101
|
Sadayappan S, Gilbert RJ. The potential role of neddylation in pre- and postnatal cardiac remodeling. Am J Physiol Heart Circ Physiol 2019; 317:H276-H278. [PMID: 31274350 PMCID: PMC6732480 DOI: 10.1152/ajpheart.00260.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/20/2019] [Accepted: 07/03/2019] [Indexed: 11/22/2022]
Affiliation(s)
- Sakthivel Sadayappan
- Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Richard J Gilbert
- Research Service, Providence Veterans Affairs Medical Center and Brown University , Providence, Rhode Island
| |
Collapse
|
102
|
Liu Y, Tavana O, Gu W. p53 modifications: exquisite decorations of the powerful guardian. J Mol Cell Biol 2019; 11:564-577. [PMID: 31282934 PMCID: PMC6736412 DOI: 10.1093/jmcb/mjz060] [Citation(s) in RCA: 287] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 02/05/2023] Open
Abstract
The last 40 years have witnessed how p53 rose from a viral binding protein to a central factor in both stress responses and tumor suppression. The exquisite regulation of p53 functions is of vital importance for cell fate decisions. Among the multiple layers of mechanisms controlling p53 function, posttranslational modifications (PTMs) represent an efficient and precise way. Major p53 PTMs include phosphorylation, ubiquitination, acetylation, and methylation. Meanwhile, other PTMs like sumoylation, neddylation, O-GlcNAcylation, adenosine diphosphate (ADP)-ribosylation, hydroxylation, and β-hydroxybutyrylation are also shown to play various roles in p53 regulation. By independent action or interaction, PTMs affect p53 stability, conformation, localization, and binding partners. Deregulation of the PTM-related pathway is among the major causes of p53-associated developmental disorders or diseases, especially in cancers. This review focuses on the roles of different p53 modification types and shows how these modifications are orchestrated to produce various outcomes by modulating p53 activities or targeted to treat different diseases caused by p53 dysregulation.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Omid Tavana
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
103
|
Zeng Y, Iv YS, Pan QH, Zhou YG, Li H. An overactive neddylation pathway serves as a therapeutic target and MLN4924 enhances the anticancer activity of cisplatin in pancreatic cancer. Oncol Lett 2019; 18:2724-2732. [PMID: 31404297 DOI: 10.3892/ol.2019.10596] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
The survival rate of patients with pancreatic cancer is between 3 and 5%. The neddylation pathway is overactive in multiple cancer types and is associated with poor prognosis. In recent years, the neddylation process has become a popular research target for the development of novel cancer therapies. However, the activation level of the pathway, and whether its targeting sensitizes pancreatic cancer cells to cisplatin treatment is currently unclear. In the present study, using reverse transcription-quantitative PCR and western blot analyses, the neddylation pathway was observed to be overactivated at the protein, but not the mRNA level. In addition, by analyzing The Cancer Genome Atlas data, it was demonstrated that high expression levels of NEDD8 activating enzyme E1 subunit 1 were observed to be a predictor of poor prognosis for patients with pancreatic cancer. Cisplatin enhanced the cytotoxic effects of MLN4924 both in vitro and in vivo according to Cell Counting kit-8 assays and an in vivo tumor model. Further mechanistic studies, including western blotting and immunohistochemistry assays, revealed that combined MLN4924 and cisplatin treatment induced higher levels of DNA damage by increasing the accumulation of well-defined cullin-ring ligase substrates, such as chromatin licensing and DNA replication factor 1, origin recognition complex subunit 1, p21, p27 and phosphorylated IκBα. The results of the present study support the clinical use of combined neddylation inhibitor and cisplatin treatment, which may improve the survival of, and impart other benefits for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Hepatobiliary Surgery, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Yong-Shuang Iv
- Department of Hepatobiliary Surgery, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Qi-Hua Pan
- Department of Hepatobiliary Surgery, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Yi-Guo Zhou
- Department of Hepatobiliary Surgery, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - He Li
- Department of Hepatobiliary Surgery, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| |
Collapse
|
104
|
Yu G, Liu X, Tang J, Xu C, Ouyang G, Xiao W. Neddylation Facilitates the Antiviral Response in Zebrafish. Front Immunol 2019; 10:1432. [PMID: 31293590 PMCID: PMC6603152 DOI: 10.3389/fimmu.2019.01432] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/06/2019] [Indexed: 12/26/2022] Open
Abstract
Neddylation is a type of post-translational protein modifications, in which neural precursor cell expressed developmentally downregulated protein 8 (NEDD8) is covalently conjugated to the lysine residues of target substrates. The best characterized principal substrates of neddylation are the cullin-RING ligases (CRLs). In addition, neddylation also modifies non-cullin proteins to affect gene regulation, cell survival, organ development, and stress response. However, the role of neddylation in antiviral innate immunity remain largely unknown. Here, we found that when neddylation was blocked by the NEDD8 activating enzyme E1 (NAE) inhibitor, MLN4924, the cellular and organismal antiviral response was suppressed. Moreover, the disruption of nedd8 increased the sensitivity of zebrafish to SVCV infection. Further assays indicated that blocking or silencing neddylation significantly downregulated key antiviral genes after poly (I:C) stimulation or SVCV infection, but dramatically increased SVCV replication. Neddylation of Irf3 and Irf7 was readily detected, but not of Mda5, Mavs, and Tbk1. Thus, our results not only demonstrated that neddylation facilitated the antiviral response in vitro and in vivo, but also revealed a novel role of nedd8 in antiviral innate immunity.
Collapse
Affiliation(s)
- Guangqing Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China.,The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China.,The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jinhua Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China.,The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chenxi Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China.,The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Gang Ouyang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China.,The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China.,The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
105
|
Jia X, Li C, Li L, Liu X, Zhou L, Zhang W, Ni S, Lu Y, Chen L, Jeong LS, Yu J, Zhang Y, Zhang J, He S, Hu X, Sun H, Yu K, Liu G, Zhao H, Zhang Y, Jia L, Shao ZM. Neddylation Inactivation Facilitates FOXO3a Nuclear Export to Suppress Estrogen Receptor Transcription and Improve Fulvestrant Sensitivity. Clin Cancer Res 2019; 25:3658-3672. [PMID: 30833270 DOI: 10.1158/1078-0432.ccr-18-2434] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/04/2019] [Accepted: 02/28/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE How the neddylation pathway functions in breast tumor and regulation of estrogen receptor (ER) expression is rarely reported. The purpose of this study was to identify the role of neddylation in breast cancer and ER expression, and further explore the underlying mechanisms. EXPERIMENTAL DESIGN Expression patterns of nedd8-activating enzyme (NAE) and nedd8, two key proteins in the neddylation pathway, were examined in human breast specimens. ER-α expression was investigated using animal 18F-FES-PET/CT and immunoblotting upon NAE inhibitor MLN4924 treatment. Chromatin immunoprecipitation assay, luciferase reporter promoter assay, and the CRISPR-Cas9 system were used to elucidate the mechanism of ER-α regulation by MLN4924. The ER-positive breast cancer mouse model was used to determine the synergetic effect of MLN4924 and fulvestrant on tumor growth. All statistical tests were two-sided. RESULTS Both NAE1 and nedd8 expressions were higher in the ER-positive subgroup. Higher expressions of NAE1 and nedd8 indicated poorer prognosis. Importantly, ER-α expression was significantly downregulated upon MLN4924 treatment in vitro and in vivo. Mechanistically, MLN4924 treatment delayed serum and glucocorticoid-induced protein kinase (SGK) degradation and induced Forkhead box O3a (FOXO3a) nuclear export as well as decreased binding to the ESR1 promoter. Importantly, MLN4924 single or synergized with fulvestrant significantly suppressed the growth of ER-positive breast cancer in vitro and in vivo. CONCLUSIONS Our proof-of-principle study determines the activation of neddylation in breast tumor tissues for the first time and reveals a new ER-α regulatory mechanism, as well as further explores an effective approach to improve fulvestrant sensitivity through a neddylation inactivation combination.
Collapse
Affiliation(s)
- Xiaoqing Jia
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunjie Li
- Department of Oncology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihui Li
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoli Liu
- Cancer Institute, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lisha Zhou
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjuan Zhang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuaishuai Ni
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun Lu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Chen
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Jinha Yu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Yingjian Zhang
- Department of Nuclear Medicine, Center for Biomedical Imaging, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Engineering Research Center for Molecular Imaging Probes, Shanghai, China
| | - Jianping Zhang
- Department of Nuclear Medicine, Center for Biomedical Imaging, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Engineering Research Center for Molecular Imaging Probes, Shanghai, China
| | - Simin He
- Department of Nuclear Medicine, Center for Biomedical Imaging, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Engineering Research Center for Molecular Imaging Probes, Shanghai, China
| | - Xin Hu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hefen Sun
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Keda Yu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guangyu Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hu Zhao
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai Key Laboratory of Clinical Geriatric Medicine, Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Yanmei Zhang
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai Key Laboratory of Clinical Geriatric Medicine, Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zhi-Ming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China. .,Department of Oncology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
106
|
Zhang W, Liang Y, Li L, Wang X, Yan Z, Dong C, Zeng M, Zhong Q, Liu X, Yu J, Sun S, Liu X, Kang J, Zhao H, Jeong LS, Zhang Y, Jia L. The Nedd8-activating enzyme inhibitor MLN4924 (TAK-924/Pevonedistat) induces apoptosis via c-Myc-Noxa axis in head and neck squamous cell carcinoma. Cell Prolif 2019; 52:e12536. [PMID: 30341788 PMCID: PMC6496207 DOI: 10.1111/cpr.12536] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/08/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES The present study aimed to reveal expression status of the neddylation enzymes in HNSCC and to elucidate the anticancer efficacy and the underlying mechanisms of inhibiting neddylation pathway. MATERIALS AND METHODS The expression levels of neddylation enzymes were estimated by Western blotting in human HNSCC specimens and bioinformatics analysis of the cancer genome atlas (TCGA) database. Cell apoptosis was evaluated by Annexin V fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) stain and fluorescence-activated cell sorting (FACS). Small interfering RNA (siRNA) and the CRISPR-Cas9 system were used to elucidate the underlying molecular mechanism of MLN4924-induced HNSCC apoptosis. RESULTS Expression levels of NAE1 and UBC12 were prominently higher in HNSCC tissues than that in normal tissues. Inactivation of the neddylation pathway significantly inhibited malignant phenotypes of HNSCC cells. Mechanistic studies revealed that MLN4924 induced the accumulation of CRL ligase substrate c-Myc that transcriptionally activated pro-apoptotic protein Noxa, which triggered apoptosis in HNSCC. CONCLUSIONS These findings determined the over-expression levels of neddylation enzymes in HNSCC and revealed novel mechanisms underlying neddylation inhibition induced growth suppression in HNSCC cells, which provided preclinical evidence for further clinical evaluation of neddylation inhibitors (eg, MLN4924) for the treatment of HNSCC.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yupei Liang
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
| | - Lihui Li
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
| | - Xiaofang Wang
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
| | - Zi Yan
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
| | - Changsheng Dong
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Mu‐Sheng Zeng
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Qian Zhong
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Xue‐Kui Liu
- Department of Head & Neck CancerSun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Jinha Yu
- College of PharmacySeoul National UniversitySeoulKorea
| | - Shuyang Sun
- Department of Oral and Maxillofacial‐Head Neck OncologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaojun Liu
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
| | - Jihui Kang
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hu Zhao
- Department of Clinical LaboratoryHuadong HospitalShanghai Key Laboratory of Clinical Geriatric MedicineResearch Center on Aging and MedicineFudan UniversityShanghaiChina
| | | | - Yanmei Zhang
- Department of Clinical LaboratoryHuadong HospitalShanghai Key Laboratory of Clinical Geriatric MedicineResearch Center on Aging and MedicineFudan UniversityShanghaiChina
| | - Lijun Jia
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
107
|
Castagnoli L, Mandaliti W, Nepravishta R, Valentini E, Mattioni A, Procopio R, Iannuccelli M, Polo S, Paci M, Cesareni G, Santonico E. Selectivity of the CUBAN domain in the recognition of ubiquitin and NEDD8. FEBS J 2019; 286:653-677. [PMID: 30659753 DOI: 10.1111/febs.14752] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/25/2018] [Accepted: 12/28/2018] [Indexed: 12/27/2022]
Abstract
Among the members of the ubiquitin-like (Ubl) protein family, neural precursor cell expressed developmentally down-regulated protein 8 (NEDD8) is the closest in sequence to ubiquitin (57% identity). The two modification mechanisms and their functions, however, are highly distinct and the two Ubls are not interchangeable. A complex network of interactions between modifying enzymes and adaptors, most of which are specific while others are promiscuous, ensures selectivity. Many domains that bind the ubiquitin hydrophobic patch also bind NEDD8 while no domain that specifically binds NEDD8 has yet been described. Here, we report an unbiased selection of domains that bind ubiquitin and/or NEDD8 and we characterize their specificity/promiscuity. Many ubiquitin-binding domains bind ubiquitin preferentially and, to a lesser extent, NEDD8. In a few cases, the affinity of these domains for NEDD8 can be increased by substituting the alanine at position 72 with arginine, as in ubiquitin. We have also identified a unique domain, mapping to the carboxyl end of the protein KHNYN, which has a stark preference for NEDD8. Given its ability to bind neddylated cullins, we have named this domain CUBAN (Cullin-Binding domain Associating with NEDD8). We present here the solution structure of the CUBAN domain both in the isolated form and in complex with NEDD8. The results contribute to the understanding of the discrimination mechanism between ubiquitin and the Ubl. They also provide new insights on the biological role of a ill-defined protein, whose function is hitherto only predicted.
Collapse
Affiliation(s)
| | - Walter Mandaliti
- Department of Chemical Sciences and Technologies, Tor Vergata University, Rome, Italy
| | - Ridvan Nepravishta
- Department of Chemical Sciences and Technologies, Tor Vergata University, Rome, Italy.,School of Pharmacy East Anglia, University of Norwich, UK
| | | | - Anna Mattioni
- Department of Biology, Tor Vergata University, Rome, Italy
| | - Radha Procopio
- Department of Biology, Tor Vergata University, Rome, Italy.,Institute of Molecular Bioimaging and Physiology, CNR, Catanzaro, Italy
| | | | - Simona Polo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy.,DIPO, Dipartimento di Oncologia ed Emato-oncologia, University of Milan, Italy
| | - Maurizio Paci
- Department of Chemical Sciences and Technologies, Tor Vergata University, Rome, Italy
| | | | | |
Collapse
|
108
|
Emerging insights into bacterial deubiquitinases. Curr Opin Microbiol 2019; 47:14-19. [DOI: 10.1016/j.mib.2018.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 02/01/2023]
|
109
|
Hong X, Li S, Li W, Xie M, Wei Z, Guo H, Wei W, Zhang S. Disruption of protein neddylation with MLN4924 attenuates paclitaxel-induced apoptosis and microtubule polymerization in ovarian cancer cells. Biochem Biophys Res Commun 2019; 508:986-990. [DOI: 10.1016/j.bbrc.2018.12.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 12/06/2018] [Indexed: 01/08/2023]
|
110
|
Guan J, Zheng X. NEDDylation regulates RAD18 ubiquitination and localization in response to oxidative DNA damage. Biochem Biophys Res Commun 2018; 508:1240-1244. [PMID: 30563767 DOI: 10.1016/j.bbrc.2018.12.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/11/2018] [Indexed: 12/14/2022]
Abstract
Genome integrity is important for cell growth, development and proliferation. The E3 ligase RAD18 plays a vital role in the DNA damage response (DDR) to maintain genome integrity. Recent studies reveal that RAD18 has non-ubiquitinated and mono-ubiquitinated form in normal cells. However, whether RAD18 undergoes other post-translational modification remains to be investigated. Here we show that RAD18 is a target of NEDD8, an ubiquitin-like protein. In response to hydrogen peroxide (H2O2)-induced oxidative stress, RAD18 NEDDylation increases significantly, while its ubiquitination decreases. Moreover, NEDD8 overexpression or deNEDDylase NEDP1 deletion further antagonizes RAD18 ubiquitination. In addition, treatment with MLN4924, an inhibitor of NEDD8-activating Enzyme, reduces the interaction between PCNA and RAD18, which blocks the localization of RAD18 to form foci, and thus inhibiting polymerase η recruitment after oxidative stress. Together, our study demonstrates that RAD18 NEDDylation regulates its localization and involves in the DDR pathway by modulating RAD18 ubiquitination.
Collapse
Affiliation(s)
- Junhong Guan
- State Key Lab of Protein and Plant Gene Research, Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiaofeng Zheng
- State Key Lab of Protein and Plant Gene Research, Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
111
|
Cheng Q, Liu J, Pei Y, Zhang Y, Zhou D, Pan W, Zhang J. Neddylation contributes to CD4+ T cell-mediated protective immunity against blood-stage Plasmodium infection. PLoS Pathog 2018; 14:e1007440. [PMID: 30462731 PMCID: PMC6249024 DOI: 10.1371/journal.ppat.1007440] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 10/29/2018] [Indexed: 01/30/2023] Open
Abstract
CD4+ T cells play predominant roles in protective immunity against blood-stage Plasmodium infection, both for IFN-γ-dependent effector mechanisms and providing B cell helper signals. Neddylation, an ubiquitination-like process triggered by covalent conjugation of NEDD8 to specific targets, has emerged as a potential regulator of T cell activities to TCR engagement. However, its contribution to T cell-mediated immunity to blood-stage malaria remains unclear. Here using an experimental model induced by Plasmodium yoelii 17XNL, and conditional knockout mice with T cell-specific deficiency of crucial components of neddylation pathway, we demonstrate activation of neddylation in T cells during blood-stage Plasmodium infection is essential for parasite control and host survival. Mechanistically, we show that apart from promoting CD4+ T cell activation, proliferation, and development of protective T helper 1 (Th1) cell response as suggested previously, neddylation is also required for supporting CD4+ T cell survival, mainly through B-cell lymphoma-2 (Bcl-2) mediated suppression of the mitochondria-dependent apoptosis. Furthermore, we provide evidence that neddylation contributes to follicular helper T (Tfh) cell differentiation, probably via augmenting the ubiquitin ligase Itch activity and proteasomal degradation of FoxO1, thereby facilitating germinal center (GC) formation and parasite-specific antibody production. This study identifies neddylation as a positive regulator of anti-Plasmodium immunity and provides insight into an involvement of such pathway in host resistance to infectious diseases. Malaria, which is caused by the intracellular parasite Plasmodium, remains a major infectious disease with significant morbidity and mortality annually. Better understanding of the molecular mechanisms involved in protective immunity against the pathogenic blood-stage Plasmodium will facilitate development of anti-malarial drugs and vaccines. Neddylation has recently been identified as a potential regulator of T cell function. Here, we directly addressed the effects of neddylation on T cell responses and the outcome of blood-stage P. yoelii 17XNL malaria. We show that activation of neddylation in T cells is essential for IFN-γ-mediated proinflammatory response and generation of parasite-specific antibodies, thus contributing to full resolution of the infection. This is primarily associated with the reported beneficial effects of neddylation on CD4+ T cell activities, including activation, proliferation, and differentiation into T helper 1 (Th1) cells. Additionally, we establish a novel role of neddylation in parasite-responsive CD4+ T cell survival and follicular helper T (Tfh) cell differentiation. Therefore, we provide evidence that neddylation may represent a novel mechanism in orchestrating optimum CD4+ T cell effector response and subsequent humoral immunity to blood-stage Plasmodium infection.
Collapse
Affiliation(s)
- Qianqian Cheng
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
- * E-mail: (QC); (JZ)
| | - Jian Liu
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Yujun Pei
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Yaolin Zhang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Weiqing Pan
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai, China
| | - Jiyan Zhang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
- * E-mail: (QC); (JZ)
| |
Collapse
|
112
|
Targeting the neddylation pathway in cells as a potential therapeutic approach for diseases. Cancer Chemother Pharmacol 2018; 81:797-808. [PMID: 29450620 DOI: 10.1007/s00280-018-3541-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/12/2018] [Indexed: 01/23/2023]
Abstract
The ubiquitin-proteasome system (UPS) is an important system that regulates the balance of intracellular proteins, and it is involved in the regulation of multiple vital biological processes. The approval of bortezomib for relapsed and refractory multiple myeloma has proven that agents targeting the UPS have the potential to be effective treatment strategies for diseases. Among of all of the components of the UPS, cullin-RING ligases (CRLs) are the focus of research. CRLs are the largest family of ubiquitin E3 ligases and they play a critical role in substrate binding. CRL activity is modulated by many pathways in which neddylation modification is the essential process for cullin activation. Thus, targeting the neddylation pathway of cullins could indirectly affect CRL activity, thereby interfering with substrate protein ubiquitination. In addition to cullin proteins, there are some other target proteins of neddylation, such as p53, mouse double minute 2, and epidermal growth factor receptor. For target proteins, neddylation modification mainly causes functions changes, not degradation. In addition, the level of neddylation is also closely related to disease development and prognosis. In this review, we summarize the research on some target proteins and active target agents of neddylation pathways, and explore the role of neddylation in disease therapy. We came to the conclusion that conducting research on neddylation may be a potential approach to discover some novel targets and agents that could be effective without serious side effects.
Collapse
|
113
|
Protein neddylation and its alterations in human cancers for targeted therapy. Cell Signal 2018; 44:92-102. [PMID: 29331584 DOI: 10.1016/j.cellsig.2018.01.009] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/27/2017] [Accepted: 01/08/2018] [Indexed: 01/05/2023]
Abstract
Neddylation, a post-translational modification that conjugates an ubiquitin-like protein NEDD8 to substrate proteins, is an important biochemical process that regulates protein function. The best-characterized substrates of neddylation are the cullin subunits of Cullin-RING ligases (CRLs), which, as the largest family of E3 ubiquitin ligases, control many important biological processes, including tumorigenesis, through promoting ubiquitylation and subsequent degradation of a variety of key regulatory proteins. Recently, increasing pieces of experimental evidence strongly indicate that the process of protein neddylation modification is elevated in multiple human cancers, providing sound rationale for its targeting as an attractive anticancer therapeutic strategy. Indeed, neddylation inactivation by MLN4924 (also known as pevonedistat), a small molecule inhibitor of E1 NEDD8-activating enzyme currently in phase I/II clinical trials, exerts significant anticancer effects by inducing cell cycle arrest, apoptosis, senescence and autophagy in a cell-type and context dependent manner. Here, we summarize the latest progresses in the field with a major focus on preclinical studies in validation of neddylation modification as a promising anticancer target.
Collapse
|
114
|
Reihe CA, Pekas N, Wu P, Wang X. Systemic inhibition of neddylation by 3-day MLN4924 treatment regime does not impair autophagic flux in mouse hearts and brains. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2017; 7:134-150. [PMID: 29348974 PMCID: PMC5768871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
Beyond helping the cell survive from energy starvation via self-eating a portion of cytoplasm, macroautophagy is also capable of targeted removal of defective organelles or cytoplasmic aberrant protein aggregates, thereby playing an important role in quality control in the cell. Impaired or suppressed macroautophagy activity is associated with the progression from a large subset of heart diseases to heart failure and with the development of the vast majority of, if not all, neurodegenerative diseases, the leading causes of death and disability in humans. Hence, a better understanding of the impact of existing and upcoming pharmacotherapies on macroautophagy in the heart and brain will undoubtedly benefit the search for safer and more effective treatment to improve human health. Neddylation is a recently recognized posttranslational modification process that modifies a subset of cellular proteins and is, by virtue of regulating Cullin-RING ligases, essential to ~20% ubiquitin-proteasome system (UPS)-mediated protein degradation. MLN4924 (Pevonedistat), a specific inhibitor of neddylation that promises to become a new anti-malignancy agent, is capable of inhibiting UPS-mediated progression of the cell cycle and activating macroautophagy in cancer cells. However, no reported study has tested the impact of systemic inhibition of neddylation on autophagic activity in a post-mitotic organ such as the heart and brain. This study was conducted to fill this gap. Sixteen GFP-LC3 transgenic mice of mixed sexes were divided equally into either MLN4924-treated or vehicle-treated groups and were treated respectively with MLN4924 (30 mg/kg, s.c., twice a day × 3 days) or equal volume of solvent. The resultant changes in myocardial levels of neddylated cullin 1 as well as autophagic flux in cardiac and brain tissues were assessed. The effectiveness of the MLN4924 regime was verified by myocardial accumulation of neddylated cullin 1. Myocardial LC3-II flux and free GFP levels were comparable between the MLN4924 and the vehicle groups whereas the protein level of p62, a bona fide substrate of macroautophagy, in the brain was significantly decreased by the MLN4924 treatment. Our data suggest that systemic inhibition of neddylation by a 3-day MLN4924 treatment regime does not suppress macroautophagy activities in the heart and brain.
Collapse
Affiliation(s)
- Casey A Reihe
- Division of Basic Biomedical Science, Sanford School of Medicine of The University of South DakotaSD 57069, USA
| | - Nickolas Pekas
- Division of Basic Biomedical Science, Sanford School of Medicine of The University of South DakotaSD 57069, USA
| | - Penglong Wu
- Division of Basic Biomedical Science, Sanford School of Medicine of The University of South DakotaSD 57069, USA
- Department of Pathophysiology, Guangzhou Medical University College of Basic SciencesGuangzhou, Guangdong, China
| | - Xuejun Wang
- Division of Basic Biomedical Science, Sanford School of Medicine of The University of South DakotaSD 57069, USA
| |
Collapse
|
115
|
Wu KJ, Zhong HJ, Li G, Liu C, Wang HMD, Ma DL, Leung CH. Structure-based identification of a NEDD8-activating enzyme inhibitor via drug repurposing. Eur J Med Chem 2017; 143:1021-1027. [PMID: 29232579 DOI: 10.1016/j.ejmech.2017.11.101] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 10/18/2022]
Abstract
NEDD8-activating enzyme (NAE) is an essential player of the NEDD8 conjugation pathway that regulates protein degradation. Meanwhile, drug repurposing is a cost-efficient strategy to identify new therapeutic uses for existing scaffolds. In this report, mitoxantrone (1) was repurposed as an inhibitor of NAE by virtual screening of an FDA-approved drug database. Compound 1 inhibited NAE activity in cell-free and cell-based systems with high selectivity and was competitive with ATP. Furthermore, compound 1 induced apoptosis of colorectal adenocarcinoma cancer cells through inhibiting the degradation of the neddylation substrate p53.
Collapse
Affiliation(s)
- Ke-Jia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hai-Jing Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chenfu Liu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 402, Taiwan
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
116
|
Li Z, Cui Q, Wang X, Li B, Zhao D, Xia Q, Zhao P. Functions and substrates of NEDDylation during cell cycle in the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 90:101-112. [PMID: 28964913 DOI: 10.1016/j.ibmb.2017.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
NEDDylation, a post-translational modification mediated by the conjugation of the ubiquitin-like protein Nedd8 to specific substrates, is an essential biological process that regulates cell cycle progression in eukaryotes. Here, we report the conservation of NEDDylation machinery and NEDDylated proteins in the silkworm, Bombyx mori. We have identified all the components necessary for reversible NEDDylation in the silkworm including Nedd8, E1, E2, E3, and deNEDDylation enzymes. By the approach of RNAi-mediated gene silencing, it was shown that knockdown of BmNedd8 and the conjugating enzymes decreased the global level of NEDDylation, while knockdown of deNEDDylation enzymes increased the prevalence of this modification in cultured silkworm cells. Moreover, the lack of the NEDDylation system caused cell cycle arrest at the G2/M phase and resulted in defects in chromosome congression and segregation. Using the wild-type and mutants of BmNedd8, we identified the specific substrates of BmNedd8, which are involved in the regulation for many cellular processes, including ribosome biogenesis, spliceosome structure, spindle formation, metabolism, and RNA biogenesis. This clearly demonstrates that the NEDDylation system is able to control multiple pathways in the silkworm. Altogether, the information on the functions and substrates of the NEDDylation system presented here could provide a basis for future investigations of protein NEDDylation and its regulatory mechanism on cell cycle progression in the silkworm.
Collapse
Affiliation(s)
- Zhiqing Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, China
| | - Qixin Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xiaoyan Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Bingqian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Dongchao Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, China.
| |
Collapse
|
117
|
Inhibition of neddylation by MLN4924 improves neointimal hyperplasia and promotes apoptosis of vascular smooth muscle cells through p53 and p62. Cell Death Differ 2017; 25:319-329. [PMID: 29027989 DOI: 10.1038/cdd.2017.160] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 08/27/2017] [Accepted: 08/29/2017] [Indexed: 02/07/2023] Open
Abstract
Targeting apoptosis of vascular smooth muscle cells (VSMCs) represents an attractive approach to diminish the occurrence of restenosis. Neddylation is a highly conserved post-translational modification process and inhibition of neddylation has been shown to regulate apoptosis of other cells. However, the impacts of neddylation inhibition on VSMCs and neointimal hyperplasia have not been studied. In our present study, we have shown that MLN4924, a selective inhibitor of NEDD8-activating enzyme (NAE), markedly inhibited neointimal hyperplasia and accumulation of VSMCs, whereas increased apoptosis in the vascular wall. In vitro studies revealed that MLN4924 induced G2/M arrest and apoptosis of human VSMCs. Knockdown of NAE1 had similar effects. MLN4924 upregulated p53 and p62 in human VSMCs. Knockdown of either p53 or p62 mitigated the impacts of MLN4924 on G2/M arrest and apoptosis. Moreover, p53 knockdown abolished MLN4924-induced upregulation of p62. Finally, smooth muscle p53 knockout mice were generated and subjected to femoral artery injury and MLN4924 treatment. Deficiency of p53 in smooth muscle blocked the effects of MLN4924 on neointimal hyperplasia and apoptosis. Together, our results revealed that neddylation inhibition induces apoptosis through p53 and p62 in VSMCs and improves neointimal hyperplasia mainly by promoting apoptosis through smooth muscle p53 in mice. These pre-clinical data provide strong translational implications for targeting restenosis by perturbation of neddylation using MLN4924.
Collapse
|
118
|
Sakaue T, Maekawa M, Nakayama H, Higashiyama S. Prospect of divergent roles for the CUL3 system in vascular endothelial cell function and angiogenesis. J Biochem 2017; 162:237-245. [PMID: 28981750 DOI: 10.1093/jb/mvx051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 06/05/2017] [Indexed: 11/14/2022] Open
Abstract
Tissue remodelling and regeneration in various pathophysiological conditions (e.g. the processes of development, pregnancy, inflammation, wound healing, tissue regeneration, tumor growth, etc.) require angiogenesis, a dynamically coordinated response to stimuli from the extracellular microenvironment. During angiogenic and angiostatic responses, endothelial cells play a central role in the blood vessel formation and regression. Angiostatic responses, which are evoked by crucial factors such as VEGF and DLL4, have been elucidated. However, it has not been revealed, how endothelial cells process these conflicting signals. The study of VEGFR-Notch cross-signalling provided some clues. We discuss here the potential roles of cullin 3-based ubiquitin E3 ligases as key players in the process of various signals in endothelial cell function and angiogenesis. Our recent findings show that they function as units to process conflicting signalling crosstalk, epigenetic regulation of key factors, and functional barrier maintenance. We also expect more divergent roles of cullin 3-based ubiquitin E3 ligases in endothelial cell function and angiogenesis, and for their potential use as therapeutic targets.
Collapse
Affiliation(s)
- Tomohisa Sakaue
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Ehime, Japan.,Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Ehime, Japan.,Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Shitsukawa, Ehime 791-0295, Japan
| | - Masashi Maekawa
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Ehime, Japan.,Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Shitsukawa, Ehime 791-0295, Japan
| | - Hironao Nakayama
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Ehime, Japan.,Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Shitsukawa, Ehime 791-0295, Japan
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Ehime, Japan.,Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Shitsukawa, Ehime 791-0295, Japan
| |
Collapse
|
119
|
Zhang Y, Shi C, Yin L, Zhou W, Wang H, Seng J, Li W. Inhibition of Mcl-1 enhances Pevonedistat-triggered apoptosis in osteosarcoma cells. Exp Cell Res 2017; 358:234-241. [PMID: 28663057 DOI: 10.1016/j.yexcr.2017.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/21/2017] [Accepted: 06/23/2017] [Indexed: 12/31/2022]
Abstract
Neddylation inhibitor Pevonedistat (MLN4924) is a novel anticancer drug and has demonstrated broad-spectrum anticancer activity. Nevertheless, we found that Pevonedistat had only a modest apoptotic effect in osteosarcoma (OS) cells. Moreover, we noted that inhibition of neddylation by Pevonedistat led to accumulation of Mcl-1 protein in OS cells. Because Mcl-1 is an important anti-apoptotic protein and also because apoptosis has been shown to be a major cell death pathway, we hypothesized that Mcl-1 accumulation negatively impacted Pevonedistat-mediated anticancer activity in OS cells. In this regard, we employed genetic or pharmacological approaches to inhibit Mcl-1 expression and to examine the effect on Pevonedistat-induced apoptosis in OS cells. We found that inhibition of Mcl-1 expression by siRNA considerably enhanced Pevonedistat-triggered the activation of caspase-3, PARP cleavage and apoptosis, and also dramatically promoted the ability of Pevonedistat to inhibit colony formation of OS cells. Moreover, we observed that flavopiridol, a FDA approved drug, inhibited Mcl-1 expression and substantially enhanced Pevonedistat-mediated activation of apoptosis signaling and significantly augmented cell killing effect in OS cells. Altogether, our study shows that Mcl-1 is a critical resistance factor to Pevonedistat monotherapy, and suggests that Pevonedistat in combinations with flavopiridol may achieve better anticancer therapy.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Chengcheng Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Yin
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haitao Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingjing Seng
- Department of pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wencai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
120
|
Wang J, Wang S, Zhang W, Wang X, Liu X, Liu L, Li L, Liang Y, Yu J, Jeong LS, Jia L, Zhao H, Zhang Y. Targeting neddylation pathway with MLN4924 (Pevonedistat) induces NOXA-dependent apoptosis in renal cell carcinoma. Biochem Biophys Res Commun 2017; 490:1183-1188. [PMID: 28669728 DOI: 10.1016/j.bbrc.2017.06.179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 06/28/2017] [Indexed: 01/20/2023]
Abstract
Inhibition of protein neddylation pathway has emerged an attractive anticancer strategy in preclinical studies by using Nedd8-activating enzyme (NAE) inhibitor MLN4924 (Pevonedistat). Previous studies have reported the antitumor activity of MLN4924 mediated by its efficacy on apoptosis, autophagy and senescence. However, whether MLN4924 has any effect on renal carcinoma cells (RCC) remains unexplored. Here we reported that MLN4924 specifically inhibited protein neddylation pathway, leading to statistically significantly suppress the proliferation, survival and migration of RCC cells by inducing G2 cell-cycle arrest, followed by apoptosis in a MLN4924 dose-dependent manner. Further mechanistic study revealed that MLN4924-induced apoptosis was mediated by substantial up-regulation of pro-apoptotic NOXA. These findings highlighted the anticancer effects of the neddylation inhibitors (e.g. MLN4924) for the treatment of RCC.
Collapse
Affiliation(s)
- Jiyou Wang
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China; College of Life Science, Dezhou University, Dezhou, 253023, China
| | - Shiwen Wang
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, 200040, China; Research Center on Aging and Medicine, Fudan University, Shanghai, 200040, China
| | - Wenjuan Zhang
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaofang Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaojun Liu
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Liang Liu
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lihui Li
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yupei Liang
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jinha Yu
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Lak Shin Jeong
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Lijun Jia
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Hu Zhao
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, 200040, China; Research Center on Aging and Medicine, Fudan University, Shanghai, 200040, China.
| | - Yanmei Zhang
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, 200040, China; Research Center on Aging and Medicine, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
121
|
Guan J, Yu S, Zheng X. NEDDylation antagonizes ubiquitination of proliferating cell nuclear antigen and regulates the recruitment of polymerase η in response to oxidative DNA damage. Protein Cell 2017; 9:365-379. [PMID: 28831681 PMCID: PMC5876183 DOI: 10.1007/s13238-017-0455-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/21/2017] [Indexed: 01/27/2023] Open
Abstract
NEDDylation has been shown to participate in the DNA damage pathway, but the substrates of neural precursor cell expressed developmentally downregulated 8 (NEDD8) and the roles of NEDDylation involved in the DNA damage response (DDR) are largely unknown. Translesion synthesis (TLS) is a damage-tolerance mechanism, in which RAD18/RAD6-mediated monoubiquitinated proliferating cell nuclear antigen (PCNA) promotes recruitment of polymerase η (polη) to bypass lesions. Here we identify PCNA as a substrate of NEDD8, and show that E3 ligase RAD18-catalyzed PCNA NEDDylation antagonizes its ubiquitination. In addition, NEDP1 acts as the deNEDDylase of PCNA, and NEDP1 deletion enhances PCNA NEDDylation but reduces its ubiquitination. In response to H2O2 stimulation, NEDP1 disassociates from PCNA and RAD18-dependent PCNA NEDDylation increases markedly after its ubiquitination. Impairment of NEDDylation by Ubc12 knockout enhances PCNA ubiquitination and promotes PCNA-polη interaction, while up-regulation of NEDDylation by NEDD8 overexpression or NEDP1 deletion reduces the excessive accumulation of ubiquitinated PCNA, thus inhibits PCNA-polη interaction and blocks polη foci formation. Moreover, Ubc12 knockout decreases cell sensitivity to H2O2-induced oxidative stress, but NEDP1 deletion aggravates this sensitivity. Collectively, our study elucidates the important role of NEDDylation in the DDR as a modulator of PCNA monoubiquitination and polη recruitment.
Collapse
Affiliation(s)
- Junhong Guan
- State Key Lab of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Shuyu Yu
- State Key Lab of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiaofeng Zheng
- State Key Lab of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
122
|
Liu N, Zhang J, Yang X, Jiao T, Zhao X, Li W, Zhu J, Yang P, Jin J, Peng J, Li Z, Ye X. HDM2 Promotes NEDDylation of Hepatitis B Virus HBx To Enhance Its Stability and Function. J Virol 2017; 91:e00340-17. [PMID: 28592528 PMCID: PMC5533936 DOI: 10.1128/jvi.00340-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/01/2017] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV)-encoded X protein (HBx) plays a critical role in HBV-related hepatocarcinoma development. In this study, we demonstrate that HBx is specifically modified by NEDD8. We found that E3 ligase HDM2 promotes NEDDylation of HBx to enhance HBx stability by preventing its ubiquitination-mediated degradation. Consistently, analysis of 160 hepatocellular carcinoma patient specimens indicated that the amount of HDM2 protein correlates with HBx protein level. We identified that HBx K91 and K95 as the key HBx NEDDylation sites and observed that the NEDDylation-deficient HBx has shorter half-life. We generated Huh7 cell lines which ectopically express wild-type and NEDDylation-deficient HBx and found that NEDDylation-deficient HBx showed less chromatin localization and less DDB1 binding. Consistently, the expression of HBx-regulated genes (IL-8, MMP9, and YAP) and HBV transcription (the activity of HBV enhancer and the amount of pgRNA transcribed from cccDNA) were significantly higher in cells expressing wild-type (WT) HBx than that in cells expressing mutant HBx. In addition, HBx-expressing cells proliferated faster than control and mutant HBx-expressing cells. We also showed that the ability of WT HBx-expressing cells to form tumors in nude mice was significantly higher than that of mutant HBx-expressing cells. In conclusion, we revealed that E3 ligase HDM2 promotes NEDDylation of HBx to enhance HBx stability and chromatin localization, which in turn favors HBx-dependent transcriptional regulation, cell proliferation, and HBV-driven tumor growth.IMPORTANCE Hepatitis B virus (HBV) HBx protein plays a critical role in viral replication and hepatocarcinogenesis. However, the regulation of HBx stability is not well understood. We found that HBx is modified by NEDD8 and that the HDM2 E3 ligase promotes HBx NEDDylation to enhance HBx stability by inhibiting its ubiquitination. We provide a new evidence to show the positive correlation between HDM2 and HBx in clinical hepatocellular carcinoma (HCC) samples. We also identified the major NEDDylation sites on HBx. Our studies indicate that the defective NEDDylation of HBx negatively affects its ability to activate the transcription of downstream genes and promote cell proliferation and tumor growth in vivo Taken together, our findings reveal a novel posttranslational modification of HBx by HDM2 which regulates its stability, subcellular localization, and functions. These findings indicate that HDM2 is an important regulator on HBx and a potential diagnosis/therapeutic marker for HBV-associated HCC.
Collapse
Affiliation(s)
- Ningning Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jinfang Zhang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaohai Yang
- Institute of Health Sciences, Anhui University, Hefei, China
| | - Tong Jiao
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Zhao
- 302 Hospital of PLA, Beijing, China
| | - Wenxia Li
- Department of Surgery, Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jianhua Zhu
- First Affiliated Hospital of PLA General Hospital, Beijing, China
| | - Pu Yang
- First Affiliated Hospital of PLA General Hospital, Beijing, China
| | - Jianping Jin
- The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jirun Peng
- Department of Surgery, Shijitan Hospital, Capital Medical University, Beijing, China
- Ninth School of Clinical Medicine, Peking University, Beijing, China
- School of Oncology, Capital Medical University, Beijing, China
| | | | - Xin Ye
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
123
|
Systematic approaches to identify E3 ligase substrates. Biochem J 2017; 473:4083-4101. [PMID: 27834739 PMCID: PMC5103871 DOI: 10.1042/bcj20160719] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/25/2016] [Accepted: 08/30/2016] [Indexed: 12/11/2022]
Abstract
Protein ubiquitylation is a widespread post-translational modification, regulating cellular signalling with many outcomes, such as protein degradation, endocytosis, cell cycle progression, DNA repair and transcription. E3 ligases are a critical component of the ubiquitin proteasome system (UPS), determining the substrate specificity of the cascade by the covalent attachment of ubiquitin to substrate proteins. Currently, there are over 600 putative E3 ligases, but many are poorly characterized, particularly with respect to individual protein substrates. Here, we highlight systematic approaches to identify and validate UPS targets and discuss how they are underpinning rapid advances in our understanding of the biochemistry and biology of the UPS. The integration of novel tools, model systems and methods for target identification is driving significant interest in drug development, targeting various aspects of UPS function and advancing the understanding of a diverse range of disease processes.
Collapse
|
124
|
Promoting tumorigenesis in nasopharyngeal carcinoma, NEDD8 serves as a potential theranostic target. Cell Death Dis 2017; 8:e2834. [PMID: 28569775 PMCID: PMC5520881 DOI: 10.1038/cddis.2017.195] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 12/16/2022]
Abstract
Nasopharyngeal carcinoma (NPC), is one of the most common human malignancies in south China, it has the highest recurrence rate and treatment resistance. The underlying molecular mechanisms of NPC relapse and treatment tolerance are not fully understood. In this study, the effects of NEDD8 and NEDD8-activating enzyme inhibitor (MLN4924) on NPC were studied both in vitro and in vivo. Immunohistochemical staining of 197 NPC tissues revealed an elevated NEDD8 expression as an unfavorable independent factor in overall survival and disease-free survival rates. NEDD8 expression was positively correlated with a high risk of death and positivity of lymph node metastasis. Depleted NEDD8 expression by shRNA and inhibited by specific inhibitor MLN4924 dramatically suppressed cell proliferation, cell apoptosis, cell cycle arrest, while ectopic NEDD8 exhibited opposing effects. NEDD8 affected cancer stem cell phenotypes of NPC as assessed in vitro using the cell number of side population (SP) by flow cytometry analysis, colony formation assay, sphere formation assay, and tumor initiation ability in vivo. Downregulation of NEDD8 enhanced the susceptibility of NPC cells to cisplatin and radiation. Moreover, we found that MLN4924 suppressed c-Jun degradation in human NPC cells. Taken together, this report revealed that NEDD8 may act as a novel prognostic marker and MLN4924 may serve as a promising therapeutic target for patients with NPC.
Collapse
|
125
|
Bayraktar G, Kreutz MR. Neuronal DNA Methyltransferases: Epigenetic Mediators between Synaptic Activity and Gene Expression? Neuroscientist 2017; 24:171-185. [PMID: 28513272 PMCID: PMC5846851 DOI: 10.1177/1073858417707457] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
DNMT3A and 3B are the main de novo DNA methyltransferases (DNMTs) in the brain that introduce new methylation marks to non-methylated DNA in postmitotic neurons. DNA methylation is a key epigenetic mark that is known to regulate important cellular processes in neuronal development and brain plasticity. Accumulating evidence disclosed rapid and dynamic changes in DNA methylation of plasticity-relevant genes that are important for learning and memory formation. To understand how DNMTs contribute to brain function and how they are regulated by neuronal activity is a prerequisite for a deeper appreciation of activity-dependent gene expression in health and disease. This review discusses the functional role of de novo methyltransferases and in particular DNMT3A1 in the adult brain with special emphasis on synaptic plasticity, memory formation, and brain disorders.
Collapse
Affiliation(s)
- Gonca Bayraktar
- 1 RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Michael R Kreutz
- 1 RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,2 Leibniz Group "Dendritic Organelles and Synaptic Function", ZMNH, Magdeburg, Germany
| |
Collapse
|
126
|
Xu H, Zhou J, Lin S, Deng W, Zhang Y, Xue Y. PLMD: An updated data resource of protein lysine modifications. J Genet Genomics 2017; 44:243-250. [PMID: 28529077 DOI: 10.1016/j.jgg.2017.03.007] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/26/2017] [Accepted: 03/30/2017] [Indexed: 01/08/2023]
|
127
|
Deng Q, Zhang J, Gao Y, She X, Wang Y, Wang Y, Ge X. MLN4924 protects against bleomycin-induced pulmonary fibrosis by inhibiting the early inflammatory process. Am J Transl Res 2017; 9:1810-1821. [PMID: 28469786 PMCID: PMC5411929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/18/2017] [Indexed: 06/07/2023]
Abstract
Pulmonary fibrosis is a complex pathological process characterized by massive destruction of the structure of lung tissues and aggravated pulmonary function impairment. The underlying mechanisms of pulmonary fibrosis are incompletely understood and therefore limited treatment options are available currently. Here, we report that MLN4924, an NEDD8 activation enzyme (NAE) activity-inhibiting molecule, blocks the maintenance and progression of established pulmonary fibrosis. We found that MLN4924 acts against bleomycin-induced pulmonary fibrosis mainly at the early inflammatory stage. Pharmacologically targeting the neddylation of Cullin-Ring E3 ligase (CRL) by MLN4924, significantly abrogated NF-κB responses, suppressed MAPK activity, and reduced secretion of TNF-α-elicited pro-inflammatory cytokines and MCP1-induced chemokines. MLN4924 inhibited pro-inflammatory responses while maintaining or increasing the production of the anti-inflammatory mediators such as anti-inflammatory interleukins (ILs) following bleomycin administration, which is closely correlated to its blocking NF-κB-mediated signaling. Consistently, our studies identified MLN4924 as a promising therapeutic drug for pulmonary fibrosis and suggested a potential role of MLN4924 that fine tunes the MAPK signaling pathway controlling the inflammatory reactions at the early stages of pulmonary fibrosis. In addition, our findings may broaden the potential practical application of MLN4924 as an effective therapeutic strategy against other inflammation-associated diseases.
Collapse
Affiliation(s)
- Qi Deng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University500 Dongchuan Road, Shanghai 200241, China
- Bio-X Institutes, Key Laboratory for The Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiaotong UniversityShanghai 200240, China
| | - Jiaojiao Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University500 Dongchuan Road, Shanghai 200241, China
| | - Yaqun Gao
- School of Life Sciences and Technology, Tongji UniversityShanghai 200092, China
| | - Xiaofei She
- School of Life Sciences and Technology, Tongji UniversityShanghai 200092, China
| | - Yunchao Wang
- The First People’s Hospital of XiaoshanHangzhou 311200, Zhejiang, China
| | - Yilin Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| | - Xin Ge
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji UniversityShanghai 200072, China
| |
Collapse
|
128
|
Oladghaffari M, Islamian JP, Baradaran B, Monfared AS. MLN4924 therapy as a novel approach in cancer treatment modalities. J Chemother 2017; 28:74-82. [PMID: 26292710 DOI: 10.1179/1973947815y.0000000066] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
MLN4924 is an investigational and a newly discovered small molecule that is a potent and selective inhibitor of the NEDD8 (Neural precursor cell-Expressed Developmentally down-regulated 8) Activating Enzyme (NAE), a pivotal regulator of the Cullin Ring Ligases E3 (CRL), which has been implicated recently in DNA damage. MLN4924 effectively inhibits tumour cell growth by inducing all three common types of death, namely apoptosis, autophagy and senescence and it was also reported that the formation of capillary vessels was significantly suppressed by MLN4924.In this review, we are going to highlight the molecular mechanism of MLN4924 in cancer therapy and its pros and cons in cancer therapy.
Collapse
Affiliation(s)
- Maryam Oladghaffari
- a Cellular & Molecular Biology Research Center, Medical Physics Department , Babol University of Medical Sciences , Iran
| | - Jalil Pirayesh Islamian
- b Immonology Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,c Department of Medical Physics, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Behzad Baradaran
- c Department of Medical Physics, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Ali Shabestani Monfared
- a Cellular & Molecular Biology Research Center, Medical Physics Department , Babol University of Medical Sciences , Iran
| |
Collapse
|
129
|
Li F, Lu J, Kong X, Hyeon T, Ling D. Dynamic Nanoparticle Assemblies for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605897. [PMID: 28224677 DOI: 10.1002/adma.201605897] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/09/2016] [Indexed: 05/23/2023]
Abstract
Designed synthesis and assembly of nanoparticles assisted by their surface ligands can create "smart" materials with programmed responses to external stimuli for biomedical applications. These assemblies can be designed to respond either exogenously (for example, to magnetic field, temperature, ultrasound, light, or electric pulses) or endogenously (to pH, enzymatic activity, or redox gradients) and play an increasingly important role in a diverse range of biomedical applications, such as biosensors, drug delivery, molecular imaging, and novel theranostic systems. In this review, the recent advances and challenges in the development of stimuli-responsive nanoparticle assemblies are summarized; in particular, the application-driven design of surface ligands for stimuli-responsive nanoparticle assemblies that are capable of sensing small changes in the disease microenvironment, which induce the related changes in their physico-chemical properties, is described. Finally, possible future research directions and problems that have to be addressed are briefly discussed.
Collapse
Affiliation(s)
- Fangyuan Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Jingxiong Lu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xueqian Kong
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Korea
| | - Daishun Ling
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
130
|
NEDDylation of PB2 Reduces Its Stability and Blocks the Replication of Influenza A Virus. Sci Rep 2017; 7:43691. [PMID: 28252002 PMCID: PMC5333077 DOI: 10.1038/srep43691] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/30/2017] [Indexed: 02/07/2023] Open
Abstract
Post-translational modifications of viral proteins play important roles in regulating viral replication. Here we demonstrated that the PB2 of influenza A virus (IAV) can be modified by NEDD8. We revealed that E3 ligase HDM2 can promote PB2 NEDDylation. Overexpression of either NEDD8 or HDM2 can inhibit IAV replication, while knockdown of HDM2 has the opposite effect. Then we identified residue K699 in PB2 as the major NEDDylation site. We found that NEDDylation deficient PB2 mutant (PB2 K699R) has a longer half-life than wild-type PB2, indicating that NEDDylation of PB2 reduces its stability. We generated an IAV mutant in which PB2 was mutated to PB2 K699R (WSN-PB2 K699R) and examined the replication of WSN and WSN-PB2 K699R viruses in both MDCK and A549 cells and found that the replication of WSN-PB2 K699R was more efficient than wild-type WSN. In addition, we observed that overexpression of NEDD8 significantly inhibited the replication of WSN, but not WSN-PB2 K699R. The infection assay in mice showed that WSN-PB2 K699R exhibited enhanced virulence in mice compared to WSN, suggesting that NEDDylation of PB2 reduced IAV replication in vivo. In conclusion, we demonstrated that NEDDylation of PB2 by HDM2 negatively regulates IAV infection.
Collapse
|
131
|
Onel M, Sumbul F, Liu J, Nussinov R, Haliloglu T. Cullin neddylation may allosterically tune polyubiquitin chain length and topology. Biochem J 2017; 474:781-795. [PMID: 28082425 PMCID: PMC7900908 DOI: 10.1042/bcj20160748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 12/13/2022]
Abstract
Conjugation of Nedd8 (neddylation) to Cullins (Cul) in Cul-RING E3 ligases (CRLs) stimulates ubiquitination and polyubiquitination of protein substrates. CRL is made up of two Cul-flanked arms: one consists of the substrate-binding and adaptor proteins and the other consists of E2 and Ring-box protein (Rbx). Polyubiquitin chain length and topology determine the substrate fate. Here, we ask how polyubiquitin chains are accommodated in the limited space available between the two arms and what determines the polyubiquitin linkage topology. We focus on Cul5 and Rbx1 in three states: before Cul5 neddylation (closed state), after neddylation (open state), and after deneddylation, exploiting molecular dynamics simulations and the Gaussian Network Model. We observe that regulation of substrate ubiquitination and polyubiquitination takes place through Rbx1 rotations, which are controlled by Nedd8-Rbx1 allosteric communication. Allosteric propagation proceeds from Nedd8 via Cul5 dynamic hinges and hydrogen bonds between the C-terminal domain of Cul5 (Cul5CTD) and Rbx1 (Cul5CTD residues R538/R569 and Rbx1 residue E67, or Cul5CTD E474/E478/N491 and Rbx1 K105). Importantly, at each ubiquitination step (homogeneous or heterogeneous, linear or branched), the polyubiquitin linkages fit into the distances between the two arms, and these match the inherent CRL conformational tendencies. Hinge sites may constitute drug targets.
Collapse
Affiliation(s)
- Melis Onel
- Polymer Research Center and Chemical Engineering Department, Bogazici University, Istanbul, Turkey
| | - Fidan Sumbul
- Polymer Research Center and Chemical Engineering Department, Bogazici University, Istanbul, Turkey
| | - Jin Liu
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, U.S.A
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, U.S.A.
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Turkan Haliloglu
- Polymer Research Center and Chemical Engineering Department, Bogazici University, Istanbul, Turkey
| |
Collapse
|
132
|
Differential control of retrovirus silencing in embryonic cells by proteasomal regulation of the ZFP809 retroviral repressor. Proc Natl Acad Sci U S A 2017; 114:E922-E930. [PMID: 28115710 DOI: 10.1073/pnas.1620879114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Replication of the murine leukemia viruses is strongly suppressed in mouse embryonic stem (ES) cells. Proviral DNAs are formed normally but are then silenced by a large complex bound to DNA by the ES cell-specific zinc-finger protein ZFP809. We show here that ZFP809 expression is not regulated by transcription but rather by protein turnover: ZFP809 protein is stable in embryonic cells but highly unstable in differentiated cells. The protein is heavily modified by the accumulation of polyubiquitin chains in differentiated cells and stabilized by the proteasome inhibitor MG132. A short sequence of amino acids at the C terminus of ZFP809, including a single lysine residue (K391), is required for the rapid turnover of the protein. The silencing cofactor TRIM28 was found to promote the degradation of ZFP809 in differentiated cells. These findings suggest that the stem cell state is established not only by an unusual transcriptional profile but also by unusual regulation of protein levels through the proteasomal degradation pathway.
Collapse
|
133
|
Pai CCS, Khuat LT, Chen M, Murphy WJ, Abedi M. Therapeutic Effects of a NEDD8-Activating Enzyme Inhibitor, Pevonedistat, on Sclerodermatous Graft-versus-Host Disease in Mice. Biol Blood Marrow Transplant 2017; 23:30-37. [PMID: 27815049 PMCID: PMC5469294 DOI: 10.1016/j.bbmt.2016.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 10/26/2016] [Indexed: 01/23/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the sole treatment option for highly malignant hematologic disease; however, the major complication-graft-versus-host disease (GVHD)-still hinders its clinical application. In addition, chronic GVHD remains the major cause of long-term morbidity and mortality after allo-HSCT. Previously we showed that bortezomib, a proteasome inhibitor, can ameliorate the sclerodermatous GVHD response while maintaining graft-versus-tumor (GVT) effects. Here we report that pevonedistat (MLN4924), an inhibitor of the Nedd8-activating enzyme, which functions upstream of the proteasome in the ubiquitin-proteasome pathway, can also show similar protective effects. Recipient mice treated with pevonedistat demonstrated inhibitory effects on sclerodermatous GVHD pathogenesis. The beneficial effect of pevonedistat was observed to be temporally dependent. Whereas treatment given at the time of allo-HSCT administration or before the onset of symptoms worsened the scleroderma response, therapeutic administration starting at 20 days post-transplantation ameliorated the sclerodermatous GVHD. Flow cytometry analysis revealed differential effects on immune subsets, with inhibition of only antigen-presenting cells and not of donor T cells. Finally, pevonedistat preserved GVT effects in a sclerodermatous murine model of B cell lymphoma. Taken together, these data suggest that inhibition of neddylation with pevonedistat can serve as an alternative approach for the treatment of GVHD while maintaining GVT effects in a murine model of sclerodermatous GVHD.
Collapse
Affiliation(s)
- Chien-Chun Steven Pai
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California
| | - Lam T Khuat
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California
| | - Mingyi Chen
- Department of Pathology, School of Medicine, University of California, Davis, Sacramento, California
| | - William J Murphy
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California; Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, California.
| | - Mehrdad Abedi
- Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, California
| |
Collapse
|
134
|
Liao S, Hu H, Wang T, Tu X, Li Z. The Protein Neddylation Pathway in Trypanosoma brucei: FUNCTIONAL CHARACTERIZATION AND SUBSTRATE IDENTIFICATION. J Biol Chem 2016; 292:1081-1091. [PMID: 27956554 DOI: 10.1074/jbc.m116.766741] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 11/28/2016] [Indexed: 11/06/2022] Open
Abstract
Protein posttranslational modifications such as neddylation play crucial roles in regulating protein function. Only a few neddylated substrates have been validated to date, and the role of neddylation remains poorly understood. Here, using Trypanosoma brucei as the model organism, we investigated the function and substrates of TbNedd8. TbNedd8 is distributed throughout the cytosol but enriched in the nucleus and the flagellum. Depletion of TbNedd8 by RNAi abolished global protein ubiquitination, caused DNA re-replication in postmitotic cells, impaired spindle assembly, and compromised the flagellum attachment zone filament, leading to flagellum detachment. Through affinity purification and mass spectrometry, we identified 70 TbNedd8-conjugated and -associated proteins, including known Nedd8-conjugated and -associated proteins, putative TbNedd8 conjugation system enzymes, proteins of diverse biological functions, and proteins of unknown function. Finally, we validated six Cullins as bona fide TbNedd8 substrates and identified the TbNedd8 conjugation site in three Cullins. This work lays the foundation for understanding the roles of protein neddylation in this early divergent parasitic protozoan.
Collapse
Affiliation(s)
- Shanhui Liao
- From the Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China and.,the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030
| | - Huiqing Hu
- the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030
| | - Tao Wang
- the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030
| | - Xiaoming Tu
- From the Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China and
| | - Ziyin Li
- the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030
| |
Collapse
|
135
|
Yan F, Guan J, Peng Y, Zheng X. MyD88 NEDDylation negatively regulates MyD88-dependent NF-κB signaling through antagonizing its ubiquitination. Biochem Biophys Res Commun 2016; 482:632-637. [PMID: 27864145 DOI: 10.1016/j.bbrc.2016.11.084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/15/2016] [Indexed: 11/26/2022]
Abstract
Myeloid differentiation factor 88 (MyD88) plays a central role in innate immunity response, however, how its activity is tightly regulated remains largely unknown. In this study, we identify MyD88 as a novel substrate of NEDD8, and demonstrate that MyD88 NEDDylation antagonizes its ubiquitination. Interestingly, in response to the stimulation of IL-1β, MyD88 NEDDylation is downregulated while its ubiquitination is upregulated. We also show that deNEDDylase NEDP1 serves as a regulator of this process. Furthermore, we demonstrate that NEDD8 negatively regulates the dimerization of MyD88 and suppresses MyD88-dependent NF-κB signaling. Taken together, this study reveals that NEDDylation of MyD88 regulates NF-κB activity through antagonizing its ubiquitination, suggesting a novel mechanism of modulating NF-κB signaling pathway.
Collapse
Affiliation(s)
- Fangxue Yan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Junhong Guan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yanyan Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaofeng Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
136
|
Thuaud F, Rohrbacher F, Zwicky A, Bode JW. Photoprotected Peptideα-Ketoacids and Hydroxylamines for Iterative and One-Pot KAHA Ligations: Synthesis of NEDD8. Helv Chim Acta 2016. [DOI: 10.1002/hlca.201600264] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Frédéric Thuaud
- Laboratorium für Organische Chemie; Department of Chemistry and Applied Biosciences; ETH-Zürich; CH-8093 Zürich
- Institute of Transformative bio-Molecules (WPI-ITbM); Nagoya University; Chikusa, Nagoya 464-8602 Japan
| | - Florian Rohrbacher
- Laboratorium für Organische Chemie; Department of Chemistry and Applied Biosciences; ETH-Zürich; CH-8093 Zürich
| | - André Zwicky
- Laboratorium für Organische Chemie; Department of Chemistry and Applied Biosciences; ETH-Zürich; CH-8093 Zürich
| | - Jeffrey W. Bode
- Laboratorium für Organische Chemie; Department of Chemistry and Applied Biosciences; ETH-Zürich; CH-8093 Zürich
- Institute of Transformative bio-Molecules (WPI-ITbM); Nagoya University; Chikusa, Nagoya 464-8602 Japan
| |
Collapse
|
137
|
Picco G, Petti C, Sassi F, Grillone K, Migliardi G, Rossi T, Isella C, Di Nicolantonio F, Sarotto I, Sapino A, Bardelli A, Trusolino L, Bertotti A, Medico E. Efficacy of NEDD8 Pathway Inhibition in Preclinical Models of Poorly Differentiated, Clinically Aggressive Colorectal Cancer. J Natl Cancer Inst 2016; 109:djw209. [PMID: 27771609 DOI: 10.1093/jnci/djw209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/22/2016] [Indexed: 02/06/2023] Open
Abstract
Background The NEDD8 conjugation pathway modulates the ubiquitination and activity of a wide range of intracellular proteins, and its blockade by pevonedistat is emerging as a promising therapeutic approach in various cancer settings. However, systematic characterization of pevonedistat efficacy in specific tumor types and definition of response predictors are still missing. Methods We investigated in vitro sensitivity to pevonedistat in 122 colorectal cancer (CRC) cell lines by an ATP-based proliferation assay and evaluated apoptosis and DNA content by flow cytometry. Associations between pevonedistat sensitivity and CRC molecular features were assessed by Student's t test. A 184-gene transcriptional predictor was generated in cell lines and applied to 87 metastatic CRC samples for which patient-derived xenografts (PDXs) were available. In vivo reponse to pevonedistat was assessed in PDX models (≥5 mice per group). All statistical tests were two-sided. Results Sixteen (13.1%) cell lines displayed a marked response to pevonedistat, featuring DNA re-replication, proliferative block, and increased apoptosis. Pevonedistat sensitivity did not statistically significantly correlate with microsatellite instability or mutations in KRAS or BRAF and was functionally associated with low EGFR pathway activity. While ineffective on predicted resistant PDXs, in vivo administration of pevonedistat statistically significantly impaired growth of five out of six predicted sensitive models (P < .01). In samples from CRC patients, transcriptional prediction of pevonedistat sensitivity was associated with poor prognosis after surgery (hazard ratio [HR] = 2.49, 95% confidence interval [CI] = 1.34 to 4.62, P = .003) and early progression under cetuximab treatment (HR = 3.59, 95% CI = 1.60 to 8.04, P < .001). Histological and immunohistochemical analyses revealed that the pevonedistat sensitivity signature captures transcriptional traits of poor differentiation and high-grade mucinous adenocarcinoma. Conclusions These results highlight NEDD8-pathway inhibition by pevonedistat as a potentially effective treatment for poorly differentiated, clinically aggressive CRC.
Collapse
Affiliation(s)
- Gabriele Picco
- Candiolo Cancer Institute-FPO IRCCS, Candiolo, Italy.,Department of Oncology, University of Torino, Torino, Italy
| | - Consalvo Petti
- Candiolo Cancer Institute-FPO IRCCS, Candiolo, Italy.,Department of Oncology, University of Torino, Torino, Italy
| | | | - Katia Grillone
- Department of Oncology, University of Torino, Torino, Italy
| | | | - Teresa Rossi
- Department of Oncology, University of Torino, Torino, Italy
| | - Claudio Isella
- Candiolo Cancer Institute-FPO IRCCS, Candiolo, Italy.,Department of Oncology, University of Torino, Torino, Italy
| | - Federica Di Nicolantonio
- Candiolo Cancer Institute-FPO IRCCS, Candiolo, Italy.,Department of Oncology, University of Torino, Torino, Italy
| | - Ivana Sarotto
- Candiolo Cancer Institute-FPO IRCCS, Candiolo, Italy
| | - Anna Sapino
- Candiolo Cancer Institute-FPO IRCCS, Candiolo, Italy.,Department of Medical Sciences, University of Torino, Torino, Italy
| | - Alberto Bardelli
- Candiolo Cancer Institute-FPO IRCCS, Candiolo, Italy.,Department of Oncology, University of Torino, Torino, Italy
| | - Livio Trusolino
- Candiolo Cancer Institute-FPO IRCCS, Candiolo, Italy.,Department of Oncology, University of Torino, Torino, Italy
| | - Andrea Bertotti
- Candiolo Cancer Institute-FPO IRCCS, Candiolo, Italy.,Department of Oncology, University of Torino, Torino, Italy
| | - Enzo Medico
- Candiolo Cancer Institute-FPO IRCCS, Candiolo, Italy.,Department of Oncology, University of Torino, Torino, Italy
| |
Collapse
|
138
|
Tan KL, Pezzella F. Inhibition of NEDD8 and FAT10 ligase activities through the degrading enzyme NEDD8 ultimate buster 1: A potential anticancer approach. Oncol Lett 2016; 12:4287-4296. [PMID: 28101194 PMCID: PMC5228310 DOI: 10.3892/ol.2016.5232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/09/2016] [Indexed: 01/31/2023] Open
Abstract
The capabilities of tumour cells to survive through deregulated cell cycles and evade apoptosis are hallmarks of cancer. The ubiquitin-like proteins (UBL) proteasome system is important in regulating cell cycles via signaling proteins. Deregulation of the proteasomal system can lead to uncontrolled cell proliferation. The Skp, Cullin, F-box containing complex (SCF complex) is the predominant E3 ubiquitin ligase, and has diverse substrates. The ubiquitin ligase activity of the SCF complexes requires the conjugation of neural precursor cell expressed, developmentally down-regulated 8 (NEDD8) to cullin proteins. A tumour suppressor and degrading enzyme named NEDD8 ultimate buster 1 (NUB1) is able to recruit HLA-F-adjacent transcript 10 (FAT10)- and NEDD8-conjugated proteins for proteasomal degradation. Ubiquitination is associated with neddylation and FAT10ylation. Although validating the targets of UBLs, including ubiquitin, NEDD8 and FAT10, is challenging, understanding the biological significance of such substrates is an exciting research prospect. This present review discusses the interplay of these UBLs, as well as highlighting their inhibition through NUB1. Knowledge of the mechanisms by which NUB1 is able to downregulate the ubiquitin cascade via NEDD8 conjugation and the FAT10 pathway is essential. This will provide insights into potential cancer therapy that could be used to selectively suppress cancer growth.
Collapse
Affiliation(s)
- Ka-Liong Tan
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom; Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia, Kuala Lumpur 55100, Malaysia
| | - Francesco Pezzella
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
139
|
Abstract
Transforming growth factor β (TGF-β) and related growth factors are secreted pleiotropic factors that play critical roles in embryogenesis and adult tissue homeostasis by regulating cell proliferation, differentiation, death, and migration. The TGF-β family members signal via heteromeric complexes of type I and type II receptors, which activate members of the Smad family of signal transducers. The main attribute of the TGF-β signaling pathway is context-dependence. Depending on the concentration and type of ligand, target tissue, and developmental stage, TGF-β family members transmit distinct signals. Deregulation of TGF-β signaling contributes to developmental defects and human diseases. More than a decade of studies have revealed the framework by which TGF-βs encode a context-dependent signal, which includes various positive and negative modifiers of the principal elements of the signaling pathway, the receptors, and the Smad proteins. In this review, we first introduce some basic components of the TGF-β signaling pathways and their actions, and then discuss posttranslational modifications and modulatory partners that modify the outcome of the signaling and contribute to its context-dependence, including small noncoding RNAs.
Collapse
Affiliation(s)
- Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94143
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
140
|
Zhang Y, Shi CC, Zhang HP, Li GQ, Li SS. MLN4924 suppresses neddylation and induces cell cycle arrest, senescence, and apoptosis in human osteosarcoma. Oncotarget 2016; 7:45263-45274. [PMID: 27223074 PMCID: PMC5216721 DOI: 10.18632/oncotarget.9481] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/31/2016] [Indexed: 12/26/2022] Open
Abstract
Neddylation is a post-translational protein modification process associated with carcinogenesis and cancer development. MLN4924, a pharmaceutical neddylation inhibitor, induces potent anti-cancer effects in multiple types of cancers. In this study, we investigated the effects of MLN4924 on human osteosarcoma (OS). Levels of both NEDD8 activating enzyme E1 (NAE1) and ubiquitin-conjugating enzyme E2M (Ube2M), two critical components of the neddylation pathway, were much higher in OS tissues and cells than in normal osseous tissues and cells. MLN4924 treatment led to DNA damage, reduced cell viability, senescence and apoptosis in OS cells. Moreover, MLN4924 inhibited OS xenograft tumor growth in mice. Mechanistically, MLN4924 blocked the neddylation of cullins and induced accumulation of several tumor-suppressive substrates of Cullin-RING E3 ubiquitin ligases (CRLs), including CDT1, Wee1, p21, p27, Noxa, and p16. These results suggest clinical studies investigating the utility of MLN4924 for the treatment of OS are warranted.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Cheng-Cheng Shi
- The Hormel Institute, University of Minnesota, Austin, MN, USA
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hua-Peng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Gong-Quan Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shan-Shan Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
141
|
Galiano MR, Goitea VE, Hallak ME. Post-translational protein arginylation in the normal nervous system and in neurodegeneration. J Neurochem 2016; 138:506-17. [PMID: 27318192 DOI: 10.1111/jnc.13708] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/24/2016] [Accepted: 06/13/2016] [Indexed: 02/07/2023]
Abstract
Post-translational arginylation of proteins is an important regulator of many physiological pathways in cells. This modification was originally noted in protein degradation during neurodegenerative processes, with an apparently different physiological relevance between central and peripheral nervous system. Subsequent studies have identified a steadily increasing number of proteins and proteolysis-derived polypeptides as arginyltransferase (ATE1) substrates, including β-amyloid, α-synuclein, and TDP43 proteolytic fragments. Arginylation is involved in signaling processes of proteins and polypeptides that are further ubiquitinated and degraded by the proteasome. In addition, it is also implicated in autophagy/lysosomal degradation pathway. Recent studies using mutant mouse strains deficient in ATE1 indicate additional roles of this modification in neuronal physiology. As ATE1 is capable of modifying proteins either at the N-terminus or middle-chain acidic residues, determining which proteins function are modulated by arginylation represents a big challenge. Here, we review studies addressing various roles of ATE1 activity in nervous system function, and suggest future research directions that will clarify the role of post-translational protein arginylation in brain development and various neurological disorders. Arginyltransferase (ATE1), the enzyme responsible for post-translational arginylation, modulates the functions of a wide variety of proteins and polypeptides, and is also involved in the main degradation pathways of intracellular proteins. Regulatory roles of ATE1 have been well defined for certain organs. However, its roles in nervous system development and neurodegenerative processes remain largely unknown, and present exciting opportunities for future research, as discussed in this review.
Collapse
Affiliation(s)
- Mauricio R Galiano
- Centro de Investigaciones de Química Biológica de Córdoba, CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Victor E Goitea
- Centro de Investigaciones de Química Biológica de Córdoba, CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Marta E Hallak
- Centro de Investigaciones de Química Biológica de Córdoba, CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| |
Collapse
|
142
|
A bioluminescent assay for monitoring conjugation of ubiquitin and ubiquitin-like proteins. Anal Biochem 2016; 510:41-51. [PMID: 27325501 DOI: 10.1016/j.ab.2016.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 12/30/2022]
Abstract
Post-translational modification of target proteins by ubiquitin (Ub) and ubiquitin-like (Ubl) proteins is a critical mechanism for regulating protein functions affecting diverse cellular processes. Ub/Ubl proteins are conjugated to lysine residues in substrate proteins through an adenosine triphosphate (ATP)-dependent enzymatic cascade involving enzyme 1 (E1)-activating enzyme, E2-conjugating enzyme, and E3 ligase. The amount of adenosine monophosphate (AMP) produced in the first step, involving E1-mediated Ub/Ubl activation, represents an accurate measure of Ub/Ubl transfer during the process. Here we describe a novel bioluminescent assay platform, AMP-Glo, to quantify Ub/Ubl conjugation by measuring the AMP generated. The AMP-Glo assay is performed in a two-step reaction. The first step terminates the ubiquitination reaction, depletes the remaining ATP, and converts the AMP generated in the ubiquitination reaction to adenosine diphosphate (ADP), and in the second step the ADP generated is converted to ATP, which is detected as a bioluminescent signal using luciferase/luciferin, proportional to the AMP concentration and correlated with the Ub/Ubl transfer activity. We demonstrate the use of the assay to study Ub/Ubl conjugation and screen for chemical modulators of enzymes involved in the process. Because there is a sequential enhancement in light output in the presence of E1, E2, and E3, the AMP-Glo system can be used to deconvolute inhibitor specificity.
Collapse
|
143
|
Cheng M, Hu S, Wang Z, Pei Y, Fan R, Liu X, Wang L, Zhou J, Zheng S, Zhang T, Lin Y, Zhang M, Tao R, Zhong J. Inhibition of neddylation regulates dendritic cell functions via Deptor accumulation driven mTOR inactivation. Oncotarget 2016; 7:35643-35654. [PMID: 27224922 PMCID: PMC5094951 DOI: 10.18632/oncotarget.9543] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 05/09/2016] [Indexed: 12/21/2022] Open
Abstract
Neddylation, a newly identified post-translational modification, is significant for the activity and stability of target proteins. The exact role of neddylation in the pathogenesis of inflammatory bowel disease, specifically those mediated by dendritic cells (DCs), was still rarely reported. Here, we showed that inhibition of neddylation protected mice from mucosal inflammation. Targeting neddylation also inhibited DC maturation characterized by reduced cytokine production, down-regulated costimulatory molecules and suppressed capacity in allogeneic T cell stimulation. Additionally, inactivation of neddylation promotes caspase dependent apoptosis of DCs. These phenomena were attributed to the inactivation of mTOR, which was caused by Cullin-1 deneddylation induced Deptor accumulation. Together, our findings revealed that neddylation inhibition suppressed DC functions through mTOR signaling pathway and provided a potential therapeutic opportunity in inflammatory bowel diseases.
Collapse
Affiliation(s)
- Mengmeng Cheng
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shurong Hu
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaofei Pei
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Fan
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiqiang Liu
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhou
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sichang Zheng
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyu Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Lin
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maochen Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Tao
- Department of Hepatobiliary-Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Jie Zhong
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
144
|
PPARγ neddylation essential for adipogenesis is a potential target for treating obesity. Cell Death Differ 2016; 23:1296-311. [PMID: 26990658 DOI: 10.1038/cdd.2016.6] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 12/22/2015] [Accepted: 12/29/2015] [Indexed: 12/16/2022] Open
Abstract
The preadipocyte-to-adipocyte differentiation (adipogenesis) is a key process in fat mass increase and thus it is regarded as a compelling target for preventing or treating obesity. Of adipogenic hormone receptors, peroxisome proliferator-activated receptor gamma (PPARγ) has crucial roles in adipogenesis and lipid accumulation within adipocytes. Here we demonstrate that the NEDD8 (neuronal precursor cell expressed, developmentally downregulated 8)-based post-translation modification (neddylation) of PPARγ is essential for adipogenesis. During adipogenesis, NEDD8 is robustly induced in preadipocytes and conjugates with PPARγ, leading to PPARγ stabilization. When the neddylation process was blocked by NEDD8-targeting siRNAs (or viral vectors) or an inhibitor MLN4924, adipocyte differentiation and fat tissue development were substantially impaired. We also demonstrate that MLN4924 effectively prevents the high-fat diet-induced obesity and glucose intolerance in mice. This study provides a better understanding of how the PPARγ signaling pathway starts and lasts during adipogenesis and a potential anti-obesity strategy that targets the neddylation of PPARγ.
Collapse
|
145
|
Dubois EL, Gerber S, Kisselev A, Harel-Bellan A, Groisman R. UV-dependent phosphorylation of COP9/signalosome in UV-induced apoptosis. Oncol Rep 2016; 35:3101-5. [PMID: 26986008 DOI: 10.3892/or.2016.4671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/21/2016] [Indexed: 11/06/2022] Open
Abstract
The COP9/signalosome (CSN) multi-protein complex regulates the activity of cullin-RING ubiquitin ligases (CRLs), including the DDB2 and CSA CRL4 ligases (CRL4DDB2 and CRL4CSA), which are involved in the repair of UV-induced DNA damages. In the present study, we demonstrated that the protein kinase ATM, a key component of the DNA damage response (DDR), phosphorylates CSN1 and CSN7a, two subunits of the CSN complex, in a UV-dependent manner. The phosphorylation of CSN1 on serine 474 was detected as early as 3 h after UV-exposure, peaked at 8 h and persisted until 48 h post-UV irradiation. Such a time course suggests a role in late DDR rather than in DNA repair. Consistently, overexpression of a phosphorylation-resistant S474A CSN1 mutant reduced UV-induced apoptosis. Thus, CSN1 appears to play a role not only in DNA repair but also in UV-induced apoptosis.
Collapse
Affiliation(s)
- Emilie Laure Dubois
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Scott Gerber
- Norris Cotton Cancer Center, Lebanon, NH 03756, USA
| | | | - Annick Harel-Bellan
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Regina Groisman
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
146
|
Chen P, Hu T, Liang Y, Jiang Y, Pan Y, Li C, Zhang P, Wei D, Li P, Jeong LS, Chu Y, Qi H, Yang M, Hoffman RM, Dong Z, Jia L. Synergistic inhibition of autophagy and neddylation pathways as a novel therapeutic approach for targeting liver cancer. Oncotarget 2016; 6:9002-17. [PMID: 25797246 PMCID: PMC4496198 DOI: 10.18632/oncotarget.3282] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/05/2015] [Indexed: 01/14/2023] Open
Abstract
Liver cancer is the second-most frequent cause of cancer death in the world and is highly treatment resistant. We reported previously that inhibition of neddylation pathway with specific NAE inhibitor MLN4924, suppressed the malignant phenotypes of liver cancer. However, during the process, MLN4924 induces pro-survival autophagy as a mechanism of drug resistance. Here, we report that blockage of autophagy with clinically-available autophagy inhibitors (e.g. chloroquine) significantly enhanced the efficacy of MLN4924 on liver cancer cells by triggering apoptosis. Mechanistically, chloroquine enhanced MLN4924-induced up-regulation of pro-apoptotic proteins (e.g. NOXA) and down-regulation of anti-apoptotic proteins. Importantly, the down-regulation of NOXA expression via siRNA silencing substantially attenuated apoptosis of liver cancer cells. Further mechanistic studies revealed that blockage of autophagy augmented MLN4924-induced DNA damage and reactive oxygen species (ROS) generation. The elimination of DNA damage or blockage of ROS production significantly reduced the expression of NOXA, and thereby attenuated apoptosis and reduced growth inhibition of liver cancer cells. Moreover, blockage of autophagy enhanced the efficacy of MLN4924 in an orthotopic model of human liver cancer, with induction of NOXA and apoptosis in tumor tissues. These findings provide important preclinical evidence for clinical investigation of synergistic inhibition of neddylation and autophagy in liver cancer.
Collapse
Affiliation(s)
- Ping Chen
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| | - Tao Hu
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| | - Yupei Liang
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanan Jiang
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yongfu Pan
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chunjie Li
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ping Zhang
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dongping Wei
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Pei Li
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| | - Lak Shin Jeong
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Yiwei Chu
- Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui Qi
- AntiCancer Biotech Beijing Co. Ltd., Beijing, China.,Anticancer, Inc., San Diego, CA, USA
| | - Meng Yang
- AntiCancer Biotech Beijing Co. Ltd., Beijing, China.,Anticancer, Inc., San Diego, CA, USA
| | - Robert M Hoffman
- Department of Surgery, University of California, San Diego, CA, USA.,Anticancer, Inc., San Diego, CA, USA
| | - Ziming Dong
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| | - Lijun Jia
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
147
|
Wang YL, Li D, Yang HD, He L, Sun WJ, Duan ZL, Wang Q. The E3 Ubiquitin Ligase CRL4 Regulates Proliferation and Progression Through Meiosis in Chinese Mitten Crab Eriocheir sinensis1. Biol Reprod 2016; 94:65. [DOI: 10.1095/biolreprod.115.137661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/26/2016] [Indexed: 12/24/2022] Open
|
148
|
Keuss MJ, Thomas Y, Mcarthur R, Wood NT, Knebel A, Kurz T. Characterization of the mammalian family of DCN-type NEDD8 E3 ligases. J Cell Sci 2016; 129:1441-54. [PMID: 26906416 PMCID: PMC4886823 DOI: 10.1242/jcs.181784] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/14/2016] [Indexed: 01/25/2023] Open
Abstract
Cullin-RING ligases (CRL) are ubiquitin E3 enzymes that bind substrates through variable substrate receptor proteins and are activated by attachment of the ubiquitin-like protein NEDD8 to the cullin subunit. DCNs are NEDD8 E3 ligases that promote neddylation. Mammalian cells express five DCN-like (DCNL) proteins but little is known about their specific functions or interaction partners. We found that DCNLs form stable stoichiometric complexes with CAND1 and cullins that can only be neddylated in the presence of a substrate adaptor. These CAND-cullin-DCNL complexes might represent 'reserve' CRLs that can be rapidly activated when needed. We further found that all DCNLs interact with most cullin subtypes, but that they are probably responsible for the neddylation of different subpopulations of any given cullin. This is consistent with the fact that the subcellular localization of DCNLs in tissue culture cells differs and that they show unique tissue-specific expression patterns in mice. Thus, the specificity between DCNL-type NEDD8 E3 enzymes and their cullin substrates is only apparent in well-defined physiological contexts and related to their subcellular distribution and restricted expression.
Collapse
Affiliation(s)
- Matthew J Keuss
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Yann Thomas
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Robin Mcarthur
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Nicola T Wood
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Axel Knebel
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Thimo Kurz
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
149
|
Posttranslational Modifications Regulate the Postsynaptic Localization of PSD-95. Mol Neurobiol 2016; 54:1759-1776. [PMID: 26884267 DOI: 10.1007/s12035-016-9745-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/22/2016] [Indexed: 01/08/2023]
Abstract
The postsynaptic density (PSD) consists of a lattice-like array of interacting proteins that organizes and stabilizes synaptic receptors, ion channels, structural proteins, and signaling molecules required for normal synaptic transmission and synaptic function. The scaffolding and hub protein postsynaptic density protein-95 (PSD-95) is a major element of central chemical synapses and interacts with glutamate receptors, cell adhesion molecules, and cytoskeletal elements. In fact, PSD-95 can regulate basal synaptic stability as well as the activity-dependent structural plasticity of the PSD and, therefore, of the excitatory chemical synapse. Several studies have shown that PSD-95 is highly enriched at excitatory synapses and have identified multiple protein structural domains and protein-protein interactions that mediate PSD-95 function and trafficking to the postsynaptic region. PSD-95 is also a target of several signaling pathways that induce posttranslational modifications, including palmitoylation, phosphorylation, ubiquitination, nitrosylation, and neddylation; these modifications determine the synaptic stability and function of PSD-95 and thus regulate the fates of individual dendritic spines in the nervous system. In the present work, we review the posttranslational modifications that regulate the synaptic localization of PSD-95 and describe their functional consequences. We also explore the signaling pathways that induce such changes.
Collapse
|
150
|
Deller MC, Kong L, Rupp B. Protein stability: a crystallographer's perspective. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2016; 72:72-95. [PMID: 26841758 PMCID: PMC4741188 DOI: 10.1107/s2053230x15024619] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 12/21/2015] [Indexed: 12/18/2022]
Abstract
Protein stability is a topic of major interest for the biotechnology, pharmaceutical and food industries, in addition to being a daily consideration for academic researchers studying proteins. An understanding of protein stability is essential for optimizing the expression, purification, formulation, storage and structural studies of proteins. In this review, discussion will focus on factors affecting protein stability, on a somewhat practical level, particularly from the view of a protein crystallographer. The differences between protein conformational stability and protein compositional stability will be discussed, along with a brief introduction to key methods useful for analyzing protein stability. Finally, tactics for addressing protein-stability issues during protein expression, purification and crystallization will be discussed.
Collapse
Affiliation(s)
- Marc C Deller
- Stanford ChEM-H, Macromolecular Structure Knowledge Center, Stanford University, Shriram Center, 443 Via Ortega, Room 097, MC5082, Stanford, CA 94305-4125, USA
| | - Leopold Kong
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Building 8, Room 1A03, 8 Center Drive, Bethesda, MD 20814, USA
| | - Bernhard Rupp
- Department of Forensic Crystallography, k.-k. Hofkristallamt, 91 Audrey Place, Vista, CA 92084, USA
| |
Collapse
|