101
|
Jetten AM, Cook DN. (Inverse) Agonists of Retinoic Acid-Related Orphan Receptor γ: Regulation of Immune Responses, Inflammation, and Autoimmune Disease. Annu Rev Pharmacol Toxicol 2019; 60:371-390. [PMID: 31386594 DOI: 10.1146/annurev-pharmtox-010919-023711] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Retinoic acid-related orphan receptor γt (RORγt) functions as a ligand-dependent transcription factor that regulates multiple proinflammatory genes and plays a critical role in several inflammatory and autoimmune diseases. Various endogenous and synthetic RORγ (inverse) agonists have been identified that regulate RORγ transcriptional activity, including many cholesterol intermediates and oxysterols. Changes in cholesterol biosynthesis and metabolism can therefore have a significant impact on the generation of oxysterol RORγ ligands and, consequently, can control RORγt activity and inflammation. These observations contribute to a growing literature that connects cholesterol metabolism to the regulation of immune responses and autoimmune disease. Loss of RORγ function in knockout mice and in mice treated with RORγ inverse agonists results in reduced production of proinflammatory cytokines, such as IL-17A/F, and increased resistance to autoimmune disease in several experimental rodent models. Thus, RORγt inverse agonists might provide an attractive therapeutic approach to treat a variety of autoimmune diseases.
Collapse
Affiliation(s)
- Anton M Jetten
- Cell Biology Section, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA;
| | - Donald N Cook
- Immunogenetics Section, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
102
|
Bob1 enhances RORγt-mediated IL-17A expression in Th17 cells through interaction with RORγt. Biochem Biophys Res Commun 2019; 514:1167-1171. [DOI: 10.1016/j.bbrc.2019.05.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/07/2019] [Indexed: 11/18/2022]
|
103
|
Saravia J, Chapman NM, Chi H. Helper T cell differentiation. Cell Mol Immunol 2019; 16:634-643. [PMID: 30867582 PMCID: PMC6804569 DOI: 10.1038/s41423-019-0220-6] [Citation(s) in RCA: 340] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 02/19/2019] [Indexed: 12/16/2022] Open
Abstract
CD4+ T helper cells are key regulators of host health and disease. In the original model, specialized subsets of T helper cells are generated following activation through lineage-specifying cytokines and transcriptional programs, but recent studies have revealed increasing complexities for CD4+ T-cell differentiation. Here, we first discuss CD4+ T-cell differentiation from a historical perspective by highlighting the major studies that defined the distinct subsets of T helper cells. We next describe the mechanisms underlying CD4+ T-cell differentiation, including cytokine-induced signaling and transcriptional networks. We then review current and emerging topics of differentiation, including the plasticity and heterogeneity of T cells, the tissue-specific effects, and the influence of cellular metabolism on cell fate decisions. Importantly, recent advances in cutting-edge approaches, especially systems biology tools, have contributed to new concepts and mechanisms underlying T-cell differentiation and will likely continue to advance this important research area of adaptive immunity.
Collapse
Affiliation(s)
- Jordy Saravia
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
104
|
Sekimata M, Yoshida D, Araki A, Asao H, Iseki K, Murakami-Sekimata A. Runx1 and RORγt Cooperate to Upregulate IL-22 Expression in Th Cells through Its Distal Enhancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:3198-3210. [PMID: 31028121 DOI: 10.4049/jimmunol.1800672] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 04/01/2019] [Indexed: 12/29/2022]
Abstract
IL-22 is a cytokine that plays a pivotal role in regulating tissue homeostasis at barrier surfaces and is produced by activated CD4+ Th cells. Currently, the molecular mechanisms regulating Il22 gene expression are still unclear. In this study, we have identified a crucial cis-regulatory element located 32 kb upstream of the mouse Il22 promoter, termed conserved noncoding sequence (CNS)-32. We demonstrated that CNS-32 acts as an enhancer in reporter assays and contains binding motifs for Runt-related transcription factor (Runx)1 and retinoic acid-related orphan receptor γt (RORγt). Mutation of these motifs significantly abrogated the reporter activity, suggesting a role for both factors in the control of enhancer-mediated Il22 expression. Runx1 and RORγt occupancy and elevated histone H4 acetylation at CNS-32 were evident, as naive T cells differentiated into IL-22-producing Th22 cells. Overexpression of Runx1 promoted IL-22 production by inducing RORγt and IL-23 receptor, all critical to Th22 cell induction. Although Runx1 alone enhanced IL-22 production in Th22 cells, it was further enhanced in the presence of RORγt. Conversely, short hairpin RNA-mediated knockdown of core-binding factor β, a cofactor essential for Runx1 activity, was effective in limiting IL-22 production. Collectively, our results suggest that IL-22 production is controlled by a regulatory circuit in which Runx1 induces RORγt and then partners with RORγt to direct Il22 expression through their targeting of the Il22 enhancer.
Collapse
MESH Headings
- Amino Acid Motifs/genetics
- Animals
- Cell Differentiation
- Cells, Cultured
- Conserved Sequence/genetics
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Enhancer Elements, Genetic/genetics
- Interleukins/genetics
- Interleukins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mutation/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Protein Binding
- RNA, Small Interfering/genetics
- Receptors, Interleukin/genetics
- Receptors, Interleukin/metabolism
- T-Lymphocytes, Helper-Inducer/immunology
- Up-Regulation
- Interleukin-22
Collapse
Affiliation(s)
- Masayuki Sekimata
- Radioisotope Research Center, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan;
- Division of Theoretical Nursing and Genetics, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Daiki Yoshida
- Radioisotope Research Center, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Division of Theoretical Nursing and Genetics, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Akemi Araki
- Department of Immunology, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; and
| | - Hironobu Asao
- Department of Immunology, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; and
| | - Ken Iseki
- Department of Emergency and Critical Care Medicine, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Akiko Murakami-Sekimata
- Division of Theoretical Nursing and Genetics, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| |
Collapse
|
105
|
Ecoeur F, Weiss J, Kaupmann K, Hintermann S, Orain D, Guntermann C. Antagonizing Retinoic Acid-Related-Orphan Receptor Gamma Activity Blocks the T Helper 17/Interleukin-17 Pathway Leading to Attenuated Pro-inflammatory Human Keratinocyte and Skin Responses. Front Immunol 2019; 10:577. [PMID: 30972071 PMCID: PMC6443933 DOI: 10.3389/fimmu.2019.00577] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/04/2019] [Indexed: 12/14/2022] Open
Abstract
The nuclear hormone receptor retinoic acid receptor-related-orphan-receptor-gamma t (RORγt) is the key transcription factor required for Th17 cell differentiation and for production of IL-17 family cytokines by innate and adaptive immune cells. Dysregulated Th17 immune responses have been associated with the pathogenesis of several inflammatory and autoimmune diseases such as psoriasis, psoriatic arthritis, and ankylosing spondylitis. In this article, we describe the in vitro pharmacology of a potent and selective low molecular weight RORγt inhibitor identified after a structure-based hit-to-lead optimization effort. The compound interfered with co-activator binding to the RORγt ligand binding domain and impaired the transcriptional activity of RORγt as evidenced by blocked IL-17A secretion and RORE-mediated transactivation of a luciferase reporter gene. The inhibitor effectively reduced IL-17A production by human naive and memory T-cells and attenuated transcription of pro-inflammatory Th17 signature genes, such as IL17F, IL22, IL26, IL23R, and CCR6. The compound selectively suppressed the Th17/IL-17 pathway and did not interfere with polarization of other T helper cell lineages. Furthermore, the inhibitor was selective for RORγt and did not modify the transcriptional activity of the closely related family members RORα and RORβ. Using human keratinocytes cultured with supernatants from compound treated Th17 cells we showed that pharmacological inhibition of RORγt translated to suppressed IL-17-regulated gene expression in keratinocyte cell cultures. Furthermore, in ex vivo immersion skin cultures our RORγt inhibitor suppressed IL-17A production by Th17-skewed skin resident cells which correlated with reduced human β defensin 2 expression in the skin. Our data suggests that inhibiting RORγt transcriptional activity by a low molecular weight inhibitor may hold utility for the treatment of Th17/IL-17-mediated skin pathologies.
Collapse
Affiliation(s)
- Florence Ecoeur
- Autoimmunity, Transplantation, and Inflammation Disease Area, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jessica Weiss
- Autoimmunity, Transplantation, and Inflammation Disease Area, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Klemens Kaupmann
- Autoimmunity, Transplantation, and Inflammation Disease Area, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Samuel Hintermann
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - David Orain
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Christine Guntermann
- Autoimmunity, Transplantation, and Inflammation Disease Area, Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
106
|
Abstract
Research on psoriasis pathogenesis has largely increased knowledge on skin biology in general. In the past 15 years, breakthroughs in the understanding of the pathogenesis of psoriasis have been translated into targeted and highly effective therapies providing fundamental insights into the pathogenesis of chronic inflammatory diseases with a dominant IL-23/Th17 axis. This review discusses the mechanisms involved in the initiation and development of the disease, as well as the therapeutic options that have arisen from the dissection of the inflammatory psoriatic pathways. Our discussion begins by addressing the inflammatory pathways and key cell types initiating and perpetuating psoriatic inflammation. Next, we describe the role of genetics, associated epigenetic mechanisms, and the interaction of the skin flora in the pathophysiology of psoriasis. Finally, we include a comprehensive review of well-established widely available therapies and novel targeted drugs.
Collapse
|
107
|
Ebihara T, Taniuchi I. Transcription Factors in the Development and Function of Group 2 Innate Lymphoid Cells. Int J Mol Sci 2019; 20:ijms20061377. [PMID: 30893794 PMCID: PMC6470746 DOI: 10.3390/ijms20061377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/18/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are tissue-resident cells and are a major source of innate TH2 cytokine secretion upon allergen exposure or parasitic-worm infection. Accumulating studies have revealed that transcription factors, including GATA-3, Bcl11b, Gfi1, RORα, and Ets-1, play a role in ILC2 differentiation. Recent reports have further revealed that the characteristics and functions of ILC2 are influenced by the physiological state of the tissues. Specifically, the type of inflammation strongly affects the ILC2 phenotype in tissues. Inhibitory ILC2s, memory-like ILC2s, and ex-ILC2s with ILC1 features acquire their characteristic properties following exposure to their specific inflammatory environment. We have recently reported a new ILC2 population, designated as exhausted-like ILC2s, which emerges after a severe allergic inflammation. Exhausted-like ILC2s are featured with low reactivity and high expression of inhibitory receptors. Therefore, for a more comprehensive understanding of ILC2 function and differentiation, we review the recent knowledge of transcriptional regulation of ILC2 differentiation and discuss the roles of the Runx transcription factor in controlling the emergence of exhausted-like ILC2s. The concept of exhausted-like ILC2s sheds a light on a new aspect of ILC2 biology in allergic diseases.
Collapse
Affiliation(s)
- Takashi Ebihara
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
108
|
Svensson MN, Doody KM, Schmiedel BJ, Bhattacharyya S, Panwar B, Wiede F, Yang S, Santelli E, Wu DJ, Sacchetti C, Gujar R, Seumois G, Kiosses WB, Aubry I, Kim G, Mydel P, Sakaguchi S, Kronenberg M, Tiganis T, Tremblay ML, Ay F, Vijayanand P, Bottini N. Reduced expression of phosphatase PTPN2 promotes pathogenic conversion of Tregs in autoimmunity. J Clin Invest 2019; 129:1193-1210. [PMID: 30620725 DOI: 10.1172/jci123267] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 01/03/2019] [Indexed: 12/29/2022] Open
Abstract
Genetic variants at the PTPN2 locus, which encodes the tyrosine phosphatase PTPN2, cause reduced gene expression and are linked to rheumatoid arthritis (RA) and other autoimmune diseases. PTPN2 inhibits signaling through the T cell and cytokine receptors, and loss of PTPN2 promotes T cell expansion and CD4- and CD8-driven autoimmunity. However, it remains unknown whether loss of PTPN2 in FoxP3+ regulatory T cells (Tregs) plays a role in autoimmunity. Here we aimed to model human autoimmune-predisposing PTPN2 variants, the presence of which results in a partial loss of PTPN2 expression, in mouse models of RA. We identified that reduced expression of Ptpn2 enhanced the severity of autoimmune arthritis in the T cell-dependent SKG mouse model and demonstrated that this phenotype was mediated through a Treg-intrinsic mechanism. Mechanistically, we found that through dephosphorylation of STAT3, PTPN2 inhibits IL-6-driven pathogenic loss of FoxP3 after Tregs have acquired RORγt expression, at a stage when chromatin accessibility for STAT3-targeted IL-17-associated transcription factors is maximized. We conclude that PTPN2 promotes FoxP3 stability in mouse RORγt+ Tregs and that loss of function of PTPN2 in Tregs contributes to the association between PTPN2 and autoimmunity.
Collapse
Affiliation(s)
- Mattias Nd Svensson
- Department of Medicine, University of California, San Diego, La Jolla, California, USA.,Division of Cellular Biology, and
| | | | - Benjamin J Schmiedel
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Sourya Bhattacharyya
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Bharat Panwar
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Florian Wiede
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Shen Yang
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Eugenio Santelli
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Dennis J Wu
- Department of Medicine, University of California, San Diego, La Jolla, California, USA.,Division of Cellular Biology, and
| | - Cristiano Sacchetti
- Department of Medicine, University of California, San Diego, La Jolla, California, USA.,Division of Cellular Biology, and
| | - Ravindra Gujar
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Gregory Seumois
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - William B Kiosses
- Core Microscopy, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Isabelle Aubry
- Department of Biochemistry, McGill University, Montréal, Quebec, Canada
| | - Gisen Kim
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Piotr Mydel
- Clinical Science, Broegelmann Research Laboratory, Bergen, Norway.,Department of Microbiology, Jagiellonian University, Krakow, Poland
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan.,Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Tony Tiganis
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Monash Biomedicine Discovery Institute, and.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Michel L Tremblay
- Department of Biochemistry, McGill University, Montréal, Quebec, Canada
| | - Ferhat Ay
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Pandurangan Vijayanand
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Nunzio Bottini
- Department of Medicine, University of California, San Diego, La Jolla, California, USA.,Division of Cellular Biology, and
| |
Collapse
|
109
|
Meyer Zu Horste G, Przybylski D, Schramm MA, Wang C, Schnell A, Lee Y, Sobel R, Regev A, Kuchroo VK. Fas Promotes T Helper 17 Cell Differentiation and Inhibits T Helper 1 Cell Development by Binding and Sequestering Transcription Factor STAT1. Immunity 2018; 48:556-569.e7. [PMID: 29562202 DOI: 10.1016/j.immuni.2018.03.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 12/21/2022]
Abstract
The death receptor Fas removes activated lymphocytes through apoptosis. Previous transcriptional profiling predicted that Fas positively regulates interleukin-17 (IL-17)-producing T helper 17 (Th17) cells. Here, we demonstrate that Fas promoted the generation and stability of Th17 cells and prevented their differentiation into Th1 cells. Mice with T-cell- and Th17-cell-specific deletion of Fas were protected from induced autoimmunity, and Th17 cell differentiation and stability were impaired. Fas-deficient Th17 cells instead developed a Th1-cell-like transcriptional profile, which a new algorithm predicted to depend on STAT1. Experimentally, Fas indeed bound and sequestered STAT1, and Fas deficiency enhanced IL-6-induced STAT1 activation and nuclear translocation, whereas deficiency of STAT1 reversed the transcriptional changes induced by Fas deficiency. Thus, our computational and experimental approach identified Fas as a regulator of the Th17-to-Th1 cell balance by controlling the availability of opposing STAT1 and STAT3 to have a direct impact on autoimmunity.
Collapse
Affiliation(s)
- Gerd Meyer Zu Horste
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Department of Neurology, University Hospital Münster, Münster, Germany
| | | | - Markus A Schramm
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Chao Wang
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Alexandra Schnell
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Youjin Lee
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Raymond Sobel
- Palo Alto Veteran's Administration Health Care System and Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
110
|
Furlong S, Coombs MRP, Ghassemi-Rad J, Hoskin DW. Thy-1 (CD90) Signaling Preferentially Promotes RORγt Expression and a Th17 Response. Front Cell Dev Biol 2018; 6:158. [PMID: 30533413 PMCID: PMC6265317 DOI: 10.3389/fcell.2018.00158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/05/2018] [Indexed: 11/13/2022] Open
Abstract
Thy-1 (CD90) is a glycosylphosphatidylinositol-anchored protein (GPI-AP) with signaling properties that is abundant on mouse T cells. Upon antibody-mediated crosslinking, Thy-1 provides a T cell receptor (TcR)-like signal that is sufficient to drive CD4+ T cell proliferation and differentiation into effector cells when costimulatory signals are provided by syngeneic lipopolysaccharide-matured bone marrow-derived dendritic cells. In this study, we investigated the impact of Thy-1 signaling on the production of the T helper (Th) cell subset-associated cytokines, interferon (IFN) γ, interleukin (IL)-4 and IL-17A, as well as the in vitro polarization of highly purified resting CD4+ T cells into Th1, Th2, and Th17 cells. Although CD8+ T cells expressed more Thy-1 than CD4+ T cells, both T cell populations were equally responsive to Thy-1 stimulation. In contrast to TcR stimulation of CD3+ T cells, which favored IFNγ and IL-4 production, Thy-1 signaling favored IL-17 synthesis, indicating a previously unidentified difference between the consequences of Thy-1 and TcR signal transduction. Moreover, Thy-1 signaling preferentially induced the Th17-associated transcription factor RORγt in CD4+ T cells. As with TcR signaling, Thy-1 stimulation of CD4+ T cells under the appropriate polarizing conditions resulted in Th1, Th2 or Th17 cell induction; however, Thy-1 stimulation induced nearly 7- and 2-fold more IL-4 and IL-17A, respectively, but only slightly more IFNγ. The ability to provide a TcR-like signal capable of promoting T helper cell differentiation and cytokine synthesis was not common to all GPI-APs since cross-linking of Ly6A/E with mitogenic mAb did not promote substantial production of IFNγ, IL-4 or IL-17, although there was a substantial proliferative response. The preferential induction of RORγt and Th17 cytokine synthesis as a consequence of Thy-1 signaling suggests a default T helper cell response that may enhance host defense against extracellular pathogens.
Collapse
Affiliation(s)
- Suzanne Furlong
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | | | | | - David W Hoskin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Department of Pathology, Dalhousie University, Halifax, NS, Canada.,Department of Surgery, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
111
|
Chen M, Chen X, Wan Q. Altered frequency of Th17 and Treg cells in new-onset systemic lupus erythematosus patients. Eur J Clin Invest 2018; 48:e13012. [PMID: 30079446 DOI: 10.1111/eci.13012] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 07/02/2018] [Accepted: 08/02/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND T helper 17 (Th17) and regulatory T (Treg) cells play an important role in pathogenesis of systemic lupus erythematosus (SLE). Their imbalance was reported in treated SLE patients, while very little is known about the relationship between Th17 and Treg cells in new-onset untreated SLE patients. AIM To assess the role of Th17/Treg cells in the pathogenesis of new-onset SLE. MATERIALS AND METHODS Thirty-nine new-onset SLE patients and 33 age-matched healthy adults were enrolled. We analysed Th17 and Treg cells in different level, including their frequencies in peripheral blood mononuclear cell, the expression of interleukin-17 A (IL-17A) and forkhead box P3 (FoxP3) proteins, the expression of retinoid-related orphan nuclear receptor γt (RORγt) and FoxP3 genes and plasma level of IL-17A. RESULTS The frequency of Th17 and Treg cells, the expression of IL-17A among Th17 cell, the plasma level of IL-17A, the expression of RORγt and FoxP3 genes were all significantly higher in SLE patients. Th17 cells were negatively correlated with Treg cells. We also found that plasma level of IL-17A was positively correlated with SLE disease activities index (SLEDAI) scores and an equation among the level of C3, IgA, IL-17A and SLEDAI scores. CONCLUSIONS Results indicate that Th17 and Treg cells take roles in the pathogenesis of SLE. Th17 cells might suppress the differentiation of Treg cells, and feedback effects might exist between them during SLE pathogenesis. The measure of plasma level of IL-17A may be useful for evaluation of disease activity in new-onset SLE patients.
Collapse
Affiliation(s)
- Min Chen
- Department of Rheumatology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xiaoqi Chen
- Department of Rheumatology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Qianqian Wan
- Department of Rheumatology, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
112
|
SUMOylation of ROR-γt inhibits IL-17 expression and inflammation via HDAC2. Nat Commun 2018; 9:4515. [PMID: 30375383 PMCID: PMC6207785 DOI: 10.1038/s41467-018-06924-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/26/2018] [Indexed: 01/02/2023] Open
Abstract
Dysregulated ROR-γt-mediated IL-17 transcription is central to the pathogenesis of several inflammatory disorders, yet the molecular mechanisms that govern the transcription factor activity of ROR-γt in the regulation of IL-17 are not fully defined. Here we show that SUMO-conjugating enzyme Ubc9 interacts with a conserved GKAE motif in ROR-γt to induce SUMOylation of ROR-γt and suppress IL-17 expression. Th17 cells expressing SUMOylation-defective ROR-γt are highly colitogenic upon transfer to Rag1–/– mice. Mechanistically, SUMOylation of ROR-γt facilitates the binding of HDAC2 to the IL-17 promoter and represses IL-17 transcription. Mice with conditional deletion of HDAC2 in CD4+ T cells have elevated IL-17 expression and severe colitis. The identification of the Ubc9/ROR-γt/HDAC2 axis that governs IL-17 expression may open new venues for the development of therapeutic measures for inflammatory disorders. Interleukin-17 (IL-17)-secreting CD4 T cells (Th17) are induced by the master transcription factor RORγt, and are important for anti-fungal immunity and inflammatory responses. Here the authors show that Ubc9-mediated SUMOylation of RORγt induces HDAC2 binding to IL-17 promoter for suppressing IL-17 production in Th17 cells.
Collapse
|
113
|
Zhu J. T Helper Cell Differentiation, Heterogeneity, and Plasticity. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a030338. [PMID: 28847903 DOI: 10.1101/cshperspect.a030338] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Naïve CD4 T cells, on activation, differentiate into distinct T helper (Th) subsets that produce lineage-specific cytokines. By producing unique sets of cytokines, effector Th subsets play critical roles in orchestrating immune responses to a variety of infections and are involved in the pathogenesis of many inflammatory diseases including autoimmunity, allergy, and asthma. The differentiation of Th cells relies on the strength of T-cell receptor (TCR) signaling and signals triggered by polarizing cytokines that activate and/or up-regulate particular transcription factors. Several lineage-specific master transcription factors dictate Th cell fates and functions. Although these master regulators cross-regulate each other, their expression can be dynamic. Sometimes, they are even coexpressed, resulting in massive Th-cell heterogeneity and plasticity. Similar regulation mediated by these master regulators is also found in innate lymphoid cells (ILCs) that are innate counterparts of Th cells.
Collapse
Affiliation(s)
- Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
114
|
Jaiswal AK, Sadasivam M, Archer NK, Miller RJ, Dillen CA, Ravipati A, Park PW, Chakravarti S, Miller LS, Hamad ARA. Syndecan-1 Regulates Psoriasiform Dermatitis by Controlling Homeostasis of IL-17-Producing γδ T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:1651-1661. [PMID: 30045969 PMCID: PMC12168190 DOI: 10.4049/jimmunol.1800104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023]
Abstract
IL-17 is a potent proinflammatory cytokine that drives pathogenesis of multiple autoimmune diseases, including psoriasis. A major source of pathogenic IL-17 is a subset of γδ T cells (Tγδ17) that acquires the ability to produce IL-17 while developing in the thymus. The mechanisms that regulate homeostasis of Tγδ17 cells and their roles in psoriasis, however, are not fully understood. In this paper, we show that the heparan sulfate proteoglycan syndecan-1 (sdc1) plays a critical role in regulating homeostasis of Tγδ17 cells and modulating psoriasis-like skin inflammation in mice. sdc1 was predominantly expressed by Tγδ17 cells (but not IL-17- Tγδ cells) in the thymus, lymph nodes, and dermis. sdc1 deficiency significantly and selectively increased the frequency and absolute numbers of Tγδ17 cells by mechanisms that included increased proliferation and decreased apoptosis. Adoptive transfer experiments ruled out a significant role of sdc1 expressed on nonhematopoietic cells in halting expansion and proliferation of sdc1-deficient Tγδ17 cells. When subjected to imiquimod-induced psoriasiform dermatitis, Tγδ17 cells in sdc1KO mice displayed heightened responses accompanied by significantly increased skin inflammation than their wild-type counterparts. Furthermore, transferred sdc1-deficient γδ T cells caused more severe psoriasiform dermatitis than their sdc1-sufficient counterparts in TCR-βδ KO hosts. The results uncover a novel role for sdc1 in controlling homeostasis of Tγδ17 cells and moderating host responses to psoriasis-like inflammation.
Collapse
Affiliation(s)
- Anil Kumar Jaiswal
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Mohanraj Sadasivam
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Robert J Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Carly A Dillen
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Advaitaa Ravipati
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Pyong Woo Park
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Shukti Chakravarti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Abdel Rahim A Hamad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
115
|
Bamidele AO, Svingen PA, Sagstetter MR, Sarmento OF, Gonzalez M, Braga Neto MB, Kugathasan S, Lomberk G, Urrutia RA, Faubion WA. Disruption of FOXP3-EZH2 Interaction Represents a Pathobiological Mechanism in Intestinal Inflammation. Cell Mol Gastroenterol Hepatol 2018; 7:55-71. [PMID: 30510991 PMCID: PMC6260395 DOI: 10.1016/j.jcmgh.2018.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023]
Abstract
Background & Aims Forkhead box protein 3 (FOXP3)+ regulatory T cell (Treg) dysfunction is associated with autoimmune diseases; however, the mechanisms responsible for inflammatory bowel disease pathophysiology are poorly understood. Here, we tested the hypothesis that a physical interaction between transcription factor FOXP3 and the epigenetic enzyme enhancer of zeste homolog 2 (EZH2) is essential for gene co-repressive function. Methods Human FOXP3 mutations clinically relevant to intestinal inflammation were generated by site-directed mutagenesis. T lymphocytes were isolated from mice, human blood, and lamina propria of Crohn's disease (CD) patients and non-CD controls. We performed proximity ligation or a co-immunoprecipitation assay in FOXP3-mutant+, interleukin 6 (IL6)-treated or CD-CD4+ T cells to assess FOXP3-EZH2 protein interaction. We studied IL2 promoter activity and chromatin state of the interferon γ locus via luciferase reporter and chromatin-immunoprecipitation assays, respectively, in cells expressing FOXP3 mutants. Results EZH2 binding was abrogated by inflammatory bowel disease-associated FOXP3 cysteine 232 (C232) mutation. The C232 mutant showed impaired repression of IL2 and diminished EZH2-mediated trimethylation of histone 3 at lysine 27 on interferon γ, indicative of compromised Treg physiologic function. Generalizing this mechanism, IL6 impaired FOXP3-EZH2 interaction. IL6-induced effects were reversed by Janus kinase 1/2 inhibition. In lamina propria-derived CD4+T cells from CD patients, we observed decreased FOXP3-EZH2 interaction. Conclusions FOXP3-C232 mutation disrupts EZH2 recruitment and gene co-repressive function. The proinflammatory cytokine IL6 abrogates FOXP3-EZH2 interaction. Studies in lesion-derived CD4+ T cells have shown that reduced FOXP3-EZH2 interaction is a molecular feature of CD patients. Destabilized FOXP3-EZH2 protein interaction via diverse mechanisms and consequent Treg abnormality may drive gastrointestinal inflammation.
Collapse
Key Words
- C232, cysteine 232
- CD, Crohn’s disease
- ChIP, chromatin-immunoprecipitation
- Crohn’s Disease
- EED, embryonic ectoderm development
- EZH2, enhancer of zeste homolog 2
- Epigenetics
- FCS, fetal calf serum
- FOXP3, forkhead domain-containing X-chromosome–encoded protein
- H3K27me3, trimethylated histone H3 at lysine 27
- IBD, inflammatory bowel disease
- IL, interleukin
- IPEX, immune dysregulation, polyendocrinopathy, enteropathy, X-linked
- JAK, Janus kinase
- LZ, leucine zipper
- PBMC, peripheral blood mononuclear cell
- PBS, phosphate-buffered saline
- PLA, proximity ligation assay
- PMA, phorbol 12-myristate 13-acetate
- PRC2, polycomb repressive complex 2
- Proinflammatory Cytokine
- Regulatory T Cells
- STAT, signal transducer and activator of transcription
- SUZ12, suppressor of zeste
- Th, T helper
- Treg, regulatory T cell
- WT, wild-type
- co-IP, co-immunoprecipitation
Collapse
Affiliation(s)
- Adebowale O Bamidele
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Phyllis A Svingen
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Mary R Sagstetter
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Olga F Sarmento
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michelle Gonzalez
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Manuel B Braga Neto
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Subra Kugathasan
- Department of Pediatrics, Emory University, School of Medicine, Atlanta, Georgia
| | - Gwen Lomberk
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Raul A Urrutia
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - William A Faubion
- Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology and Translational Epigenomic Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
116
|
Zhang S. The role of transforming growth factor β in T helper 17 differentiation. Immunology 2018; 155:24-35. [PMID: 29682722 PMCID: PMC6099164 DOI: 10.1111/imm.12938] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 12/12/2022] Open
Abstract
T helper 17 (Th17) cells play critical roles in inflammatory and autoimmune diseases. The lineage-specific transcription factor RORγt is the key regulator for Th17 cell fate commitment. A substantial number of studies have established the importance of transforming growth factor β (TGF-β) -dependent pathways in inducing RORγt expression and Th17 differentiation. TGF-β superfamily members TGF-β1 , TGF-β3 or activin A, in concert with interleukin-6 or interleukin-21, differentiate naive T cells into Th17 cells. Alternatively, Th17 differentiation can occur through TGF-β-independent pathways. However, the mechanism of how TGF-β-dependent and TGF-β-independent pathways control Th17 differentiation remains controversial. This review focuses on the perplexing role of TGF-β in Th17 differentiation, depicts the requirement of TGF-β for Th17 development, and underscores the multiple mechanisms underlying TGF-β-promoted Th17 generation, pathogenicity and plasticity. With new insights and comprehension from recent findings, this review specifically tackles the involvement of the canonical TGF-β signalling components, SMAD2, SMAD3 and SMAD4, summarizes diverse SMAD-independent mechanisms, and highlights the importance of TGF-β signalling in balancing the reciprocal conversion of Th17 and regulatory T cells. Finally, this review includes discussions and perspectives and raises important mechanistic questions about the role of TGF-β in Th17 generation and function.
Collapse
Affiliation(s)
- Song Zhang
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
| |
Collapse
|
117
|
Chuang HC, Tsai CY, Hsueh CH, Tan TH. GLK-IKKβ signaling induces dimerization and translocation of the AhR-RORγt complex in IL-17A induction and autoimmune disease. SCIENCE ADVANCES 2018; 4:eaat5401. [PMID: 30214937 PMCID: PMC6135549 DOI: 10.1126/sciadv.aat5401] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/24/2018] [Indexed: 05/03/2023]
Abstract
Retinoic-acid-receptor-related orphan nuclear receptor γt (RORγt) controls the transcription of interleukin-17A (IL-17A), which plays critical roles in the pathogenesis of autoimmune diseases. Severity of several human autoimmune diseases is correlated with frequencies of germinal center kinase-like kinase (GLK) (also known as MAP4K3)-overexpressing T cells; however, the mechanism of GLK overexpression-induced autoimmunity remains unclear. We report the signal transduction converging on aryl hydrocarbon receptor (AhR)-RORγt interaction to activate transcription of the IL-17A gene in T cells. T cell-specific GLK transgenic mice spontaneously developed autoimmune diseases with selective induction of IL-17A in T cells. In GLK transgenic T cells, protein kinase Cθ (PKCθ) phosphorylated AhR at Ser36 and induced AhR nuclear translocation. AhR also interacted with RORγt and transported RORγt into the nucleus. IKKβ (inhibitor of nuclear factor κB kinase β)-mediated RORγt Ser489 phosphorylation induced the AhR-RORγt interaction. T cell receptor (TCR) signaling also induced the novel RORγt phosphorylation and subsequent AhR-RORγt interaction. Collectively, TCR signaling or GLK overexpression induces IL-17A transcription through the IKKβ-mediated RORγt phosphorylation and the AhR-RORγt interaction in T cells. Our findings suggest that inhibitors of GLK or the AhR-RORγt complex could be used as IL-17A-blocking agents for IL-17A-mediated autoimmune diseases.
Collapse
MESH Headings
- Animals
- Autoimmune Diseases/genetics
- Autoimmune Diseases/metabolism
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/immunology
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Female
- Humans
- I-kappa B Kinase/genetics
- I-kappa B Kinase/immunology
- I-kappa B Kinase/metabolism
- Interleukin-17/genetics
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Jurkat Cells
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Protein Kinase C-theta/genetics
- Protein Kinase C-theta/metabolism
- Protein Multimerization
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/immunology
- Protein Serine-Threonine Kinases/metabolism
- Protein Transport
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/immunology
- Receptors, Aryl Hydrocarbon/metabolism
Collapse
Affiliation(s)
- Huai-Chia Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Ching-Yi Tsai
- Immunology Research Center, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chia-Hsin Hsueh
- Immunology Research Center, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan 35053, Taiwan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Corresponding author.
| |
Collapse
|
118
|
Sun J, Li L, Li L, Ding L, Liu X, Chen X, Zhang J, Qi X, Du J, Huang Z. Metallothionein-1 suppresses rheumatoid arthritis pathogenesis by shifting the Th17/Treg balance. Eur J Immunol 2018; 48:1550-1562. [PMID: 30055006 DOI: 10.1002/eji.201747151] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 05/27/2018] [Accepted: 07/25/2018] [Indexed: 12/26/2022]
Abstract
It is now well accepted that an imbalance between the Th17 and regulatory T-cell responses is closely associated with the development of rheumatoid arthritis (RA). However, the precise regulatory mechanism for the differentiation of Th17 and Treg in RA is not well characterized. The present study showed that metallothionein-1 (MT-1), which is a low molecular weight protein that is involved in the detoxification of heavy metals and scavenging of free radicals, was upregulated in RA. Furthermore, the synovial inflammation and pathologic symptoms in collagen-induced arthritis and collagen antibody-induced arthritis mice were significantly suppressed when MT-1 was expressed intraarticularly. Further investigation revealed that MT-1 inhibited the differentiation of Th17 cells but enhanced that of Treg cells. Furthermore, it markedly decreased both STAT3 and RAR-related orphan receptor gamma t (RORγt) expression in vitro and in vivo. Collectively, our studies demonstrated that MT-1 might manifest as a protein involved in immunosuppression of RA pathogenesis by shifting Th17/Treg balance and may prove to be a potential therapeutic target for RA autoimmune diseases.
Collapse
Affiliation(s)
- Jinxia Sun
- Institute of Biological Therapy, Shenzhen University, Shenzhen, China.,Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Li Li
- Institute of Biological Therapy, Shenzhen University, Shenzhen, China.,Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Lingyun Li
- Institute of Biological Therapy, Shenzhen University, Shenzhen, China.,Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Liping Ding
- Institute of Biological Therapy, Shenzhen University, Shenzhen, China.,Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xiaokai Liu
- Institute of Biological Therapy, Shenzhen University, Shenzhen, China.,Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xianxiong Chen
- Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jinshun Zhang
- Institute of Biological Therapy, Shenzhen University, Shenzhen, China.,Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xin Qi
- Institute of Biological Therapy, Shenzhen University, Shenzhen, China.,Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jing Du
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhong Huang
- Institute of Biological Therapy, Shenzhen University, Shenzhen, China.,Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
119
|
Chalmin F, Humblin E, Ghiringhelli F, Végran F. Transcriptional Programs Underlying Cd4 T Cell Differentiation and Functions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 341:1-61. [PMID: 30262030 DOI: 10.1016/bs.ircmb.2018.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding the basis of cellular differentiation is a fundamental issue in developmental biology but also for the comprehension of pathological processes. In fact, the palette of developmental decisions for naive CD4 T cells is a critical aspect of the development of appropriate immune responses which could control infectious processes or cancer growth. However, the current accumulation of data on CD4 T cells biology reveals a complex world with different helper populations. Naive CD4 T cells can differentiate into different subtypes in response to cytokine stimulation. This stimulation involves a complex transcriptional network implicating the activation of Signal Transducer and Activator of Transcription but also master regulator transcription factors allowing the functions of each helper T lymphocyte subtype. In this review, we will present an overview of the transcriptional regulation which controls process of helper T cells differentiation. We will focus on the role of initiator transcriptional factors and on master regulators but also on other nonspecific transcriptional factors which refine the T helper polarization to stabilize or modulate the differentiation program.
Collapse
Affiliation(s)
- Fanny Chalmin
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France; Centre de Recherche INSERM LNC-UMR1231, Dijon, France; Univ. Bourgogne Franche-Comté, Dijon, France
| | - Etienne Humblin
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France; Centre de Recherche INSERM LNC-UMR1231, Dijon, France; Univ. Bourgogne Franche-Comté, Dijon, France
| | - François Ghiringhelli
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France; Centre de Recherche INSERM LNC-UMR1231, Dijon, France; Univ. Bourgogne Franche-Comté, Dijon, France; Platform of Transfer in Cancer Biology, Centre Georges-François Leclerc, Dijon, France
| | - Frédérique Végran
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France; Univ. Bourgogne Franche-Comté, Dijon, France; Platform of Transfer in Cancer Biology, Centre Georges-François Leclerc, Dijon, France
| |
Collapse
|
120
|
Smith NL, Patel RK, Reynaldi A, Grenier JK, Wang J, Watson NB, Nzingha K, Yee Mon KJ, Peng SA, Grimson A, Davenport MP, Rudd BD. Developmental Origin Governs CD8 + T Cell Fate Decisions during Infection. Cell 2018; 174:117-130.e14. [PMID: 29909981 DOI: 10.1016/j.cell.2018.05.029] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/03/2018] [Accepted: 05/11/2018] [Indexed: 12/22/2022]
Abstract
Heterogeneity is a hallmark feature of the adaptive immune system in vertebrates. Following infection, naive T cells differentiate into various subsets of effector and memory T cells, which help to eliminate pathogens and maintain long-term immunity. The current model suggests there is a single lineage of naive T cells that give rise to different populations of effector and memory T cells depending on the type and amounts of stimulation they encounter during infection. Here, we have discovered that multiple sub-populations of cells exist in the naive CD8+ T cell pool that are distinguished by their developmental origin, unique transcriptional profiles, distinct chromatin landscapes, and different kinetics and phenotypes after microbial challenge. These data demonstrate that the naive CD8+ T cell pool is not as homogeneous as previously thought and offers a new framework for explaining the remarkable heterogeneity in the effector and memory T cell subsets that arise after infection.
Collapse
Affiliation(s)
- Norah L Smith
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Ravi K Patel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Arnold Reynaldi
- Kirby Institute for Infection and Immunity, UNSW Australia, Sydney, NSW 2052, Australia
| | - Jennifer K Grenier
- RNA Sequencing Core, Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Jocelyn Wang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Neva B Watson
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Kito Nzingha
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Kristel J Yee Mon
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Seth A Peng
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Miles P Davenport
- Kirby Institute for Infection and Immunity, UNSW Australia, Sydney, NSW 2052, Australia
| | - Brian D Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
121
|
Kachler K, Holzinger C, Trufa DI, Sirbu H, Finotto S. The role of Foxp3 and Tbet co-expressing Treg cells in lung carcinoma. Oncoimmunology 2018; 7:e1456612. [PMID: 30221050 DOI: 10.1080/2162402x.2018.1456612] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 01/21/2023] Open
Abstract
Despite the opposite roles of Tbet and Foxp3 in the immune system as well as in tumour biology, recent studies have demonstrated the presence of of CD4+ T cells, expressing both, Tbet and Foxp3. Although Tbet+Foxp3+ T cells are currently a subject of intense research, less is known about their biological function especially in cancer. Here we found a considerable accumulation of Tbet+Foxp3+CD4+ T cells, mediated by the immunosuppressive cytokine TGFβ in the lungs of tumour bearing mice. This is in line with previous studies, demonstrating the important role of TGFβ for the immunopathogenesis of cancer. By gathering results both in murine model and in human disease, we demonstrate that, the conversion of IFNγ producing anti-tumoral T-bet+Th1 CD4+ T cells into immunosuppressive Tbet and Foxp3-PD1 co-expressing regulatory cells could represent an additional important mechanism of TGFβ-mediated blockade of anti-tumour immunity.
Collapse
Affiliation(s)
- Katerina Kachler
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Corinna Holzinger
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Denis I Trufa
- Department of Thoracic Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Horia Sirbu
- Department of Thoracic Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
122
|
Kondo Y, Yokosawa M, Kaneko S, Furuyama K, Segawa S, Tsuboi H, Matsumoto I, Sumida T. Review: Transcriptional Regulation of CD4+ T Cell Differentiation in Experimentally Induced Arthritis and Rheumatoid Arthritis. Arthritis Rheumatol 2018; 70:653-661. [PMID: 29245178 PMCID: PMC5947164 DOI: 10.1002/art.40398] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder characterized by chronic inflammation of the joint synovium and infiltration by activated inflammatory cells. CD4+ T cells form a large proportion of the inflammatory cells invading the synovial tissue, and are involved in the RA pathologic process. In general, CD4+ T cells differentiate into various T helper cell subsets and acquire the functional properties to respond to specific pathogens, and also mediate some autoimmune disorders such as RA. Because the differentiation of T helper cell subsets is determined by the expression of specific transcription factors in response to the cytokine environment, these transcription factors are considered to have a role in the pathology of RA. Treg cells control an excess of T cell–mediated immune response, and the transcription factor FoxP3 is critical for the differentiation and function of Treg cells. Treg cell dysfunction can result in the development of systemic autoimmunity. In this review, we summarize how the expression of transcription factors modulates T helper cell immune responses and the development of autoimmune diseases, especially in RA. Understanding the role of transcription factors in the pathogenesis of autoimmunity may lead to novel therapeutic strategies to control the differentiation and function of both T helper cells and Treg cells.
Collapse
|
123
|
Paul J, Singh AK, Kathania M, Elviche TL, Zeng M, Basrur V, Theiss AL, Venuprasad K. IL-17-driven intestinal fibrosis is inhibited by Itch-mediated ubiquitination of HIC-5. Mucosal Immunol 2018; 11:427-436. [PMID: 28612841 DOI: 10.1038/mi.2017.53] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/14/2017] [Indexed: 02/04/2023]
Abstract
Intestinal fibrosis is a major complication in inflammatory bowel diseases, but the regulatory mechanism that inhibits fibrosis remains unclear. Here we demonstrate that Itch-/-myofibroblasts express increased amounts of profibrotic collagen type I and α-SMA in response to IL-17. Mechanistically, we demonstrate that Itch directly binds to HIC-5 and targets it for K63-linked ubiquitination to inhibit IL-17-driven intestinal fibrosis. Reconstitution of Itch-/- myofibroblasts with wild-type Itch but not the Itch-C830A mutant normalized the expression of profibrotic genes. Similarly, shRNA-mediated inhibition of HIC-5 normalized the expression of profibrotic gene expression. Thus, we have uncovered a novel mechanism by which Itch negatively regulates intestinal fibrosis.
Collapse
Affiliation(s)
- J Paul
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas, USA
| | - A K Singh
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas, USA
| | - M Kathania
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas, USA
| | - T L Elviche
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas, USA
| | - M Zeng
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas, USA
| | - V Basrur
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - A L Theiss
- Department of Internal Medicine, Division of Gastroenterology, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas, USA
| | - K Venuprasad
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas, USA
| |
Collapse
|
124
|
Bellissimo DC, Speck NA. RUNX1 Mutations in Inherited and Sporadic Leukemia. Front Cell Dev Biol 2017; 5:111. [PMID: 29326930 PMCID: PMC5742424 DOI: 10.3389/fcell.2017.00111] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022] Open
Abstract
RUNX1 is a recurrently mutated gene in sporadic myelodysplastic syndrome and leukemia. Inherited mutations in RUNX1 cause familial platelet disorder with predisposition to acute myeloid leukemia (FPD/AML). In sporadic AML, mutations in RUNX1 are usually secondary events, whereas in FPD/AML they are initiating events. Here we will describe mutations in RUNX1 in sporadic AML and in FPD/AML, discuss the mechanisms by which inherited mutations in RUNX1 could elevate the risk of AML in FPD/AML individuals, and speculate on why mutations in RUNX1 are rarely, if ever, the first event in sporadic AML.
Collapse
Affiliation(s)
- Dana C Bellissimo
- Department of Cell and Developmental Biology, Perelman School of Medicine, Abramson Family Cancer Research Institute, Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nancy A Speck
- Department of Cell and Developmental Biology, Perelman School of Medicine, Abramson Family Cancer Research Institute, Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
125
|
Moon YM, Lee SY, Kwok SK, Lee SH, Kim D, Kim WK, Her YM, Son HJ, Kim EK, Ryu JG, Seo HB, Kwon JE, Hwang SY, Youn J, Seong RH, Jue DM, Park SH, Kim HY, Ahn SM, Cho ML. The Fos-Related Antigen 1-JUNB/Activator Protein 1 Transcription Complex, a Downstream Target of Signal Transducer and Activator of Transcription 3, Induces T Helper 17 Differentiation and Promotes Experimental Autoimmune Arthritis. Front Immunol 2017; 8:1793. [PMID: 29326694 PMCID: PMC5741610 DOI: 10.3389/fimmu.2017.01793] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/30/2017] [Indexed: 01/11/2023] Open
Abstract
Dysfunction of T helper 17 (Th17) cells leads to chronic inflammatory disorders. Signal transducer and activator of transcription 3 (STAT3) orchestrates the expression of proinflammatory cytokines and pathogenic cell differentiation from interleukin (IL)-17-producing Th17 cells. However, the pathways mediated by STAT3 signaling are not fully understood. Here, we observed that Fos-related antigen 1 (FRA1) and JUNB are directly involved in STAT3 binding to sites in the promoters of Fosl1 and Junb. Promoter binding increased expression of IL-17 and the development of Th17 cells. Overexpression of Fra1 and Junb in mice resulted in susceptibility to collagen-induced arthritis and an increase in Th17 cell numbers and inflammatory cytokine production. In patients with rheumatoid arthritis, FRA1 and JUNB were colocalized with STAT3 in the inflamed synovium. These observations suggest that FRA1 and JUNB are associated closely with STAT3 activation, and that this activation leads to Th17 cell differentiation in autoimmune diseases and inflammation.
Collapse
Affiliation(s)
- Young-Mee Moon
- Laboratory of Immune Network, The Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Seon-Yeong Lee
- Laboratory of Immune Network, The Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Ki Kwok
- Center for Rheumatic Disease, Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung Hoon Lee
- Laboratory of Immune Network, The Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Deokhoon Kim
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Woo Kyung Kim
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Yang-Mi Her
- Laboratory of Immune Network, The Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Hea-Jin Son
- Laboratory of Immune Network, The Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Eun-Kyung Kim
- Laboratory of Immune Network, The Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Jun-Geol Ryu
- Laboratory of Immune Network, The Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Hyeon-Beom Seo
- Laboratory of Immune Network, The Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Jeong-Eun Kwon
- Laboratory of Immune Network, The Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Sue-Yun Hwang
- Department of Chemical Engineering, Hankyong National University, Anseong, South Korea
| | - Jeehee Youn
- Department of Biomedical Sciences, College of Medicine, Hanyang University, Seoul, South Korea
| | - Rho H Seong
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Research Center for Functional Cellulomics, Seoul National University, Seoul, South Korea
| | - Dae-Myung Jue
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- Center for Rheumatic Disease, Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ho-Youn Kim
- Center for Rheumatic Disease, Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Min Ahn
- Department of Hemato-oncology, Bioinformatics, Cancer Research, Systems Biology, Gachon University, Seongnam, South Korea
| | - Mi-La Cho
- Laboratory of Immune Network, The Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
126
|
Qiu YY, Zhou XY, Qian XF, Wu YX, Qin C, Bian T. 1,25-dihydroxyvitamin D3 reduces mouse airway inflammation of neutrophilic asthma by transcriptional modulation of interleukin-17A. Am J Transl Res 2017; 9:5411-5421. [PMID: 29312493 PMCID: PMC5752891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Corticosteroid resistance and severe airflow obstruction have been proved to participate in the neutrophilic inflammation of airway in uncontrollable asthmatics. IL-17 is one of the pro-inflammatory cytokines produced by Th17 cells, and it plays an important role in the neutrophilic inflammation of airway in steroid-resistant asthmatics. Recent data have proved that 1,25(OH)2D3 represses IL-17A in inflammation and Th17-mediated autoimmunity through vitamin D receptors(VDR) at the level of transcription. Our study validated that 1,25-(OH)2D3 can modulate IL-17A on the transcriptional level by using Runx1, thus reducing inflammation in the airway of mice with neutrophilic asthma. 1,25(OH)2D3 may be promising for the therapeutic applications of neutrophilic asthma.
Collapse
Affiliation(s)
- Yu-Ying Qiu
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School321 Zhongshan Road, Nanjing 210008, Jiangsu, P.R. China
| | - Xiao-Yan Zhou
- Department of Respiratory Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical University299 Qingyang Road, Wuxi 214000, Jiangsu, P.R. China
| | - Xiu-Fen Qian
- Department of Respiratory Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical University299 Qingyang Road, Wuxi 214000, Jiangsu, P.R. China
| | - Yu-Xian Wu
- Department of Imaging Center, Shanghai Tongji Hospital Affiliated to Tongji University389 Xincun Road, Shanghai, P.R. China
| | - Chu Qin
- Department of Respiratory Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical University299 Qingyang Road, Wuxi 214000, Jiangsu, P.R. China
| | - Tao Bian
- Department of Respiratory Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical University299 Qingyang Road, Wuxi 214000, Jiangsu, P.R. China
| |
Collapse
|
127
|
Pharmacological inhibition of RORγt suppresses the Th17 pathway and alleviates arthritis in vivo. PLoS One 2017; 12:e0188391. [PMID: 29155882 PMCID: PMC5695821 DOI: 10.1371/journal.pone.0188391] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/20/2017] [Indexed: 12/12/2022] Open
Abstract
Retinoic acid receptor-related-orphan-receptor-C (RORγt) is the key transcription factor that is driving the differentiation of IL-17 producing T-helper 17 (Th17) cells that are implicated in the pathology of various autoimmune and inflammatory diseases. Based on the importance of RORγt in promoting Th17-driven pathology, there is considerable interest to develop low-molecular-weight compounds with the aim of inhibiting the transcriptional activity of this nuclear hormone receptor. In this article, we describe the in vitro and in vivo pharmacology of a potent and selective small-molecular-weight RORγt inverse agonist. The compound binds to the ligand binding domain (LBD) of RORγt leading to displacement of a co-activator peptide. We show for the first time that a RORγt inverse agonist down-regulates permissive histone H3 acetylation and methylation at the IL17A and IL23R promoter regions, thereby providing insight into the transcriptional inhibition of RORγt-dependent genes. Consistent with this, the compound effectively reduced IL-17A production by polarized human T-cells and γδT-cells and attenuated transcription of RORγt target genes. The inhibitor showed good in vivo efficacy in an antigen-induced arthritis model in rats and reduced the frequencies of IL-17A producing cells in ex vivo recall assays. In summary, we demonstrate that inhibiting RORγt by a low-molecular-weight inhibitor results in efficient and selective blockade of the pro-inflammatory Th17/IL-17A pathway making it an attractive target for Th17-mediated disorders.
Collapse
|
128
|
Wang N, Tang H, Wang X, Wang W, Feng J. Homocysteine upregulates interleukin-17A expression via NSun2-mediated RNA methylation in T lymphocytes. Biochem Biophys Res Commun 2017; 493:94-99. [DOI: 10.1016/j.bbrc.2017.09.069] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/13/2017] [Indexed: 01/02/2023]
|
129
|
The Th17 Lineage: From Barrier Surfaces Homeostasis to Autoimmunity, Cancer, and HIV-1 Pathogenesis. Viruses 2017; 9:v9100303. [PMID: 29048384 PMCID: PMC5691654 DOI: 10.3390/v9100303] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 12/12/2022] Open
Abstract
The T helper 17 (Th17) cells represent a subset of CD4+ T-cells with unique effector functions, developmental plasticity, and stem-cell features. Th17 cells bridge innate and adaptive immunity against fungal and bacterial infections at skin and mucosal barrier surfaces. Although Th17 cells have been extensively studied in the context of autoimmunity, their role in various other pathologies is underexplored and remains an area of open investigation. This review summarizes the history of Th17 cell discovery and the current knowledge relative to the beneficial role of Th17 cells in maintaining mucosal immunity homeostasis. We further discuss the concept of Th17 pathogenicity in the context of autoimmunity, cancer, and HIV infection, and we review the most recent discoveries on molecular mechanisms regulating HIV replication/persistence in pathogenic Th17 cells. Finally, we stress the need for novel fundamental research discovery-based Th17-specific therapeutic interventions to treat pathogenic conditions associated with Th17 abnormalities, including HIV infection.
Collapse
|
130
|
Thapa P, Manso B, Chung JY, Romera Arocha S, Xue HH, Angelo DBS, Shapiro VS. The differentiation of ROR-γt expressing iNKT17 cells is orchestrated by Runx1. Sci Rep 2017; 7:7018. [PMID: 28765611 PMCID: PMC5539328 DOI: 10.1038/s41598-017-07365-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/26/2017] [Indexed: 12/31/2022] Open
Abstract
iNKT cells are a unique lineage of T cells that recognize glycolipid presented by CD1d. In the thymus, they differentiate into iNKT1, iNKT2 and iNKT17 effector subsets, characterized by preferential expression of Tbet, Gata3 and ROR-γt and production of IFN-γ, IL-4 and IL-17, respectively. We demonstrate that the transcriptional regulator Runx1 is essential for the generation of ROR-γt expressing iNKT17 cells. PLZF-cre Runx1 cKO mice lack iNKT17 cells in the thymus, spleen and liver. Runx1-deficient iNKT cells have altered expression of several genes important for iNKT17 differentiation, including decreased expression of IL-7Rα, BATF and c-Maf and increased expression of Bcl11b and Lef1. However, reduction of Lef1 expression or introduction of an IL-7Rα transgene is not sufficient to correct the defect in iNKT17 differentiation, demonstrating that Runx1 is a key regulator of several genes required for iNKT17 differentiation. Loss of Runx1 leads to a severe decrease in iNKT cell numbers in the thymus, spleen and liver. The decrease in cell number is due to a combined decrease in proliferation at Stage 1 during thymic development and increased apoptosis. Thus, we describe a novel role of Runx1 in iNKT cell development and differentiation, particularly in orchestrating iNKT17 differentiation.
Collapse
Affiliation(s)
- Puspa Thapa
- Department of Immunology, Mayo Clinic, College of Medicine, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Bryce Manso
- Department of Immunology, Mayo Clinic, College of Medicine, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Ji Young Chung
- Department of Immunology, Mayo Clinic, College of Medicine, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Sinibaldo Romera Arocha
- Department of Immunology, Mayo Clinic, College of Medicine, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Hai-Hui Xue
- Department of Microbiology and Immunology, University of Iowa, 51 Newton Rd Iowa City, IA, 52242, USA
| | - Derek B Sant' Angelo
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School and The Children's Health Institute of New Jersey, 89 French Street, New Brunswick, NJ, 08901, USA
| | - Virginia Smith Shapiro
- Department of Immunology, Mayo Clinic, College of Medicine, 200 1st Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
131
|
Abstract
The proper restraint of the destructive potential of the immune system is essential for maintaining health. Regulatory T (Treg) cells ensure immune homeostasis through their defining ability to suppress the activation and function of other leukocytes. The expression of the transcription factor forkhead box protein P3 (FOXP3) is a well-recognized characteristic of Treg cells, and FOXP3 is centrally involved in the establishment and maintenance of the Treg cell phenotype. In this Review, we summarize how the expression and activity of FOXP3 are regulated across multiple layers by diverse factors. The therapeutic implications of these topics for cancer and autoimmunity are also discussed.
Collapse
|
132
|
Geginat J, Paroni M, Kastirr I, Larghi P, Pagani M, Abrignani S. Reverse plasticity: TGF-β and IL-6 induce Th1-to-Th17-cell transdifferentiation in the gut. Eur J Immunol 2017; 46:2306-2310. [PMID: 27726139 DOI: 10.1002/eji.201646618] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 07/29/2016] [Accepted: 08/25/2016] [Indexed: 01/08/2023]
Abstract
Th17 cells are a heterogeneous population of pro-inflammatory T cells that have been shown to mediate immune responses against intestinal bacteria. Th17 cells are highly plastic and can transdifferentiate to Th1/17 cells or unconventional Th1 cells, which are highly pathogenic in animal models of immune-mediated diseases such as inflammatory bowel diseases. A recent European Journal of Immunology article by Liu et al. (Eur. J. Immunol. 2015. 45:1010-1018) showed, surprisingly, that Th1 cells have a similar plasticity, and could transdifferentiate to Th17 cells. Thus, IFN-γ-producing Th1 effector cells specific for an intestinal microbial antigen were shown to acquire IL-17-producing capacities in the gut in a mouse model of colitis, and in response to TGF-β and IL-6 in vitro. TGF-β induced Runx1, and together with IL-6 was shown to render the ROR-γt and IL-17 promoters in Th1 cells accessible for Runx1 binding. In this commentary, we discuss how this unexpected plasticity of Th1 cells challenges our view on the generation of Th1/17 cells with the capacity to co-produce IL-17 and IFN-γ, and consider possible implications of this Th1-to-Th17-cell conversion for therapies of inflammatory bowel diseases and protective immune responses against intracellular pathogens.
Collapse
Affiliation(s)
- Jens Geginat
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.
| | - Moira Paroni
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Ilko Kastirr
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Paola Larghi
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Massimiliano Pagani
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sergio Abrignani
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.,DISCCO, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
133
|
Sang LX, Chang B, Zhu JF, Yang FL, Li Y, Jiang XF, Wang DN, Lu CL, Sun X. Sodium selenite ameliorates dextran sulfate sodium-induced chronic colitis in mice by decreasing Th1, Th17, and γδT and increasing CD4(+)CD25(+) regulatory T-cell responses. World J Gastroenterol 2017; 23:3850-3863. [PMID: 28638225 PMCID: PMC5467071 DOI: 10.3748/wjg.v23.i21.3850] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/29/2016] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To assess the effect of sodium selenite on the severity of dextran sulfate sodium (DSS)-induced colitis in C57BL/6 mice.
METHODS Mice were randomly divided into four groups (n = 10/group): normal group, selenium (Se) group, chronic colitis group, and Se + chronic colitis group. The mice were sacrificed on day 26. Survival rates, clinical symptoms, colon length, and histological changes were determined. The percentages and absolute numbers of immune system cells in the lamina propria lymphocytes (LPL) of the colon, the expression of mRNA in colon tissue, and the concentrations of Th1, Th17, and Treg cytokines in LPL from the large intestine, were measured.
RESULTS Se significantly ameliorated the symptoms of colitis and histological injury (P < 0.05 each), increasing the proportions of neutrophils and CD4+ CD25+ T cells (P < 0.05 each) and decreasing the proportions of γδT cells, CD4+, CD4+CD44+, and CD4+ CD69+ T cells in LPL (P < 0.05 each). Moreover, Se reduced the expression of IL-6, IFN-γ, IL-17A, IL-21, T-bet, and RORγt (P < 0.05 each), but enhanced the expression of IL-10 and Foxp3 (P < 0.05 each).
CONCLUSION These results suggest that Se protects against DSS-induced chronic colitis perhaps by increasing the number of CD4(+)CD25(+) Tregs that suppress the secretion of proinflammatory cytokines and populations of Th1, Th17, and γδT cells.
Collapse
|
134
|
Bakos E, Thaiss CA, Kramer MP, Cohen S, Radomir L, Orr I, Kaushansky N, Ben-Nun A, Becker-Herman S, Shachar I. CCR2 Regulates the Immune Response by Modulating the Interconversion and Function of Effector and Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:4659-4671. [PMID: 28507030 DOI: 10.4049/jimmunol.1601458] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 04/14/2017] [Indexed: 11/19/2022]
Abstract
Chemokines and chemokine receptors establish a complex network modulating immune cell migration and localization. These molecules were also suggested to mediate the differentiation of leukocytes; however, their intrinsic, direct regulation of lymphocyte fate remained unclear. CCR2 is the main chemokine receptor inducing macrophage and monocyte recruitment to sites of inflammation, and it is also expressed on T cells. To assess whether CCR2 directly regulates T cell responses, we followed the fates of CCR2-/- T cells in T cell-specific inflammatory models. Our in vitro and in vivo results show that CCR2 intrinsically mediates the expression of inflammatory T cell cytokines, and its absence on T cells results in attenuated colitis progression. Moreover, CCR2 deficiency in T cells promoted a program inducing the accumulation of Foxp3+ regulatory T cells, while decreasing the levels of Th17 cells in vivo, indicating that CCR2 regulates the immune response by modulating the effector/regulatory T ratio.
Collapse
Affiliation(s)
- Eszter Bakos
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Christoph A Thaiss
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Matthias P Kramer
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Sivan Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Lihi Radomir
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Irit Orr
- Life Sciences Core Facilities, Department of Biochemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nathali Kaushansky
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Avraham Ben-Nun
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Shirly Becker-Herman
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Idit Shachar
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| |
Collapse
|
135
|
Geng J, Yu S, Zhao H, Sun X, Li X, Wang P, Xiong X, Hong L, Xie C, Gao J, Shi Y, Peng J, Johnson RL, Xiao N, Lu L, Han J, Zhou D, Chen L. The transcriptional coactivator TAZ regulates reciprocal differentiation of T H17 cells and T reg cells. Nat Immunol 2017; 18:800-812. [PMID: 28504697 DOI: 10.1038/ni.3748] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/20/2017] [Indexed: 12/13/2022]
Abstract
An imbalance in the lineages of immunosuppressive regulatory T cells (Treg cells) and the inflammatory TH17 subset of helper T cells leads to the development of autoimmune and/or inflammatory disease. Here we found that TAZ, a coactivator of TEAD transcription factors of Hippo signaling, was expressed under TH17 cell-inducing conditions and was required for TH17 differentiation and TH17 cell-mediated inflammatory diseases. TAZ was a critical co-activator of the TH17-defining transcription factor RORγt. In addition, TAZ attenuated Treg cell development by decreasing acetylation of the Treg cell master regulator Foxp3 mediated by the histone acetyltransferase Tip60, which targeted Foxp3 for proteasomal degradation. In contrast, under Treg cell-skewing conditions, TEAD1 expression and sequestration of TAZ from the transcription factors RORγt and Foxp3 promoted Treg cell differentiation. Furthermore, deficiency in TAZ or overexpression of TEAD1 induced Treg cell differentiation, whereas expression of a transgene encoding TAZ or activation of TAZ directed TH17 cell differentiation. Our results demonstrate a pivotal role for TAZ in regulating the differentiation of Treg cells and TH17 cells.
Collapse
Affiliation(s)
- Jing Geng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shujuan Yu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hao Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiufeng Sun
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xun Li
- Department of Laboratory Medicine, the First Affiliated Hospital, Medical College of Xiamen University, Xiamen, China
| | - Ping Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaolin Xiong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lixin Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Changchuan Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiahui Gao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yiran Shi
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiaqi Peng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Randy L Johnson
- Department of Cancer Biology, Maryland Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Nengming Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Linrong Lu
- Institute of Immunology, Innovation Center for Cell Signaling Network, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lanfen Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
136
|
Ratajewski M, Słomka M, Karaś K, Sobalska-Kwapis M, Korycka-Machała M, Sałkowska A, Dziadek J, Strapagiel D, Dastych J. Functional Analysis of the rs774872314, rs116171003, rs200231898 and rs201107751 Polymorphisms in the Human RORγT Gene Promoter Region. Genes (Basel) 2017; 8:genes8040126. [PMID: 28430123 PMCID: PMC5406873 DOI: 10.3390/genes8040126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 12/11/2022] Open
Abstract
RAR-related orphan receptor gamma RORγT, a tissue-specific isoform of the RORC gene, plays a critical role in the development of naive CD4+ cells into fully differentiated Th17 lymphocytes. Th17 lymphocytes are part of the host defense against numerous pathogens and are also involved in the pathogenesis of inflammatory diseases, including autoimmune disorders. In this study, we functionally examined four naturally occurring polymorphisms located within one of the previously identified GC-boxes in the promoter region of the gene. The single nucleotide polymorphisms (SNPs) rs774872314, rs116171003 and rs201107751 negatively influenced the activity of the RORγT promoter in a gene reporter system and eliminated or reduced Sp1 and Sp2 transcription factor binding, as evidenced by the electrophoretic mobility shift assay (EMSA) technique. Furthermore, we investigated the frequency of these SNPs in the Polish population and observed the presence of rs116171003 at a frequency of 3.42%. Thus, our results suggest that polymorphisms within the RORγT promoter occurring at significant rates in populations affect promoter activity. This might have phenotypic effects in immune systems, which is potentially significant for implicating pathogenetic mechanisms under certain pathological conditions, such as autoimmune diseases and/or primary immunodeficiencies (e.g., immunoglobulin E (IgE) syndrome).
Collapse
Affiliation(s)
- Marcin Ratajewski
- Laboratory of TranscriptionalRegulation, Institute of MedicalBiology, PolishAcademy of Sciences, 93-232 Lodz, Poland.
| | - Marcin Słomka
- BiobankLab, Department of MolecularBiophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland.
| | - Kaja Karaś
- Laboratory of TranscriptionalRegulation, Institute of MedicalBiology, PolishAcademy of Sciences, 93-232 Lodz, Poland.
| | - Marta Sobalska-Kwapis
- BiobankLab, Department of MolecularBiophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland.
| | - Małgorzata Korycka-Machała
- MycobacteriumGenetics and Physiology Unit, Institute of MedicalBiology, PolishAcademy of Sciences, 93-232 Lodz, Poland.
| | - Anna Sałkowska
- Laboratory of TranscriptionalRegulation, Institute of MedicalBiology, PolishAcademy of Sciences, 93-232 Lodz, Poland.
| | - Jarosław Dziadek
- MycobacteriumGenetics and Physiology Unit, Institute of MedicalBiology, PolishAcademy of Sciences, 93-232 Lodz, Poland.
| | - Dominik Strapagiel
- BiobankLab, Department of MolecularBiophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland.
| | - Jarosław Dastych
- Laboratory of Cellular Immunology, Institute of MedicalBiology, PolishAcademy of Sciences, 93-232 Lodz, Poland.
| |
Collapse
|
137
|
Sehrawat S, Rouse BT. Interplay of Regulatory T Cell and Th17 Cells during Infectious Diseases in Humans and Animals. Front Immunol 2017; 8:341. [PMID: 28421070 PMCID: PMC5377923 DOI: 10.3389/fimmu.2017.00341] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/09/2017] [Indexed: 12/14/2022] Open
Abstract
It is now clear that the outcome of an inflammatory process caused by infections depends on the balance of responses by several components of the immune system. Of particular relevance is the interplay between regulatory T cells (Tregs) and CD4+ T cells that produce IL-17 (Th17 cells) during immunoinflammatory events. In addition to discussing studies done in mice to highlight some unresolved issues in the biology of these cells, we emphasize the need to include outbred animals and humans in analyses. Achieving a balance between Treg and Th17 cells responses represents a powerful approach to control events during immunity and immunopathology.
Collapse
Affiliation(s)
- Sharvan Sehrawat
- Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Barry T Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
138
|
Bhaumik S, Basu R. Cellular and Molecular Dynamics of Th17 Differentiation and its Developmental Plasticity in the Intestinal Immune Response. Front Immunol 2017; 8:254. [PMID: 28408906 PMCID: PMC5374155 DOI: 10.3389/fimmu.2017.00254] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/21/2017] [Indexed: 01/15/2023] Open
Abstract
After emerging from the thymus, naive CD4 T cells circulate through secondary lymphoid tissues, including gut-associated lymphoid tissue of the intestine. The activation of naïve CD4 T cells by antigen-presenting cells offering cognate antigen initiate differentiation programs that lead to the development of highly specialized T helper (Th) cell lineages. Although initially believed that developmental programing of effector T cells such as T helper 1 (Th1) or T helper 2 (Th2) resulted in irreversible commitment to a fixed fate, subsequent studies have demonstrated greater flexibility, or plasticity, in effector T cell stability than originally conceived. This is particularly so for the Th17 subset, differentiation of which is a highly dynamic process with overlapping developmental axes with inducible regulatory T (iTreg), T helper 22 (Th22), and Th1 cells. Accordingly, intermediary stages of Th17 cells are found in various tissues, which co-express lineage-specific transcription factor(s) or cytokine(s) of developmentally related CD4 T cell subsets. A highly specialized tissue like that of the intestine, which harbors the largest immune compartment of the body, adds several layers of complexity to the intricate process of Th differentiation. Due to constant exposure to millions of commensal microbes and periodic exposure to pathogens, the intestinal mucosa maintains a delicate balance between regulatory and effector T cells. It is becoming increasingly clear that equilibrium between tolerogenic and inflammatory axes is maintained in the intestine by shuttling the flexible genetic programming of a developing CD4 T cell along the developmental axis of iTreg, Th17, Th22, and Th1 subsets. Currently, Th17 plasticity remains an unresolved concern in the field of clinical research as targeting Th17 cells to cure immune-mediated disease might also target its related subsets. In this review, we discuss the expanding sphere of Th17 plasticity through its shared developmental axes with related cellular subsets such as Th22, Th1, and iTreg in the context of intestinal inflammation and also examine the molecular and epigenetic features of Th17 cells that mediate these overlapping developmental programs.
Collapse
Affiliation(s)
- Suniti Bhaumik
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Rajatava Basu
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| |
Collapse
|
139
|
Gao P, Liu H, Huang H, Zhang Q, Strober W, Zhang F. The Inflammatory Bowel Disease-Associated Autophagy Gene Atg16L1T300A Acts as a Dominant Negative Variant in Mice. THE JOURNAL OF IMMUNOLOGY 2017; 198:2457-2467. [PMID: 28202618 DOI: 10.4049/jimmunol.1502652] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 01/16/2017] [Indexed: 11/19/2022]
Abstract
The basis of the increased risk for Crohn's disease conferred by the Atg16L1T300A polymorphism is incompletely understood. An important step forward came from the recent demonstration that the murine equivalent of Atg16L1T300A (Atg16L1T316A) exhibits increased susceptibility to caspase 3-mediated cleavage and resulting decreased levels of full-length Atg16L1 in macrophages. However, although this finding showed that this polymorphism is a loss-of-function abnormality, it did not address the possibility that this polymorphism also affects the function of a normal Atg16L1 allele in heterozygous mice. Therefore, we evaluated the function of the Atg16L1T300A polymorphism heterozygote and homozygote in knock-in (KI) mice. Surprisingly, we found that macrophages from both types of KI mice exhibit defective autophagic induction; accordingly, both types of mice exhibit defects in bacterial clearance coupled with increased inflammasome cytokine (IL-1β) responses. Furthermore, macrophages from both types of KI mice displayed defects in TNF-α-induced Atg16L1T300A cleavage, increased retention of bacteria, bacterial dissemination, and Salmonella-induced colitis. These studies suggested that chromosomes bearing the Atg16L1T300A polymorphism can interfere with the function of the wild-type (WT) Atg16L1 allele and, thus, that the Crohn's disease risk polymorphism is a dominant-negative variant with the potential to act as a disease factor, even when present on only one chromosome. This conclusion was supported by the finding that mice bearing a WT Atg16L1 allele and a null allele (Atg16L1KO/+ mice) exhibit normal autophagic function equivalent to that of WT mice.
Collapse
Affiliation(s)
- Ping Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongtao Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huarong Huang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Warren Strober
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Fuping Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
140
|
Yokosawa M, Kondo Y, Tahara M, Iizuka-Koga M, Segawa S, Kaneko S, Tsuboi H, Yoh K, Takahashi S, Matsumoto I, Sumida T. T-bet over-expression regulates aryl hydrocarbon receptor-mediated T helper type 17 differentiation through an interferon (IFN)γ-independent pathway. Clin Exp Immunol 2017; 188:22-35. [PMID: 27936495 DOI: 10.1111/cei.12912] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2016] [Indexed: 01/27/2023] Open
Abstract
Various transcription factors are also known to enhance or suppress T helper type 17 (Th17) differentiation. We have shown previously that the development of collagen-induced arthritis was suppressed in T-bet transgenic (T-bet Tg) mice, and T-bet seemed to suppress Th17 differentiation through an interferon (IFN)-γ-independent pathway, although the precise mechanism remains to be clarified. The present study was designed to investigate further the mechanisms involved in the regulation of Th17 differentiation by T-bet over-expression, and we found the new relationship between T-bet and aryl hydrocarbon receptor (AHR). Both T-bet Tg mice and IFN-γ-/- -over-expressing T-bet (T-bet Tg/IFN-γ-/- ) mice showed inhibition of retinoic acid-related orphan receptor (ROR)γt expression and IL-17 production by CD4+ T cells cultured under conditions that promote Th-17 differentiation, and decreased IL-6 receptor (IL-6R) expression and signal transducer and activator of transcription-3 (STAT-3) phosphorylation in CD4+ T cells. The mRNA expression of ahr and rorc were suppressed in CD4+ T cells cultured under Th-17 conditions from T-bet Tg mice and T-bet Tg/IFN-γ-/- mice. CD4+ T cells of wild-type (WT) and IFN-γ-/- mice transduced with T-bet-expressing retrovirus also showed inhibition of IL-17 production, whereas T-bet transduction had no effect on IL-6R expression and STAT-3 phosphorylation. Interestingly, the mRNA expression of ahr and rorc were suppressed in CD4+ T cells with T-bet transduction cultured under Th17 conditions. The enhancement of interleukin (IL)-17 production from CD4+ T cells by the addition of AHR ligand with Th17 conditions was cancelled by T-bet over-expression. Our findings suggest that T-bet over-expression-induced suppression of Th17 differentiation is mediated through IFN-γ-independent AHR suppression.
Collapse
Affiliation(s)
- M Yokosawa
- Division of Rheumatology, Department of Internal Medicine, University of Tsukuba, Tsukuba city, Ibaraki, Japan
| | - Y Kondo
- Division of Rheumatology, Department of Internal Medicine, University of Tsukuba, Tsukuba city, Ibaraki, Japan
| | - M Tahara
- Division of Rheumatology, Department of Internal Medicine, University of Tsukuba, Tsukuba city, Ibaraki, Japan
| | - M Iizuka-Koga
- Division of Rheumatology, Department of Internal Medicine, University of Tsukuba, Tsukuba city, Ibaraki, Japan
| | - S Segawa
- Division of Rheumatology, Department of Internal Medicine, University of Tsukuba, Tsukuba city, Ibaraki, Japan
| | - S Kaneko
- Division of Rheumatology, Department of Internal Medicine, University of Tsukuba, Tsukuba city, Ibaraki, Japan
| | - H Tsuboi
- Division of Rheumatology, Department of Internal Medicine, University of Tsukuba, Tsukuba city, Ibaraki, Japan
| | - K Yoh
- Division of Nephrology, Department of Medicine, University of Tsukuba, Tsukuba city, Ibaraki, Japan.,Department of Anatomy and Embryology, University of Tsukuba, Tsukuba city, Ibaraki, Japan
| | - S Takahashi
- Department of Anatomy and Embryology, University of Tsukuba, Tsukuba city, Ibaraki, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba city, Ibaraki, Japan.,Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba city, Ibaraki, Japan.,Laboratory Animal Resource Center (LARC), University of Tsukuba, Tsukuba city, Ibaraki, Japan
| | - I Matsumoto
- Division of Rheumatology, Department of Internal Medicine, University of Tsukuba, Tsukuba city, Ibaraki, Japan
| | - T Sumida
- Division of Rheumatology, Department of Internal Medicine, University of Tsukuba, Tsukuba city, Ibaraki, Japan
| |
Collapse
|
141
|
Serena G, Yan S, Camhi S, Patel S, Lima RS, Sapone A, Leonard MM, Mukherjee R, Nath BJ, Lammers KM, Fasano A. Proinflammatory cytokine interferon-γ and microbiome-derived metabolites dictate epigenetic switch between forkhead box protein 3 isoforms in coeliac disease. Clin Exp Immunol 2017; 187:490-506. [PMID: 27936497 DOI: 10.1111/cei.12911] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/21/2022] Open
Abstract
Coeliac disease (CD) is an autoimmune enteropathy triggered by gluten and characterized by a strong T helper type 1 (Th1)/Th17 immune response in the small intestine. Regulatory T cells (Treg ) are CD4+ CD25++ forkhead box protein 3 (FoxP3+ ) cells that regulate the immune response. Conversely to its counterpart, FoxP3 full length (FL), the alternatively spliced isoform FoxP3 Δ2, cannot properly down-regulate the Th17-driven immune response. As the active state of CD has been associated with impairments in Treg cell function, we aimed at determining whether imbalances between FoxP3 isoforms may be associated with the disease. Intestinal biopsies from patients with active CD showed increased expression of FOXP3 Δ2 isoform over FL, while both isoforms were expressed similarly in non-coeliac control subjects (HC). Conversely to what we saw in the intestine, peripheral blood mononuclear cells (PBMC) from HC subjects did not show the same balance between isoforms. We therefore hypothesized that the intestinal microenvironment may play a role in modulating alternative splicing. The proinflammatory intestinal microenvironment of active patients has been reported to be enriched in butyrate-producing bacteria, while high concentrations of lactate have been shown to characterize the preclinical stage of the disease. We show that the combination of interferon (IFN)-γ and butyrate triggers the balance between FoxP3 isoforms in HC subjects, while the same does not occur in CD patients. Furthermore, we report that lactate increases both isoforms in CD patients. Collectively, these findings highlight the importance of the ratio between FoxP3 isoforms in CD and, for the first time, associate the alternative splicing process mechanistically with microbial-derived metabolites.
Collapse
Affiliation(s)
- G Serena
- Massachusetts General Hospital and Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Boston, MA, USA.,Graduate Program in Life Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - S Yan
- Massachusetts General Hospital and Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Boston, MA, USA
| | - S Camhi
- Massachusetts General Hospital and Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Boston, MA, USA
| | - S Patel
- Massachusetts General Hospital and Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Boston, MA, USA
| | - R S Lima
- Massachusetts General Hospital and Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Boston, MA, USA
| | - A Sapone
- Massachusetts General Hospital and Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Boston, MA, USA.,Celiac Center, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - M M Leonard
- Massachusetts General Hospital and Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Boston, MA, USA
| | - R Mukherjee
- Celiac Center, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - B J Nath
- Department of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - K M Lammers
- Massachusetts General Hospital and Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Boston, MA, USA
| | - A Fasano
- Massachusetts General Hospital and Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Boston, MA, USA.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| |
Collapse
|
142
|
Roles of RUNX Complexes in Immune Cell Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:395-413. [DOI: 10.1007/978-981-10-3233-2_24] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
143
|
Eskandarpour M, Alexander R, Adamson P, Calder VL. Pharmacological Inhibition of Bromodomain Proteins Suppresses Retinal Inflammatory Disease and Downregulates Retinal Th17 Cells. THE JOURNAL OF IMMUNOLOGY 2016; 198:1093-1103. [PMID: 28039300 DOI: 10.4049/jimmunol.1600735] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 11/24/2016] [Indexed: 02/07/2023]
Abstract
Experimental autoimmune uveitis (EAU), in which CD4+ Th1 and/or Th17 cells are immunopathogenic, mimics various clinical features of noninfectious uveitis in humans. The impact of bromodomain extraterminal (BET) inhibitors on Th17 cell function was studied in a mouse model of EAU in vivo and in mouse and human Th17 cells in vitro. Two BET inhibitors (GSK151 and JQ1) were able to ameliorate the progression of inflammation in EAU and in mouse CD4+ T cells in vitro, downregulating levels of Th17 cells. Additionally, the uveitogenic capacity of Th17 cells to transfer EAU was abrogated by BET inhibitors in an adoptive transfer model. In human CD4+ T cells, a 5-d exposure to BET inhibitors was accompanied by a significant downregulation of Th17-associated genes IL-17A, IL-22, and retinoic acid-related orphan receptor γt. However, in vitro, the inhibitors had no effect on already polarized Th17 cells. The key finding is that, in response to BET inhibitors, Th17-enriched cultures developed a regulatory phenotype, upregulated FOXP3 expression and IL-10 secretion, and lost pathogenicity in vivo. We conclude that BET targeting of Th17 cells is a potential therapeutic opportunity for a wide range of inflammatory and autoimmune diseases, including uveitis.
Collapse
Affiliation(s)
- Malihe Eskandarpour
- University College London Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Robert Alexander
- University College London Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Peter Adamson
- University College London Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Virginia L Calder
- University College London Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| |
Collapse
|
144
|
Notch regulates Th17 differentiation and controls trafficking of IL-17 and metabolic regulators within Th17 cells in a context-dependent manner. Sci Rep 2016; 6:39117. [PMID: 27974744 PMCID: PMC5156918 DOI: 10.1038/srep39117] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/11/2016] [Indexed: 01/07/2023] Open
Abstract
Th17 cells play critical roles in host defense and autoimmunity. Emerging data support a role for Notch signaling in Th17 cell differentiation but whether it is a positive or negative regulator remains unclear. We report here that T cell-specific deletion of Notch receptors enhances Th17 cell differentiation in the gut, with a corresponding increase in IL-17 secretion. An increase in Th17 cell frequency was similarly observed following immunization of T cell specific Notch mutant mice with OVA/CFA. However, in this setting, Th17 cytokine secretion was impaired, and increased intracellular retention of IL-17 was observed. Intracellular IL-17 co-localized with the CD71 iron transporter in the draining lymph node of both control and Notch-deficient Th17 cells. Immunization induced CD71 surface expression in control, but not in Notch-deficient Th17 cells, revealing defective CD71 intracellular transport in absence of Notch signaling. Moreover, Notch receptor deficient Th17 cells had impaired mTORC2 activity. These data reveal a context-dependent impact of Notch on vesicular transport during high metabolic demand suggesting a role for Notch signaling in the bridging of T cell metabolic demands and effector functions. Collectively, our findings indicate a prominent regulatory role for Notch signaling in the fine-tuning of Th17 cell differentiation and effector function.
Collapse
|
145
|
Ren J, Li B. The Functional Stability of FOXP3 and RORγt in Treg and Th17 and Their Therapeutic Applications. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 107:155-189. [PMID: 28215223 DOI: 10.1016/bs.apcsb.2016.10.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The balance of CD4+CD25+FOXP3+ regulatory T cells (Tregs) and effector T cells plays a key role in maintaining immune homeostasis, while the imbalance of them is related to many inflammatory diseases in both human and mice. Here we discuss about the plasticity of Tregs and Th17 cells, and the related human diseases resulted from the imbalance of them. Further, we will focus on the mechanisms regulating the plasticity between Tregs and Th17 cells and the potential therapeutic strategies by targeting regulators of the expression and activity of FOXP3 and RORγt or regulators of Treg/Th17 balance in autoimmune diseases, allergy, infection, and cancer.
Collapse
Affiliation(s)
- J Ren
- Key Laboratory of Molecular Virology and Immunology, CAS Center for Excellence in Molecular Cell Science, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Universities and Colleges Admissions Service, Shanghai, PR China
| | - B Li
- Key Laboratory of Molecular Virology and Immunology, CAS Center for Excellence in Molecular Cell Science, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Universities and Colleges Admissions Service, Shanghai, PR China; Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
146
|
Yoshida N, Comte D, Mizui M, Otomo K, Rosetti F, Mayadas TN, Crispín JC, Bradley SJ, Koga T, Kono M, Karampetsou MP, Kyttaris VC, Tenbrock K, Tsokos GC. ICER is requisite for Th17 differentiation. Nat Commun 2016; 7:12993. [PMID: 27680869 PMCID: PMC5056420 DOI: 10.1038/ncomms12993] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/24/2016] [Indexed: 12/25/2022] Open
Abstract
Inducible cAMP early repressor (ICER) has been described as a transcriptional repressor isoform of the cAMP response element modulator (CREM). Here we report that ICER is predominantly expressed in Th17 cells through the IL-6–STAT3 pathway and binds to the Il17a promoter, where it facilitates the accumulation of the canonical enhancer RORγt. In vitro differentiation from naive ICER/CREM-deficient CD4+ T cells to Th17 cells is impaired but can be rescued by forced overexpression of ICER. Consistent with a role of Th17 cells in autoimmune and inflammatory diseases, ICER/CREM-deficient B6.lpr mice are protected from developing autoimmunity. Similarly, both anti-glomerular basement membrane-induced glomerulonephritis and experimental encephalomyelitis are attenuated in ICER/CREM-deficient mice compared with their ICER/CREM-sufficient littermates. Importantly, we find ICER overexpressed in CD4+ T cells from patients with systemic lupus erythematosus. Collectively, our findings identify a unique role for ICER, which affects both organ-specific and systemic autoimmunity in a Th17-dependent manner. ICER is a CREM splice variant that represses CREM/CREB signalling. Here the authors use human cells and mouse models of various autoimmune diseases to show that ICER is central to pathogenic Th17 cell differentiation in autoimmunity.
Collapse
Affiliation(s)
- Nobuya Yoshida
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Denis Comte
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.,Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | - Masayuki Mizui
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Kotaro Otomo
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Florencia Rosetti
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Tanya N Mayadas
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - José C Crispín
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Sean J Bradley
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Tomohiro Koga
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Michihito Kono
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Maria P Karampetsou
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Vasileios C Kyttaris
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Klaus Tenbrock
- Department of Pediatrics, Division of Allergology and Immunology, RWTH University of Aachen, 52056 Aachen, Germany
| | - George C Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
147
|
Gabriel CH, Gross F, Karl M, Stephanowitz H, Hennig AF, Weber M, Gryzik S, Bachmann I, Hecklau K, Wienands J, Schuchhardt J, Herzel H, Radbruch A, Krause E, Baumgrass R. Identification of Novel Nuclear Factor of Activated T Cell (NFAT)-associated Proteins in T Cells. J Biol Chem 2016; 291:24172-24187. [PMID: 27637333 DOI: 10.1074/jbc.m116.739326] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/13/2016] [Indexed: 12/12/2022] Open
Abstract
Transcription factors of the nuclear factor of activated T cell (NFAT) family are essential for antigen-specific T cell activation and differentiation. Their cooperative DNA binding with other transcription factors, such as AP1 proteins (FOS, JUN, and JUNB), FOXP3, IRFs, and EGR1, dictates the gene regulatory action of NFATs. To identify as yet unknown interaction partners of NFAT, we purified biotin-tagged NFATc1/αA, NFATc1/βC, and NFATc2/C protein complexes and analyzed their components by stable isotope labeling by amino acids in cell culture-based mass spectrometry. We revealed more than 170 NFAT-associated proteins, half of which are involved in transcriptional regulation. Among them are many hitherto unknown interaction partners of NFATc1 and NFATc2 in T cells, such as Raptor, CHEK1, CREB1, RUNX1, SATB1, Ikaros, and Helios. The association of NFATc2 with several other transcription factors is DNA-dependent, indicating cooperative DNA binding. Moreover, our computational analysis discovered that binding motifs for RUNX and CREB1 are found preferentially in the direct vicinity of NFAT-binding motifs and in a distinct orientation to them. Furthermore, we provide evidence that mTOR and CHEK1 kinase activity influence NFAT's transcriptional potency. Finally, our dataset of NFAT-associated proteins provides a good basis to further study NFAT's diverse functions and how these are modulated due to the interplay of multiple interaction partners.
Collapse
Affiliation(s)
- Christian H Gabriel
- From the German Rheumatism Research Center (DRFZ), Leibniz Institute, 10117 Berlin
| | - Fridolin Gross
- the Institute for Theoretical Biology, Charité and Humboldt University Berlin, 10015 Berlin
| | - Martin Karl
- From the German Rheumatism Research Center (DRFZ), Leibniz Institute, 10117 Berlin
| | | | - Anna Floriane Hennig
- From the German Rheumatism Research Center (DRFZ), Leibniz Institute, 10117 Berlin
| | - Melanie Weber
- From the German Rheumatism Research Center (DRFZ), Leibniz Institute, 10117 Berlin
| | - Stefanie Gryzik
- From the German Rheumatism Research Center (DRFZ), Leibniz Institute, 10117 Berlin
| | | | - Katharina Hecklau
- From the German Rheumatism Research Center (DRFZ), Leibniz Institute, 10117 Berlin
| | - Jürgen Wienands
- the Institute of Cellular and Molecular Immunology, Georg-August-University of Göttingen, 37073 Göttingen, Germany
| | | | - Hanspeter Herzel
- the Institute for Theoretical Biology, Charité and Humboldt University Berlin, 10015 Berlin
| | - Andreas Radbruch
- From the German Rheumatism Research Center (DRFZ), Leibniz Institute, 10117 Berlin
| | - Eberhard Krause
- the Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin
| | - Ria Baumgrass
- From the German Rheumatism Research Center (DRFZ), Leibniz Institute, 10117 Berlin,
| |
Collapse
|
148
|
Ebel ME, Kansas GS. Functions of Smad Transcription Factors in TGF-β1-Induced Selectin Ligand Expression on Murine CD4 Th Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:2627-34. [PMID: 27543612 DOI: 10.4049/jimmunol.1600723] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/27/2016] [Indexed: 12/16/2022]
Abstract
Selectins are carbohydrate-binding adhesion molecules that control leukocyte traffic. Induction of selectin ligands on T cells is controlled primarily by cytokines, including TGF-β1, and requires p38α MAPK, but transcriptional mechanisms that underlie cytokine-driven selectin ligand expression are poorly understood. In this study, we show, using mice with conditional deletions of the TGF-β1-responsive transcription factors Smad2, Smad3, or Smad4, that induction of selectin ligands on CD4 cells in response to TGF-β1 requires Smad4 plus either Smad2 or Smad3. Analysis of CD4 cells from mice with only one functional Smad4 allele revealed a sharp gene dosage effect, suggesting the existence of a threshold of TGF-β1 signal strength required for selectin ligand induction. Both Smad4 plus either Smad2 or Smad3 were selectively required for induction of Fut7 and Gcnt1, glycosyltransferases critical for selectin ligand biosynthesis, but they were not required for St3gal4 or St3gal6 induction. Smad4 plus either Smad2 or Smad3 were also required for induction of Runx transcription factors by TGF-β1. Enforced expression of Runx2, but not Runx1 or Runx3, in Smad2/Smad3 doubly deficient CD4 cells restored selectin ligand expression to wild-type levels. In contrast, enforced expression of Runx1, Runx2, or Runx3 failed to restore differentiation of TGF-β1-dependent Th cell lineages, including Th17, Th9, and induced regulatory T cells. These results show that Smads are directly required for Th cell differentiation independent of Runx induction but only indirectly required via Runx2 for TGF-β1-induced selectin ligand induction on murine CD4 T cells.
Collapse
Affiliation(s)
- Mark E Ebel
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Geoffrey S Kansas
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
149
|
Post-translational regulation of RORγt—A therapeutic target for the modulation of interleukin-17-mediated responses in autoimmune diseases. Cytokine Growth Factor Rev 2016; 30:1-17. [DOI: 10.1016/j.cytogfr.2016.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 07/22/2016] [Indexed: 01/16/2023]
|
150
|
Kathania M, Khare P, Zeng M, Cantarel B, Zhang H, Ueno H, Venuprasad K. Itch inhibits IL-17-mediated colon inflammation and tumorigenesis by ROR-γt ubiquitination. Nat Immunol 2016; 17:997-1004. [PMID: 27322655 DOI: 10.1038/ni.3488] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/05/2016] [Indexed: 02/06/2023]
Abstract
Dysregulated expression of interleukin 17 (IL-17) in the colonic mucosa is associated with colonic inflammation and cancer. However, the cell-intrinsic molecular mechanisms by which IL-17 expression is regulated remain unclear. We found that deficiency in the ubiquitin ligase Itch led to spontaneous colitis and increased susceptibility to colon cancer. Itch deficiency in the TH17 subset of helper T cells, innate lymphoid cells and γδ T cells resulted in the production of elevated amounts of IL-17 in the colonic mucosa. Mechanistically, Itch bound to the transcription factor ROR-γt and targeted ROR-γt for ubiquitination. Inhibition or genetic inactivation of ROR-γt attenuated IL-17 expression and reduced spontaneous colonic inflammation in Itch(-/-) mice. Thus, we have identified a previously unknown role for Itch in regulating IL-17-mediated colonic inflammation and carcinogenesis.
Collapse
Affiliation(s)
- Mahesh Kathania
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas, USA
| | - Prashant Khare
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas, USA
| | - Minghui Zeng
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas, USA
| | - Brandi Cantarel
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Haiying Zhang
- Department of Pathology, Baylor University Medical Center, Dallas, Texas, USA
| | - Hideki Ueno
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - K Venuprasad
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas, USA
| |
Collapse
|