101
|
Yu D, Khan OF, Suvà ML, Dong B, Panek WK, Xiao T, Wu M, Han Y, Ahmed AU, Balyasnikova IV, Zhang HF, Sun C, Langer R, Anderson DG, Lesniak MS. Multiplexed RNAi therapy against brain tumor-initiating cells via lipopolymeric nanoparticle infusion delays glioblastoma progression. Proc Natl Acad Sci U S A 2017; 114:E6147-E6156. [PMID: 28696296 PMCID: PMC5544292 DOI: 10.1073/pnas.1701911114] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Brain tumor-initiating cells (BTICs) have been identified as key contributors to therapy resistance, recurrence, and progression of diffuse gliomas, particularly glioblastoma (GBM). BTICs are elusive therapeutic targets that reside across the blood-brain barrier, underscoring the urgent need to develop novel therapeutic strategies. Additionally, intratumoral heterogeneity and adaptations to therapeutic pressure by BTICs impede the discovery of effective anti-BTIC therapies and limit the efficacy of individual gene targeting. Recent discoveries in the genetic and epigenetic determinants of BTIC tumorigenesis offer novel opportunities for RNAi-mediated targeting of BTICs. Here we show that BTIC growth arrest in vitro and in vivo is accomplished via concurrent siRNA knockdown of four transcription factors (SOX2, OLIG2, SALL2, and POU3F2) that drive the proneural BTIC phenotype delivered by multiplexed siRNA encapsulation in the lipopolymeric nanoparticle 7C1. Importantly, we demonstrate that 7C1 nano-encapsulation of multiplexed RNAi is a viable BTIC-targeting strategy when delivered directly in vivo in an established mouse brain tumor. Therapeutic potential was most evident via a convection-enhanced delivery method, which shows significant extension of median survival in two patient-derived BTIC xenograft mouse models of GBM. Our study suggests that there is potential advantage in multiplexed targeting strategies for BTICs and establishes a flexible nonviral gene therapy platform with the capacity to channel multiplexed RNAi schemes to address the challenges posed by tumor heterogeneity.
Collapse
Affiliation(s)
- Dou Yu
- Department of Neurological Surgery, Brain Tumor Research Institute, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Omar F Khan
- Department of Chemical Engineering, Institute for Medical Engineering and Science, Harvard MIT Division of Health Science and Technology, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Mario L Suvà
- Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Biqin Dong
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208
- Department of Mechanical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208
| | - Wojciech K Panek
- Department of Neurological Surgery, Brain Tumor Research Institute, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Ting Xiao
- Department of Neurological Surgery, Brain Tumor Research Institute, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Meijing Wu
- Department of Neurological Surgery, Brain Tumor Research Institute, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Yu Han
- Department of Neurological Surgery, Brain Tumor Research Institute, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Atique U Ahmed
- Department of Neurological Surgery, Brain Tumor Research Institute, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Brain Tumor Research Institute, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Hao F Zhang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208
- Department of Mechanical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208
| | - Cheng Sun
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208
| | - Robert Langer
- Department of Chemical Engineering, Institute for Medical Engineering and Science, Harvard MIT Division of Health Science and Technology, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Daniel G Anderson
- Department of Chemical Engineering, Institute for Medical Engineering and Science, Harvard MIT Division of Health Science and Technology, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Maciej S Lesniak
- Department of Neurological Surgery, Brain Tumor Research Institute, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611;
| |
Collapse
|
102
|
Robertson NM, Yang Y, Khan I, LaMantia VE, Royzen M, Yigit MV. Single-trigger dual-responsive nanoparticles for controllable and sequential prodrug activation. NANOSCALE 2017; 9:10020-10030. [PMID: 28682403 DOI: 10.1039/c7nr04138a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Here we have developed a novel approach where two synergistically acting drugs were completely inactivated upon chemical immobilization on a nanoparticle template and activated in response to a chemical stimulus. The activation rate of each drug payload is controlled using a biologically inert bioorthogonal chemistry approach. By exploiting the subtle differences in the 'click-to-release' bioorthogonal reaction, we engineered a single delivery platform capable of releasing the payloads in a time-staggered manner in response to a single dose of a highly specific, yet reactive, small molecule. Incorporation of both di-axial, 'fast release', and di-equatorial, 'slow release', TCO linkers into our nanodrug assembly inhibited the activity of the drug molecules and enabled us to control the timing and activation of each payload. This single-trigger dual-responsive nanoparticle construct and its release kinetics were characterized using two molecular fluorescent probes and tested in vitro for efficient delivery of molecular payloads. In this manuscript we show that this approach was also successful in the treatment of triple negative BT-20 breast cancer cells. Our nanodrug loaded with the slow-releasing doxorubicin and fast-releasing PAC-1 prodrugs displayed a greater therapeutic response than the nanodrug which released both payloads simultaneously.
Collapse
Affiliation(s)
- Neil M Robertson
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA.
| | | | | | | | | | | |
Collapse
|
103
|
Xu X, Saw PE, Tao W, Li Y, Ji X, Yu M, Mahmoudi M, Rasmussen J, Ayyash D, Zhou Y, Farokhzad OC, Shi J. Tumor Microenvironment-Responsive Multistaged Nanoplatform for Systemic RNAi and Cancer Therapy. NANO LETTERS 2017; 17:4427-4435. [PMID: 28636389 PMCID: PMC5615408 DOI: 10.1021/acs.nanolett.7b01571] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
While RNA interference (RNAi) therapy has demonstrated significant potential for cancer treatment, the effective and safe systemic delivery of RNAi agents such as small interfering RNA (siRNA) into tumor cells in vivo remains challenging. We herein reported a unique multistaged siRNA delivery nanoparticle (NP) platform, which is comprised of (i) a polyethylene glycol (PEG) surface shell, (ii) a sharp tumor microenvironment (TME) pH-responsive polymer that forms the NP core, and (iii) charge-mediated complexes of siRNA and tumor cell-targeting- and penetrating-peptide-amphiphile (TCPA) that are encapsulated in the NP core. When the rationally designed, long circulating polymeric NPs accumulate in tumor tissues after intravenous administration, the targeted siRNA-TCPA complexes can be rapidly released via TME pH-mediated NP disassembly for subsequent specific targeting of tumor cells and cytosolic transport, thus achieving efficient gene silencing. In vivo results further demonstrate that the multistaged NP delivery of siRNA against bromodomain 4 (BRD4), a recently discovered target protein that regulates the development and progression of prostate cancer (PCa), can significantly inhibit PCa tumor growth.
Collapse
Affiliation(s)
- Xiaoding Xu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Phei Er Saw
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yujing Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaoyuan Ji
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mikyung Yu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Morteza Mahmoudi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan Rasmussen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dana Ayyash
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yuxiao Zhou
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Omid C. Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
104
|
Acharya R, Saha S, Ray S, Hazra S, Mitra MK, Chakraborty J. siRNA-nanoparticle conjugate in gene silencing: A future cure to deadly diseases? MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1378-1400. [DOI: 10.1016/j.msec.2017.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 01/17/2017] [Accepted: 03/01/2017] [Indexed: 02/08/2023]
|
105
|
Feng L, Dong Z, Tao D, Zhang Y, Liu Z. The acidic tumor microenvironment: a target for smart cancer nano-theranostics. Natl Sci Rev 2017. [DOI: 10.1093/nsr/nwx062] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abstract
The acidic tumor microenvironment (TME), which mainly results from the high glycolytic rate of tumor cells, has been characterized as a hallmark of solid tumors and found to be a pivotal factor participating in tumor progression. Recently, due to the increasing understanding of the acidic TME, it has been shown that the acidic TME could be utilized as a multifaceted target during the design of various pH-responsive nanoscale theranostic platforms for the precise diagnosis and effective treatment of cancers. In this article, we will give a focused overview on the latest progress in utilizing this characteristic acidic TME as the target of nano-theranostics to enable cancer-specific imaging and therapy. The future perspectives in the development of acidic TME-targeting nanomedicine strategies will be discussed afterwards.
Collapse
Affiliation(s)
- Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Danlei Tao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yicheng Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
106
|
Cai Z, Zhang H, Wei Y, Wei Y, Xie Y, Cong F. Reduction- and pH-Sensitive Hyaluronan Nanoparticles for Delivery of Iridium(III) Anticancer Drugs. Biomacromolecules 2017; 18:2102-2117. [DOI: 10.1021/acs.biomac.7b00445] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zhixiang Cai
- Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongbin Zhang
- Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yue Wei
- Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuanyuan Wei
- Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanping Xie
- Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fengsong Cong
- Department
of Biochemistry and Molecular Biology, School of life Sciences and
Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
107
|
MacEwan SR, Chilkoti A. From Composition to Cure: A Systems Engineering Approach to Anticancer Drug Carriers. Angew Chem Int Ed Engl 2017; 56:6712-6733. [PMID: 28028871 PMCID: PMC6372097 DOI: 10.1002/anie.201610819] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Indexed: 12/21/2022]
Abstract
The molecular complexity and heterogeneity of cancer has led to a persistent, and as yet unsolved, challenge to develop cures for this disease. The pharmaceutical industry focuses the bulk of its efforts on the development of new drugs, but an alternative approach is to improve the delivery of existing drugs with drug carriers that can manipulate when, where, and how a drug exerts its therapeutic effect. For the treatment of solid tumors, systemically delivered drug carriers face significant challenges that are imposed by the pathophysiological barriers that lie between their site of administration and their site of therapeutic action in the tumor. Furthermore, drug carriers face additional challenges in their translation from preclinical validation to clinical approval and adoption. Addressing this diverse network of challenges requires a systems engineering approach for the rational design of optimized carriers that have a realistic prospect for translation from the laboratory to the patient.
Collapse
Affiliation(s)
- Sarah R MacEwan
- Department of Biomedical Engineering, Duke University, P.O. Box 90281, Durham, NC, 27708, USA
- Research Triangle MRSEC, Durham, NC, 27708, USA
- Present address: Institute for Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, P.O. Box 90281, Durham, NC, 27708, USA
- Research Triangle MRSEC, Durham, NC, 27708, USA
| |
Collapse
|
108
|
Zhou Z, Liu X, Zhu D, Wang Y, Zhang Z, Zhou X, Qiu N, Chen X, Shen Y. Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration. Adv Drug Deliv Rev 2017; 115:115-154. [PMID: 28778715 DOI: 10.1016/j.addr.2017.07.021] [Citation(s) in RCA: 292] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023]
Abstract
Gene therapy represents a promising cancer treatment featuring high efficacy and limited side effects, but it is stymied by a lack of safe and efficient gene-delivery vectors. Cationic polymers and lipid-based nonviral gene vectors have many advantages and have been extensively explored for cancer gene delivery, but their low gene-expression efficiencies relative to viral vectors limit their clinical translations. Great efforts have thus been devoted to developing new carrier materials and fabricating functional vectors aimed at improving gene expression, but the overall efficiencies are still more or less at the same level. This review analyzes the cancer gene-delivery cascade and the barriers, the needed nanoproperties and the current strategies for overcoming these barriers, and outlines PEGylation, surface-charge, size, and stability dilemmas in vector nanoproperties to efficiently accomplish the cancer gene-delivery cascade. Stability, surface, and size transitions (3S Transitions) are proposed to resolve those dilemmas and strategies to realize these transitions are comprehensively summarized. The review concludes with a discussion of the future research directions to design high-performance nonviral gene vectors.
Collapse
Affiliation(s)
- Zhuxian Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Xiangrui Liu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Dingcheng Zhu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Yue Wang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Zhen Zhang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Xuefei Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Nasha Qiu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Xuesi Chen
- Changchun Institute of Applied Chemistry, Key Lab of Polymer Ecomaterials, Changchun, China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China.
| |
Collapse
|
109
|
Liu Y, Xu CF, Iqbal S, Yang XZ, Wang J. Responsive Nanocarriers as an Emerging Platform for Cascaded Delivery of Nucleic Acids to Cancer. Adv Drug Deliv Rev 2017; 115:98-114. [PMID: 28396204 DOI: 10.1016/j.addr.2017.03.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/19/2022]
Abstract
Cascades of systemic and intracellular obstacles, including low stability in blood, little tumor accumulation, weak tumor penetration, poor cellular uptake, inefficient endosomal escape and deficient disassembly in the cytoplasm, must be overcome in order to deliver nucleic acid drugs for cancer therapy. Nanocarriers that are sensitive to a variety of physiological stimuli, such as pH, redox status, and cell enzymes, are substantially changing the landscape of nucleic acid drug delivery by helping to overcome cascaded systemic and intracellular barriers. This review discusses nucleic acid-based therapeutics, systemic and intracellular barriers to efficient nucleic acid delivery, and nanocarriers responsive to extracellular and intracellular biological stimuli to overcome individual barriers. In particular, responsive nanocarriers for the cascaded delivery of nucleic acids in vivo are highlighted. Developing novel cascaded nanocarriers that transform their physicochemical properties in response to various stimuli in a timely and spatially controlled manner for nucleic acid drug delivery holds great potential for translating the promise of nucleic acid drugs and achieving clinically successful cancer therapy.
Collapse
|
110
|
Zhu X, Tao W, Liu D, Wu J, Guo Z, Ji X, Bharwani Z, Zhao L, Zhao X, Farokhzad OC, Shi J. Surface De-PEGylation Controls Nanoparticle-Mediated siRNA Delivery In Vitro and In Vivo. Am J Cancer Res 2017. [PMID: 28638484 PMCID: PMC5479285 DOI: 10.7150/thno.18136] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The present work proposes a unique de-PEGylation strategy for controllable delivery of small interfering RNA (siRNA) using a robust lipid-polymer hybrid nanoparticle (NP) platform. The self-assembled hybrid NPs are composed of a lipid-poly(ethylene glycol) (lipid-PEG) shell and a polymer/cationic lipid solid core, wherein the lipid-PEG molecules can gradually dissociate from NP surface in the presence of serum albumin. The de-PEGylation kinetics of a series of different lipid-PEGs is measured with their respective NPs, and the NP performance is comprehensively investigated in vitro and in vivo. This systematic study reveals that the lipophilic tails of lipid-PEG dictate its dissociation rate from NP surface, determining the uptake by tumor cells and macrophages, pharmacokinetics, biodistribution, and gene silencing efficacy of these hybrid siRNA NPs. Based on our observations, we here propose that lipid-PEGs with long and saturated lipophilic tails might be required for effective siRNA delivery to tumor cells and gene silencing of the lipid-polymer hybrid NPs after systemic administration.
Collapse
|
111
|
Li D, Ma Y, Du J, Tao W, Du X, Yang X, Wang J. Tumor Acidity/NIR Controlled Interaction of Transformable Nanoparticle with Biological Systems for Cancer Therapy. NANO LETTERS 2017; 17:2871-2878. [PMID: 28375632 DOI: 10.1021/acs.nanolett.6b05396] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Precisely controlling the interaction of nanoparticles with biological systems (nanobio interactions) from the injection site to biological targets shows great potential for biomedical applications. Inspired by the ability of nanoparticles to alter their physicochemical properties according to different stimuli, we explored the tumor acidity and near-infrared (NIR) light activated transformable nanoparticle DATAT-NPIR&DOX. This nanoparticle consists of a tumor acidity-activated TAT [the TAT lysine residues' amines was modified with 2,3-dimethylmaleic anhydride (DA)], a flexible chain polyphosphoester core coencapsulated a NIR dye IR-780, and DOX (doxorubicin). The physicochemical properties of the nanoparticle can be controlled in a stepwise fashion using tumor acidity and NIR light, resulting in adjustable nanobio interactions. The resulting transformable nanoparticle DATAT-NPIR&DOX efficiently avoids the interaction with mononuclear phagocyte system (MPS) ("stealth" state) due to the masking of the TAT peptide during blood circulation. Once it has accumulated in the tumor tissues, DATAT-NPIR&DOX is reactivated by tumor acidity and transformed into the "recognize" state in order to promote interaction with tumor cells and enhance cellular internalization. Then, this nanoparticle is transformed into "attack" state under NIR irradiation, achieving the supersensitive DOX release from the flexible chain polyphosphoester core in order to increase the DOX-DNA interaction. This concept provides new avenues for the creation of transformable drug delivery systems that have the ability to control nanobio interactions.
Collapse
Affiliation(s)
- Dongdong Li
- Institutes for Life Sciences, School of Medicine and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology , Guangzhou, Guandong 510006, P. R. China
- School of Medical Engineering, Hefei University of Technology , Hefei, Anhui, 230009, P. R. China
| | - Yinchu Ma
- School of Medical Engineering, Hefei University of Technology , Hefei, Anhui, 230009, P. R. China
| | - Jinzhi Du
- Institutes for Life Sciences, School of Medicine and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology , Guangzhou, Guandong 510006, P. R. China
| | - Wei Tao
- School of Medical Engineering, Hefei University of Technology , Hefei, Anhui, 230009, P. R. China
| | - Xiaojiao Du
- Institutes for Life Sciences, School of Medicine and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology , Guangzhou, Guandong 510006, P. R. China
| | - Xianzhu Yang
- Institutes for Life Sciences, School of Medicine and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology , Guangzhou, Guandong 510006, P. R. China
- School of Medical Engineering, Hefei University of Technology , Hefei, Anhui, 230009, P. R. China
| | - Jun Wang
- Institutes for Life Sciences, School of Medicine and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology , Guangzhou, Guandong 510006, P. R. China
| |
Collapse
|
112
|
MacEwan SR, Chilkoti A. Von der Zusammensetzung zur Heilung: ein systemtechnischer Ansatz zur Entwicklung von Trägern für Tumortherapeutika. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610819] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Sarah R. MacEwan
- Department of Biomedical Engineering; Duke University; P.O. Box 90281 Durham NC 27708 USA
- Research Triangle MRSEC; Durham NC 27708 USA
- Institute for Molecular Engineering; University of Chicago; Chicago IL 60637 USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering; Duke University; P.O. Box 90281 Durham NC 27708 USA
- Research Triangle MRSEC; Durham NC 27708 USA
| |
Collapse
|
113
|
Cai X, Zhu H, Zhang Y, Gu Z. Highly Efficient and Safe Delivery of VEGF siRNA by Bioreducible Fluorinated Peptide Dendrimers for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9402-9415. [PMID: 28228013 DOI: 10.1021/acsami.6b16689] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
RNA interference (RNAi) has a great promise in treating various acquired and hereditary diseases. However, it remains highly desirable to develop new delivery system to circumvent complex extra- and intracellular barriers for successful clinical translation. Here, we report on a versatile polymeric vector, bioreducible fluorinated peptide dendrimers (BFPD), for efficient and safe small interfering RNA (siRNA) delivery. In virtue of skillfully integrating all of the unique advantages of reversible cross-linking, fluorination, and peptide dendrimers, this novel vector can surmount almost all extra- and intracellular barriers associated with local siRNA delivery through highly improved physiological stability and serum resistance, significantly increased intratumoral enrichment, cellular internalization, successful facilitation of endosomal escape, and cytosolic siRNA release. BFPD polyplexes, carrying small interfering vascular endothelial growth factor (siVEGF), demonstrated excellent VEGF silencing efficacy (∼65%) and a strong capability for inhibiting HeLa cell proliferation. More importantly, these polyplexes showed superior performance in long-term enrichment in the tumor sites and had a high level of tumor growth inhibition. Furthermore, these polyplexes not only exhibited excellent in vivo antitumor efficacy but also demonstrated superior biocompatibility, compared with LPF2000, both in vivo and in vitro. These findings indicate that BFPD is an efficient and safe siRNA delivery system and has remarkable potential for RNAi-based cancer treatment.
Collapse
Affiliation(s)
- Xiaojun Cai
- College of Materials Science and Engineering, Nanjing Tech University , 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Haofang Zhu
- College of Materials Science and Engineering, Nanjing Tech University , 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yanmei Zhang
- College of Materials Science and Engineering, Nanjing Tech University , 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Zhongwei Gu
- College of Materials Science and Engineering, Nanjing Tech University , 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
114
|
Clegg JR, Wechsler ME, Peppas NA. Vision for Functionally Decorated and Molecularly Imprinted Polymers in Regenerative Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017; 3:166-175. [PMID: 30906848 DOI: 10.1007/s40883-017-0028-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The emerging field of regenerative engineering offers a great challenge and an even greater opportunity for materials scientists and engineers. How can we develop materials that are highly porous to permit cellular infiltration, yet possess sufficient mechanical integrity to mimic native tissues? How can we retain and deliver bioactive molecules to drive cell organization, proliferation, and differentiation in a predictable manner? In the following perspective, we highlight recent studies that have demonstrated the vital importance of each of these questions, as well as many others pertaining to scaffold development. We posit hybrid materials synthesized by molecular decoration and molecular imprinting as intelligent biomaterials for regenerative engineering applications. These materials have potential to present cell adhesion molecules and soluble growth factors with fine-tuned spatial and temporal control, in response to both cell-driven and external triggers. Future studies in this area will address a pertinent clinical need, expand the existing repertoire of medical materials, and improve the field's understanding of how cells and materials respond to one another.
Collapse
Affiliation(s)
- John R Clegg
- University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
115
|
Zhou X, Chang C, Zhou Y, Sun L, Xiang H, Zhao S, Ma L, Zheng G, Liu M, Wei H. A comparison study to investigate the effect of the drug-loading site on its delivery efficacy using double hydrophilic block copolymer-based prodrugs. J Mater Chem B 2017; 5:4443-4454. [PMID: 32263972 DOI: 10.1039/c7tb00261k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Polymeric delivery vehicles can improve the safety and efficacy of chemotherapy drugs by facilitating preferential tumor delivery. Double hydrophilic block copolymer (DHBC)-based prodrugs are considered as ideal candidates for drug delivery due to the elegant integration of benefits from both structures including polymeric prodrugs' superior protection and minimal premature drug release using covalent links and a DHBC-based "green" self-assembly strategy by a simple stimulus in a pure aqueous phase without the use of any organic solvent. Clearly, the location of drug molecules in the polymeric prodrugs has exerted a significant effect on their therapeutic efficiency. However, there has been no published data so far, to our knowledge, reporting the effect of drug-conjugated sites on its therapeutic efficacy, as well as some basic guidelines that can be followed to direct the future design of polymeric prodrugs. To this end, herein a thermo-sensitive DHBC, poly(N-(2-hydroxypropyl) methacrylamide)-b-poly(N-isopropyl acrylamide) (P(HPMA)-b-P(NIPAAm)), was designed and synthesized by successive reversible addition and fragmentation chain transfer (RAFT) polymerizations, and was chosen as a platform to clarify this issue. An anti-cancer drug, doxorubicin (DOX) was conjugated to the hydrophilic PHPMA block and the temperature-responsive P(NIPAAm) block, respectively, through a pH-liable hydrazone bond to fabricate two different types of polymeric prodrugs with the drug tethered to the micellar hydrophilic PHPMA shell or encapsulated within the hydrophobic P(NIPAAm) core upon temperature elevation above its lower critical solution temperature (LCST). A detailed comparison study was carried out to investigate which structure exhibits better properties and higher therapeutic efficacy in terms of micellar size, stability, cellular uptake, drug loading capacity, drug release behaviors and cell viability. The results showed the self-assembly of both DHBC-based prodrugs into well-dispersed spherical micelles with similar average hydrodynamic diameters (Dh) around 150 nm in phosphate buffer (PBS, pH 7.4) at 37 °C, but a higher drug loading content (DLC), and enhanced pH-mediated drug release, i.e., much accelerated drug release at pH 5.0, while slower at pH 7.4, as well as enhanced cytotoxicity when the drug was conjugated to the hydrophilic shell of the micelles. The guidelines obtained in this study are thus believed to direct the future design and development of polymeric prodrugs for efficient cancer therapy.
Collapse
Affiliation(s)
- Xufeng Zhou
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Fan F, Yu Y, Zhong F, Gao M, Sun T, Liu J, Zhang H, Qian H, Tao W, Yang X. Design of Tumor Acidity-Responsive Sheddable Nanoparticles for Fluorescence/Magnetic Resonance Imaging-Guided Photodynamic Therapy. Am J Cancer Res 2017; 7:1290-1302. [PMID: 28435466 PMCID: PMC5399594 DOI: 10.7150/thno.18557] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/17/2016] [Indexed: 12/24/2022] Open
Abstract
Imaging-guided cancer therapy, which integrates diagnostic and therapeutic functionalities into a single system, holds great promise to enhance the accuracy of diagnosis and improve the efficacy of therapy. Specifically, for photodynamic therapy (PDT), it is highly desirable to precisely focus laser light onto the tumor areas to generate reactive oxygen species (ROS) that are cytotoxic tumor cells and avoid light-associated side effects. Herein, a distinct three-layer nanostructured particle with tumor acidity-responsiveness (S-NP) that encapsulates the photosensitizer chlorin e6 (Ce6) and chelates Gd3+ is successfully developed for fluorescence/magnetic resonance (MR) dual-model imaging-guided precision PDT. We show clear evidence that the outer PEG layer significantly prolongs circulation time, and the inner poly(ε-caprolactone) (PCL) core can physically encapsulate Ce6. More interestingly, the middle layer of the S-NP, acting as a molecular fence to keep Ce6 in the circulation system, was dismantled by the slightly acidic tumor microenvironment. Afterwards, the PEG shell is deshielded from the S-NP at the tumor tissue, resulting in improved cell uptake, enlarged MR signal intensity, rapid release of Ce6 within tumor cells, and elevated PDT efficacy. Our results suggest that tumor-acidity-responsive nanoparticles with fine design could serve as a theranostic platform with great potential in imaging-guided PDT treatment of cancer.
Collapse
|
117
|
Öğünç Y, Demirel M, Yakar A, İncesu Z. Vincristine and ɛ-viniferine-loaded PLGA-b-PEG nanoparticles: pharmaceutical characteristics, cellular uptake and cytotoxicity. J Microencapsul 2017; 34:38-46. [PMID: 28084127 DOI: 10.1080/02652048.2017.1282549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The objective of this study was to prepare the ɛ-viniferine and vincristine-loaded PLGA-b-PEG nanoparticle and to investigate advantages of these formulations on the cytotoxicity of HepG2 cells. Prepared nanoparticle has shown a homogeneous distribution with 113 ± 0.43 nm particle size and 0.323 ± 0.01 polydispersity index. Zeta potential was determined as -35.03 ± 1.0 mV. The drug-loading percentages were 6.01 ± 0.23 and 2.01 ± 0.07 for ɛ-viniferine and vincristine, respectively. The cellular uptake efficiency of coumarin-6-loaded nanoparticles was increased up to 87.8% after 4 h. Nanoparticles loaded with high concentrations of both drugs showed a cytotoxic effect on HepG2 cells, having the percentage of cell viability of between 43.23% and 47.37%. Unfortunately, the percentage of apoptotic cells after treated with drugs-loaded nanaoparticles (10.93%) was similar to free forms of drugs (12.1%) that might be due to low ɛ-viniferine release in biological pH at 24 h.
Collapse
Affiliation(s)
- Yüksel Öğünç
- a Department of Biochemistry, Faculty of Pharmacy , Anadolu University , Eskisehir , Turkey
| | - Müzeyyen Demirel
- b Department of Pharmaceutical Technology, Faculty of Pharmacy , Anadolu University , Eskisehir , Turkey
| | - Arzu Yakar
- c Department of Chemical Engineering , Afyon Kocatepe University , Afyon , Turkey
| | - Zerrin İncesu
- a Department of Biochemistry, Faculty of Pharmacy , Anadolu University , Eskisehir , Turkey
| |
Collapse
|
118
|
Wu J, Zhang J, Deng C, Meng F, Cheng R, Zhong Z. Robust, Responsive, and Targeted PLGA Anticancer Nanomedicines by Combination of Reductively Cleavable Surfactant and Covalent Hyaluronic Acid Coating. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3985-3994. [PMID: 28079367 DOI: 10.1021/acsami.6b15105] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
PLGA-based nanomedicines have enormous potential for targeted cancer therapy. To boost their stability, targetability, and intracellular drug release, here we developed novel multifunctional PLGA anticancer nanomedicines by combining a reductively cleavable surfactant (RCS), vitamin E-SS-oligo(methyl diglycol l-glutamate), with covalent hyaluronic acid (HA) coating. Reduction-sensitive HA-coated PLGA nanoparticles (rHPNPs) were obtained with small sizes of 55-61 nm and ζ potentials of -26.7 to -28.8 mV at 18.4-40.3 wt % RSC. rHPNPs were stable against dilution and 10% FBS while destabilized under reductive condition. The release studies revealed significantly accelerated docetaxel (DTX) release in the presence of 10 mM glutathione. DTX-rHPNPs exhibited potent and specific antitumor effect to CD44 + A549 lung cancer cells (IC50 = 0.52 μg DTX equiv/mL). The in vivo studies demonstrated that DTX-rHPNPs had an extended circulation time and greatly enhanced tolerance in mice. Strikingly, DTX-rHPNPs completely inhibited growth of orthotopic human A549-Luc lung tumor in mice, leading to a significantly improved survival rate and reduced adverse effect as compared to free DTX. This study highlights that advanced nanomedicines can be rationally designed by combining functional surfactants and surface coating.
Collapse
Affiliation(s)
- Jintian Wu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Jian Zhang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Chao Deng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Ru Cheng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| |
Collapse
|
119
|
He Y, Zhou J, Ma S, Nie Y, Yue D, Jiang Q, Wali ARM, Tang JZ, Gu Z. Multi-Responsive "Turn-On" Nanocarriers for Efficient Site-Specific Gene Delivery In Vitro and In Vivo. Adv Healthc Mater 2016; 5:2799-2812. [PMID: 27717282 DOI: 10.1002/adhm.201600710] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/23/2016] [Indexed: 12/19/2022]
Abstract
Systemic gene delivery is a complicated and multistep process that confronts numerous biological barriers. It remains a formidable challenge to exploit a single gene carrier with multiple features to combat all obstacles collectively. Herein, a multi-responsive "turn-on" polyelectrolyte complex (DNA/OEI-SSx /HA-SS-COOH, DSS) delivery system is demonstrated with a sequential self-assembly of disulfide-conjugated oligoethylenimine (OEI-SSx ) and disulfide bond-modified hyaluronic acid envelope (HA-SS-COOH) that can combat multiple biological barriers collectively when administered intravenously. DSS is designed to effectively accumulate at the tumor tissue and to be internalized into tumor cells by recognizing CD44. The multi-responsive "turn-on" DSS can respond to the alterations of hyaluronidases and glutathione at both the tumor site and at the intracellular milieu. Sequential degradation and detachment of the HA-SS-COOH envelope followed by the dissociation of the OEI-SSx/DNA inner core contributes to the activation of the endosomal escape and gene release functions, thus greatly enhancing nuclear gene delivery. A systematic investigation of DSS has revealed that the tumor accumulation ability, internalization, and endosome escape of the DSS nanocarriers, DNA unpacking and nuclear transportation are all remarkably improved by the multi-responsive "turn-on" design resulting in highly efficient gene transfection in vitro and in vivo.
Collapse
Affiliation(s)
- Yiyan He
- National Engineering Research Center for Biomaterials; Sichuan University; 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jie Zhou
- National Engineering Research Center for Biomaterials; Sichuan University; 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Shengnan Ma
- National Engineering Research Center for Biomaterials; Sichuan University; 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Yu Nie
- National Engineering Research Center for Biomaterials; Sichuan University; 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Dong Yue
- National Engineering Research Center for Biomaterials; Sichuan University; 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Qian Jiang
- National Engineering Research Center for Biomaterials; Sichuan University; 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Aisha Roshan Mohamed Wali
- Faculty of Science and Engineering; School of Pharmacy; University of Wolverhampton; Wulfruna Street Wolverhampton WV1 1SB UK
| | - James Zhenggui Tang
- Faculty of Science and Engineering; School of Pharmacy; University of Wolverhampton; Wulfruna Street Wolverhampton WV1 1SB UK
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials; Sichuan University; 29 Wangjiang Road Chengdu 610064 P. R. China
- College of Materials Science and Engineering; Nanjing Tech University; 30 South Puzhu Road 211816 Nanjing P. R. China
| |
Collapse
|
120
|
Correa S, Dreaden EC, Gu L, Hammond PT. Engineering nanolayered particles for modular drug delivery. J Control Release 2016; 240:364-386. [PMID: 26809005 PMCID: PMC6450096 DOI: 10.1016/j.jconrel.2016.01.040] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 01/07/2023]
Abstract
Layer-by-layer (LbL) based self-assembly of nanoparticles is an emerging and powerful method to develop multifunctional and tissue responsive nanomedicines for a broad range of diseases. This unique assembly technique is able to confer a high degree of modularity, versatility, and compositional heterogeneity to nanoparticles via the sequential deposition of alternately charged polyelectrolytes onto a colloidal template. LbL assembly can provide added functionality by directly incorporating a range of functional materials within the multilayers including nucleic acids, synthetic polymers, polypeptides, polysaccharides, and functional proteins. These materials can be used to generate hierarchically complex, heterogeneous thin films on an extensive range of both traditional and novel nanoscale colloidal templates, providing the opportunity to engineer highly precise systems capable of performing the numerous tasks required for systemic drug delivery. In this review, we will discuss the recent advancements towards the development of LbL nanoparticles for drug delivery and diagnostic applications, with a special emphasis on the incorporation of biostability, active targeting, desirable drug release kinetics, and combination therapies into LbL nanomaterials. In addition to these topics, we will touch upon the next steps for the translation of these systems towards the clinic.
Collapse
Affiliation(s)
- Santiago Correa
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Erik C Dreaden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Li Gu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
121
|
Zhang L, Zheng W, Tang R, Wang N, Zhang W, Jiang X. Gene regulation with carbon-based siRNA conjugates for cancer therapy. Biomaterials 2016; 104:269-78. [DOI: 10.1016/j.biomaterials.2016.07.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 07/10/2016] [Accepted: 07/12/2016] [Indexed: 01/23/2023]
|
122
|
Ivey JW, Bonakdar M, Kanitkar A, Davalos RV, Verbridge SS. Improving cancer therapies by targeting the physical and chemical hallmarks of the tumor microenvironment. Cancer Lett 2016; 380:330-9. [PMID: 26724680 PMCID: PMC4919249 DOI: 10.1016/j.canlet.2015.12.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 12/18/2022]
Abstract
Tumors are highly heterogeneous at the patient, tissue, cellular, and molecular levels. This multi-scale heterogeneity poses significant challenges for effective therapies, which ideally must not only distinguish between tumorous and healthy tissue, but also fully address the wide variety of tumorous sub-clones. Commonly used therapies either leverage a biological phenotype of cancer cells (e.g. high rate of proliferation) or indiscriminately kill all the cells present in a targeted volume. Tumor microenvironment (TME) targeting represents a promising therapeutic direction, because a number of TME hallmarks are conserved across different tumor types, despite the underlying genetic heterogeneity. Historically, TME targeting has largely focused on the cells that support tumor growth (e.g. vascular endothelial cells). However, by viewing the intrinsic physical and chemical alterations in the TME as additional therapeutic opportunities rather than barriers, a new class of TME-inspired treatments has great promise to complement or replace existing therapeutic strategies. In this review we summarize the physical and chemical hallmarks of the TME, and discuss how these tumor characteristics either currently are, or may ultimately be targeted to improve cancer therapies.
Collapse
Affiliation(s)
- Jill W Ivey
- Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, VA 24061, USA
| | - Mohammad Bonakdar
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Akanksha Kanitkar
- Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, VA 24061, USA
| | - Rafael V Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, VA 24061, USA; Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Scott S Verbridge
- Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, VA 24061, USA.
| |
Collapse
|
123
|
Yilmaz ZE, Jérôme C. Polyphosphoesters: New Trends in Synthesis and Drug Delivery Applications. Macromol Biosci 2016; 16:1745-1761. [PMID: 27654308 DOI: 10.1002/mabi.201600269] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/18/2016] [Indexed: 11/06/2022]
Abstract
Polymers with repeating phosphoester linkages in the backbone are biodegradable materials that emerge as a promising class of novel biomaterials, especially in the field of drug delivery systems. In contrast to aliphatic polyesters, the pentavalency of the phosphorus atom offers a large diversity of structures and as a consequence a wide range of properties for these materials. In this paper, it is focused on the synthesis of well-defined polyphosphoesters (PPEs) by organocatalyzed ring-opening polymerization, improving the functionalities by combination with click reactions, degradation of functional PPEs and their cytotoxicity, and inputs for applications in drug delivery.
Collapse
Affiliation(s)
- Zeynep Ergul Yilmaz
- Center for Education and Research on Macromolecules (CERM), University of Liège (ULg), CESAM-RU, Sart Tilman, Building B6a, Liège, B-4000, Belgium
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM), University of Liège (ULg), CESAM-RU, Sart Tilman, Building B6a, Liège, B-4000, Belgium
| |
Collapse
|
124
|
Wang S, Huang P, Chen X. Hierarchical Targeting Strategy for Enhanced Tumor Tissue Accumulation/Retention and Cellular Internalization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:7340-64. [PMID: 27255214 PMCID: PMC5014563 DOI: 10.1002/adma.201601498] [Citation(s) in RCA: 277] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/14/2016] [Indexed: 05/04/2023]
Abstract
Targeted delivery of therapeutic agents is an important way to improve the therapeutic index and reduce side effects. To design nanoparticles for targeted delivery, both enhanced tumor tissue accumulation/retention and enhanced cellular internalization should be considered simultaneously. So far, there have been very few nanoparticles with immutable structures that can achieve this goal efficiently. Hierarchical targeting, a novel targeting strategy based on stimuli responsiveness, shows good potential to enhance both tumor tissue accumulation/retention and cellular internalization. Here, the recent design and development of hierarchical targeting nanoplatforms, based on changeable particle sizes, switchable surface charges and activatable surface ligands, will be introduced. In general, the targeting moieties in these nanoplatforms are not activated during blood circulation for efficient tumor tissue accumulation, but re-activated by certain internal or external stimuli in the tumor microenvironment for enhanced cellular internalization.
Collapse
Affiliation(s)
- Sheng Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
125
|
Kim HJ, Kim A, Miyata K, Kataoka K. Recent progress in development of siRNA delivery vehicles for cancer therapy. Adv Drug Deliv Rev 2016; 104:61-77. [PMID: 27352638 DOI: 10.1016/j.addr.2016.06.011] [Citation(s) in RCA: 328] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 05/21/2016] [Accepted: 06/16/2016] [Indexed: 12/13/2022]
Abstract
Recent progress in RNA biology has broadened the scope of therapeutic targets of RNA drugs for cancer therapy. However, RNA drugs, typically small interfering RNAs (siRNAs), are rapidly degraded by RNases and filtrated in the kidney, thereby requiring a delivery vehicle for efficient transport to the target cells. To date, various delivery formulations have been developed from cationic lipids, polymers, and/or inorganic nanoparticles for systemic delivery of siRNA to solid tumors. This review describes the current status of clinical trials related to siRNA-based cancer therapy, as well as the remaining issues that need to be overcome to establish a successful therapy. It, then introduces various promising design strategies of delivery vehicles for stable and targeted siRNA delivery, including the prospects for future design.
Collapse
|
126
|
Shatsberg Z, Zhang X, Ofek P, Malhotra S, Krivitsky A, Scomparin A, Tiram G, Calderón M, Haag R, Satchi-Fainaro R. Functionalized nanogels carrying an anticancer microRNA for glioblastoma therapy. J Control Release 2016; 239:159-68. [PMID: 27569663 DOI: 10.1016/j.jconrel.2016.08.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 12/18/2022]
Abstract
Glioblastoma Multiforme (GBM) is one of the most aggressive forms of all cancers. The median survival with current standard-of-care radiation and chemotherapy is about 14months. GBM is difficult to treat due to heterogeneity in cancer cell population. MicroRNA-based drugs have rapidly become a vast and burgeoning field due to the ability of a microRNA (miRNA) to target many genes involved in key cellular pathways. However, in vivo delivery of miRNA remains a crucial challenge for its therapeutic success. To bypass this shortcoming, we designed polymeric nanogels (NGs), which are based on a polyglycerol-scaffold, as a new strategy of miRNA delivery for GBM therapy. We focused on miR-34a, which is known for its key role in important oncogenic pathways and its tumor suppression ability in GBM and other cancers. We evaluated the capability of six NG derivatives to complex with miR-34a, neutralize its negative charge and deliver active miRNA to the cell cytoplasm. Human U-87 MG GBM cells treated with our NG-miR-34a nano-polyplexes showed remarkable downregulation of miR-34a target genes, which play key roles in the regulation of apoptosis and cell cycle arrest, and induce inhibition of cells proliferation and migration. Administration of NG-miR-34a nano-polyplexes to human U-87 MG GBM-bearing SCID mice significantly inhibited tumor growth as opposed to treatment with NG-negative control miR polyplex or saline. The comparison between different polyplexes highlighted the key features for the rational design of polymeric delivery systems for oligonucleotides. Taken together, we expect that this new therapeutic approach will pave the way for safe and efficient therapies for GBM.
Collapse
Affiliation(s)
- Zohar Shatsberg
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Xuejiao Zhang
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Paula Ofek
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shashwat Malhotra
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galia Tiram
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marcelo Calderón
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany.
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
127
|
Li HJ, Du JZ, Liu J, Du XJ, Shen S, Zhu YH, Wang X, Ye X, Nie S, Wang J. Smart Superstructures with Ultrahigh pH-Sensitivity for Targeting Acidic Tumor Microenvironment: Instantaneous Size Switching and Improved Tumor Penetration. ACS NANO 2016; 10:6753-61. [PMID: 27244096 DOI: 10.1021/acsnano.6b02326] [Citation(s) in RCA: 406] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The currently low delivery efficiency and limited tumor penetration of nanoparticles remain two major challenges of cancer nanomedicine. Here, we report a class of pH-responsive nanoparticle superstructures with ultrasensitive size switching in the acidic tumor microenvironment for improved tumor penetration and effective in vivo drug delivery. The superstructures were constructed from amphiphilic polymer directed assembly of platinum-prodrug conjugated polyamidoamine (PAMAM) dendrimers, in which the amphiphilic polymer contains ionizable tertiary amine groups for rapid pH-responsiveness. These superstructures had an initial size of ∼80 nm at neutral pH (e.g., in blood circulation), but once deposited in the slightly acidic tumor microenvironment (pH ∼6.5-7.0), they underwent a dramatic and sharp size transition within a very narrow range of acidity (less than 0.1-0.2 pH units) and dissociated instantaneously into the dendrimer building blocks (less than 10 nm in diameter). This rapid size-switching feature not only can facilitate nanoparticle extravasation and accumulation via the enhanced permeability and retention effect but also allows faster nanoparticle diffusion and more efficient tumor penetration. We have further carried out comparative studies of pH-sensitive and insensitive nanostructures with similar size, surface charge, and chemical composition in both multicellular spheroids and poorly permeable BxPC-3 pancreatic tumor models, whose results demonstrate that the pH-triggered size switching is a viable strategy for improving drug penetration and therapeutic efficacy.
Collapse
Affiliation(s)
| | - Jin-Zhi Du
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology , Atlanta, Georgia 30322, United States
| | | | | | | | | | - Xiaoyan Wang
- Hefei National Laboratory for Physical Sciences at the Microscale , Hefei, Anhui 230027, China
| | - Xiaodong Ye
- Hefei National Laboratory for Physical Sciences at the Microscale , Hefei, Anhui 230027, China
| | - Shuming Nie
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology , Atlanta, Georgia 30322, United States
| | - Jun Wang
- Hefei National Laboratory for Physical Sciences at the Microscale , Hefei, Anhui 230027, China
| |
Collapse
|
128
|
Li Y, Hei M, Xu Y, Qian X, Zhu W. Ammonium salt modified mesoporous silica nanoparticles for dual intracellular-responsive gene delivery. Int J Pharm 2016; 511:689-702. [PMID: 27426108 DOI: 10.1016/j.ijpharm.2016.07.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/30/2016] [Accepted: 07/14/2016] [Indexed: 01/12/2023]
Abstract
Effective gene delivery system plays an importmant role in the gene therapy. Mesoporous silica nanoparticle (MSN) has become one potential gene delivery vector because of its high stability, good biodegradability and low cytotoxicity. Herein, MSN-based dual intracellular responsive gene delivery system CMSN-A was designed and fabricated. Short chain ammonium group, which is modified with disulfide bond and amide bond simultaneously, is facilely grafted onto the mesoporous silica nanoparticles. As-synthesized CMSN-A is endowed with small size (80-110nm), large conical pores (15-23nm), and moderate Zeta potential (+25±2mV), which behaves high gene loading capacity, good stability and effectively gene transfection. Moreover, CMSN-A exhibits dual micro-environment responsive (lower pH, more reducing substances) due to the redox-sensitive disulfide bond and pH-sensitive amide bond in the short chain ammonium group. The cellular uptake study indicates that CMSN-A could transfer both plasmid DNA (pDNA) and siRNA into different kinds of tumour cells, which demonstrate the promising potential of CMSN-A as effective and safe gene-delivery vectors.
Collapse
Affiliation(s)
- Yujie Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Mingyang Hei
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yufang Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weiping Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
129
|
Liu D, Yang F, Xiong F, Gu N. The Smart Drug Delivery System and Its Clinical Potential. Theranostics 2016; 6:1306-23. [PMID: 27375781 PMCID: PMC4924501 DOI: 10.7150/thno.14858] [Citation(s) in RCA: 600] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/22/2016] [Indexed: 12/22/2022] Open
Abstract
With the unprecedented progresses of biomedical nanotechnology during the past few decades, conventional drug delivery systems (DDSs) have been involved into smart DDSs with stimuli-responsive characteristics. Benefiting from the response to specific internal or external triggers, those well-defined nanoplatforms can increase the drug targeting efficacy, in the meantime, reduce side effects/toxicities of payloads, which are key factors for improving patient compliance. In academic field, variety of smart DDSs have been abundantly demonstrated for various intriguing systems, such as stimuli-responsive polymeric nanoparticles, liposomes, metals/metal oxides, and exosomes. However, these nanoplatforms are lack of standardized manufacturing method, toxicity assessment experience, and clear relevance between the pre-clinical and clinical studies, resulting in the huge difficulties to obtain regulatory and ethics approval. Therefore, such relatively complex stimulus-sensitive nano-DDSs are not currently approved for clinical use. In this review, we highlight the recent advances of smart nanoplatforms for targeting drug delivery. Furthermore, the clinical translation obstacles faced by these smart nanoplatforms have been reviewed and discussed. We also present the future directions and perspectives of stimuli-sensitive DDS in clinical applications.
Collapse
Affiliation(s)
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing, 210009, China
| | | | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing, 210009, China
| |
Collapse
|
130
|
Mo R, Gu Z. Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery. MATERIALS TODAY 2016; 19:274-283. [DOI: 10.1016/j.mattod.2015.11.025] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
131
|
Zhao C, Deng H, Xu J, Li S, Zhong L, Shao L, Wu Y, Liang XJ. "Sheddable" PEG-lipid to balance the contradiction of PEGylation between long circulation and poor uptake. NANOSCALE 2016; 8:10832-10842. [PMID: 27167180 DOI: 10.1039/c6nr02174c] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
PEGylated lipids confer longer systemic circulation and tumor accumulation via the enhanced permeability and retention (EPR) effect. However, PEGylation inhibits cellular uptake and subsequent endosomal escape. In order to balance the contradiction between the advantages of long circulation and the disadvantages of poor uptake of PEGylated lipids, we prepared a "sheddable" PEG-lipid micelle system based on the conjugation of PEG and phosphatidyl ethanolamine (DSPE) with a pH sensitive benzoic imine bond. In a physiological environment, the PEG-protected micelles were not readily taken up by the reticuloendothelial system (RES) and could be successfully delivered to tumor tissue by the EPR effect. In a tumor acidic microenvironment, the PEG chains detached from the surfaces of the micelles while the degree of linker cleavage could not cause a significant particle size change, which facilitated the carrier binding to tumor cells and improved the cellular uptake. Subsequently, the "sheddable" PEG-lipid micelles easily internalized into cells and the increased acidity in the lysosomes further promoted drug release. Thus, this "sheddable" PEG-lipid nanocarrier could be a good candidate for effective intracellular drug delivery in cancer chemotherapy.
Collapse
Affiliation(s)
- Caiyan Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
| | - Hongzhang Deng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China. and Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Jing Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
| | - Shuyi Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
| | - Lin Zhong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
| | - Leihou Shao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
| | - Yan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
| |
Collapse
|
132
|
Feng T, Ai X, An G, Yang P, Zhao Y. Charge-Convertible Carbon Dots for Imaging-Guided Drug Delivery with Enhanced in Vivo Cancer Therapeutic Efficiency. ACS NANO 2016; 10:4410-20. [PMID: 26997431 DOI: 10.1021/acsnano.6b00043] [Citation(s) in RCA: 374] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Carbon dots (CDs) are remarkable nanocarriers due to their promising optical and biocompatible capabilities. However, their practical applicability in cancer therapeutics is limited by their insensitive surface properties to complicated tumor microenvironment in vivo. Herein, a tumor extracellular microenvironment-responsive drug nanocarrier based on cisplatin(IV) prodrug-loaded charge-convertible CDs (CDs-Pt(IV)@PEG-(PAH/DMMA)) was developed for imaging-guided drug delivery. An anionic polymer with dimethylmaleic acid (PEG-(PAH/DMMA)) on the fabricated CDs-Pt(IV)@PEG-(PAH/DMMA) could undergo intriguing charge conversion to a cationic polymer in mildly acidic tumor extracellular microenvironment (pH ∼ 6.8), leading to strong electrostatic repulsion and release of positive CDs-Pt(IV). Importantly, positively charged nanocarrier displays high affinity to negatively charged cancer cell membrane, which results in enhanced internalization and effective activation of cisplatin(IV) prodrug in the reductive cytosol. The in vitro experimental results confirmed that this promising charge-convertible nanocarrier possesses better therapeutic efficiency under tumor extracellular microenvironment than normal physiological condition and noncharge-convertible nanocarrier. The in vivo experiments further demonstrated high tumor-inhibition efficacy and low side effects of the charge-convertible CDs, proving its capability as a smart drug nanocarrier with enhanced therapeutic effects. The present work provides a strategy to promote potential clinical application of CDs in the cancer treatment.
Collapse
Affiliation(s)
- Tao Feng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, Singapore 637371, Singapore
| | - Xiangzhao Ai
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, Singapore 637371, Singapore
| | - Guanghui An
- School of Chemistry and Materials Science, Heilongjiang University , Harbin, Heilongjiang 150080, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University , Harbin, Heilongjiang 150001, China
| | - Piaoping Yang
- College of Materials Science and Chemical Engineering, Harbin Engineering University , Harbin, Heilongjiang 150001, China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, Singapore 637371, Singapore
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
133
|
Xia J, Chen J, Lin L, Guo Z, Han B, Yang H, Feng Z, Tian H. Sulfathiazole grafted PEG-PLL as pH-sensitive shielding system for cationic gene delivery. Polym Bull (Berl) 2016. [DOI: 10.1007/s00289-016-1688-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
134
|
Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tuček J, Zbořil R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem Rev 2016; 116:5338-431. [DOI: 10.1021/acs.chemrev.5b00589] [Citation(s) in RCA: 1120] [Impact Index Per Article: 124.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Karel Ulbrich
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Kateřina Holá
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Vladimir Šubr
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Aristides Bakandritsos
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Jiří Tuček
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
135
|
Xia J, Tian H, Chen J, Lin L, Guo Z, Han B, Yang H, Feng Z. pH-Triggered Sheddable Shielding System for Polycationic Gene Carriers. Polymers (Basel) 2016; 8:E141. [PMID: 30979234 PMCID: PMC6432142 DOI: 10.3390/polym8040141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/28/2016] [Accepted: 04/05/2016] [Indexed: 11/28/2022] Open
Abstract
For improving the therapeutic efficiency of tumors and decreasing undesirable side effects, ternary complexes were developed by coating pH-sensitive PEG-b-PLL-g-succinylsulfathiazole (hereafter abbreviated as PPSD) with DNA/PEI polyplexes via electrostatic interaction. PPSD can efficiently shield the surface charge of DNA/PEI. The gene transfection efficiency of ternary complexes was lower than that of DNA/PEI at pH 7.4; however, it recovered to the same level as that of DNA/PEI at pH 6.0, attributed to the pH-triggered release of DNA/PEI from ternary complexes. Cell uptake results also exhibited the same trend as transfection at different pH values. The suitable ability for pH-triggered shielding/deshielding estimated that PPSD demonstrates potential as a shielding system for use in in vivo gene delivery.
Collapse
Affiliation(s)
- Jialiang Xia
- School of Chemistry and Chemical Engineering, Lingnan Normal University, 29 Cunjin Road, Zhanjiang 524048, China.
- Development Center for New Materials Engineering & Technology in Universities of Guangdong, Zhanjiang 524048, China.
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, China.
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, China.
| | - Lin Lin
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, China.
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, China.
| | - Bing Han
- School of Chemistry and Chemical Engineering, Lingnan Normal University, 29 Cunjin Road, Zhanjiang 524048, China.
| | - Hongyan Yang
- School of Chemistry and Chemical Engineering, Lingnan Normal University, 29 Cunjin Road, Zhanjiang 524048, China.
| | - Zongcai Feng
- School of Chemistry and Chemical Engineering, Lingnan Normal University, 29 Cunjin Road, Zhanjiang 524048, China.
- Development Center for New Materials Engineering & Technology in Universities of Guangdong, Zhanjiang 524048, China.
| |
Collapse
|
136
|
Dong H, Tang M, Li Y, Li Y, Qian D, Shi D. Disulfide-bridged cleavable PEGylation in polymeric nanomedicine for controlled therapeutic delivery. Nanomedicine (Lond) 2016; 10:1941-58. [PMID: 26139127 DOI: 10.2217/nnm.15.38] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PEGylation in polymeric nanomedicine has gained substantial predominance in biomedical applications due to its resistance to protein absorption, which is critically important for a therapeutic delivery system in blood circulation. The shielding layer of PEGylation, however, creates significant steric hindrance that negatively impacts cellular uptake and intracellular distribution at the target site. This unexpected effect compromises the biological efficacy of the encapsulated payload. To address this issue, one of the key strategies is to tether the disulfide bond to PEG for constructing a disulfide-bridged cleavable PEGylation. The reversible disulfide bond can be cleaved to enable selective PEG detachment. This article provides an overview on the strategy, method and progress of PEGylation nanosystem with the cleavable disulfide bond.
Collapse
Affiliation(s)
- Haiqing Dong
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science (iNANO), Tongji University School of Medicine, Shanghai, China
| | - Min Tang
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science (iNANO), Tongji University School of Medicine, Shanghai, China
| | - Yan Li
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science (iNANO), Tongji University School of Medicine, Shanghai, China
| | - Yongyong Li
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science (iNANO), Tongji University School of Medicine, Shanghai, China
| | - Dong Qian
- Department of Mechanical Engineering, University of Texas at Dallas, TX 75080, USA
| | - Donglu Shi
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science (iNANO), Tongji University School of Medicine, Shanghai, China.,The Materials Science & Engineering Program, Department of Mechanical & Materials Engineering, College of Engineering & Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
137
|
Zhang P, Wang C, Zhao J, Xiao A, Shen Q, Li L, Li J, Zhang J, Min Q, Chen J, Chen HY, Zhu JJ. Near Infrared-Guided Smart Nanocarriers for MicroRNA-Controlled Release of Doxorubicin/siRNA with Intracellular ATP as Fuel. ACS NANO 2016; 10:3637-3647. [PMID: 26905935 DOI: 10.1021/acsnano.5b08145] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In chemotherapy, it is a great challenge to recruit endogenous stimuli instead of external intervention for targeted delivery and controlled release; microRNAs are the most promising candidates due to their vital role during tumorigenesis and significant expression difference. Herein, to amplify the low abundant microRNAs in live cells, we designed a stimuli-responsive DNA Y-motif for codelivery of siRNA and Dox, in which the cargo release was achieved via enzyme-free cascade amplification with endogenous microRNA as trigger and ATP (or H(+)) as fuel through toehold-mediated strand displacement. Furthermore, to realize controlled release in tumor cells, smart nanocarriers were constructed with stimuli-responsive Y-motifs, gold nanorods, and temperature-sensitive polymers, whose surfaces could be reversibly switched between PEG and RGD states via photothermal conversion. The PEG corona kept the nanocarriers stealth during blood circulation to protect the Y-motifs against nuclease digestion and enhance passive accumulation, whereas the exposed RGD shell under near-infrared (NIR) irradiation at tumor sites facilitated the specific receptor-mediated endocytosis by tumor cells. Through modulating NIR laser, microRNA, or ATP expressions, the therapy efficacies to five different cell lines were finely controlled, presenting NIR-guided accumulation, massive release, efficient gene silence, and severe apoptosis in HeLa cells; in vivo study showed that a low dosage of nanocarriers synergistically inhibited the tumor growth by silencing gene expression and inducing cell apoptosis under mild NIR irradiation, though they only brought minimum damage to normal organs. The combination of nanomaterials, polymers, and DNA nanomachines provided a promising tool for designing smart nanodevices for disease therapy.
Collapse
Affiliation(s)
- Penghui Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| | - Chen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University , Nanjing 210093, P. R. China
| | - Jingjing Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| | - Anqi Xiao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| | - Qi Shen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| | - Linting Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| | - Jianxin Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University , Nanjing 210093, P. R. China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| | - Jiangning Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University , Nanjing 210093, P. R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| |
Collapse
|
138
|
Sigg SJ, Postupalenko V, Duskey JT, Palivan CG, Meier W. Stimuli-Responsive Codelivery of Oligonucleotides and Drugs by Self-Assembled Peptide Nanoparticles. Biomacromolecules 2016; 17:935-45. [PMID: 26871486 DOI: 10.1021/acs.biomac.5b01614] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ever more emerging combined treatments exploiting synergistic effects of drug combinations demand smart, responsive codelivery carriers to reveal their full potential. In this study, a multifunctional stimuli-responsive amphiphilic peptide was designed and synthesized to self-assemble into nanoparticles capable of co-bearing and -releasing hydrophobic drugs and antisense oligonucleotides for combined therapies. The rational design was based on a hydrophobic l-tryptophan-d-leucine repeating unit derived from a truncated sequence of gramicidin A (gT), to entrap hydrophobic cargo, which is combined with a hydrophilic moiety of histidines to provide electrostatic affinity to nucleotides. Stimuli-responsiveness was implemented by linking the hydrophobic and hydrophilic sequence through an artificial amino acid bearing a disulfide functional group (H3SSgT). Stimuli-responsive peptides self-assembled in spherical nanoparticles in sizes (100-200 nm) generally considered as preferable for drug delivery applications. Responsive peptide nanoparticles revealed notable nucleotide condensing abilities while maintaining the ability to load hydrophobic cargo. The disulfide cleavage site introduced in the peptide sequence induced responsiveness to physiological concentrations of reducing agent, serving to release the incorporated molecules. Furthermore, the peptide nanoparticles, singly loaded or coloaded with boron-dipyrromethene (BODIPY) and/or antisense oligonucleotides, were efficiently taken up by cells. Such amphiphilic peptides that led to noncytotoxic, reduction-responsive nanoparticles capable of codelivering hydrophobic and nucleic acid payloads simultaneously provide potential toward combined treatment strategies to exploit synergistic effects.
Collapse
Affiliation(s)
- Severin J Sigg
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Viktoriia Postupalenko
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Jason T Duskey
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
139
|
Zhao C, Shao L, Lu J, Deng X, Wu Y. Tumor Acidity-Induced Sheddable Polyethylenimine-Poly(trimethylene carbonate)/DNA/Polyethylene Glycol-2,3-Dimethylmaleicanhydride Ternary Complex for Efficient and Safe Gene Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:6400-6410. [PMID: 26904916 DOI: 10.1021/acsami.6b00825] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Amphiphilic PEI derivatives/DNA complexes are widely used for DNA delivery, but they are unstable in vivo and have cytotoxicity due to the excess cationic charge. PEGylation of cationic complexes can improve sterical stability and biocompatibility. However, PEGylation significantly inhibits cellular uptake and endosomal escape. In this work, sheddable ternary complexes were developed by coating a tumor acidity-sensitive β-carboxylic amide functionalized PEG layer on the binary complexes of amphiphilic cationic polyethylenimine-poly(trimethylene carbonate) nanoparticles/DNA (PEI-PTMC/DNA). Such sheddable ternary complexes markedly reduced their nonspecific interactions with serum protein in the bloodstream and obtained minimal cytotoxicity due to the protection of the PEG shell. At the tumor site, the PEG layer was deshielded by responding to the tumor acidic microenvironment and the positively charged complexes re-exposed that had higher affinity with negatively charged cell membranes. Meanwhile the positively charged complexes facilitated endosomal escape. Accordingly, this delivery system improved the biocompatibility of gene-loaded complexes and enhanced the gene transfection efficiency. Such PEGylated complexes with the ability to deshield the PEG layer at the target tissues hold great promise for efficient and safe gene delivery in vivo.
Collapse
Affiliation(s)
- Caiyan Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Leihou Shao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Jianqing Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Xiongwei Deng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Yan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| |
Collapse
|
140
|
Teo PY, Cheng W, Hedrick JL, Yang YY. Co-delivery of drugs and plasmid DNA for cancer therapy. Adv Drug Deliv Rev 2016; 98:41-63. [PMID: 26529199 DOI: 10.1016/j.addr.2015.10.014] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/21/2015] [Accepted: 10/23/2015] [Indexed: 12/12/2022]
Abstract
Cancer is an extremely complex disease involving multiple signaling pathways that enable tumor cells to evade programmed cell death, thus making cancer treatment extremely challenging. The use of combination therapy involving both gene therapy and chemotherapy has resulted in enhanced anti-cancer effects and has become an increasingly important strategy in medicine. This review will cover important design parameters that are incorporated into delivery systems for the co-administration of drug and plasmid-based nucleic acids (pDNA and shRNA), with particular emphasis on polymers as delivery materials. The unique challenges faced by co-delivery systems and the strategies to overcome such barriers will be discussed. In addition, the advantages and disadvantages of combination therapy using separate carrier systems versus the use of a single carrier will be evaluated. Finally, future perspectives in the design of novel platforms for the combined delivery of drugs and genes will be presented.
Collapse
|
141
|
Liu J, Luo Z, Zhang J, Luo T, Zhou J, Zhao X, Cai K. Hollow mesoporous silica nanoparticles facilitated drug delivery via cascade pH stimuli in tumor microenvironment for tumor therapy. Biomaterials 2016; 83:51-65. [DOI: 10.1016/j.biomaterials.2016.01.008] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 01/01/2016] [Indexed: 01/26/2023]
|
142
|
He H, Zheng N, Song Z, Kim KH, Yao C, Zhang R, Zhang C, Huang Y, Uckun FM, Cheng J, Zhang Y, Yin L. Suppression of Hepatic Inflammation via Systemic siRNA Delivery by Membrane-Disruptive and Endosomolytic Helical Polypeptide Hybrid Nanoparticles. ACS NANO 2016; 10:1859-70. [PMID: 26811880 DOI: 10.1021/acsnano.5b05470] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Treatment of inflammatory diseases represents one of the biggest clinical challenges. RNA interference (RNAi) against TNF-α provides a promising modality toward anti-inflammation therapy, but its therapeutic potential is greatly hampered by the by the lack of efficient siRNA delivery vehicles in vivo. Herein, we report a hybrid nanoparticulate (HNP) system based on a cationic helical polypeptide PPABLG for the efficient delivery of TNF-α siRNA. The helical structure of PPABLG features pore formation on cellular and endosomal membranes to facilitate the direct translocation as well as endosomal escape of TNF-α siRNA in macrophages, representing a unique superiority to a majority of the existing polycation-based gene vectors that experience severe endosomal entrapment and lysosomal degradation. As such, HNPs containing TNF-α siRNA afforded effective systemic TNF-α knockdown following systemic administration at a low dose of 50 μg of siRNA/kg and thus demonstrated a potent anti-inflammatory effect to rescue animals from LPS/d-GalN-induced hepatic sepsis. This study therefore verifies that the bioactive secondary structure of polypeptides significantly dominates the in vivo siRNA delivery efficiency, and the unique properties of PPABLG HNPs render remarkable potentials for anti-inflammation therapies.
Collapse
Affiliation(s)
- Hua He
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , 199 Ren'ai Road, Suzhou 215123, China
| | - Nan Zheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| | - Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| | - Kyung Hoon Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| | - Catherine Yao
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| | - Rujing Zhang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| | - Chenglin Zhang
- The Cyrus Tang Hematology Center, The Collaborative Innovation Center of Hematology, Soochow University , Suzhou 215123, China
| | - Yuhui Huang
- The Cyrus Tang Hematology Center, The Collaborative Innovation Center of Hematology, Soochow University , Suzhou 215123, China
| | - Fatih M Uckun
- Division of Hematology-Oncology, Systems Immunobiology Laboratory, Children's Center for Cancer and Blood Diseases, Children's Hospital , Los Angeles, California 90027, United States
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| | - Yanfeng Zhang
- Department of Applied Chemistry, School of Science, Xi'an Jiaotong University , Xi'an 710049, China
| | - Lichen Yin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , 199 Ren'ai Road, Suzhou 215123, China
| |
Collapse
|
143
|
Polyglutamic acid based polyanionic shielding system for polycationic gene carriers. CHINESE JOURNAL OF POLYMER SCIENCE 2016. [DOI: 10.1007/s10118-016-1756-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
144
|
Drug delivery system targeting advanced hepatocellular carcinoma: Current and future. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:853-869. [PMID: 26772424 DOI: 10.1016/j.nano.2015.12.381] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 12/21/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) has a fairly high morbidity and is notoriously difficult to treat due to long latent period before detection, multidrug resistance and severe drug-related adverse effects from chemotherapy. Targeted drug delivery systems (DDS) that can selectively deliver therapeutic drugs into tumor sites have demonstrated a great potential in cancer treatment, which could be utilized to resolve the limitations of conventional chemotherapy. Numerous preclinical studies of DDS have been published, but targeted DDS for HCC has yet to be made for practical clinical use. Since rational targeted DDS design should take cancer-specific properties into consideration, we have reviewed the biological and physicochemical properties of HCC extensively to provide a comprehensive understanding on HCC, and recent DDS studies on HCC, aiming to find some potential targeted DDSs for HCC treatment and a meaningful platform for further development of HCC treatments. FROM THE CLINICAL EDITOR Hepatocellular carcinoma has a high incidence worldwide and is known to be multidrug resistant. Thus, intensive research is being carried out to find better chemotherapeutic agents as well as new drug delivery systems. In this article, the authors reviewed in depth the current challenges facing new drug designs and also outlined novel targeted drug delivery systems (DDS) in the fight against HCC.
Collapse
|
145
|
Liu M, Wu L, Zhu X, Shan W, Li L, Cui Y, Huang Y. Core–shell stability of nanoparticles plays an important role for overcoming the intestinal mucus and epithelium barrier. J Mater Chem B 2016; 4:5831-5841. [PMID: 32263756 DOI: 10.1039/c6tb01199c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The stability of the core–shell structure plays an important role in the nanoparticles ability to overcome both the mucus and epithelium absorption barrier.
Collapse
Affiliation(s)
- Min Liu
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education)
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Lei Wu
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education)
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Xi Zhu
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education)
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Wei Shan
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education)
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Lian Li
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education)
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Yi Cui
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education)
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Yuan Huang
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education)
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- P. R. China
| |
Collapse
|
146
|
Liu M, Zhang J, Zhu X, Shan W, Li L, Zhong J, Zhang Z, Huang Y. Efficient mucus permeation and tight junction opening by dissociable “mucus-inert” agent coated trimethyl chitosan nanoparticles for oral insulin delivery. J Control Release 2016; 222:67-77. [DOI: 10.1016/j.jconrel.2015.12.008] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 10/19/2015] [Accepted: 12/08/2015] [Indexed: 12/12/2022]
|
147
|
Wu L, Zhang L, Shi G, Ni C. Zwitterionic pH/redox nanoparticles based on dextran as drug carriers for enhancing tumor intercellular uptake of doxorubicin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 61:278-85. [PMID: 26838851 DOI: 10.1016/j.msec.2015.12.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/10/2015] [Accepted: 12/13/2015] [Indexed: 11/19/2022]
Abstract
Zwitterionic nanoparticles have excellent serum stability. In this study, pH/redox responsive polymer was synthesized through a modification of dextran using succinic acid, followed by crosslinking with cystamine. The polymer could self-assemble into stable nanoparticles (NPs) in aqueous solution. The NPs carried certain amount of free carboxyl and amino groups on the surface, which endowed the NPs excellent anti-protein adsorption ability. The surface charge was negative at pH7.4 and was converted to positive at pH5.0. It was revealed that the NPs showed little non-specific protein adsorption and had excellent serum stability, and the NPs could be internalized in Hela cells rapidly. This result was ascribed to the charge reversible feature of the NPs. Doxorubicin (DOX) was loaded in the NPs for release studies in vitro. The DOX-loaded NPs exhibited obvious pH and reduction sensitivities in response to the environment in tumor cells due to the introduction of carboxyl groups, amino groups and disulfide bonds in the NPs. The NPs were biocompatible, biodegradable, and could be potentially applied as anticancer drug carriers for enhancement of tumor intercellular uptake of doxorubicin.
Collapse
Affiliation(s)
- Luyan Wu
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Liping Zhang
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Gang Shi
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Caihua Ni
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
148
|
Sun CY, Liu Y, Du JZ, Cao ZT, Xu CF, Wang J. Facile Generation of Tumor-pH-Labile Linkage-Bridged Block Copolymers for Chemotherapeutic Delivery. Angew Chem Int Ed Engl 2015; 55:1010-4. [DOI: 10.1002/anie.201509507] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/10/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Chun-Yang Sun
- The CAS Key laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center; University of Science and Technology of China; Hefei 230027 China
| | - Yang Liu
- The CAS Key laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center; University of Science and Technology of China; Hefei 230027 China
| | - Jin-Zhi Du
- Department of Biomedical Engineering; Emory University and Georgia Institute of Technology; Atlanta 30322 USA
| | - Zhi-Ting Cao
- Hefei National Laboratory for Physical Sciences at the Microscale; University of Science and Technology of China; Hefei 230027 China
| | - Cong-Fei Xu
- Hefei National Laboratory for Physical Sciences at the Microscale; University of Science and Technology of China; Hefei 230027 China
| | - Jun Wang
- The CAS Key laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center; University of Science and Technology of China; Hefei 230027 China
- Hefei National Laboratory for Physical Sciences at the Microscale; University of Science and Technology of China; Hefei 230027 China
| |
Collapse
|
149
|
Sun CY, Liu Y, Du JZ, Cao ZT, Xu CF, Wang J. Facile Generation of Tumor-pH-Labile Linkage-Bridged Block Copolymers for Chemotherapeutic Delivery. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201509507] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Chun-Yang Sun
- The CAS Key laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center; University of Science and Technology of China; Hefei 230027 China
| | - Yang Liu
- The CAS Key laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center; University of Science and Technology of China; Hefei 230027 China
| | - Jin-Zhi Du
- Department of Biomedical Engineering; Emory University and Georgia Institute of Technology; Atlanta 30322 USA
| | - Zhi-Ting Cao
- Hefei National Laboratory for Physical Sciences at the Microscale; University of Science and Technology of China; Hefei 230027 China
| | - Cong-Fei Xu
- Hefei National Laboratory for Physical Sciences at the Microscale; University of Science and Technology of China; Hefei 230027 China
| | - Jun Wang
- The CAS Key laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center; University of Science and Technology of China; Hefei 230027 China
- Hefei National Laboratory for Physical Sciences at the Microscale; University of Science and Technology of China; Hefei 230027 China
| |
Collapse
|
150
|
Wu L, Ni C, Zhang L, Shi G, Bai X, Zhou Y, He F. Surface Charge Convertible and Biodegradable Synthetic Zwitterionic Nanoparticles for Enhancing Cellular Drug Uptake. Macromol Biosci 2015; 16:308-13. [DOI: 10.1002/mabi.201500299] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/02/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Luyan Wu
- The Key Laboratory of Food Colloids and Biotechnology; Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 China
| | - Caihua Ni
- The Key Laboratory of Food Colloids and Biotechnology; Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 China
| | - Liping Zhang
- The Key Laboratory of Food Colloids and Biotechnology; Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 China
| | - Gang Shi
- The Key Laboratory of Food Colloids and Biotechnology; Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 China
| | - Xue Bai
- The Key Laboratory of Food Colloids and Biotechnology; Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 China
| | - Yamin Zhou
- The Key Laboratory of Food Colloids and Biotechnology; Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 China
| | - Fei He
- The Key Laboratory of Food Colloids and Biotechnology; Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 China
| |
Collapse
|