li L, Ren T, Chen K, Zhang X, Zhang H, Zhang S, Gong P, Zhang F, Chao M. Radical-Smiles Rearrangement by a Vitamin B2-Derived Photocatalyst in Water. J Org Chem 2024; 89:2691-2702. [PMID: 38277486 DOI: 10.1021/acs.joc.3c02762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Herein, we report a catalytic radical-Smiles rearrangement system of arene migration from ether to carboxylic acid with riboflavin tetraacetate (RFT), a readily available ester of natural vitamin B2, as the photocatalyst and water as a green solvent, being free of external oxidant, base, metal, inert gas protection, and lengthy reaction time. Not only the known substituted 2-phenyloxybenzoic acids substrates but also a group of naphthalene- and heterocycle-based analogues was converted to the corresponding aryl salicylates for the first time. Mechanistic studies, especially a couple of kinetic isotope effect (KIE) experiments, suggested a sequential electron transfer-proton transfer processes enabled by the bifunctional flavin photocatalyst.
Collapse
Affiliation(s)
- Duyi Shen
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Linghui Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Ting Ren
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Kaihui Chen
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Xuan Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Haixing Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Shumiao Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Peiwei Gong
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Fanjun Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Mianran Chao
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
108
|
Wang Z, Yan CX, Liu R, Li X, Dai J, Li X, Shi D. Photo-induced versatile aliphatic C-H functionalization via electron donor-acceptor complex. Sci Bull (Beijing) 2024; 69:345-353. [PMID: 38044193 DOI: 10.1016/j.scib.2023.11.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/24/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
The ability to selectively introduce diverse functionality onto hydrocarbons is of substantial value in the synthesis of both small molecules and pharmaceuticals. In this endeavour, as a photocatalyst- and metal-free process, the electron donor-acceptor (EDA) strategy has not been well explored. Here we report an approach to aliphatic carbon-hydrogen bond diversification through an EDA complex constituted by HCl and SIV=O groups. As an efficient hydrogen atom transfer (HAT) reagent, chlorine radical can be produced via a proton-coupled electron transfer process in this system. Based on this unusual path, a photo-promoted versatile aliphatic C-H functionalization is developed without photo- and metal-catalysts, including thiolation, arylation, alkynylation, and allylation. This conversion has concise and ambient reaction conditions, good functional group tolerance, and substrate diversity, and provides an alternative solution for the high value-added utilization of bulk light alkanes.
Collapse
Affiliation(s)
- Zemin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Chao-Xian Yan
- School of Chemistry & Chemical Engineering, Ankang University, Ankang 725000, China
| | - Ruihua Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaowei Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jiajia Dai
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
109
|
Jiang W, Su M, Zheng Y, Fei T. Efficient Electron Transfer through Interfacial Water Molecules across Two-Dimensional MoO 3 for Humidity Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7406-7414. [PMID: 38295226 DOI: 10.1021/acsami.3c15630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Resistive humidity sensors are required in flexible and integrated devices. Two-dimensional MoO3 offers a large interface area, enabling the modulation of its electrical properties over a wide range. In this study, 2D MoO3 was synthesized via liquid-phase exfoliation for humidity-sensing tests. In terms of high sensitivity, negligible hysteresis, linearity, and stability, the humidity-sensing performance of MoO3 is superior to those of other materials. The sensitivity reaches 9794 Ω/RH at 25 °C. The sensing mechanism of MoO3 was investigated by using impedance spectra and voltage-current scans under different humidity levels. The results indicate that the resistance change of MoO3 due to humidity originates from the interfacial conductance. Interfacial H2O adsorption induces efficient conducting paths via hydrogen bonding, decreases the potential barrier for electron transfer, and supplies additional electron states to the valence bands. In this study, electronic humidity sensing was investigated in depth, and a new perspective was proposed for electronic humidity sensing.
Collapse
Affiliation(s)
- Wanlun Jiang
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, P.R. China
| | - Meng Su
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, P.R. China
| | - Yangong Zheng
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, P.R. China
| | - Teng Fei
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
110
|
Tepaske MA, Fitterer A, Verplancke H, Delony D, Neben MC, de Bruin B, Holthausen MC, Schneider S. C-H Bond Activation by Iridium(III) and Iridium(IV) Oxo Complexes. Angew Chem Int Ed Engl 2024; 63:e202316729. [PMID: 38116899 DOI: 10.1002/anie.202316729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
Oxidation of an iridium(III) oxo precursor enabled the structural, spectroscopic, and quantum-chemical characterization of the first well-defined iridium(IV) oxo complex. Side-by-side examination of the proton-coupled electron transfer thermochemistry revealed similar driving forces for the isostructural oxo complexes in two redox states due to compensating contributions from H+ and e- transfer. However, C-H activation of dihydroanthracene revealed significant hydrogen tunneling for the distinctly more basic iridium(III) oxo complex. Our findings complement the growing body of data that relate tunneling to ground state properties as predictors for the selectivity of C-H bond activation.
Collapse
Affiliation(s)
- Martijn A Tepaske
- Georg-August-Universität, Institut für Anorganische Chemie, Tammanstraβe 4, 37077, Göttingen, Germany
| | - Arnd Fitterer
- Institut für Anorganische und Analytische Chemie, Goethe-Universität, Max-von-Laue-Straβe 7, 60438, Frankfurt am Main, Germany
| | - Hendrik Verplancke
- Institut für Anorganische und Analytische Chemie, Goethe-Universität, Max-von-Laue-Straβe 7, 60438, Frankfurt am Main, Germany
| | - Daniel Delony
- Georg-August-Universität, Institut für Anorganische Chemie, Tammanstraβe 4, 37077, Göttingen, Germany
| | - Marc C Neben
- Georg-August-Universität, Institut für Anorganische Chemie, Tammanstraβe 4, 37077, Göttingen, Germany
| | - Bas de Bruin
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van't Hoff Institute for Molecular Sciences (HIMS), Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Max C Holthausen
- Institut für Anorganische und Analytische Chemie, Goethe-Universität, Max-von-Laue-Straβe 7, 60438, Frankfurt am Main, Germany
| | - Sven Schneider
- Georg-August-Universität, Institut für Anorganische Chemie, Tammanstraβe 4, 37077, Göttingen, Germany
| |
Collapse
|
111
|
Lei Y, Lei X, Tian G, Yang J, Huang D, Yang X, Chen C, Zhao J. Optical Variation and Molecular Transformation of Brown Carbon During Oxidation by NO 3• in the Aqueous Phase. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38319710 DOI: 10.1021/acs.est.3c08726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The NO3•-driven nighttime aging of brown carbon (BrC) is known to greatly impact its atmospheric radiative forcing. However, the impact of oxidation by NO3• on the optical properties of BrC in atmospheric waters as well as the associated reaction mechanism remain unclear. In this work, we found that the optical variation of BrC proxies under environmentally relevant NO3• exposure depends strongly on their sources, with enhanced light absorptivity for biomass-burning BrC but bleaching for urban aerosols and humic substances. High-resolution mass spectrometry using FT-ICR MS shows that oxidation by NO3• leads to the formation of light-absorbing species (e.g., nitrated organics) for biomass-burning BrC while destroying electron donors (e.g., phenols) within charge transfer complexes in urban aerosols and humic substances, as evidenced by transient absorption spectroscopy and NaBH4 reduction experiments as well. Moreover, we found that the measured rate constants between NO3• with real BrCs (k = (1.8 ± 0.6) × 107 MC-1s-1, expressed as moles of carbon) are much higher than those of individual model organic carbon (OC), suggesting the reaction with OCs may be a previously ill-quantified important sink of NO3• in atmospheric waters. This work provides insights into the kinetics and molecular transformation of BrC during the oxidation by NO3•, facilitating further evaluation of BrC's climatic effects and atmospheric NO3• levels.
Collapse
Affiliation(s)
- Yu Lei
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| | - Xin Lei
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Ge Tian
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| | - Jie Yang
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| | - Di Huang
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
112
|
Zuo S, Wang Y, Wan J, Ma Y, Yan Z. Facilitating Proton Coupled Electron Transfer Reaction through the Interfacial Micro Electric Field with Fe─N 4 ─C in FeMOFs Glass. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307102. [PMID: 37806750 DOI: 10.1002/smll.202307102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/30/2023] [Indexed: 10/10/2023]
Abstract
The proton-coupled electron transfer(PCET) reaction plays a crucial role in the chemical transformation process andhas become one of the most concerned elementary reactions. However, the complex kinetics of PCET reaction, which requires the simultaneous transfer of protons and electrons, leads to the dilemma that thermodynamics and kinetics cannot bebalanced and restricts its further development. In this, an interface micro-electric field (IMEF) basedon Fe─N4 in FeMOFs (Fe-Based Metal-Organic Frameworks) glass is designed tosynchronize proton/electron interface behavior for the first time to realizeefficient PCET reaction and optimize reaction thermodynamics and kinetics. The IMEF facilitates the separation of photogenerated electrons and holes, and accelerates Fe(III)/Fe(II) cycle. Driven by near-surface electric field force, the protons near surfacemigrate to Fe sites and participate in Fe(IV)═O formation and reaction, lowering the reaction energy barrier. Based on the interface regulation ofIMEF, a high-efficiency PCET reaction is realized, and kinetic reactionrate constant of photocatalytic oxidation of emerging contaminants is increasedby 3.7 times. This study highlights a strategy for IMEFs to modulate PEC Treactions for a wide range of potential applications, including environmental and ecological applications.
Collapse
Affiliation(s)
- Shiyu Zuo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yongwen Ma
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Zhicheng Yan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
113
|
Cooney S, Walls MRA, Schreiber E, Brennessel WW, Matson EM. Heterometal Dopant Changes the Mechanism of Proton-Coupled Electron Transfer at the Polyoxovanadate-Alkoxide Surface. J Am Chem Soc 2024; 146:2364-2369. [PMID: 38241170 PMCID: PMC10835708 DOI: 10.1021/jacs.3c14054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
The transfer of two H-atom equivalents to the titanium-doped polyoxovanadate-alkoxide, [TiV5O6(OCH3)13], results in the formation of a V(III)-OH2 site at the surface of the assembly. Incorporation of the group (IV) metal ion results in a weakening of the O-H bonds of [TiV5O5(OH2)(OCH3)13] in comparison to its homometallic congener, [V6O6(OH2)(OCH3)12], resembling more closely the thermodynamics reported for the one-electron reduced derivative, [V6O6(OH2)(OCH3)12]1-. An analysis of early time points of the reaction of [TiV5O6(OCH3)13] and 5,10-dihydrophenazine reveals the formation of an oxidized substrate, suggesting that proton-coupled electron transfer proceeds via initial electron transfer from substrate to cluster prior to proton transfer. These results demonstrate the profound influence of heterometal dopants on the mechanism of PCET with respect to the surface of the assembly.
Collapse
Affiliation(s)
- Shannon
E. Cooney
- Department of Chemistry, University
of Rochester, Rochester, New York 14627, United States
| | - M. Rebecca A. Walls
- Department of Chemistry, University
of Rochester, Rochester, New York 14627, United States
| | - Eric Schreiber
- Department of Chemistry, University
of Rochester, Rochester, New York 14627, United States
| | - William W. Brennessel
- Department of Chemistry, University
of Rochester, Rochester, New York 14627, United States
| | - Ellen M. Matson
- Department of Chemistry, University
of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
114
|
Molski M. Density Functional Theory Studies on the Chemical Reactivity of Allyl Mercaptan and Its Derivatives. Molecules 2024; 29:668. [PMID: 38338412 PMCID: PMC10856204 DOI: 10.3390/molecules29030668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
On the basis of density functional theory (DFT) at the B3LYP/cc-pVQZ level with the C-PCM solvation model, a comparative analysis of the reactivity of the garlic metabolites 2-propenesulfenic acid (PSA) and allyl mercaptan (AM, 2-propene-1-thiol) was performed. In particular, the thermodynamic descriptors (BDE, PA, ETE, AIP, PDE, and Gacidity) and global descriptors of chemical activity (ionization potential (IP), electron affinity (EA), chemical potential (μ), absolute electronegativity (χ), molecular hardness (η) and softness (S), electrophilicity index (ω), electro-donating (ω-) and electro-accepting (ω+) powers, and Ra and Rd indexes) were determined. The calculations revealed that PSA is more reactive than AM, but the latter may play a crucial role in the deactivation of free radicals due to its greater chemical stability and longer lifetime. The presence of a double bond in AM enables its polymerization, preserving the antiradical activity of the S-H group. This activity can be amplified by aryl-substituent-containing hydroxyl groups. The results of the calculations for the simplest phenol-AM derivative indicate that both the O-H and S-H moieties show greater antiradical activity in a vacuum and aqueous medium than the parent molecules. The results obtained prove that AM and its derivatives can be used not only as flavoring food additives but also as potent radical scavengers, protecting food, supplements, cosmetics, and drug ingredients from physicochemical decomposition caused by exogenous radicals.
Collapse
Affiliation(s)
- Marcin Molski
- Department of Quantum Chemistry, Adam Mickiewicz University of Poznań, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
115
|
Kessinger MC, Xu J, Cui K, Loague Q, Soudackov AV, Hammes-Schiffer S, Meyer GJ. Direct Evidence for a Sequential Electron Transfer-Proton Transfer Mechanism in the PCET Reduction of a Metal Hydroxide Catalyst. J Am Chem Soc 2024; 146:1742-1747. [PMID: 38193695 DOI: 10.1021/jacs.3c10742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The proton-coupled electron transfer (PCET) mechanism for the reaction Mox-OH + e- + H+ → Mred-OH2 was determined through the kinetic resolution of the independent electron transfer (ET) and proton transfer (PT) steps. The reaction of interest was triggered by visible light excitation of [RuII(tpy)(bpy')H2O]2+, RuII-OH2, where tpy is 2,2':6',2″-terpyridine and bpy' is 4,4'-diaminopropylsilatrane-2,2'-bipyridine, anchored to In2O3:Sn (ITO) thin films in aqueous solutions. Interfacial kinetics for the PCET reduction reaction were quantified by nanosecond transient absorption spectroscopy as a function of solution pH and applied potential. Data acquired at pH = 5-10 revealed a stepwise electron transfer-proton transfer (ET-PT) mechanism, while kinetic measurements made below pKa(RuIII-OH/OH2) = 1.3 were used to study the analogous interfacial reaction, where electron transfer was the only mechanistic step. Analysis of this data with a recently reported multichannel kinetic model was used to construct a PCET zone diagram and supported the assignment of an ET-PT mechanism at pH = 5-10. Ultimately, this study represents a unique example among Mox-OH/Mred-OH2 reactivity where the protonation and oxidation states of the intermediate were kinetically and spectrally resolved to firmly establish the PCET mechanism.
Collapse
Affiliation(s)
- Matthew C Kessinger
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jeremiah Xu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kai Cui
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Quentin Loague
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
116
|
Seikh L, Dhara S, Singh AK, Singh A, Dey S, Indra A, Lahiri GK. The isomer-sensitive electrochemical HER of ruthenium(II)-hydrido complexes involving redox-active azoheteroaromatics. Dalton Trans 2024; 53:1746-1756. [PMID: 38168794 DOI: 10.1039/d3dt02925e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The article deals with the development of isomeric ruthenium(II)-hydrido complexes [RuII(H)(L1)(PPh3)2(CO)]ClO4 ([1a]ClO4-[1b]ClO4)/[RuII(H)(L2)(PPh3)2(CO)]ClO4 ([2a]ClO4-[2b]ClO4) involving azo coupled L1 [L1: (E)-1,2-bis(1-methyl-1H-pyrazol-3-yl)diazene]/L2 [L2: (E)-1,2-bis(4-iodo-1-methyl-1H-pyrazol-3-yl)diazene], respectively. Structural evaluation of the complexes affirmed the syn conformation of the coordinated/uncoordinated pyrazole groups of L and its unperturbed neutral azo (NN) state. Isomeric forms in [1a]ClO4/[1b]ClO4 or [2a]ClO4/[2b]ClO4 differed with respect to the cis and trans orientations of the coordinated CO and N(azo) donor of L, respectively. It also demonstrated the formation of intermolecular hydrogen-bonded dimeric or 1D-polymeric chains in [1a]ClO4/[2b]ClO4 or [1b]ClO4, respectively. Successive two-electron reductions of the complexes varied to an appreciable extent as a function of the heterocycles connected to L. The involvement of the azo function of L towards the reductions ([NN]0 → [NN]˙- → [NN]2-) was supported by the DFT calculated MOs and Mulliken spin density at the paramagnetic state, which was further validated by the radical EPR profile of the first reduced (S = 1/2) state. Isomeric [1a]ClO4/[1b]ClO4 or [2a]ClO4/[2b]ClO4 immobilised on the carbon cloth support underwent various electrochemical acidic HERs (hydrogen evolution reactions) with TOF/10-1 s-1: [1a]ClO4 (0.83) > [1b]ClO4 (0.68) > [2a]ClO4 (0.50) > [2b]ClO4 (0.37).
Collapse
Affiliation(s)
- Liton Seikh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Suman Dhara
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Ajit Kumar Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India.
| | - Aditi Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Sanchaita Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Arindam Indra
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India.
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
117
|
Wan S, Shah MAKY, Wang H, Lund PD, Zhu B. Exceptionally high proton conductivity in Eu 2O 3 by proton-coupled electron transfer mechanism. iScience 2024; 27:108612. [PMID: 38179065 PMCID: PMC10765062 DOI: 10.1016/j.isci.2023.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/22/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Proton conductors are typically developed by doping to introduce structural defects such as oxygen vacancies to facilitate ionic transport through structural bulk conduction mechanism. In this study, we present a novel electrochemical proton injection method via an in situ fuel cell process, demonstrating proton conduction in europium oxide (Eu2O3) through a surficial conduction mechanism for the first time. By tuning Eu2O3 into a protonated form, H-Eu2O3, we achieved an exceptionally high proton conductivity of 0.16 S cm-1. Distribution of relaxation time (DRT) analysis was employed to investigate the proton transport behavior and reveal the significant contribution of surface proton transport to the overall conductivity of Eu2O3. Remarkably, H-Eu2O3 exhibited a low activation energy for ionic transport, comparable to the best ceramic electrolytes available. The proton-coupled electron transfer (PCET) mechanism describes this novel surficial proton conduction mechanism. These findings provide new possibilities for developing advanced proton conductors with improved performance.
Collapse
Affiliation(s)
- Shuo Wan
- Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology/ Energy Storage Joint Research Center, School of Energy & Environment, Southeast University, Nanjing 210096, China
| | - M. A. K. Yousaf Shah
- Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology/ Energy Storage Joint Research Center, School of Energy & Environment, Southeast University, Nanjing 210096, China
| | - Hao Wang
- Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology/ Energy Storage Joint Research Center, School of Energy & Environment, Southeast University, Nanjing 210096, China
| | - Peter D. Lund
- Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology/ Energy Storage Joint Research Center, School of Energy & Environment, Southeast University, Nanjing 210096, China
- School of Science, Aalto University, P.O. Box 15100, 00076 Aalto, Espoo, Finland
| | - Bin Zhu
- Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology/ Energy Storage Joint Research Center, School of Energy & Environment, Southeast University, Nanjing 210096, China
| |
Collapse
|
118
|
Lei B, Zhou G, Gong Z, Liu C, Zhou Y, Guro VP, Sun Y, Sheng J, Dong F. Dynamically Cyclic Fe 2+/Fe 3+ Active Sites as Electron and Proton-Feeding Centers Boosting CO 2 Photoreduction Powered by Benzyl Alcohol Oxidation. RESEARCH (WASHINGTON, D.C.) 2024; 8:0567. [PMID: 39801506 PMCID: PMC11717996 DOI: 10.34133/research.0567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/01/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
Solar-driven CO2 photoreduction holds promise for sustainable fuel and chemical productions, but the complex proton-coupled multi-electron transfer processes and sluggish oxidation half-reaction kinetics substantially hinder its efficiency. Here, we devised a rational catalyst design to address these challenges by fabricating ferrocene carboxylic acid-functionalized Cs3Sb2Br9 nanocrystals (CSB-Fc NCs), which facilitate simultaneous benzyl alcohol oxidation and CO2 reduction reactions under visible-light irradiation. The synchronized proton-coupled electron transfer processes between the reduction and oxidation half-reactions on CSB-Fc NCs resulted in a 5-fold increase in the CO2 reduction rate (45.56 μmol g-1 h-1, 97.9% CO selectivity) and a 5.8-fold enhancement in benzyl alcohol conversion (97.7% selectivity for benzaldehyde) compared to the CSB. In situ Raman and ultraviolet-visible diffuse reflectance spectra revealed that the dynamic Fe2+/Fe3+ redox loop within the Fc unit serves as the actual active site, facilitating the activation of substrate molecules. More importantly, in situ attenuated total reflection Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry spectroscopy, with isotope labeling of Deuteron-benzyl alcohol and 13CO2, confirmed that proton transfer from the hydroxyl group generates reactive protons at the Fe2+/Fe3+ site, enabling efficient CO2 photoreduction through subsequent protonation steps. This work offers a cost-effective and efficient approach for synergetic CO2 photoreduction driven by organic synthesis, advancing solar energy utilization.
Collapse
Affiliation(s)
- Ben Lei
- School of Resources and Environment, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- Chengdu Zhihe Environmental Technology Co. Ltd., Chengdu 610207, China
- School of Material Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Gaofeng Zhou
- School of Resources and Environment, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhongyou Gong
- Chengdu Zhihe Environmental Technology Co. Ltd., Chengdu 610207, China
| | - Chao Liu
- Chengdu Zhihe Environmental Technology Co. Ltd., Chengdu 610207, China
| | - Ying Zhou
- School of New Energy and Materials,
Southwest Petroleum University, Chengdu 610500, China
| | - Vitaliy P. Guro
- Institute of General and Inorganic Chemistry,
Academy of Sciences of the Republic of Uzbekistan, Tashkent 100047, Uzbekistan
| | - Yanjuan Sun
- School of Resources and Environment, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jianping Sheng
- School of Resources and Environment, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fan Dong
- School of Resources and Environment, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
119
|
Ma Y. Ambimodal Addition-Coupled Electron Transfer Mechanism in a Pb(IV)-Promoted Oxidative Dearomatization Reaction. J Org Chem 2024; 89:224-232. [PMID: 38100374 DOI: 10.1021/acs.joc.3c01956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The mechanism of the Pb(IV)-promoted phenol oxidative dearomatization reaction has been traditionally attributed to a carbocation mechanism. In 2011, Pettus reported an oxidative dearomatization reaction leading to a mixture of a formal [5 + 2] and a C-O bond formation product. By employing density functional theory and quasi-molecular dynamics calculations, it was demonstrated that the reaction does not occur through a carbocation intermediate but instead proceeds through an addition-coupled electron transfer (ACET) mechanism. Moreover, the ACET exhibits ambimodality, wherein a transition state results in 4-6 distinct outcomes through post-TS bifurcation. The reported selectivity can be effectively rationalized by a newly proposed mechanism.
Collapse
Affiliation(s)
- Yumiao Ma
- BSJ Institute, Haidian, Beijing 100084, People's Republic of China
- Hangzhou Yanqu Information Technology Co., Ltd., Xihu District, Hangzhou, Zhejiang 310003, People's Republic of China
| |
Collapse
|
120
|
Cui K, Soudackov AV, Hammes-Schiffer S. Modeling the Weak pH Dependence of Proton-Coupled Electron Transfer for Tryptophan Derivatives. J Phys Chem Lett 2023; 14:10980-10987. [PMID: 38039095 PMCID: PMC11401620 DOI: 10.1021/acs.jpclett.3c02282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
The oxidation of tryptophan (Trp) is an important step in many biological processes and often occurs by sequential or concerted proton-coupled electron transfer (PCET). The apparent rate constants for the photochemical oxidation of two Trp derivatives in water have been shown to be pH-independent at low pH and to exhibit weak pH dependence at higher pH. Herein, these systems are investigated with a general, multi-channel model that includes sequential and concerted mechanisms as well as various proton donors and acceptors. This model can reproduce the kinetic data for both Trp derivatives with physically meaningful parameters and suggests that the weak pH dependence may arise from the competition between OH- and H2O as proton acceptors in concerted PCET. Deprotonation of an ammonium group for one of the systems leads to a more complex pH dependence at higher pH. This work demonstrates the importance of considering multiple competing channels for the analysis of the pH dependence of apparent PCET rate constants.
Collapse
Affiliation(s)
- Kai Cui
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | | | |
Collapse
|
121
|
Latrache M, Lefebvre C, Abe M, Hoffmann N. Photochemically Induced Hydrogen Atom Transfer and Intramolecular Radical Cyclization Reactions with Oxazolones. J Org Chem 2023; 88:16435-16455. [PMID: 37983612 DOI: 10.1021/acs.joc.3c01951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Photochemically induced intramolecular hydrogen atom transfer in oxazolones is reported. An acetal or thioacetal function at the side chain acts as a hydrogen donor while the photochemical exited oxazolone is the acceptor. A one-step process─the electron and the proton are simultaneously transferred─is productive, while electron transfer followed by proton transfer is inefficient. Radical combination then takes place, leading to the formation of a C-C or C-N bond. The regioselectivity of the reaction is explained by the diradical/zwitterion dichotomy of radical intermediates at the singlet state. In the present case, the zwitterion structure plays a central role, and intramolecular electron transfer favors spin-orbit coupling and thus the intersystem crossing to the singlet state. The reaction of corresponding thioacetal derivatives is less efficient. In this case, photochemical electron transfer is competitive. The photoproducts resulting from C-C bond formation easily undergo stepwise thermal decarboxylation in which zwitterionic and polar transition states are involved. A computational study of this step has also been performed.
Collapse
Affiliation(s)
- Mohammed Latrache
- ICMR, Equipe de Photochimie, CNRS, Université de Reims Champagne-Ardenne, UFR Sciences, B.P. 1039, Reims 51687 France
| | - Corentin Lefebvre
- ICMR, Equipe de Photochimie, CNRS, Université de Reims Champagne-Ardenne, UFR Sciences, B.P. 1039, Reims 51687 France
| | - Manabu Abe
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Hiroshima Research Center for Photo-Drug-Delivery Systems (Hi-P-DDS), 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Norbert Hoffmann
- ICMR, Equipe de Photochimie, CNRS, Université de Reims Champagne-Ardenne, UFR Sciences, B.P. 1039, Reims 51687 France
| |
Collapse
|
122
|
Trowbridge L, Averkiev B, Sues PE. Electrocatalytic Hydrogen Evolution using a Nickel-based Calixpyrrole Complex: Controlling the Secondary Coordination Sphere on an Electrode Surface. Chemistry 2023; 29:e202301920. [PMID: 37665793 PMCID: PMC10842979 DOI: 10.1002/chem.202301920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Incorporating design elements from homogeneous catalysts to construct well defined active sites on electrode surfaces is a promising approach for developing next generation electrocatalysts for energy conversion reactions. Furthermore, if functionalities that control the electrode microenvironment could be integrated into these active sites it would be particularly appealing. In this context, a square planar nickel calixpyrrole complex, Ni(DPMDA) (DPMDA=2,2'-((diphenylmethylene)bis(1H-pyrrole-5,2-diyl))bis(methaneylylidene))bis(azaneylylidene))dianiline) with pendant amine groups is reported that forms a heterogeneous hydrogen evolution catalyst using anilinium tetrafluoroborate as the proton source. The supported Ni(DPMDA) catalyst was surprisingly stable and displayed fast reaction kinetics with turnover frequencies (TOF) up to 25,900 s-1 or 366,000 s-1 cm-2 . Kinetic isotope effect (KIE) studies revealed a KIE of 5.7, and this data, combined with Tafel slope analysis, suggested that a proton-coupled electron transfer (PCET) process involving the pendant amine groups was rate-limiting. While evidence of an outer-sphere reduction of the Ni(DPMDA) catalyst was observed, it is hypothesized that the control over the secondary coordination sphere provided by the pendant amines facilitated such high TOFs and enabled the PCET mechanism. The results reported herein provide insight into heterogeneous catalyst design and approaches for controlling the secondary coordination sphere on electrode surfaces.
Collapse
Affiliation(s)
- Logan Trowbridge
- Department of Chemistry, Kansas State University, 1212 Mid-Campus Drive North, Manhattan, Kansas, 66503, USA
| | - Boris Averkiev
- Department of Chemistry, Kansas State University, 1212 Mid-Campus Drive North, Manhattan, Kansas, 66503, USA
| | - Peter E Sues
- Department of Chemistry, Kansas State University, 1212 Mid-Campus Drive North, Manhattan, Kansas, 66503, USA
| |
Collapse
|
123
|
Gobbato T, Volpato GA, Sartorel A, Bonchio M. A breath of sunshine: oxygenic photosynthesis by functional molecular architectures. Chem Sci 2023; 14:12402-12429. [PMID: 38020375 PMCID: PMC10646967 DOI: 10.1039/d3sc03780k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
The conversion of light into chemical energy is the game-changer enabling technology for the energetic transition to renewable and clean solar fuels. The photochemistry of interest includes the overall reductive/oxidative splitting of water into hydrogen and oxygen and alternatives based on the reductive conversion of carbon dioxide or nitrogen, as primary sources of energy-rich products. Devices capable of performing such transformations are based on the integration of three sequential core functions: light absorption, photo-induced charge separation, and the photo-activated breaking/making of molecular bonds via specific catalytic routes. The key to success does not rely simply on the individual components' performance, but on their optimized integration in terms of type, number, geometry, spacing, and linkers dictating the photosynthetic architecture. Natural photosynthesis has evolved along this concept, by integrating each functional component in one specialized "body" (from the Greek word "soma") to enable the conversion of light quanta with high efficiency. Therefore, the natural "quantasome" represents the key paradigm to inspire man-made constructs for artificial photosynthesis. The case study presented in this perspective article deals with the design of artificial photosynthetic systems for water oxidation and oxygen production, engineered as molecular architectures then rendered on electrodic surfaces. Water oxidation to oxygen is indeed the pervasive oxidative reaction used by photosynthetic organisms, as the source of reducing equivalents (electrons and protons) to be delivered for the processing of high-energy products. Considering the vast and abundant supply of water (including seawater) as a renewable source on our planet, this is also a very appealing option for photosynthetic energy devices. We will showcase the progress in the last 15 years (2009-2023) in the strategies for integrating functional building blocks as molecular photosensitizers, multi-redox water oxidation catalysts and semiconductor materials, highlighting how additional components such as redox mediators, hydrophilic/hydrophobic pendants, and protective layers can impact on the overall photosynthetic performance. Emerging directions consider the modular tuning of the multi-component device, in order to target a diversity of photocatalytic oxidations, expanding the scope of the primary electron and proton sources while enhancing the added-value of the oxidation product beyond oxygen: the selective photooxidation of organics combines the green chemistry vision with renewable energy schemes and is expected to explode in coming years.
Collapse
Affiliation(s)
- Thomas Gobbato
- Department of Chemical Sciences, University of Padova via Marzolo 1 35131 Padova Italy
| | - Giulia Alice Volpato
- Department of Chemical Sciences, University of Padova via Marzolo 1 35131 Padova Italy
| | - Andrea Sartorel
- Department of Chemical Sciences, University of Padova via Marzolo 1 35131 Padova Italy
| | - Marcella Bonchio
- Department of Chemical Sciences, University of Padova via Marzolo 1 35131 Padova Italy
- ITM-CNR Section of Padova, INSTM Unit of Padova via Marzolo 1 35131 Padova Italy
| |
Collapse
|
124
|
Chen T, Dong H, Yu Y, Chen J, Xu J, Sun Y, Guan X. Neutral Phenolic Contaminants Are Not Necessarily More Resistant to Permanganate Oxidation Than Their Dissociated Counterparts: Importance of Proton-Coupled Electron Transfer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17620-17628. [PMID: 37902719 DOI: 10.1021/acs.est.3c05495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Despite decades of research on phenols oxidation by permanganate, there are still considerable uncertainties regarding the mechanisms accounting for the unexpected parabolic pH-dependent oxidation rate. Herein, the pH effect on phenols oxidation was reinvestigated experimentally and theoretically by highlighting the previously unappreciated proton transfer. The results revealed that the oxidation of protonated phenols occurred via proton-coupled electron transfer (PCET) pathways, which can switch from ETPT (electron transfer followed by proton transfer) to CEPT (concerted electron-proton transfer) or PTET (proton transfer followed by electron transfer) with an increase in pH. A PCET-based model was thus established, and it could fit the kinetic data of phenols oxidation by permanganate well. In contrast with what was previously thought, both the simulating results and the density functional theory calculation indicated the rate of CEPT reaction of protonated phenols with OH- as the proton acceptor was much higher than that of deprotonated phenols, which could account for the pH-rate profiles for phenols oxidation. Analysis of the quantitative structure-activity relationships among the modeled rate constants, Hammett constants, and pKa values of phenols further supports the idea that the oxidation of protonated phenols is dominated by PCET. This study improves our understanding of permanganate oxidation and suggests a new pattern of reactivity that may be applicable to other systems.
Collapse
Affiliation(s)
- Tiansheng Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Hongyu Dong
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Yanghai Yu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Jie Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Jihong Xu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Yuankui Sun
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
125
|
Peng F, Xiang J, Qin H, Chen B, Duan R, Zhao W, Liu S, Wu T, Yuan W, Li Q, Li J, Kang X, Han B. Selective Electrochemical Oxidation of Benzylic C-H to Benzylic Alcohols with the Aid of Imidazolium Radical Mediators. J Am Chem Soc 2023; 145:23905-23909. [PMID: 37890007 DOI: 10.1021/jacs.3c09907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Selective oxidation of benzylic C-H to benzylic alcohols is a well-known challenge in the chemical community since benzylic C-H is more prone to be overoxidized to benzylic ketones. In this work, we report the highly selective electro-oxidation of benzylic C-H to benzylic alcohols in an undivided cell in ionic liquid-based solution. As an example, the selectivity toward xanthydrol could be as high as 95.7% at complete conversion of xanthene, a typical benzylic C-H compound, on gram-scale in imidazolium bromide/H2O/DMF. Mechanism investigation reveals that the imidazolium radical generated in situ participants in a proton-coupled electron transfer process and low-barrier hydrogen bonds stabilize the reaction intermediates, together steering the redox equilibrium, favoring benzylic alcohols over benzylic ketones.
Collapse
Affiliation(s)
- Fangfang Peng
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Junfeng Xiang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Huisheng Qin
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Bingfeng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Ran Duan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Wenling Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Shiqiang Liu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Tianbin Wu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Wenli Yuan
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Qian Li
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Jikun Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049 China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
| |
Collapse
|
126
|
Schneider JE, Anderson JS. Reconciling Imbalanced and Nonadiabatic Reactivity in Transition Metal-Oxo-Mediated Concerted Proton Electron Transfer (CPET). J Phys Chem Lett 2023; 14:9548-9555. [PMID: 37856336 DOI: 10.1021/acs.jpclett.3c02318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Recently, there have been several experimental demonstrations of how the rates of concerted proton electron transfer (CPET) are affected by stepwise thermodynamic parameters of only proton (ΔG°PT) or electron (ΔG°ET) transfer. Semiclassical structure-activity relationships have been invoked to rationalize these linear free energy relationships, but it is not clear how they would manifest in a nonadiabatic reaction. Using density functional theory calculations, we demonstrate how a decrease in ΔG°PT can lead to transition state imbalance in a nonadiabatic framework. We then use these calculations to anchor a theoretical model that reproduces experimental trends with ΔG°PT and ΔG°ET. Our results reconcile predictions from semiclassical transition state theory with models that treat proton transfer quantum mechanically in CPET reactivity, make new predictions about the importance of basicity for uphill CPET reactions, and suggest similar treatments may be possible for other nonadiabatic reactions.
Collapse
Affiliation(s)
- Joseph E Schneider
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - John S Anderson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
127
|
Liu S, Wu L, Tang D, Xue J, Dang K, He H, Bai S, Ji H, Chen C, Zhang Y, Zhao J. Transition from Sequential to Concerted Proton-Coupled Electron Transfer of Water Oxidation on Semiconductor Photoanodes. J Am Chem Soc 2023; 145:23849-23858. [PMID: 37861695 DOI: 10.1021/jacs.3c09410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Accelerating proton transfer has been demonstrated as key to boosting water oxidation on semiconductor photoanodes. Herein, we study proton-coupled electron transfer (PCET) of water oxidation on five typical photoanodes [i.e., α-Fe2O3, BiVO4, TiO2, plasmonic Au/TiO2, and nickel-iron oxyhydroxide (Ni1-xFexOOH)-modified silicon (Si)] by combining the rate law analysis of H2O molecules with the H/D kinetic isotope effect (KIE) and operando spectroscopic studies. An unexpected and universal half-order kinetics is observed for the rate law analysis of H2O, referring to a sequential proton-electron transfer pathway, which is the rate-limiting factor that causes the sluggish water oxidation performance. Surface modification of the Ni1-xFexOOH electrocatalyst is observed to break this limitation and exhibits a normal first-order kinetics accompanied by much enhanced H/D KIE values, facilitating the turnover frequency of water oxidation by 1 order of magnitude. It is the first time that Ni1-xFexOOH is found to be a PCET modulator. The rate law analysis illustrates an effective strategy for modulating PCET kinetics of water oxidation on semiconductor surfaces.
Collapse
Affiliation(s)
- Siqin Liu
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Wu
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Daojian Tang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing Xue
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kun Dang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hanbin He
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shuming Bai
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuchao Zhang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
128
|
Wang Y, Chen W, Lai Y, Duan A. Activation Model and Origins of Selectivity for Chiral Phosphoric Acid Catalyzed Diradical Reactions. J Am Chem Soc 2023; 145:23527-23532. [PMID: 37788159 DOI: 10.1021/jacs.3c07066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
To develop new radical synthesis strategies, a profound understanding of the electronic transfer mechanism is critical. An activation model called relayed proton-coupled electron transfer (relayed-PCET) was developed and investigated for chiral phosphoric acid-catalyzed diradical reactions by density functional theory (DFT). The driving force of electron transfer from the nucleophile to the electrophile is the proton transfer that occurs via the chiral phosphoric acid (CPA) catalyst to the electrophile. Moreover, the origins of the selectivity can be explained by distortion of the catalyst, favorable hydrogen bonding, and strong interactions of the substrates with substituents of the CPAs.
Collapse
Affiliation(s)
- Ying Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Weichi Chen
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yilei Lai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Abing Duan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
129
|
Hashemi A, Khakpour R, Mahdian A, Busch M, Peljo P, Laasonen K. Density functional theory and machine learning for electrochemical square-scheme prediction: an application to quinone-type molecules relevant to redox flow batteries. DIGITAL DISCOVERY 2023; 2:1565-1576. [PMID: 38013904 PMCID: PMC10561546 DOI: 10.1039/d3dd00091e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/11/2023] [Indexed: 11/29/2023]
Abstract
Proton-electron transfer (PET) reactions are rather common in chemistry and crucial in energy storage applications. How electrons and protons are involved or which mechanism dominates is strongly molecule and pH dependent. Quantum chemical methods can be used to assess redox potential (Ered.) and acidity constant (pKa) values but the computations are rather time consuming. In this work, supervised machine learning (ML) models are used to predict PET reactions and analyze molecular space. The data for ML have been created by density functional theory (DFT) calculations. Random forest regression models are trained and tested on a dataset that we created. The dataset contains more than 8200 quinone-type organic molecules that each underwent two proton and two electron transfer reactions. Both structural and chemical descriptors are used. The HOMO of the reactant and LUMO of the product participating in the oxidation reaction appeared to be strongly associated with Ered.. Trained models using a SMILES-based structural descriptor can efficiently predict the pKa and Ered. with a mean absolute error of less than 1 and 66 mV, respectively. Good prediction accuracy of R2 > 0.76 and >0.90 was also obtained on the external test set for Ered. and pKa, respectively. This hybrid DFT-ML study can be applied to speed up the screening of quinone-type molecules for energy storage and other applications.
Collapse
Affiliation(s)
- Arsalan Hashemi
- Department of Chemistry and Material Science, School of Chemical Engineering, Aalto University 02150 Espoo Finland
| | - Reza Khakpour
- Department of Chemistry and Material Science, School of Chemical Engineering, Aalto University 02150 Espoo Finland
| | - Amir Mahdian
- Department of Chemistry and Material Science, School of Chemical Engineering, Aalto University 02150 Espoo Finland
| | - Michael Busch
- Institute of Theoretical Chemistry, Ulm University Albert-Einstein Allee 11 89069 Ulm Germany
| | - Pekka Peljo
- Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku 20014 Turun Yliopisto Finland
| | - Kari Laasonen
- Department of Chemistry and Material Science, School of Chemical Engineering, Aalto University 02150 Espoo Finland
| |
Collapse
|
130
|
McCarver GA, Yildirim T, Zhou W. Catalyst Engineering for the Selective Reduction of CO 2 to CH 4 : A First-Principles Study on X-MOF-74 (X=Mg, Mn, Fe, Co, Ni, Cu, Zn). Chemphyschem 2023:e202300645. [PMID: 37801605 DOI: 10.1002/cphc.202300645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/08/2023]
Abstract
The conversion of carbon dioxide (CO2 ) into more valuable chemical compounds represents a critical objective for addressing environmental challenges and advancing sustainable energy sources. The CO2 reduction reaction (CO2 RR) holds promise for transforming CO2 into versatile feedstock materials and fuels. Leveraging first-principles methodologies provides a robust approach to evaluate catalysts and steer experimental efforts. In this study, we examine the CO2 RR process using a diverse array of representative cluster models derived from X-MOF-74 (where X encompasses Mg, Mn, Fe, Co, Ni, Cu, or Zn) through first-principles methods. Notably, our investigation highlights the Fe-MOF-74 cluster's unique attributes, including favorable CO2 binding and the lowest limiting potential of the studied clusters for converting CO2 to methane (CH4 ) at 0.32 eV. Our analysis identified critical factors driving the selective CO2 RR pathway, enabling the formation CH4 on the Fe-MOF-74 cluster. These factors involve less favorable reduction of hydrogen to H2 and strong binding affinities between the Fe open-metal site and reduction intermediates, effectively curtailing desorption processes of closed-shell intermediates such as formic acid (HCOOH), formaldehyde (CH2 O), and methanol (CH3 OH), to lead to selective CH4 formation.
Collapse
Affiliation(s)
- Gavin A McCarver
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Taner Yildirim
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Wei Zhou
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
131
|
Zhang L, Yan J, Ahmadli D, Wang Z, Ritter T. Electron-Transfer-Enabled Concerted Nucleophilic Fluorination of Azaarenes: Selective C-H Fluorination of Quinolines. J Am Chem Soc 2023; 145:20182-20188. [PMID: 37695320 PMCID: PMC10515641 DOI: 10.1021/jacs.3c07119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 09/12/2023]
Abstract
Direct C-H fluorination is an efficient strategy to construct aromatic C-F bonds, but the cleavage of specific C-H bonds in the presence of other functional groups and the high barrier of C-F bond formation make the transformation challenging. Progress for the electrophilic fluorination of arenes has been reported, but a similar transformation for electron-deficient azaarenes has remained elusive due to the high energy of the corresponding Wheland intermediates. Nucleophilic fluorination of electron-deficient azaarenes is difficult owing to the identity of the Meisenheimer intermediate after fluoride attack, from which fluoride elimination to regenerate the substrate is favored over hydride elimination to form the product. Herein, we report a new concept for C-H nucleophilic fluorination without the formation of azaarene Meisenheimer intermediates through a chain process with an asynchronous concerted F--e--H+ transfer. The concerted nucleophilic aromatic substitution strategy allows for the first successful nucleophilic oxidative fluorination of quinolines.
Collapse
Affiliation(s)
- Li Zhang
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Jiyao Yan
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Dilgam Ahmadli
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Zikuan Wang
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Tobias Ritter
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
132
|
Sun Q, Peng Y, Wang Y, Bao X. Construction of α-Acyloxy Ketones via Photoredox-Catalyzed O-H Insertion of Sulfoxonium Ylides with Carboxylic Acids. Org Lett 2023; 25:6613-6617. [PMID: 37672752 DOI: 10.1021/acs.orglett.3c02221] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Herein, a photoredox-catalyzed insertion of sulfoxonium ylides with carboxylic acids was advanced under mild and simple conditions, offering a practical approach for preparing α-acyloxy ketones with a broad scope of carboxylic acids. A combined experimental and computational study suggests that this reaction proceeds via a stepwise proton-assisted electron transfer mechanism.
Collapse
Affiliation(s)
- Qing Sun
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yuzhu Peng
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yujing Wang
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoguang Bao
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
133
|
Adar O, Hollander A, Ilan Y. The Constrained Disorder Principle Accounts for the Variability That Characterizes Breathing: A Method for Treating Chronic Respiratory Diseases and Improving Mechanical Ventilation. Adv Respir Med 2023; 91:350-367. [PMID: 37736974 PMCID: PMC10514877 DOI: 10.3390/arm91050028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023]
Abstract
Variability characterizes breathing, cellular respiration, and the underlying quantum effects. Variability serves as a mechanism for coping with changing environments; however, this hypothesis does not explain why many of the variable phenomena of respiration manifest randomness. According to the constrained disorder principle (CDP), living organisms are defined by their inherent disorder bounded by variable boundaries. The present paper describes the mechanisms of breathing and cellular respiration, focusing on their inherent variability. It defines how the CDP accounts for the variability and randomness in breathing and respiration. It also provides a scheme for the potential role of respiration variability in the energy balance in biological systems. The paper describes the option of using CDP-based artificial intelligence platforms to augment the respiratory process's efficiency, correct malfunctions, and treat disorders associated with the respiratory system.
Collapse
Affiliation(s)
- Ofek Adar
- Faculty of Medicine, Hebrew University, Jerusalem P.O. Box 1200, Israel; (O.A.); (A.H.)
- Department of Medicine, Hadassah Medical Center, Jerusalem P.O. Box 1200, Israel
| | - Adi Hollander
- Faculty of Medicine, Hebrew University, Jerusalem P.O. Box 1200, Israel; (O.A.); (A.H.)
- Department of Medicine, Hadassah Medical Center, Jerusalem P.O. Box 1200, Israel
| | - Yaron Ilan
- Faculty of Medicine, Hebrew University, Jerusalem P.O. Box 1200, Israel; (O.A.); (A.H.)
- Department of Medicine, Hadassah Medical Center, Jerusalem P.O. Box 1200, Israel
| |
Collapse
|
134
|
Nakanishi T, Hori Y, Shigeta Y, Sato H, Kiyanagi R, Munakata K, Ohhara T, Okazawa A, Shimada R, Sakamoto A, Sato O. Development of an Iron(II) Complex Exhibiting Thermal- and Photoinduced Double Proton-Transfer-Coupled Spin Transition in a Short Hydrogen Bond. J Am Chem Soc 2023; 145:19177-19181. [PMID: 37623927 DOI: 10.1021/jacs.3c06323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Multiple proton transfer (PT) controllable by external stimuli plays a crucial role in fundamental chemistry, biological activity, and material science. However, in crystalline systems, controlling multiple PT, which results in a distinct protonation state, remains challenging. In this study, we developed a novel tridentate ligand and iron(II) complex with a short hydrogen bond (HB) that exhibits a PT-coupled spin transition (PCST). Single-crystal X-ray and neutron diffraction measurements revealed that the positions of the two protons in the complex can be controlled by temperature and photoirradiation based on the thermal- and photoinduced PCST. The obtained results suggest that designing molecules that form short HBs is a promising approach for developing multiple PT systems in crystals.
Collapse
Affiliation(s)
- Takumi Nakanishi
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuta Hori
- Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Hiroyasu Sato
- Rigaku Corporation, 3-9-12 Matsubaracho, Akishima, Tokyo 196-8666, Japan
| | - Ryoji Kiyanagi
- J-PARC center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Koji Munakata
- J-PARC center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Takashi Ohhara
- J-PARC center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Atsushi Okazawa
- Department of Electrical Engineering and Bioscience, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Rintaro Shimada
- Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Akira Sakamoto
- Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
135
|
Cui K, Soudackov AV, Kessinger MC, Xu J, Meyer GJ, Hammes-Schiffer S. General Kinetic Model for pH Dependence of Proton-Coupled Electron Transfer: Application to an Electrochemical Water Oxidation System. J Am Chem Soc 2023; 145:19321-19332. [PMID: 37611195 DOI: 10.1021/jacs.3c05535] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The pH dependence of proton-coupled electron transfer (PCET) reactions, which are critical to many chemical and biological processes, is a powerful probe for elucidating their fundamental mechanisms. Herein, a general, multichannel kinetic model is introduced to describe the pH dependence of both homogeneous and electrochemical PCET reactions. According to this model, a weak pH dependence can arise from the competition among multiple sequential and concerted PCET channels involving different forms of the redox species, such as protonated and deprotonated forms, as well as different proton donors and acceptors. The contribution of each channel is influenced by the relative populations of the reactant species, which often depend strongly on pH, leading to complex pH dependence of PCET apparent rate constants. This model is used to explain the origins of the experimentally observed weak pH dependence of the electrochemical PCET apparent rate constant for a ruthenium-based water oxidation catalyst attached to a tin-doped In2O3 (ITO) surface. The weak pH dependence is found to arise from the intrinsic differences in the rate constants of participating channels and the dependence of their relative contributions on pH. This model predicts that the apparent maximum rate constant will become pH-independent at higher pH, which is confirmed by experimental measurements. Our analysis also suggests that the dominant channels are electron transfer at lower pH and sequential PCET via electron transfer followed by fast proton transfer at higher pH. This work highlights the importance of considering multiple competing channels simultaneously for PCET processes.
Collapse
Affiliation(s)
- Kai Cui
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Matthew C Kessinger
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jeremiah Xu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
136
|
Abstract
Endogenous photosensitizers play a critical role in both beneficial and harmful light-induced transformations in biological systems. Understanding their mode of action is essential for advancing fields such as photomedicine, photoredox catalysis, environmental science, and the development of sun care products. This review offers a comprehensive analysis of endogenous photosensitizers in human skin, investigating the connections between their electronic excitation and the subsequent activation or damage of organic biomolecules. We gather the physicochemical and photochemical properties of key endogenous photosensitizers and examine the relationships between their chemical reactivity, location within the skin, and the primary biochemical events following solar radiation exposure, along with their influence on skin physiology and pathology. An important take-home message of this review is that photosensitization allows visible light and UV-A radiation to have large effects on skin. The analysis presented here unveils potential causes for the continuous increase in global skin cancer cases and emphasizes the limitations of current sun protection approaches.
Collapse
Affiliation(s)
- Erick L Bastos
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| | - Frank H Quina
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
- Department of Chemical Engineering, Polytechnic School, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| | - Maurício S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| |
Collapse
|
137
|
Yadav R, Janßen P, Schorpp M, Greb L. Calix[4]pyrrolato-germane-(thf) 2: Unlocking the Anti-van't Hoff-Le Bel Reactivity of Germanium(IV) by Ligand Dissociation. J Am Chem Soc 2023; 145:17746-17754. [PMID: 37549106 PMCID: PMC10436272 DOI: 10.1021/jacs.3c04424] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 08/09/2023]
Abstract
Anti-van't Hoff-Le Bel configured p-block element species possess intrinsically high reactivity and are thus challenging to isolate. Consequently, numerous elements in this configuration, including square-planar germanium(IV), remain unexplored. Herein, we follow a concept to reach anti-van't Hoff-Le Bel reactivity by ligand dissociation from a rigid calix[4]pyrrole germane in its bis(thf) adduct. While the macrocyclic ligand assures square-planar coordination in the uncomplexed form, the labile thf donors provide robustness for isolation on a multigram scale. Unique properties of a low-lying acceptor orbital imparted to germanium(IV) can be verified, e.g., by isolating an elusive anionic hydrido germanate and exploiting it for challenging bond activations. Aldehydes, water, alcohol, and a CN triple bond are activated for the first time by germanium-ligand cooperativity. Unexpected behaviors against fluoride ion donors disclose critical interferences of a putative redox-coupled fluoride ion transfer during the experimental determination of Lewis acidity. Overall, we showcase how ligand lability grants access to the uncharted chemistry of anti-van't Hoff-Le Bel germanium(IV) and line up this element as a member in the emerging class of structurally constrained p-block elements.
Collapse
Affiliation(s)
| | | | | | - Lutz Greb
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg 69120, Germany
| |
Collapse
|
138
|
Ferreira MP, Castro CB, Honorato J, He S, Gonçalves Guimarães Júnior W, Esmieu C, Castellano EE, de Moura AF, Truzzi DR, Nascimento OR, Simonneau A, Marques Netto CGC. Biomimetic catalysis of nitrite reductase enzyme using copper complexes in chemical and electrochemical reduction of nitrite. Dalton Trans 2023; 52:11254-11264. [PMID: 37526523 DOI: 10.1039/d3dt01091k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Copper nitrite reductase mimetics were synthesized using three new tridentate ligands sharing the same N,N,N motif of coordination. The ligands were based on L-proline modifications, attaching a pyridine and a triazole to the pyrrolidine ring, and differ by a pendant group (R = phenyl, n-butyl and n-propan-1-ol). All complexes coordinate nitrite, as evidenced by cyclic voltammetry, UV-Vis, FTIR and electron paramagnetic resonance (EPR) spectroscopies. The coordination mode of nitrite was assigned by FTIR and EPR as κ2O chelate mode. Upon acidification, EPR experiments indicated a shift from chelate to monodentate κO mode, and 15N NMR experiments of a Zn2+ analogue, suggested that the related Cu(II) nitrous acid complex may be reasonably stable in solution, but in equilibrium with free HONO under non catalytic conditions. Reduction of nitrite to NO was performed both chemically and electrocatalytically, observing the highest catalytic activities for the complex with n-propan-1-ol as pendant group. These results support the hypothesis that a hydrogen bond moiety in the secondary coordination sphere may aid the protonation step.
Collapse
Affiliation(s)
- Millena P Ferreira
- Department of Chemistry, Universidade Federal de São Carlos (UFSCar), Rod. Washington Luiz, km 235 s/n, CEP 13565905 São Carlos, SP, Brazil.
| | - Caio B Castro
- Department of Chemistry, Universidade Federal de São Carlos (UFSCar), Rod. Washington Luiz, km 235 s/n, CEP 13565905 São Carlos, SP, Brazil.
| | - João Honorato
- Insitututo de Química, Departamento de Bioquímica, Universidade de São Paulo (USP), Av. Prof. Dr. Lineu Prestes, 748, CEP 05513-970 São Paulo, SP, Brazil
- Instituto de Física, Universidade de São Paulo (USP), Av.João Dagnone, 1100, CEP 13563-120, São Carlos, SP, Brazil
| | - Sheng He
- Department of Chemistry, Emory University, 1515 Dickey Drive, 30322 Atlanta, GA, USA
| | - Walber Gonçalves Guimarães Júnior
- Department of Chemistry, Universidade Federal de São Carlos (UFSCar), Rod. Washington Luiz, km 235 s/n, CEP 13565905 São Carlos, SP, Brazil.
| | - Charlene Esmieu
- LCC-CNRS, Universite de Toulouse, CNRS, UPS, 205 route de Narbonne, F31077 Toulouse cedex 4, France
| | - Eduardo E Castellano
- Instituto de Física, Universidade de São Paulo (USP), Av.João Dagnone, 1100, CEP 13563-120, São Carlos, SP, Brazil
| | - André F de Moura
- Department of Chemistry, Universidade Federal de São Carlos (UFSCar), Rod. Washington Luiz, km 235 s/n, CEP 13565905 São Carlos, SP, Brazil.
| | - Daniela R Truzzi
- Insitututo de Química, Departamento de Bioquímica, Universidade de São Paulo (USP), Av. Prof. Dr. Lineu Prestes, 748, CEP 05513-970 São Paulo, SP, Brazil
| | - Otaciro R Nascimento
- Instituto de Física, Universidade de São Paulo (USP), Av.João Dagnone, 1100, CEP 13563-120, São Carlos, SP, Brazil
| | - Antoine Simonneau
- LCC-CNRS, Universite de Toulouse, CNRS, UPS, 205 route de Narbonne, F31077 Toulouse cedex 4, France
| | - Caterina G C Marques Netto
- Department of Chemistry, Universidade Federal de São Carlos (UFSCar), Rod. Washington Luiz, km 235 s/n, CEP 13565905 São Carlos, SP, Brazil.
- Department of Chemistry, Emory University, 1515 Dickey Drive, 30322 Atlanta, GA, USA
| |
Collapse
|
139
|
Radtke V, Priester D, Heering A, Müller C, Koslowski T, Leito I, Krossing I. The Unified Redox Scale for All Solvents: Consistency and Gibbs Transfer Energies of Electrolytes from their Constituent Single Ions. Chemistry 2023; 29:e202300609. [PMID: 37191477 DOI: 10.1002/chem.202300609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023]
Abstract
We have devised the unified redox scale Eabs H2O , which is valid for all solvents. The necessary single ion Gibbs transfer energy between two different solvents, which only can be determined with extra-thermodynamic assumptions so far, must clearly satisfy two essential conditions: First, the sum of the independent cation and anion values must give the Gibbs transfer energy of the salt they form. The latter is an observable and measurable without extra-thermodynamic assumptions. Second, the values must be consistent for different solvent combinations. With this work, potentiometric measurements on silver ions and on chloride ions show that both conditions are fulfilled using a salt bridge filled with the ionic liquid [N2225 ][NTf2 ]: if compared to the values resulting from known pKL values, the silver and chloride single ion magnitudes combine within a uncertainty of 1.5 kJ mol-1 to the directly measurable transfer magnitudes of the salt AgCl from water to the solvents acetonitrile, propylene carbonate, dimethylformamide, ethanol, and methanol. The resulting values are used to further develop the consistent unified redox potential scale Eabs H2O that now allows to assess and compare redox potentials in and over six different solvents. We elaborate on its implications.
Collapse
Affiliation(s)
- Valentin Radtke
- Institut für Anorganische und, Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Denis Priester
- Institut für Anorganische und, Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Agnes Heering
- Institute of Chemistry, University of Tartu, Ravila 14a Str, 50411, Tartu, Estonia
| | - Carina Müller
- Institut für Anorganische und, Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Thorsten Koslowski
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Ivo Leito
- Institute of Chemistry, University of Tartu, Ravila 14a Str, 50411, Tartu, Estonia
| | - Ingo Krossing
- Institut für Anorganische und, Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| |
Collapse
|
140
|
Follmer AH, Borovik AS. The role of basicity in selective C-H bond activation by transition metal-oxidos. Dalton Trans 2023; 52:11005-11016. [PMID: 37497779 PMCID: PMC10619463 DOI: 10.1039/d3dt01781h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The development of (bio)catalysts capable of selectively activating strong C-H bonds is a continuing challenge in modern chemistry. In both metalloenzymes and synthetic systems capable of activating C-H bonds, transition metal-oxido intermediates serve as the active species for reactivity whose thermodynamic properties influence the bond strengths they are capable of activating. In this Frontier article, we present current ideas of how the basicity of transition metal-oxidos impacts their reactivity with C-H bonds and present new opportunities within this field. We highlight recent insights into the role basicity plays in the activation process and its influence on mechanism, as well as the important role that secondary coordination sphere effects, such as hydrogen bonds, in tuning the basicity of the metal-oxido species is discussed.
Collapse
Affiliation(s)
- Alec H Follmer
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697-3900, USA.
| | - A S Borovik
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697-3900, USA.
| |
Collapse
|
141
|
Jiang LL, Niu X, Pei WY, Ma JF. Electrochemical Detection of Flutamide by the Composite of Complex Based on Thiacalix[4]arene Derivatives and Reduced Graphene Oxide. Inorg Chem 2023; 62:12803-12813. [PMID: 37535463 DOI: 10.1021/acs.inorgchem.3c01432] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
In this paper, a thiacalix[4]arene complex [Zn2(TIT4A)L2]·4DMF·2CH3OH (H2L = 4,4'-oxybisbenzoic acid) (Zn-TIT4A-L) was synthesized by a solvothermal method. The composites were prepared by combining Zn-TIT4A-L with reduced graphene oxide (RGO), mesoporous carbon (MC), and multi-walled carbon nanotubes (MWCNTs), respectively. Three representative composites are Zn-TIT4A-L@RGO(1:1), Zn-TIT4A-L@MC(1:2), and Zn-TIT4A-L@MWCNT(1:2). X-ray diffraction and scanning electron microscopy characterized their structures and morphologies. The results showed that three composites were successfully prepared, and the crystals of the complex remained in the composites. The electrochemical properties of the composites were characterized by electrochemical impedance spectroscopy and cyclic voltammetry. The results indicated that they had good electrocatalytic activity and conductivity. Among them, Zn-TIT4A-L@RGO(1:1) had the best performance and was used for the quantitative detection of flutamide (FTA). The linear range of detection is 0.1-200 μM, and the limit of detection is 0.015 μM. At the same time, the sensor also had good reproducibility, anti-interference, and stability. The sensor was also used for the detection of FTA in lake water, human urine, and serum with a satisfactory recovery rate. The possible mechanism of electrochemical detection of FTA was also discussed.
Collapse
Affiliation(s)
- Lu-Lu Jiang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xia Niu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Wen-Yuan Pei
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jian-Fang Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
142
|
Koone J, Simmang M, Saenger DL, Hunsicker-Wang LM, Shaw BF. Charge Regulation in a Rieske Proton Pump Pinpoints Zero, One, and Two Proton-Coupled Electron Transfer. J Am Chem Soc 2023; 145:16488-16497. [PMID: 37486967 PMCID: PMC10402712 DOI: 10.1021/jacs.3c03006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Indexed: 07/26/2023]
Abstract
The degree to which redox-driven proton pumps regulate net charge during electron transfer (ΔZET) remains undetermined due to difficulties in measuring the net charge of solvated proteins. Values of ΔZET can reflect reorganization energies or redox potentials associated with ET and can be used to distinguish ET from proton(s)-coupled electron transfer (PCET). Here, we synthesized protein "charge ladders" of a Rieske [2Fe-2S] subunit from Thermus thermophilus (truncTtRp) and made 120 electrostatic measurements of ΔZET across pH. Across pH 5-10, truncTtRp is suspected of transitioning from ET to PCET, and then to two proton-coupled ET (2PCET). Upon reduction, we found that truncTtRp became more negative at pH 6.0 by one unit (ΔZET = -1.01 ± 0.14), consistent with single ET; was isoelectric at pH 8.8 (ΔZET = -0.01 ± 0.45), consistent with PCET; and became more positive at pH 10.6 (ΔZET = +1.37 ± 0.60), consistent with 2PCET. These ΔZET values are attributed to protonation of H154 and H134. Across pH, redox potentials of TtRp (measured previously) correlated with protonation energies of H154 and H134 and ΔZET for truncTtRp, supporting a discrete proton pumping mechanism for Rieske proteins at the Fe-coordinating histidines.
Collapse
Affiliation(s)
- Jordan
C. Koone
- Department
of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Mikaela Simmang
- Department
of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Devin L. Saenger
- Department
of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | | | - Bryan F. Shaw
- Department
of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
| |
Collapse
|
143
|
Peters JC. Advancing electrocatalytic nitrogen fixation: insights from molecular systems. Faraday Discuss 2023; 243:450-472. [PMID: 37021388 PMCID: PMC10524484 DOI: 10.1039/d3fd00017f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Nitrogen fixation has a rich history within the inorganic chemistry community. In recent years attention has (re)focused on developing electrocatalytic systems capable of mediating the nitrogen reduction reaction (N2RR). Well-defined molecular catalyst systems have much to offer in this context. This personal perspective summarizes recent progress from our laboratory at Caltech, pulling together lessons learned from a number of studies we have conducted, placing them within the broader context of thermodynamic efficiency and selectivity for the N2RR. In particular, proton-coupled electron transfer (PCET) provides an attractive strategy to achieve enhanced efficiency for the multi-electron/proton reduction of N2 to produce NH3 (or NH4+), and electrocatalytic PCET (ePCET) via an ePCET mediator affords a promising means of mitigating HER such that the N2RR can be achieved in a catalytic fashion.
Collapse
Affiliation(s)
- Jonas C Peters
- California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
144
|
Laan PM, de Zwart FJ, Wilson EM, Troglia A, Lugier OCM, Geels NJ, Bliem R, Reek JNH, de Bruin B, Rothenberg G, Yan N. Understanding the Oxidative Properties of Nickel Oxyhydroxide in Alcohol Oxidation Reactions. ACS Catal 2023; 13:8467-8476. [PMID: 37441234 PMCID: PMC10334462 DOI: 10.1021/acscatal.3c01120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/08/2023] [Indexed: 07/15/2023]
Abstract
The NiOOH electrode is commonly used in electrochemical alcohol oxidations. Yet understanding the reaction mechanism is far from trivial. In many cases, the difficulty lies in the decoupling of the overlapping influence of chemical and electrochemical factors that not only govern the reaction pathway but also the crystal structure of the in situ formed oxyhydroxide. Here, we use a different approach to understand this system: we start with synthesizing pure forms of the two oxyhydroxides, β-NiOOH and γ-NiOOH. Then, using the oxidative dehydrogenation of three typical alcohols as the model reactions, we examine the reactivity and selectivity of each oxyhydroxide. While solvent has a clear effect on the reaction rate of β-NiOOH, the observed selectivity was found to be unaffected and remained over 95% for the dehydrogenation of both primary and secondary alcohols to aldehydes and ketones, respectively. Yet, high concentration of OH- in aqueous solvent promoted the preferential conversion of benzyl alcohol to benzoic acid. Thus, the formation of carboxylic compounds in the electrochemical oxidation without alkaline electrolyte is more likely to follow the direct electrochemical oxidation pathway. Overoxidation of NiOOH from the β- to γ-phase will affect the selectivity but not the reactivity with a sustained >95% conversion. The mechanistic examinations comprising kinetic isotope effects, Hammett analysis, and spin trapping studies reveal that benzyl alcohol is oxidatively dehydrogenated to benzaldehyde via two consecutive hydrogen atom transfer steps. This work offers the unique oxidative and catalytic properties of NiOOH in alcohol oxidation reactions, shedding light on the mechanistic understanding of the electrochemical alcohol conversion using NiOOH-based electrodes.
Collapse
Affiliation(s)
- Petrus
C. M. Laan
- Van’t
Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Felix J. de Zwart
- Van’t
Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Emma M. Wilson
- Van’t
Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Alessandro Troglia
- Advanced
Research Center for Nanolithography (ARCNL), Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - Olivier C. M. Lugier
- Van’t
Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Norbert J. Geels
- Van’t
Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Roland Bliem
- Advanced
Research Center for Nanolithography (ARCNL), Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - Joost N. H. Reek
- Van’t
Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Van’t
Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Gadi Rothenberg
- Van’t
Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Ning Yan
- Van’t
Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Key
Laboratory of Artificial Micro- and Nano-Structures of Ministry of
Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
145
|
Karton A, Greatrex BW, O'Reilly RJ. Intramolecular Proton-Coupled Hydride Transfers with Relatively Low Activation Barriers. J Phys Chem A 2023. [PMID: 37368352 DOI: 10.1021/acs.jpca.3c03166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
We report that bifunctional molecules containing hydroxyl and carbonyl functional groups can undergo an effective transfer hydrogenation via an intramolecular proton-coupled hydride transfer (PCHT) mechanism. In this reaction mechanism, a hydride transfer between two carbon atoms is coupled with a proton transfer between two oxygen atoms via a cyclic bond rearrangement transition structure. The coupled transfer of the two hydrogens as Hδ+ and Hδ- is supported by atomic polar tensor charges. The activation energy for the PCHT reaction is strongly dependent on the length of the alkyl chain between the hydroxyl and carbonyl functional groups but relatively weakly dependent on the functional groups attached to the hydroxyl and carbonyl carbons. We investigate the PCHT reaction mechanism using the Gaussian-4 thermochemical protocol and obtain high activation energy barriers (ΔH‡298) of 210.5-228.3 kJ mol-1 for chain lengths of one carbon atom and 160.2-163.9 kJ mol-1 for chain lengths of two carbon atoms. However, for longer chain lengths containing 3-4 carbon atoms, we obtain ΔH‡298 values as low as 101.9 kJ mol-1. Importantly, the hydride transfer between two carbon atoms proceeds without the need for a catalyst or hydride transfer activating agent. These results indicate that the intramolecular PCHT reaction provides an effective avenue for uncatalyzed, metal-free hydride transfers at ambient temperatures.
Collapse
Affiliation(s)
- Amir Karton
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| | - Ben W Greatrex
- School of Rural Medicine, University of New England, Armidale, NSW 2351, Australia
| | - Robert J O'Reilly
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
146
|
Gómez Fernández MA, Hoffmann N. Photocatalytic Transformation of Biomass and Biomass Derived Compounds-Application to Organic Synthesis. Molecules 2023; 28:4746. [PMID: 37375301 PMCID: PMC10301391 DOI: 10.3390/molecules28124746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Biomass and biomass-derived compounds have become an important alternative feedstock for chemical industry. They may replace fossil feedstocks such as mineral oil and related platform chemicals. These compounds may also be transformed conveniently into new innovative products for the medicinal or the agrochemical domain. The production of cosmetics or surfactants as well as materials for different applications are examples for other domains where new platform chemicals obtained from biomass can be used. Photochemical and especially photocatalytic reactions have recently been recognized as being important tools of organic chemistry as they make compounds or compound families available that cannot be or are difficultly synthesized with conventional methods of organic synthesis. The present review gives a short overview with selected examples on photocatalytic reactions of biopolymers, carbohydrates, fatty acids and some biomass-derived platform chemicals such as furans or levoglucosenone. In this article, the focus is on application to organic synthesis.
Collapse
Affiliation(s)
| | - Norbert Hoffmann
- CNRS, Université de Reims Champagne-Ardenne, ICMR, Equipe de Photochimie, UFR Sciences, B.P. 1039, 51687 Reims, France
| |
Collapse
|
147
|
Li YY, Guo F, Yang J, Ma JF. Efficient detection of metronidazole by a glassy carbon electrode modified with a composite of a cyclotriveratrylene-based metal-organic framework and multi-walled carbon nanotubes. Food Chem 2023; 425:136482. [PMID: 37285624 DOI: 10.1016/j.foodchem.2023.136482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/13/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Constructing a sensitive and efficient sensor for determination of metronidazole (MNZ) is crucial in food field. Herein, a new cyclotriveratrylene-based metal-organic framework (MOF), namely, [Cd6L2(cyclen)2(H2O)2] (1), was constructed by self-assembly of functionalized 5,6,12,13,19,20-hexacarboxy-propoxy-cyclotriveratrylene (H6L), 1,4,7,10-tetraazacyclododecane (cyclen) and Cd(II) cation under solvothermal condition. In 1, adjacent Cd(II) cations are linked by L6- to produce a 2D polymeric structure with carboxylate and phenolic oxygen atoms. To enhance conductivity of 1, it was combined with conducting carbon materials, including mesoporous carbon (MC), reduced graphene oxide (RGO) and multi-walled carbon nanotubes (MWCNT), respectively, producing a series of composite materials. Remarkably, electrochemical tests showed that 1@MWCNT(1:1) featured a much better electrochemical detection performance for metronidazole (MNZ) than 1@MC and 1@RGO. The linear range for the detection of MNZ is up to 0.4-500 μM and the limit of detection (LOD) for MNZ reached 0.25 μM. Importantly, the fabricated sensor 1@MWCNT(1:1) was employed for the detection of MNZ in honey and egg with satisfactory result. High-performance liquid chromatography (HPLC) validated the high accuracy of the electrochemical method for the determination of honey and egg.
Collapse
Affiliation(s)
- Yu-Ying Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Feifan Guo
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Jin Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jian-Fang Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
148
|
Shevela D, Kern JF, Govindjee G, Messinger J. Solar energy conversion by photosystem II: principles and structures. PHOTOSYNTHESIS RESEARCH 2023; 156:279-307. [PMID: 36826741 PMCID: PMC10203033 DOI: 10.1007/s11120-022-00991-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/01/2022] [Indexed: 05/23/2023]
Abstract
Photosynthetic water oxidation by Photosystem II (PSII) is a fascinating process because it sustains life on Earth and serves as a blue print for scalable synthetic catalysts required for renewable energy applications. The biophysical, computational, and structural description of this process, which started more than 50 years ago, has made tremendous progress over the past two decades, with its high-resolution crystal structures being available not only of the dark-stable state of PSII, but of all the semi-stable reaction intermediates and even some transient states. Here, we summarize the current knowledge on PSII with emphasis on the basic principles that govern the conversion of light energy to chemical energy in PSII, as well as on the illustration of the molecular structures that enable these reactions. The important remaining questions regarding the mechanism of biological water oxidation are highlighted, and one possible pathway for this fundamental reaction is described at a molecular level.
Collapse
Affiliation(s)
- Dmitry Shevela
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
| | - Jan F Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Johannes Messinger
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
- Molecular Biomimetics, Department of Chemistry - Ångström, Uppsala University, 75120, Uppsala, Sweden.
| |
Collapse
|
149
|
Song J, Hou N, Liu X, Antonietti M, Zhang P, Ding R, Song L, Wang Y, Mu Y. Asymmetrically Coordinated CoB 1 N 3 Moieties for Selective Generation of High-Valence Co-Oxo Species via Coupled Electron-Proton Transfer in Fenton-like Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209552. [PMID: 36932043 DOI: 10.1002/adma.202209552] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/09/2023] [Indexed: 06/09/2023]
Abstract
High-valence metal species generated in peroxymonosulfate (PMS)-based Fenton-like processes are promising candidates for selective degradation of contaminants in water, the formation of which necessitates the cleavage of OH and OO bonds as well as efficient electron transfer. However, the high dissociation energy of OH bond makes its cleavage quite challenging, largely hampering the selective generation of reactive oxygen species. Herein, an asymmetrical configuration characterized by a single cobalt atom coordinated with boron and nitrogen (CoB1 N3 ) is established to offer a strong local electric field, upon which the cleavage of OH bond is thermodynamically favored via a promoted coupled electron-proton transfer process, which serves an essential step to further allow OO bond cleavage and efficient electron transfer. Accordingly, the selective formation of Co(IV)O in a single-atom Co/PMS system enables highly efficient removal performance toward various organic pollutants. The proposed strategy also holds true in other heteroatom doping systems to configure asymmetric coordination, thus paving alternative pathways for specific reactive species conversion by rationalized design of catalysts at atomic level toward environmental applications and more.
Collapse
Affiliation(s)
- Junsheng Song
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Nannan Hou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaocheng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Pengjun Zhang
- CAS Center for Excellence in Nanoscience, National Synchrotron Radiation Laboratory, University of Science & Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Rongrong Ding
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Li Song
- CAS Center for Excellence in Nanoscience, National Synchrotron Radiation Laboratory, University of Science & Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Yang Wang
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
150
|
S LK, Tetala KKR. Fabrication of a bi-metallic metal organic framework nanocomposite for selective and sensitive detection of triclosan. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2408-2416. [PMID: 37039570 DOI: 10.1039/d3ay00033h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Transition metal-ion based nanocomposites are widely used owing to their ease of synthesis and cost-effectiveness in the sensor development. In this study, we have synthesized bi-metallic (iron and zinc) metal organic framework (MOF) nanorods-nanoparticles (denoted as Fe2Zn-MIL-88B) with a well-defined structure and characterized them. The bimetallic material nanocomposite (Fe2Zn-MIL-88B, nafion (Nf), and multiwalled carbon nanotube (MWCNT)) was fabricated on the electrode (glassy carbon electrode (GCE) or screen printed carbon electrode (SPCE)) surface within 10 min at room temperature. The Fe2Zn-MIL-88B/Nf/MWCNT@GCE showed an excellent electron transfer mechanism compared to a bare GCE and bare SPCE. The Fe2Zn-MIL-88B based nanocomposite electrode triggers the oxidation of the environmental carcinogenic molecule triclosan (TCS). Under optimized conditions, the sensor has a limit of detection of 0.31 nM and high selectivity to TCS in the presence of other interfering agents. The sensor has a good day-to-day TCS detection reproducibility. Fe2Zn-MIL-88B was stable even after 11 months of synthesis and detected TCS with similar sensitivity. The fabrication of the Fe2Zn-MIL-88B/Nf/MWCNT nanocomposite was successfully translated from the GCE to SPCE. TCS was detected in human plasma and commercial products such as soaps, skin care products, shampoos, and tooth pastes.
Collapse
Affiliation(s)
- Lokesh Kumar S
- Centre for Bioseparation Technology, Vellore Institute of Technology (VIT), Vellore, Tamilnadu-632014, India.
| | - Kishore K R Tetala
- Centre for Bioseparation Technology, Vellore Institute of Technology (VIT), Vellore, Tamilnadu-632014, India.
| |
Collapse
|