101
|
Hirvonen K, Laivuori H, Lahti J, Strandberg T, Eriksson JG, Hackman P. SIRT6 polymorphism rs117385980 is associated with longevity and healthy aging in Finnish men. BMC MEDICAL GENETICS 2017; 18:41. [PMID: 28399814 PMCID: PMC5387321 DOI: 10.1186/s12881-017-0401-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 03/30/2017] [Indexed: 01/13/2023]
Abstract
Background Sirtuin-6 (SIRT6) is involved in various crucial cellular pathways, being a key regulator of telomere structure, DNA repair, metabolism, transcriptional control and the NF-kappa B pathway. Sirt6 knock-out mice have been reported to develop typical features of aging and senescence at the age of 2–3 weeks and die within 4 weeks. The aim of this study was to investigate whether sequence variations of SIRT6 are associated with aging and longevity in Finnish men. Methods The sample of this study consisted of 43 longer-living and healthy males and 92 male control subjects who have died of natural causes at an average age of 66,6 (±4,1) years and who belonged to the Helsinki Birth Cohort Study (HBCS). Single nucleotide polymorphisms (SNPs) in the exons and their surroundings of the SIRT6 were studied using direct PCR sequencing. Results The SNP rs117385980 (C > T), situated 23 bases downstream of the exon 2 exon/intron border was found in heterozygous form in 1/43 longer-living healthy men (Minor allele frequency (MAF) 0,0116) and in 9/92 controls (MAF 0,0489). To replicate this finding, we studied a group of 63 healthy men at an average age of 83 years from the Helsinki Businessmen Study (HBS)–cohort. The heterozygosity of the same SNP was seen in 2/63 men from the HBS–cohort (MAF 0,0159). Fisher exact test was performed in our two combined study samples. The P-value for all samples combined was 0.07 and the odds ratio 3.53 (95% confidence interval 0.96–13.4). Conclusions These results suggest an inverse association between the T allele of rs117385980 and longevity. The result needs to be confirmed in a larger study. It remains to be determined whether rs117385980 itself has an effect or if it is a mere genetic marker for some other yet undiscovered sequence variant causing a functional effect.
Collapse
Affiliation(s)
- Katariina Hirvonen
- The Folkhälsan Institute of Genetics and the Department of Medical Genetics, University of Helsinki, Helsinki, Finland.
| | - Hannele Laivuori
- Medical and Clinical Genetics and Obstetrics and Gynecology, University of Helsinki, Helsinki, Finland.,Helsinki University Hospital, Helsinki, Finland.,Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Jari Lahti
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Centre, Helsinki, Finland
| | - Timo Strandberg
- University of Helsinki, Helsinki, Finland.,Helsinki University Central Hospital, Geriatrics, Helsinki, Finland.,Institute of Health Sciences/Geriatrics, University of Oulu, Oulu, Finland
| | - Johan G Eriksson
- Folkhälsan Research Centre, Helsinki, Finland.,University of Helsinki, Helsinki, Finland.,Department Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland.,Department of General Practice and Primary Health Care, Helsinki University Hospital, Helsinki, Finland
| | - Peter Hackman
- The Folkhälsan Institute of Genetics and the Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
102
|
Unlocking the chromatin of adenoid cystic carcinomas using HDAC inhibitors sensitize cancer stem cells to cisplatin and induces tumor senescence. Stem Cell Res 2017; 21:94-105. [PMID: 28426972 PMCID: PMC7071815 DOI: 10.1016/j.scr.2017.04.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/14/2017] [Accepted: 04/03/2017] [Indexed: 02/06/2023] Open
Abstract
Adenoid cystic carcinoma (ACC) is an uncommon malignancy of the salivary glands that is characterized by local recurrence and distant metastasis due to its resistance to conventional therapy. Platinum-based therapies have been extensively explored as a treatment for ACC, but they show little effectiveness. Studies have shown that a specific group of tumor cells, harboring characteristics of cancer stem cells (CSCs), are involved in chemoresistance of myeloid leukemias, breast, colorectal and pancreatic carcinomas. Therapeutic strategies that target CSCs improve the survival of patients by decreasing the rates of tumor relapse, and epigenetic drugs, such as histone deacetylase inhibitors (HDACi), have shown promising results in targeting CSCs. In this study, we investigated the effect of the HDACi Suberoylanilide hydroxamic acid (Vorinostat), and cisplatin, alone or in combination, on CSCs and non-CSCs from ACC. We used CSCs as a biological marker for tumor resistance to therapy in patient-derived xenograft (PDX) samples and ACC primary cells. We found that cisplatin reduced tumor viability, but enriched the population of CSCs. Systemic administration of Vorinostat reduced the number of detectable CSCs in vivo and in vitro, and a low dose of Vorinostat decreased tumor cell viability. However, the combination of Vorinostat and cisplatin was extremely effective in depleting CSCs and reducing tumor viability in all ACC primary cells by activating cellular senescence. These observations suggest that HDACi and intercalating agents act more efficiently in combination to destroy tumor cells and their stem cells.
Collapse
|
103
|
Liao X, Feng B, Zhang D, Liu P, Zhou X, Li R, Ye L. The Sirt6 gene: Does it play a role in tooth development? PLoS One 2017; 12:e0174255. [PMID: 28355287 PMCID: PMC5371306 DOI: 10.1371/journal.pone.0174255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/06/2017] [Indexed: 02/05/2023] Open
Abstract
Dental Mesenchymal Cells (DMCs) are known to play a role in tooth development as well as in the repair and regeneration of dental tissue. A large number of signaling molecules regulate the proliferation and differentiation of DMC, though the underlying mechanisms are still not fully understood. Sirtuin-6 (SIRT6), a key regulator of aging, can exert an impact on embryonic stem cell (ESC) differentiation. The experimental deletion of Sirt6 in mouse bone marrow cells has been found to have an inhibiting impact on the bone mineral density and the osteogenic differentiation of these cells. The possible role of Sirt6 in tooth development, however, has at present remained largely unexplored. In the present study, we found that SIRT6 had no effect on tooth development before birth. However, Sirt6 gene deletion in knockout mice did have two post-natal impacts: a delay in tooth eruption and sluggishness in the development of dental roots. We propose an explanation of the possible molecular basis of the changes observed in Sirt6-/- mice. SIRT6 is expressed in mouse odontoblasts. Sirt6 deletion enhanced the proliferation of DMCs, as well as their capacity for adipogenic differentiation. On the other hand, it inhibited their capacity for in vitro osteogenic/chondrogenic differentiation. Further studies suggested that other factors may mediate the role of Sirt6 in odontogenesis. These include the nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (p38-MAPK), extracellular regulated MAP kinase (ERK) pathways and the mitochondrial energy. We demonstrated that Sirt6 plays a role in tooth root formation and confirmed that SIRT6 is necessary for DMC differentiation as well as for the development of the tooth root and for eventual tooth eruption. These results establish a new link between SIRT6 and tooth development.
Collapse
Affiliation(s)
- Xueyang Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruimin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, Stomatology Hospital, General Hospital of NingXia Medical University, Yinchuan, China
- * E-mail: (LY); (RML)
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail: (LY); (RML)
| |
Collapse
|
104
|
Tasselli L, Zheng W, Chua KF. SIRT6: Novel Mechanisms and Links to Aging and Disease. Trends Endocrinol Metab 2017; 28:168-185. [PMID: 27836583 PMCID: PMC5326594 DOI: 10.1016/j.tem.2016.10.002] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 12/18/2022]
Abstract
SIRT6, a member of the Sirtuin family of NAD+-dependent enzymes, has established roles in chromatin signaling and genome maintenance. Through these functions, SIRT6 protects against aging-associated pathologies including metabolic disease and cancer, and can promote longevity in mice. Research from the past few years revealed that SIRT6 is a complex enzyme with multiple substrates and catalytic activities, and uncovered novel SIRT6 functions in the maintenance of organismal health span. Here, we review these new discoveries and models of SIRT6 biology in four areas: heterochromatin stabilization and silencing; stem cell biology; cancer initiation and progression; and regulation of metabolic homeostasis. We discuss the possible implications of these findings for therapeutic interventions in aging and aging-related disease processes.
Collapse
Affiliation(s)
- Luisa Tasselli
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Wei Zheng
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Katrin F Chua
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
105
|
Heo J, Lim J, Lee S, Jeong J, Kang H, Kim Y, Kang JW, Yu HY, Jeong EM, Kim K, Kucia M, Waigel SJ, Zacharias W, Chen Y, Kim IG, Ratajczak MZ, Shin DM. Sirt1 Regulates DNA Methylation and Differentiation Potential of Embryonic Stem Cells by Antagonizing Dnmt3l. Cell Rep 2017; 18:1930-1945. [DOI: 10.1016/j.celrep.2017.01.074] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/20/2016] [Accepted: 01/27/2017] [Indexed: 11/18/2022] Open
|
106
|
Correia M, Perestrelo T, Rodrigues AS, Ribeiro MF, Pereira SL, Sousa MI, Ramalho-Santos J. Sirtuins in metabolism, stemness and differentiation. Biochim Biophys Acta Gen Subj 2017; 1861:3444-3455. [DOI: 10.1016/j.bbagen.2016.09.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/16/2016] [Accepted: 09/06/2016] [Indexed: 12/20/2022]
|
107
|
Bayarsaihan D. Deciphering the Epigenetic Code in Embryonic and Dental Pulp Stem Cells. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:539-563. [PMID: 28018144 PMCID: PMC5168831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A close cooperation between chromatin states, transcriptional modulation, and epigenetic modifications is required for establishing appropriate regulatory circuits underlying self-renewal and differentiation of adult and embryonic stem cells. A growing body of research has established that the epigenome topology provides a structural framework for engaging genes in the non-random chromosomal interactions to orchestrate complex processes such as cell-matrix interactions, cell adhesion and cell migration during lineage commitment. Over the past few years, the functional dissection of the epigenetic landscape has become increasingly important for understanding gene expression dynamics in stem cells naturally found in most tissues. Adult stem cells of the human dental pulp hold great promise for tissue engineering, particularly in the skeletal and tooth regenerative medicine. It is therefore likely that progress towards pulp regeneration will have a substantial impact on the clinical research. This review summarizes the current state of knowledge regarding epigenetic cues that have evolved to regulate the pluripotent differentiation potential of embryonic stem cells and the lineage determination of developing dental pulp progenitors.
Collapse
Affiliation(s)
- Dashzeveg Bayarsaihan
- Institute for System Genomics and Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
108
|
Expression Levels of Warburg-Effect Related microRNAs Correlate with each Other and that of Histone Deacetylase Enzymes in Adult Hematological Malignancies with Emphasis on Acute Myeloid Leukemia. Pathol Oncol Res 2016; 23:207-216. [PMID: 27864740 DOI: 10.1007/s12253-016-0151-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 11/09/2016] [Indexed: 01/15/2023]
Abstract
Disruption of epigenetic regulation and characteristic metabolic alterations (known as the Warburg-effect) are well-known hallmarks of cancer. In our study we investigated the expression levels of microRNAs and histone deacetylase enzymes via RT-qPCR in bone marrow specimens of adult patients suffering from hematological malignancies (total cohort n = 40), especially acute myeloid leukemia (n = 27). The levels of the three examined Warburg-effect related microRNAs (miR-378*, miR-23b, miR-26a) positively correlated with each other and the oncogenic miR-155 and miR-125b, while negatively with the level of the tumorsuppressor miR-124. Significant relationships have been confirmed between the levels of SIRT6, HDAC4 and the microRNAs listed above. In NPM1-mutated AML (n = 6), the level of miR-125b was significantly lower than in the group of AML patients not carrying this mutation (n = 13) (p < 0.05). In M5 FAB type of AML (n = 5), the level of miR-124 was significantly higher compared to the M2 group (n = 7) (p < 0.05). In two cases of FAB M5 AML, the levels of SIRT6 and miR-26a increased during the first 4 weeks of treatment. In the total cohort, white blood cell count at the time of the diagnosis significantly correlated with the levels of HDAC4, SIRT6, miR-124 and miR-26a. Our results suggest that Warburg-effect related microRNAs may have important role in the pathogenesis of leukemia, and the potential oncogenic property of HDAC4 and SIRT6 cannot be excluded in hematological malignancies. Elevated level of miR-125b can contribute to adverse prognosis of AML without NPM1 mutation. The prevailment of the tumorsuppressor property of miR-124 may depend on the accompanying genetic alterations.
Collapse
|
109
|
Stryjewska A, Dries R, Pieters T, Verstappen G, Conidi A, Coddens K, Francis A, Umans L, van IJcken WFJ, Berx G, van Grunsven LA, Grosveld FG, Goossens S, Haigh JJ, Huylebroeck D. Zeb2 Regulates Cell Fate at the Exit from Epiblast State in Mouse Embryonic Stem Cells. Stem Cells 2016; 35:611-625. [PMID: 27739137 PMCID: PMC5396376 DOI: 10.1002/stem.2521] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 12/12/2022]
Abstract
In human embryonic stem cells (ESCs) the transcription factor Zeb2 regulates neuroectoderm versus mesendoderm formation, but it is unclear how Zeb2 affects the global transcriptional regulatory network in these cell‐fate decisions. We generated Zeb2 knockout (KO) mouse ESCs, subjected them as embryoid bodies (EBs) to neural and general differentiation and carried out temporal RNA‐sequencing (RNA‐seq) and reduced representation bisulfite sequencing (RRBS) analysis in neural differentiation. This shows that Zeb2 acts preferentially as a transcriptional repressor associated with developmental progression and that Zeb2 KO ESCs can exit from their naïve state. However, most cells in these EBs stall in an early epiblast‐like state and are impaired in both neural and mesendodermal differentiation. Genes involved in pluripotency, epithelial‐to‐mesenchymal transition (EMT), and DNA‐(de)methylation, including Tet1, are deregulated in the absence of Zeb2. The observed elevated Tet1 levels in the mutant cells and the knowledge of previously mapped Tet1‐binding sites correlate with loss‐of‐methylation in neural‐stimulating conditions, however, after the cells initially acquired the correct DNA‐methyl marks. Interestingly, cells from such Zeb2 KO EBs maintain the ability to re‐adapt to 2i + LIF conditions even after prolonged differentiation, while knockdown of Tet1 partially rescues their impaired differentiation. Hence, in addition to its role in EMT, Zeb2 is critical in ESCs for exit from the epiblast state, and links the pluripotency network and DNA‐methylation with irreversible commitment to differentiation. Stem Cells2017;35:611–625
Collapse
Affiliation(s)
- Agata Stryjewska
- Department of Development and Regeneration, KU Leuven, Leuven, 3000, Belgium
| | - Ruben Dries
- Department of Development and Regeneration, KU Leuven, Leuven, 3000, Belgium.,Department of Cell Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, The Netherlands
| | - Tim Pieters
- VIB Inflammation Research Center (IRC), Unit Vascular Cell Biology.,Department of Biomedical Molecular Biology.,VIB-IRC, Unit Molecular and Cellular Oncology, Ghent University, Ghent, 9052, Belgium.,Center for Medical Genetics, Ghent University Hospital, Ghent, 9000, Belgium
| | - Griet Verstappen
- Department of Development and Regeneration, KU Leuven, Leuven, 3000, Belgium
| | - Andrea Conidi
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, The Netherlands
| | - Kathleen Coddens
- Department of Development and Regeneration, KU Leuven, Leuven, 3000, Belgium
| | - Annick Francis
- Department of Development and Regeneration, KU Leuven, Leuven, 3000, Belgium
| | - Lieve Umans
- Department of Development and Regeneration, KU Leuven, Leuven, 3000, Belgium
| | - Wilfred F J van IJcken
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, The Netherlands.,Center for Biomics, Erasmus University Medical Center, Rotterdam, 3015 CN, The Netherlands
| | - Geert Berx
- Department of Biomedical Molecular Biology.,VIB-IRC, Unit Molecular and Cellular Oncology, Ghent University, Ghent, 9052, Belgium
| | - Leo A van Grunsven
- Department of Cell Biology, Liver Cell Biology Lab, Vrije Universiteit Brussel, Jette, 1090, Belgium
| | - Frank G Grosveld
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, The Netherlands
| | - Steven Goossens
- VIB Inflammation Research Center (IRC), Unit Vascular Cell Biology.,Department of Biomedical Molecular Biology.,VIB-IRC, Unit Molecular and Cellular Oncology, Ghent University, Ghent, 9052, Belgium.,ACBD - Blood Cancers and Stem Cells, Group Mammalian Functional Genetics, Monash University, Melbourne, VIC, 3004, Australia
| | - Jody J Haigh
- VIB Inflammation Research Center (IRC), Unit Vascular Cell Biology.,Department of Biomedical Molecular Biology.,ACBD - Blood Cancers and Stem Cells, Group Mammalian Functional Genetics, Monash University, Melbourne, VIC, 3004, Australia
| | - Danny Huylebroeck
- Department of Development and Regeneration, KU Leuven, Leuven, 3000, Belgium.,Department of Cell Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, The Netherlands
| |
Collapse
|
110
|
Magimaidas A, Badolia R, Madireddi P, Bhavanasi D. As"SIRT"ing the role of an epigenetic modifier in hematopoietic stem cell homeostasis. Stem Cell Investig 2016; 3:56. [PMID: 27868038 DOI: 10.21037/sci.2016.09.09] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Andrew Magimaidas
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachit Badolia
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Priyanka Madireddi
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
| | - Dheeraj Bhavanasi
- Department of Medicine (Heme/Onc), University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
111
|
Diotel N, Mérot Y, Coumailleau P, Gueguen MM, Sérandour AA, Salbert G, Kah O. 5-hydroxymethylcytosine marks postmitotic neural cells in the adult and developing vertebrate central nervous system. J Comp Neurol 2016; 525:478-497. [PMID: 27414756 DOI: 10.1002/cne.24077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 12/29/2022]
Abstract
The epigenetic mark 5-hydroxymethylcytosine (5hmC) is a cytosine modification that is abundant in the central nervous system of mammals and which results from 5-methylcytosine oxidation by TET enzymes. Such a mark is suggested to play key roles in the regulation of chromatin structure and gene expression. However, its precise functions still remain poorly understood and information about its distribution in non-mammalian species is still lacking. Here, the distribution of 5hmC was investigated in the brain of adult zebrafish, African claw frog, and mouse in a comparative manner. We show that zebrafish neurons are endowed with high levels of 5hmC, whereas quiescent or proliferative neural progenitors show low to undetectable levels of the modified cytosine. In the brain of larval and juvenile Xenopus, 5hmC is also detected in neurons, while ventricular proliferative cells do not display this epigenetic mark. Similarly, 5hmC is enriched in neurons compared to neural progenitors of the ventricular zone in the mouse developing cortex. Interestingly, 5hmC colocalized with the methylated DNA binding protein MeCP2 and with the active chromatin histone modification H3K4me2 in mouse neurons. Taken together, our results show an evolutionarily conserved cerebral distribution of 5hmC between fish and tetrapods and reinforce the idea that 5hmC fulfills major functions in the control of chromatin activity in vertebrate neurons. J. Comp. Neurol. 525:478-497, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicolas Diotel
- Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Université de La Réunion, UMR 1188, Sainte-Clotilde, France.,Université de La Réunion, UMR 1188, Sainte-Clotilde, France.,Inserm, UMR 1085, Research Institute in Health, Environment and Occupation, Institut National de la Santé et de la Recherche Médicale U1085, Université de Rennes 1, SFR Biosite, 9 avenue du Prof. Léon Bernard - Rennes, France
| | - Yohann Mérot
- Inserm, UMR 1085, Research Institute in Health, Environment and Occupation, Institut National de la Santé et de la Recherche Médicale U1085, Université de Rennes 1, SFR Biosite, 9 avenue du Prof. Léon Bernard - Rennes, France
| | - Pascal Coumailleau
- Inserm, UMR 1085, Research Institute in Health, Environment and Occupation, Institut National de la Santé et de la Recherche Médicale U1085, Université de Rennes 1, SFR Biosite, 9 avenue du Prof. Léon Bernard - Rennes, France
| | - Marie-Madeleine Gueguen
- Inserm, UMR 1085, Research Institute in Health, Environment and Occupation, Institut National de la Santé et de la Recherche Médicale U1085, Université de Rennes 1, SFR Biosite, 9 avenue du Prof. Léon Bernard - Rennes, France
| | | | - Gilles Salbert
- UMR 6290 CNRS, IGDR, Université de Rennes 1, Campus de Beaulieu, Rennes, France
| | - Olivier Kah
- Inserm, UMR 1085, Research Institute in Health, Environment and Occupation, Institut National de la Santé et de la Recherche Médicale U1085, Université de Rennes 1, SFR Biosite, 9 avenue du Prof. Léon Bernard - Rennes, France
| |
Collapse
|
112
|
Wang WW, Zeng Y, Wu B, Deiters A, Liu WR. A Chemical Biology Approach to Reveal Sirt6-targeted Histone H3 Sites in Nucleosomes. ACS Chem Biol 2016; 11:1973-81. [PMID: 27152839 DOI: 10.1021/acschembio.6b00243] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As a member of a highly conserved family of NAD(+)-dependent histone deacetylases, Sirt6 is a key regulator of mammalian genome stability, metabolism, and life span. Previous studies indicated that Sirt6 is hardwired to remove histone acetylation at H3K9 and H3K56. However, how Sirt6 recognizes its nucleosome substrates has been elusive due to the difficulty of accessing homogeneous acetyl-nucleosomes and the low activity of Sirt6 toward peptide substrates. Based on the fact that Sirt6 has an enhanced activity to remove long chain fatty acylation from lysine, we developed an approach to recombinantly synthesize histone H3 with a fatty acylated lysine, N(ε)-(7-octenoyl)-lysine (OcK), installed at a number of lysine sites and used these acyl-H3 proteins to assemble acyl-nucleosomes as active Sirt6 substrates. A chemical biology approach that visualizes OcK in nucleosomes and therefore allows direct sensitization of Sirt6 activities on its acyl-nucleosome substrates was also formulated. By combining these two approaches, we showed that Sirt6 actively removes acylation from H3K9, H3K18, and H3K27; has relatively low activities toward H3K4 and K3K23; but sluggishly removes acylation at H3K14, H3K36, H3K56, and H3K79. Overexpressing Sirt6 in 293T cells led to downregulated acetylation at H3K18 and K3K27, confirming these two novel Sirt6-targeted nucleosome lysine sites in cells. Given that downregulation of H3K18 acetylation is correlated with a poor prognosis of several cancer types and H3K27 acetylation antagonizes repressive gene regulation by di- and trimethylation at H3K27, our current study implies that Sirt6 may serve as a target for cancer intervention and regulatory pathway investigation in cells.
Collapse
Affiliation(s)
- Wesley Wei Wang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Yu Zeng
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Bo Wu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Alexander Deiters
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Wenshe R. Liu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| |
Collapse
|
113
|
Toraño EG, Bayón GF, del Real Á, Sierra MI, García MG, Carella A, Belmonte T, Urdinguio RG, Cubillo I, García-Castro J, Delgado-Calle J, Pérez-Campo FM, Riancho JA, Fraga MF, Fernández AF. Age-associated hydroxymethylation in human bone-marrow mesenchymal stem cells. J Transl Med 2016; 14:207. [PMID: 27393146 PMCID: PMC4938941 DOI: 10.1186/s12967-016-0966-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/01/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Age-associated changes in genomic DNA methylation have been primarily attributed to 5-methylcytosine (5mC). However, the recent discovery of 5-hydroxymethylcytosine (5hmC) suggests that this epigenetic mark might also play a role in the process. METHODS Here, we analyzed the genome-wide profile of 5hmc in mesenchymal stem cells (MSCs) obtained from bone-marrow donors, aged 2-89 years. RESULTS We identified 10,685 frequently hydroxymethylated CpG sites in MSCs that were, as in other cell types, significantly associated with low density CpG regions, introns, the histone posttranslational modification H3k4me1 and enhancers. Study of the age-associated changes to 5hmC identified 785 hyper- and 846 hypo-hydroxymethylated CpG sites in the MSCs obtained from older individuals. CONCLUSIONS DNA hyper-hydroxymethylation in the advanced-age group was associated with loss of 5mC, which suggests that, at specific CpG sites, this epigenetic modification might play a role in DNA methylation changes during lifetime. Since bone-marrow MSCs have many clinical applications, and the fact that the epigenomic alterations in this cell type associated with aging identified in this study could have associated functional effects, the age of donors should be taken into account in clinical settings.
Collapse
Affiliation(s)
- Estela G. Toraño
- />Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Gustavo F. Bayón
- />Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Álvaro del Real
- />Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Marta I. Sierra
- />Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | - María G. García
- />Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Antonella Carella
- />Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Thalia Belmonte
- />Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Rocío G. Urdinguio
- />Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Isabel Cubillo
- />Unidad de Biotecnología Celular, Área de Genética Humana, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier García-Castro
- />Unidad de Biotecnología Celular, Área de Genética Humana, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Delgado-Calle
- />Department of Internal Medicine, Hospital U.M. Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Flor M. Pérez-Campo
- />Department of Internal Medicine, Hospital U.M. Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - José A. Riancho
- />Department of Internal Medicine, Hospital U.M. Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Mario F. Fraga
- />Nanomaterials and Nanotechnology Research Center (CINN-CSIC)-Universidad de Oviedo-Principado de Asturias, El Entrego, Spain
| | - Agustín F. Fernández
- />Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
114
|
Zhang H, Lu Y, Zhao Y, Zhou DX. OsSRT1 is involved in rice seed development through regulation of starch metabolism gene expression. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 248:28-36. [PMID: 27181944 DOI: 10.1016/j.plantsci.2016.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/06/2016] [Accepted: 04/10/2016] [Indexed: 05/02/2023]
Abstract
OsSRT1 is a NAD(+)-dependent histone deacetylase, closely related to the human SIRT6 that plays key roles in genome stability and metabolic homeostasis. In this work, we investigated the role of OsSRT1 in rice seed development. Down-regulation of OsSRT1 induced higher expression of Rice Starch Regulator1 (RSR1) and amylases genes in developing seeds, which resulted in a decrease of starch synthesis and an increase of starch degradation, leading to abnormal seed development. ChIP assay showed that OsSRT1 was required to reduce histone H3K9 acetylation on starch metabolism genes and transposons in developing seeds. In addition, OsSRT1 was detected to directly bind to starch metabolism genes such as OsAmy3B, OsAmy3E, OsBmy4, and OsBmy9. Our results suggested that OsSRT1-mediated histone deacetylation is involved in starch accumulation and transposon repression to regulate normal seed development.
Collapse
Affiliation(s)
- Hua Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
| | - Yue Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China; Institute Plant Science Paris-Saclay (IPS2), Université Paris-Saclay, Université Paris-Sud 11, Orsay, France.
| |
Collapse
|
115
|
Sirtuin functions and modulation: from chemistry to the clinic. Clin Epigenetics 2016; 8:61. [PMID: 27226812 PMCID: PMC4879741 DOI: 10.1186/s13148-016-0224-3] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/04/2016] [Indexed: 12/21/2022] Open
Abstract
Sirtuins are NAD(+)-dependent histone deacetylases regulating important metabolic pathways in prokaryotes and eukaryotes and are involved in many biological processes such as cell survival, senescence, proliferation, apoptosis, DNA repair, cell metabolism, and caloric restriction. The seven members of this family of enzymes are considered potential targets for the treatment of human pathologies including neurodegenerative diseases, cardiovascular diseases, and cancer. Furthermore, recent interest focusing on sirtuin modulators as epigenetic players in the regulation of fundamental biological pathways has prompted increased efforts to discover new small molecules able to modify sirtuin activity. Here, we review the role, mechanism of action, and biological function of the seven sirtuins, as well as their inhibitors and activators.
Collapse
|
116
|
Shu L, Sun W, Li L, Xu Z, Lin L, Xie P, Shen H, Huang L, Xu Q, Jin P, Li X. Genome-wide alteration of 5-hydroxymenthylcytosine in a mouse model of Alzheimer's disease. BMC Genomics 2016; 17:381. [PMID: 27207465 PMCID: PMC4875608 DOI: 10.1186/s12864-016-2731-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 05/12/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of neurodegenerative disorder that leads to a decline in cognitive function. In AD, aggregates of amyloid β peptide precede the accumulation of neurofibrillary tangles, both of which are hallmarks of the disease. The great majority (>90 %) of the AD cases are not originated from genetic defects, therefore supporting the central roles of epigenetic modifications that are acquired progressively during the life span. Strong evidences have indicated the implication of epigenetic modifications, including histone modification and DNA methylation, in AD. Recent studies revealed that 5-hydroxymethylcytosine (5hmC) is dynamically regulated during neurodevelopment and aging. RESULTS We show that amyloid peptide 1-42 (Aβ1-42) could significantly reduce the overall level of 5hmC in vitro. We found that the level of 5hmC displayed differential response to the pathogenesis in different brain regions, including the cortex, cerebellum, and hippocampus of APP-PSEN1 double transgenic (DTg) mice. We observed a significant decrease of overall 5hmC in hippocampus, but not in cortex and cerebellum, as the DTg mice aged. Genome-wide profiling identified differential hydroxymethylation regions (DhMRs) in DTg mice, which are highly enriched in introns, exons and intergenic regions. Gene ontology analyses indicated that DhMR-associated genes are highly enriched in multiple signaling pathways involving neuronal development/differentiation and neuronal function/survival. CONCLUSIONS 5hmC-mediated epigenetic regulation could potentially be involved in the pathogenesis of AD.
Collapse
Affiliation(s)
- Liqi Shu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30022, USA
| | - Wenjia Sun
- Institute of Genetics, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Liping Li
- The Children's Hospital, School of Medicine, Zhejiang University, 310052, Hangzhou, China
- Institute of Translational Medicine, School of Medicine, Zhejiang University, 310029, Hangzhou, China
| | - Zihui Xu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30022, USA
- Department of Endocrinology, Wuhan Central Hospital, 430014, Wuhan, China
| | - Li Lin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30022, USA
| | - Pei Xie
- The Children's Hospital, School of Medicine, Zhejiang University, 310052, Hangzhou, China
- Institute of Translational Medicine, School of Medicine, Zhejiang University, 310029, Hangzhou, China
| | - Hui Shen
- The Children's Hospital, School of Medicine, Zhejiang University, 310052, Hangzhou, China
- Institute of Translational Medicine, School of Medicine, Zhejiang University, 310029, Hangzhou, China
| | - Luoxiu Huang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30022, USA
| | - Qi Xu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30022, USA.
| | - Xuekun Li
- The Children's Hospital, School of Medicine, Zhejiang University, 310052, Hangzhou, China.
- Institute of Translational Medicine, School of Medicine, Zhejiang University, 310029, Hangzhou, China.
| |
Collapse
|
117
|
The Commercial Antibodies Widely Used to Measure H3 K56 Acetylation Are Non-Specific in Human and Drosophila Cells. PLoS One 2016; 11:e0155409. [PMID: 27187594 PMCID: PMC4871326 DOI: 10.1371/journal.pone.0155409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/28/2016] [Indexed: 12/26/2022] Open
Abstract
Much of our understanding of the function of histone post-translational modifications in metazoans is inferred from their genomic localization and / or extrapolated from yeast studies. For example, acetylation of histone H3 lysine 56 (H3 K56Ac) is assumed to be important for transcriptional regulation in metazoan cells based on its occurrence at promoters and its function in yeast. Here we directly assess the function of H3 K56Ac during chromatin disassembly from gene regulatory regions during transcriptional induction in human cells by using mutations that either mimic or prevent H3 K56Ac. Although there is rapid histone H3 disassembly during induction of some estrogen receptor responsive genes, depletion of the histone chaperone ASF1A/B, which is required for H3 K56 acetylation, has no effect on chromatin disassembly at these regions. During the course of this work, we found that all the commercially available antibodies to H3 K56Ac are non-specific in human cells and in Drosophila. We used H3-YFP fusions to show that the H3 K56Q mutation can promote chromatin disassembly from regulatory regions of some estrogen responsive genes in the context of transcriptional induction. However, neither the H3 K56R nor K56Q mutation significantly altered chromatin disassembly dynamics by FRAP analysis. These results indicate that unlike the situation in yeast, human cells do not use H3 K56Ac to promote chromatin disassembly from regulatory regions or from the genome in general. Furthermore, our work highlights the need for rigorous characterization of the specificity of antibodies to histone post-translational modifications in vivo.
Collapse
|
118
|
Wang H, Diao D, Shi Z, Zhu X, Gao Y, Gao S, Liu X, Wu Y, Rudolph KL, Liu G, Li T, Ju Z. SIRT6 Controls Hematopoietic Stem Cell Homeostasis through Epigenetic Regulation of Wnt Signaling. Cell Stem Cell 2016; 18:495-507. [PMID: 27058938 DOI: 10.1016/j.stem.2016.03.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/06/2016] [Accepted: 03/16/2016] [Indexed: 12/21/2022]
Abstract
Proper regulation of Wnt signaling is critical for the maintenance of hematopoietic stem cell (HSC) homeostasis. The epigenetic regulation of Wnt signaling in HSCs remains largely unknown. Here, we report that the histone deacetylase SIRT6 regulates HSC homeostasis through the transcriptional repression of Wnt target genes. Sirt6 deletion promoted HSC proliferation through aberrant activation of Wnt signaling. SIRT6-deficient HSCs exhibited impaired self-renewal ability in serial competitive transplantation assay. Mechanistically, SIRT6 inhibits the transcription of Wnt target genes by interacting with transcription factor LEF1 and deacetylating histone 3 at lysine 56. Pharmacological inhibition of the Wnt pathway rescued the aberrant proliferation and functional defect in SIRT6-deficient HSCs. Taken together, these findings disclose a new link between SIRT6 and Wnt signaling in the regulation of adult stem cell homeostasis and self-renewal capacity.
Collapse
Affiliation(s)
- Hu Wang
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China.
| | - Daojun Diao
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China
| | - Zhencan Shi
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China
| | - Xudong Zhu
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China
| | - Yawei Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoyu Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - You Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - K Lenhard Rudolph
- Leibniz Institute on Aging, Fritz Lipmann Institute e.V., Beutenbergstrasse 11, 07745 Jena, Germany
| | - Guanghui Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tangliang Li
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China
| | - Zhenyu Ju
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China.
| |
Collapse
|
119
|
Abstract
Neurogenesis is not limited to the embryonic stage, but continually proceeds in the adult brain throughout life. Epigenetic mechanisms, including DNA methylation, histone modification and noncoding RNA, play important roles in neurogenesis. For decades, DNA methylation was thought to be a stable modification, except for demethylation in the early embryo. In recent years, DNA methylation has proved to be dynamic during development. In this review, we summarize the latest understanding about DNA methylation dynamics in neurogenesis, including the roles of different methylation forms (5-methylcytosine, 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine), as well as their 'writers', 'readers' and interactions with histone modifications.
Collapse
Affiliation(s)
- Zhiqin Wang
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yuquan He
- Department of Cardiology, The Third Affiliated Hospital of Jilin University, Jilin University, Changchun, Jilin, PR China
| | - Peng Jin
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
120
|
Wang L, Ma L, Pang S, Huang J, Yan B. Sequence Variants of SIRT6 Gene Promoter in Myocardial Infarction. Genet Test Mol Biomarkers 2016; 20:185-90. [PMID: 26886147 DOI: 10.1089/gtmb.2015.0188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AIMS Coronary artery disease (CAD), including myocardial infarction (MI), is a common complex disease caused by atherosclerosis. Although more than 50 genetic variants have been associated with CAD, these loci collectively account for only 10% of CAD cases. Genetic variants of low and rare frequencies have been proposed as the main causes of CAD. SIRT6, one of the highly conserved NAD-dependent class III deacetylases, has been implicated in cardiovascular diseases. Considering the important roles that SIRT6 plays in the cardiovascular system, inflammation, and lipid and cholesterol metabolism, genetic variants were hypothesized to contribute to MI development. METHODS The promoter regions of the SIRT6 gene were genetically analyzed in large cohorts of MI patients (n = 371) and ethnically-matched controls (n = 383). RESULTS A total of 15 DNA sequence variants (DSVs) were identified, including seven single-nucleotide polymorphisms (SNPs). Two novel heterozygous DSVs, g.4183823G>C and g.4183742G>A, were identified in two MI patients but in none of the controls. Two SNPs, g.4183685T>C (rs4359565) and g.4182942C>A (rs3760905), were found in MI patients with significantly higher frequencies compared with controls. CONCLUSIONS These DSVs identified in MI patients may alter the transcriptional activity of the SIRT6 gene promoter and alter SIRT6 levels which might contribute to the risk of MI.
Collapse
Affiliation(s)
- Lekun Wang
- 1 College of Clinical Medicine, Jining Medical University , Jining, China
| | - Ling Ma
- 2 Division of Cardiology, Affiliated Hospital of Jining Medical University, Jining Medical University , Jining, China
| | - Shuchao Pang
- 3 Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University , Jining, China
| | - Jian Huang
- 3 Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University , Jining, China
| | - Bo Yan
- 3 Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University , Jining, China .,4 Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University , Jining, China
| |
Collapse
|
121
|
Bandopadhayay P, Ramkissoon LA, Jain P, Bergthold G, Wala J, Zeid R, Schumacher SE, Urbanski L, O'Rourke R, Gibson WJ, Pelton K, Ramkissoon SH, Han HJ, Zhu Y, Choudhari N, Silva A, Boucher K, Henn RE, Kang YJ, Knoff D, Paolella BR, Gladden-Young A, Varlet P, Pages M, Horowitz PM, Federation A, Malkin H, Tracy AA, Seepo S, Ducar M, Van Hummelen P, Santi M, Buccoliero AM, Scagnet M, Bowers DC, Giannini C, Puget S, Hawkins C, Tabori U, Klekner A, Bognar L, Burger PC, Eberhart C, Rodriguez FJ, Hill DA, Mueller S, Haas-Kogan DA, Phillips JJ, Santagata S, Stiles CD, Bradner JE, Jabado N, Goren A, Grill J, Ligon AH, Goumnerova L, Waanders AJ, Storm PB, Kieran MW, Ligon KL, Beroukhim R, Resnick AC. MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism. Nat Genet 2016; 48:273-82. [PMID: 26829751 PMCID: PMC4767685 DOI: 10.1038/ng.3500] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/06/2016] [Indexed: 12/15/2022]
Abstract
Angiocentric gliomas are pediatric low-grade gliomas (PLGGs) without known recurrent genetic drivers. We performed genomic analysis of new and published data from 249 PLGGs including 19 Angiocentric Gliomas. We identified MYB-QKI fusions as a specific and single candidate driver event in Angiocentric Gliomas. In vitro and in vivo functional studies show MYB-QKI rearrangements promote tumorigenesis through three mechanisms: MYB activation by truncation, enhancer translocation driving aberrant MYB-QKI expression, and hemizygous loss of the tumor suppressor QKI. This represents the first example of a single driver rearrangement simultaneously transforming cells via three genetic and epigenetic mechanisms in a tumor.
Collapse
Affiliation(s)
- Pratiti Bandopadhayay
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Lori A Ramkissoon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Payal Jain
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Cell and Molecular Biology Graduate Group, Gene Therapy and Vaccines Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Guillaume Bergthold
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department de Cancerologie de l'Enfant et de l'Adolescent et Unité Mixte de Recherche du Centre National de la Recherche Scientifique 8203 'Vectorologie et Nouvelles Therapeutiques du Cancer', Gustave Roussy, Université Paris XI Sud, Villejuif, France
| | - Jeremiah Wala
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Rhamy Zeid
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Steven E Schumacher
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA
| | - Laura Urbanski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ryan O'Rourke
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA
| | - William J Gibson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Kristine Pelton
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Shakti H Ramkissoon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Harry J Han
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuankun Zhu
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Namrata Choudhari
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amanda Silva
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katie Boucher
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rosemary E Henn
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yun Jee Kang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - David Knoff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Brenton R Paolella
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | | | - Pascale Varlet
- Laboratoire de Neuropathologie, Hopital Sainte-Anne, Université Paris V Descartes, Paris, France
| | - Melanie Pages
- Laboratoire de Neuropathologie, Hopital Sainte-Anne, Université Paris V Descartes, Paris, France
| | - Peleg M Horowitz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Alexander Federation
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Hayley Malkin
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | | | - Sara Seepo
- Broad Institute, Cambridge, Massachusetts, USA
| | - Matthew Ducar
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Paul Van Hummelen
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Mirko Scagnet
- Neurosurgery Unit, Anna Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Daniel C Bowers
- Division of Pediatric Hematology-Oncology, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephanie Puget
- Departement de Neurochirurgie, Hopital Necker-Enfants Malades, Université Paris V Descartes, Paris, France
| | - Cynthia Hawkins
- Division of Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Uri Tabori
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Almos Klekner
- Department of Neurosurgery, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Laszlo Bognar
- Department of Neurosurgery, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Peter C Burger
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Charles Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fausto J Rodriguez
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - D Ashley Hill
- Brain Tumor Institute, Children's National Medical Center, Washington, DC, USA.,Center for Neuroscience and Behavioral Medicine, Brain Tumor Institute, Children's National Medical Center, Washington, DC, USA.,Department of Pathology, Children's National Medical Center, Washington, DC, USA
| | - Sabine Mueller
- Department of Neurology, University of California San Francisco School of Medicine, San Francisco, California, USA.,Department of Neurological Surgery, University of California San Francisco School of Medicine, San Francisco, California, USA.,Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Daphne A Haas-Kogan
- Department of Neurological Surgery, University of California San Francisco School of Medicine, San Francisco, California, USA.,Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco School of Medicine, San Francisco, California, USA.,Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California San Francisco School of Medicine, San Francisco, California, USA.,Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Sandro Santagata
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Charles D Stiles
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - James E Bradner
- Broad Institute, Cambridge, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Nada Jabado
- Division of Experimental Medicine, Montreal Children's Hospital, McGill University and McGill University Health Centre, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Alon Goren
- Broad Technology Laboratories, Broad Institute, Cambridge, Massachusetts, USA
| | - Jacques Grill
- Department de Cancerologie de l'Enfant et de l'Adolescent et Unité Mixte de Recherche du Centre National de la Recherche Scientifique 8203 'Vectorologie et Nouvelles Therapeutiques du Cancer', Gustave Roussy, Université Paris XI Sud, Villejuif, France
| | - Azra H Ligon
- Brigham and Women's Hospital Department of Pathology, Center for Advanced Molecular Diagnostics, Division of Cytogenetics, Boston, Massachusetts, USA
| | - Liliana Goumnerova
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA.,Department of Neurosurgery, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Angela J Waanders
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Phillip B Storm
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Mark W Kieran
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Keith L Ligon
- Broad Institute, Cambridge, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rameen Beroukhim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Adam C Resnick
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
122
|
Lawrence M, Daujat S, Schneider R. Lateral Thinking: How Histone Modifications Regulate Gene Expression. Trends Genet 2015; 32:42-56. [PMID: 26704082 DOI: 10.1016/j.tig.2015.10.007] [Citation(s) in RCA: 569] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/21/2022]
Abstract
The DNA of each cell is wrapped around histone octamers, forming so-called 'nucleosomal core particles'. These histone proteins have tails that project from the nucleosome and many residues in these tails can be post-translationally modified, influencing all DNA-based processes, including chromatin compaction, nucleosome dynamics, and transcription. In contrast to those present in histone tails, modifications in the core regions of the histones had remained largely uncharacterised until recently, when some of these modifications began to be analysed in detail. Overall, recent work has shown that histone core modifications can not only directly regulate transcription, but also influence processes such as DNA repair, replication, stemness, and changes in cell state. In this review, we focus on the most recent developments in our understanding of histone modifications, particularly those on the lateral surface of the nucleosome. This region is in direct contact with the DNA and is formed by the histone cores. We suggest that these lateral surface modifications represent a key insight into chromatin regulation in the cell. Therefore, lateral surface modifications form a key area of interest and a focal point of ongoing study in epigenetics.
Collapse
|
123
|
Abstract
PURPOSE OF REVIEW The circadian clock is an intricate biological timekeeper that is subject to fine-tuning mechanisms in order to maintain synchrony with the surrounding environment. One such mechanism is performed by the mammalian sirtuins that provide plasticity to the circadian clock by sensing cellular metabolic state. The sirtuins modulate the circadian epigenome and subsequent transcriptional control, and alterations to this organized system manifest in metabolic consequences, aging phenotypes and possibly cancer. RECENT FINDINGS New information regarding sirtuin-dependent control of the circadian clock has emerged. In addition to sirtuin (SIRT)1 and SIRT3, SIRT6 has been demonstrated as a critical regulator of circadian transcription that also serves as an interface with metabolic homeostasis. Also, new metabolic functions of SIRT1 have been described in the brain, which are critical to relay nutritional inputs to the central clock. SUMMARY This review focuses on the link between the circadian clock and the sirtuins, with an emphasis on new findings. In addition, speculation on the possible connections at the physiological level will be made that could further link the clock to aging and cancer.
Collapse
Affiliation(s)
- Selma Masri
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, University of California, Irvine, California, USA
| |
Collapse
|
124
|
Thandavarayan RA, Garikipati VNS, Joladarashi D, Suresh Babu S, Jeyabal P, Verma SK, Mackie AR, Khan M, Arumugam S, Watanabe K, Kishore R, Krishnamurthy P. Sirtuin-6 deficiency exacerbates diabetes-induced impairment of wound healing. Exp Dermatol 2015; 24:773-8. [PMID: 26010430 DOI: 10.1111/exd.12762] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2015] [Indexed: 12/29/2022]
Abstract
Delayed wound healing is one of the major complications in diabetes and is characterized by chronic proinflammatory response, and abnormalities in angiogenesis and collagen deposition. Sirtuin family proteins regulate numerous pathophysiological processes, including those involved in promotion of longevity, DNA repair, glycolysis and inflammation. However, the role of sirtuin 6 (SIRT6), a NAD+-dependent nuclear deacetylase, in wound healing specifically under diabetic condition remains unclear. To analyse the role of SIRT6 in cutaneous wound healing, paired 6-mm stented wound was created in diabetic db/db mice and injected siRNA against SIRT6 in the wound margins (transfection agent alone and nonsense siRNA served as controls). Wound time to closure was assessed by digital planimetry, and wounds were harvested for histology, immunohistochemistry and Western blotting. SIRT6-siRNA-treated diabetic wound showed impaired healing, which was associated with reduced capillary density (CD31-staining vessels) when compared to control treatment. Interestingly, SIRT6 deficiency decreased vascular endothelial growth factor expression and proliferation markers in the wounds. Furthermore, SIRT6 ablation in diabetic wound promotes nuclear factor-κB (NF-κB) activation resulting in increased expression of proinflammatory markers (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, tumor necrosis factor-α and interleukin-1β) and increased oxidative stress. Collectively, our findings demonstrate that loss of SIRT6 in cutaneous wound aggravates proinflammatory response by increasing NF-κB activation, oxidative stress and decrease in angiogenesis in the diabetic mice. Based on these findings, we speculate that the activation of SIRT6 signalling might be a potential therapeutic approach for promoting wound healing in diabetics.
Collapse
Affiliation(s)
- Rajarajan A Thandavarayan
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, USA
| | | | - Darukeshwara Joladarashi
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Sahana Suresh Babu
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Prince Jeyabal
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Suresh K Verma
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Alexander R Mackie
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA
| | - Mohsin Khan
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Somasundaram Arumugam
- Department of Clinical Pharmacology, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Kenichi Watanabe
- Department of Clinical Pharmacology, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Raj Kishore
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Prasanna Krishnamurthy
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, USA.,Cell and Developmental Biology, Department of Cardiothoracic Surgery, Weill Cornell Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
125
|
Abstract
The chemical modification of DNA bases plays a key role in epigenetic gene regulation. While much attention has been focused on the classical epigenetic mark, 5-methylcytosine, the field garnered increased interest through the recent discovery of additional modifications. In this review, we focus on the epigenetic regulatory roles of DNA modifications in animals. We present the symmetric modification of 5-methylcytosine on CpG dinucleotide as a key feature, because it permits the inheritance of methylation patterns through DNA replication. However, the distribution patterns of cytosine methylation are not conserved in animals and independent molecular functions will likely be identified. Furthermore, the discovery of enzymes that catalyse the hydroxylation of 5-methylcytosine to 5-hydroxymethylcytosine not only identified an active demethylation pathway, but also a candidate for a new epigenetic mark associated with activated transcription. Most recently, N6-methyladenine was described as an additional eukaryotic DNA modification with epigenetic regulatory potential. Interestingly, this modification is also present in genomes that lack canonical cytosine methylation patterns, suggesting independent functions. This newfound diversity of DNA modifications and their potential for combinatorial interactions indicates that the epigenetic DNA code is substantially more complex than previously thought.
Collapse
Affiliation(s)
- Achim Breiling
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| |
Collapse
|
126
|
Affiliation(s)
- Jean-Pierre Etchegaray
- a The Massachusetts General Hospital Cancer Center; Harvard Medical School ; Boston , MA USA
| | | |
Collapse
|