101
|
Mugisho OO, Aryal J, Shome A, Lyon H, Acosta ML, Green CR, Rupenthal ID. Orally Delivered Connexin43 Hemichannel Blocker, Tonabersat, Inhibits Vascular Breakdown and Inflammasome Activation in a Mouse Model of Diabetic Retinopathy. Int J Mol Sci 2023; 24:3876. [PMID: 36835288 PMCID: PMC9961562 DOI: 10.3390/ijms24043876] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Diabetic retinopathy (DR), a microvascular complication of diabetes, is associated with pronounced inflammation arising from the activation of a nucleotide-binding and oligomerization domain-like receptor (NLR) protein 3 (NLRP3) inflammasome. Cell culture models have shown that a connexin43 hemichannel blocker can prevent inflammasome activation in DR. The aim of this study was to evaluate the ocular safety and efficacy of tonabersat, an orally bioavailable connexin43 hemichannel blocker, to protect against DR signs in an inflammatory non-obese diabetic (NOD) DR mouse model. For retina safety studies, tonabersat was applied to retinal pigment epithelial (ARPE-19) cells or given orally to control NOD mice in the absence of any other stimuli. For efficacy studies, either tonabersat or a vehicle was given orally to the inflammatory NOD mouse model two hours before an intravitreal injection of pro-inflammatory cytokines, interleukin-1 beta, and tumour necrosis factor-alpha. Fundus and optical coherence tomography images were acquired at the baseline as well as at 2- and 7-day timepoints to assess microvascular abnormalities and sub-retinal fluid accumulation. Retinal inflammation and inflammasome activation were also assessed using immunohistochemistry. Tonabersat did not have any effect on ARPE-19 cells or control NOD mouse retinas in the absence of other stimuli. However, the tonabersat treatment in the inflammatory NOD mice significantly reduced macrovascular abnormalities, hyperreflective foci, sub-retinal fluid accumulation, vascular leak, inflammation, and inflammasome activation. These findings suggest that tonabersat may be a safe and effective treatment for DR.
Collapse
Affiliation(s)
- Odunayo O. Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, University of Auckland, Auckland 1023, New Zealand; (O.O.M.); (J.A.); (A.S.); (H.L.); (I.D.R.)
| | - Jyoti Aryal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, University of Auckland, Auckland 1023, New Zealand; (O.O.M.); (J.A.); (A.S.); (H.L.); (I.D.R.)
| | - Avik Shome
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, University of Auckland, Auckland 1023, New Zealand; (O.O.M.); (J.A.); (A.S.); (H.L.); (I.D.R.)
| | - Heather Lyon
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, University of Auckland, Auckland 1023, New Zealand; (O.O.M.); (J.A.); (A.S.); (H.L.); (I.D.R.)
| | - Monica L. Acosta
- School of Optometry and Vision Science, University of Auckland, Auckland 1023, New Zealand;
| | - Colin R. Green
- Department of Ophthalmology, University of Auckland, Auckland 1023, New Zealand
| | - Ilva D. Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, University of Auckland, Auckland 1023, New Zealand; (O.O.M.); (J.A.); (A.S.); (H.L.); (I.D.R.)
| |
Collapse
|
102
|
Zheng R, Yan Y, Dai S, Ruan Y, Chen Y, Hu C, Lin Z, Xue N, Song Z, Liu Y, Zhang B, Pu J. ASC specks exacerbate α‑synuclein pathology via amplifying NLRP3 inflammasome activities. J Neuroinflammation 2023; 20:26. [PMID: 36740674 PMCID: PMC9899382 DOI: 10.1186/s12974-023-02709-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/29/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Inflammasome activation has a pathogenic role in Parkinson's disease (PD). Up-regulated expressions of inflammasome adaptor apoptosis-associated speck-like protein containing a CARD (ASC) and assembly of ASC specks have been observed in postmortems of human PD brains and experimental PD models. Extracellular ASC specks behave like danger signals and sustain prolonged inflammasome activation. However, the contribution of ASC specks in propagation of inflammasome activation and pathological progression in PD has not been fully established. METHODS Herein, we used human A53T mutant α-synuclein preformed fibrils (PFFs)-stimulated microglia in vitro and unilateral striatal stereotaxic injection of PFFs-induced mice model of PD in vivo, to investigate the significance of ASC specks in PD pathological progression. Rotarod and open-field tests were performed to measure motor behaviors of indicated mice. Changes in the molecular expression were evaluated by immunofluorescence and immunoblotting (IB). Intracellular knockdown of the ASC in BV2 cells was performed using si-RNA. Microglial and neuronal cells were co-cultured in a trans-well system to determine the effects of ASC knockdown on cytoprotection. RESULTS We observed a direct relationship between levels of ASC protein and misfolded α‑synuclein aggregates in PD mice brains. ASC specks amplified NLRP3 inflammasome activation driven by α-synuclein PFFs stimulation, which aggravated reactive microgliosis and accelerated α‑synuclein pathology, dopaminergic neurodegeneration and motor deficits. Endogenous ASC knockdown suppressed microglial inflammasome activation and neuronal α‑synuclein aggregation. CONCLUSIONS In conclusion, our study elucidated that ASC specks contribute to the propagation of inflammasome activation-associated α‑synuclein pathology in PD, which forms the basis for targeting ASC as a potential therapy for PD.
Collapse
Affiliation(s)
- Ran Zheng
- grid.13402.340000 0004 1759 700XDepartment of Neurology, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Yiqun Yan
- grid.13402.340000 0004 1759 700XDepartment of Neurology, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Shaobing Dai
- grid.13402.340000 0004 1759 700XDepartment of Anesthesiology, School of Medicine, Women’s Hospital, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Yang Ruan
- grid.13402.340000 0004 1759 700XDepartment of Neurology, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Ying Chen
- grid.13402.340000 0004 1759 700XDepartment of Neurology, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Chenjun Hu
- grid.13402.340000 0004 1759 700XDepartment of Human Anatomy, Histology and Embryology, System Medicine Research Center, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang China
| | - Zhihao Lin
- grid.13402.340000 0004 1759 700XDepartment of Neurology, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Naijia Xue
- grid.13402.340000 0004 1759 700XDepartment of Neurology, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Zhe Song
- grid.13402.340000 0004 1759 700XDepartment of Neurology, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Yi Liu
- grid.13402.340000 0004 1759 700XDepartment of Neurology, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Baorong Zhang
- grid.13402.340000 0004 1759 700XDepartment of Neurology, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Jiali Pu
- grid.13402.340000 0004 1759 700XDepartment of Neurology, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009 Zhejiang China
| |
Collapse
|
103
|
Anderson FL, Biggs KE, Rankin BE, Havrda MC. NLRP3 inflammasome in neurodegenerative disease. Transl Res 2023; 252:21-33. [PMID: 35952982 PMCID: PMC10614656 DOI: 10.1016/j.trsl.2022.08.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 01/14/2023]
Abstract
Neurodegenerative diseases are characterized by a dysregulated neuro-glial microenvironment, culminating in functional deficits resulting from neuronal cell death. Inflammation is a hallmark of the neurodegenerative microenvironment and despite a critical role in tissue homeostasis, increasing evidence suggests that chronic inflammatory insult can contribute to progressive neuronal loss. Inflammation has been studied in the context of neurodegenerative disorders for decades but few anti-inflammatory treatments have advanced to clinical use. This is likely due to the related challenges of predicting and mitigating off-target effects impacting the normal immune response while detecting inflammatory signatures that are specific to the progression of neurological disorders. Inflammasomes are pro-inflammatory cytosolic pattern recognition receptors functioning in the innate immune system. Compelling pre-clinical data has prompted an intense interest in the role of the NLR family pyrin domain containing 3 (NLRP3) inflammasome in neurodegenerative disease. NLRP3 is typically inactive but can respond to sterile triggers commonly associated with neurodegenerative disorders including protein misfolding and aggregation, mitochondrial and oxidative stress, and exposure to disease-associated environmental toxicants. Clear evidence of enhanced NLRP3 inflammasome activity in common neurodegenerative diseases has coincided with rapid advancement of novel small molecule therapeutics making the NLRP3 inflammasome an attractive target for near-term interventional studies. In this review, we highlight evidence from model systems and patients indicating inflammasome activity in neurodegenerative disease associated with the NLRP3 inflammasome's ability to recognize pathologic forms of amyloid-β, tau, and α-synuclein. We discuss inflammasome-driven pyroptotic processes highlighting the potential utility of evaluating extracellular inflammasome-related proteins in the context of biomarker discovery. We complete the report by pointing out gaps in our understanding of intracellular modifiers of inflammasome activity and mechanisms regulating the resolution of inflammasome activation. The literature review and perspectives provide a conceptual platform for continued analysis of inflammation in neurodegenerative diseases through the study of inflammasomes and pyroptosis, mechanisms of inflammation and cell death now recognized to function in multiple highly prevalent neurological disorders.
Collapse
Affiliation(s)
- Faith L Anderson
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire
| | - Karl E Biggs
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire
| | - Brynn E Rankin
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire
| | - Matthew C Havrda
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire.
| |
Collapse
|
104
|
The Role of Neutrophils in Lower Limb Peripheral Artery Disease: State of the Art and Future Perspectives. Int J Mol Sci 2023; 24:ijms24021169. [PMID: 36674682 PMCID: PMC9866688 DOI: 10.3390/ijms24021169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
In recent years, increasing attention has been paid to the role of neutrophils in cardiovascular (CV) disease (CVD) with evidence supporting their role in the initiation, progression, and rupture of atherosclerotic plaque. Although these cells have long been considered as terminally differentiated cells with a relatively limited spectrum of action, recent research has revealed intriguing novel cellular functions, including neutrophil extracellular trap (NET) generation and inflammasome activation, which have been linked to several human diseases, including CVD. While most research to date has focused on the role of neutrophils in coronary artery and cerebrovascular diseases, much less information is available on lower limb peripheral artery disease (PAD). PAD is a widespread condition associated with great morbidity and mortality, though physician and patient awareness of the disease remains low. To date, several studies have produced some evidence on the role of certain biomarkers of neutrophil activation in this clinical setting. However, the etiopathogenetic role of neutrophils, and in particular of some of the newly discovered mechanisms, has yet to be fully elucidated. In the future, complementary assessment of neutrophil activity should improve CV risk stratification and provide personalized treatments to patients with PAD. This review aims to summarize the basic principles and recent advances in the understanding of neutrophil biology, current knowledge about the role of neutrophils in atherosclerosis, as well as available evidence on their role of PAD.
Collapse
|
105
|
de Rivero Vaccari JP, Mim C, Hadad R, Cyr B, Stefansdottir TA, Keane RW. Mechanism of action of IC 100, a humanized IgG4 monoclonal antibody targeting apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). Transl Res 2023; 251:27-40. [PMID: 35793783 PMCID: PMC10615563 DOI: 10.1016/j.trsl.2022.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 02/09/2023]
Abstract
Inflammasomes are multiprotein complexes of the innate immune response that recognize a diverse range of intracellular sensors of infection or cell damage and recruit the adaptor protein apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) into an inflammasome signaling complex. The recruitment, polymerization and cross-linking of ASC is upstream of caspase-1 activation and interleukin-1β release. Here we provide evidence that IC 100, a humanized IgG4κ monoclonal antibody against ASC, is internalized into the cell and localizes with endosomes, while another part is recycled and redistributed out of the cell. IC 100 binds intracellular ASC and blocks interleukin-1β release in a human whole blood cell inflammasome assay. In vitro studies demonstrate that IC 100 interferes with ASC polymerization and assembly of ASC specks. In vivo bioluminescence imaging showed that IC 100 has broad tissue distribution, crosses the blood brain barrier, and readily penetrates the brain and spinal cord parenchyma. Confocal microscopy of fluorescent-labeled IC 100 revealed that IC 100 is rapidly taken up by macrophages via a mechanism utilizing the Fc region of IC 100. Coimmunoprecipitation experiments and confocal immunohistochemistry showed that IC 100 binds to ASC and to the atypical antibody receptor Tripartite motif-containing protein-21 (TRIM21). In A549 WT and TRIM21 KO cells treated with either IC 100 or IgG4κ isotype control, the levels of intracellular IC 100 were higher than in the IgG4κ-treated controls at 2 hours, 1 day and 3 days after administration, indicating that IC 100 escapes degradation by the proteasome. Lastly, electron microscopy studies demonstrate that IC 100 binds to ASC filaments and alters the architecture of ASC filaments. Thus, IC 100 readily penetrates a variety of cell types, and it binds to intracellular ASC, but it is not degraded by the TRIM21 antibody-dependent intracellular neutralization pathway.
Collapse
Affiliation(s)
- Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL
| | - Carsten Mim
- Department of Biomedical Engineering and Health Systems, Kungliga Tekniska Högscholan (Royal Institute of Technology), Sweden
| | - Roey Hadad
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL
| | - Brianna Cyr
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL
| | - Thorunn Anna Stefansdottir
- Department of Biomedical Engineering and Health Systems, Kungliga Tekniska Högscholan (Royal Institute of Technology), Sweden
| | - Robert W Keane
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL; Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL.
| |
Collapse
|
106
|
Li Y, Jiang Q. Uncoupled pyroptosis and IL-1β secretion downstream of inflammasome signaling. Front Immunol 2023; 14:1128358. [PMID: 37090724 PMCID: PMC10117957 DOI: 10.3389/fimmu.2023.1128358] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 04/25/2023] Open
Abstract
Inflammasomes are supramolecular platforms that organize in response to various damage-associated molecular patterns and pathogen-associated molecular patterns. Upon activation, inflammasome sensors (with or without the help of ASC) activate caspase-1 and other inflammatory caspases that cleave gasdermin D and pro-IL-1β/pro-IL-18, leading to pyroptosis and mature cytokine secretion. Pyroptosis enables intracellular pathogen niche disruption and intracellular content release at the cost of cell death, inducing pro-inflammatory responses in the neighboring cells. IL-1β is a potent pro-inflammatory regulator for neutrophil recruitment, macrophage activation, and T-cell expansion. Thus, pyroptosis and cytokine secretion are the two main mechanisms that occur downstream of inflammasome signaling; they maintain homeostasis, drive the innate immune response, and shape adaptive immunity. This review aims to discuss the possible mechanisms, timing, consequences, and significance of the two uncoupling preferences downstream of inflammasome signaling. While pyroptosis and cytokine secretion may be usually coupled, pyroptosis-predominant and cytokine-predominant uncoupling are also observed in a stimulus-, cell type-, or context-dependent manner, contributing to the pathogenesis and development of numerous pathological conditions such as cryopyrin-associated periodic syndromes, LPS-induced sepsis, and Salmonella enterica serovar Typhimurium infection. Hyperactive cells consistently release IL-1β without LDH leakage and pyroptotic death, thereby leading to prolonged inflammation, expanding the lifespans of pyroptosis-resistant neutrophils, and hyperactivating stimuli-challenged macrophages, dendritic cells, monocytes, and specific nonimmune cells. Death inflammasome activation also induces GSDMD-mediated pyroptosis with no IL-1β secretion, which may increase lethality in vivo. The sublytic GSDMD pore formation associated with lower expressions of pyroptotic components, GSDMD-mediated extracellular vesicles, or other GSDMD-independent pathways that involve unconventional secretion could contribute to the cytokine-predominant uncoupling; the regulation of caspase-1 dynamics, which may generate various active species with different activities in terms of GSDMD or pro-IL-1β, could lead to pyroptosis-predominant uncoupling. These uncoupling preferences enable precise reactions to different stimuli of different intensities under specific conditions at the single-cell level, promoting cooperative cell and host fate decisions and participating in the pathogen "game". Appropriate decisions in terms of coupling and uncoupling are required to heal tissues and eliminate threats, and further studies exploring the inflammasome tilt toward pyroptosis or cytokine secretion may be helpful.
Collapse
|
107
|
Jenster L, Ribeiro LS, Franklin BS, Bertheloot D. Measuring NLR Oligomerization II: Detection of ASC Speck Formation by Confocal Microscopy and Immunofluorescence. Methods Mol Biol 2023; 2696:73-92. [PMID: 37578716 DOI: 10.1007/978-1-0716-3350-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Inflammasomes are crucial sentinels of the innate immune system that sense clues of infection, cellular stress, or metabolic imbalances. Upon activation, the inflammasome sensor (e.g., NLRP3) recruits the adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC). ASC rapidly oligomerizes to form a micron-sized structure termed "ASC speck." These are crucial for the activation of caspase-1 and downstream inflammatory signals released following a specific form of lytic cell death called pyroptosis. Hence, due to their considerably large size, ASC specks can be easily visualized by microscopy as a simple upstream readout for inflammasome activation. Here, we provide three detailed protocols for imaging ASC specks: (1) live-cell imaging of macrophage cell lines expressing a fluorescent protein fusion form of ASC, (2) imaging of human primary cells using immunofluorescence staining of endogenous ASC, and (3) visualization and quantification of specks on a single-cell level using imaging flow cytometry.
Collapse
Affiliation(s)
- Lea Jenster
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Lucas S Ribeiro
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Bernardo S Franklin
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Damien Bertheloot
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany.
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
108
|
Wang C, Zong S, Cui X, Wang X, Wu S, Wang L, Liu Y, Lu Z. The effects of microglia-associated neuroinflammation on Alzheimer's disease. Front Immunol 2023; 14:1117172. [PMID: 36911732 PMCID: PMC9992739 DOI: 10.3389/fimmu.2023.1117172] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Alzheimer's disease (AD) is defined as a severe chronic degenerative neurological disease in human. The pathogenic mechanism of AD has been convincingly elucidated by the "amyloid cascade hypothesis" with the main focus of the pathological accretion of β-amyloid (Aβ) peptides outside the cell. However, increasing evidence suggests that this hypothesis is weak in explaining the pathogenesis of AD. Neuroinflammation is crucial in the development of AD, which is proven by the elevated levels of inflammatory markers and the identification of AD risk genes relevant to the innate immune function. Here, we summarize the effects of microglia-mediated neuroinflammation on AD, focusing on the temporal and spatial changes in microglial phenotype, the interactions among microglia, Aβ, tau, and neurons, and the prospects and recent advances in neuroinflammation as a diagnostic and therapeutic target of AD.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shuai Zong
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaolin Cui
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Xueying Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shuang Wu
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Le Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yingchao Liu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhiming Lu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
109
|
Chen C, Zhou Y, Ning X, Li S, Xue D, Wei C, Zhu Z, Sheng L, Lu B, Li Y, Ye X, Fu Y, Bai C, Cai W, Ding Y, Lin S, Yan G, Huang Y, Yin W. Directly targeting ASC by lonidamine alleviates inflammasome-driven diseases. J Neuroinflammation 2022; 19:315. [PMID: 36577999 PMCID: PMC9798610 DOI: 10.1186/s12974-022-02682-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Dysregulated activation of the inflammasome is involved in various human diseases including acute cerebral ischemia, multiple sclerosis and sepsis. Though many inflammasome inhibitors targeting NOD-like receptor protein 3 (NLRP3) have been designed and developed, none of the inhibitors are clinically available. Growing evidence suggests that targeting apoptosis-associated speck-like protein containing a CARD (ASC), the oligomerization of which is the key event for the assembly of inflammasome, may be another promising therapeutic strategy. Lonidamine (LND), a small-molecule inhibitor of glycolysis used as an antineoplastic drug, has been evidenced to have anti-inflammation effects. However, its anti-inflammatory mechanism is still largely unknown. METHODS Middle cerebral artery occlusion (MCAO), experimental autoimmune encephalomyelitis (EAE) and LPS-induced sepsis mice models were constructed to investigate the therapeutic and anti-inflammasome effects of LND. The inhibition of inflammasome activation and ASC oligomerization by LND was evaluated using western blot (WB), immunofluorescence (IF), quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA) in murine bone marrow-derived macrophages (BMDMs). Direct binding of LND with ASC was assessed using molecular mock docking, surface plasmon resonance (SPR), and drug affinity responsive target stability (DARTS). RESULTS Here, we find that LND strongly attenuates the inflammatory injury in experimental models of inflammasome-associated diseases including autoimmune disease-multiple sclerosis (MS), ischemic stroke and sepsis. Moreover, LND blocks diverse types of inflammasome activation independent of its known targets including hexokinase 2 (HK2). We further reveal that LND directly binds to the inflammasome ligand ASC and inhibits its oligomerization. CONCLUSIONS Taken together, our results identify LND as a broad-spectrum inflammasome inhibitor by directly targeting ASC, providing a novel candidate drug for the treatment of inflammasome-driven diseases in clinic.
Collapse
Affiliation(s)
- Chen Chen
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - YuWei Zhou
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - XinPeng Ning
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - ShengLong Li
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - DongDong Xue
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - CaiLv Wei
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Zhu Zhu
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - LongXiang Sheng
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - BingZheng Lu
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yuan Li
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - XiaoYuan Ye
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| | - YunZhao Fu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| | - Chuan Bai
- grid.12981.330000 0001 2360 039XInstitute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Wei Cai
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - YuXuan Ding
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - SuiZhen Lin
- Guangzhou Cellprotek Pharmaceutical Co., Ltd., Guangzhou, 510663 China
| | - GuangMei Yan
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - YiJun Huang
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Wei Yin
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| |
Collapse
|
110
|
Lucas-Ruiz F, Mateo SV, Jover-Aguilar M, Alconchel F, Martínez-Alarcón L, de Torre-Minguela C, Vidal-Correoso D, Villalba-López F, López-López V, Ríos-Zambudio A, Pons JA, Ramírez P, Pelegrín P, Baroja-Mazo A. Danger signals released during cold ischemia storage activate NLRP3 inflammasome in myeloid cells and influence early allograft function in liver transplantation. EBioMedicine 2022; 87:104419. [PMID: 36543018 PMCID: PMC9794897 DOI: 10.1016/j.ebiom.2022.104419] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/04/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Innate immunity plays a fundamental role in solid organ transplantation. Myeloid cells can sense danger signals or DAMPs released after tissue or cell damage, such as during ischemia processes. This study aimed to identify DAMPs released during cold ischemia storage of human liver and analyze their ability to activate the inflammasome in myeloid cells and the possible implications in terms of short-term outcomes of liver transplantation. METHODS 79 samples of organ preservation solution (OPS) from 79 deceased donors were collected after cold static storage. We used different analytical methods to measure DAMPs in these end-ischemic OPS (eiOPS) samples. We also used eiOPS in the human macrophage THP-1 cell line and primary monocyte cultures to study inflammasome activation. FINDINGS Different DAMPs were identified in eiOPS, several of which induced both priming and activation of the NLRP3 inflammasome in human myeloid cells. Cold ischemia time and donation after circulatory death negatively influenced the DAMP signature. Moreover, the presence of oligomeric inflammasomes and interleukin-18 in eiOPS correlated with early allograft dysfunction in liver transplant patients. INTERPRETATION DAMPs released during cold ischemia storage prime and activate the NLRP3 inflammasome in liver macrophages after transplantation, inducing a pro-inflammatory environment that will complicate the outcome of the graft. The use of pharmacological blockers targeting DAMPs or the NLRP3 inflammasome in liver ischemia during static cold storage or through extracorporeal organ support could be a suitable strategy to increase the success of liver transplantation. FUNDING Fundación Mutua Madrileña and Instituto de Salud Carlos III, Madrid, Spain.
Collapse
Affiliation(s)
- Fernando Lucas-Ruiz
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
| | - Sandra V. Mateo
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
| | - Marta Jover-Aguilar
- Transplant Unit, Surgery Service, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain,Biomedical Research Institute of Murcia IMIB-Pascual Parrilla, Murcia, Spain
| | - Felipe Alconchel
- Transplant Unit, Surgery Service, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain,Biomedical Research Institute of Murcia IMIB-Pascual Parrilla, Murcia, Spain
| | - Laura Martínez-Alarcón
- Transplant Unit, Surgery Service, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain,Biomedical Research Institute of Murcia IMIB-Pascual Parrilla, Murcia, Spain
| | - Carlos de Torre-Minguela
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
| | - Daniel Vidal-Correoso
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
| | - Francisco Villalba-López
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
| | - Víctor López-López
- Transplant Unit, Surgery Service, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain,Biomedical Research Institute of Murcia IMIB-Pascual Parrilla, Murcia, Spain
| | - Antonio Ríos-Zambudio
- Transplant Unit, Surgery Service, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain,Biomedical Research Institute of Murcia IMIB-Pascual Parrilla, Murcia, Spain
| | - José A. Pons
- Liver Transplantation Unit, Gastroenterology and Hepatology Service, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
| | - Pablo Ramírez
- Transplant Unit, Surgery Service, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain,Biomedical Research Institute of Murcia IMIB-Pascual Parrilla, Murcia, Spain
| | - Pablo Pelegrín
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain,Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30120, Murcia, Spain,Corresponding author. Campus de Ciencias de la Salud, Edificio LAIB, Office 4.15, Ctra. Buenavista s/n, 30120, Murcia, Spain.
| | - Alberto Baroja-Mazo
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain,Corresponding author. Campus de Ciencias de la Salud, Edificio LAIB, Office 4.21, Ctra. Buenavista s/n, 30120, Murcia, Spain.
| |
Collapse
|
111
|
Branco LM, Amaral MP, Boekhoff H, de Lima ABF, Farias IS, Lage SL, Pereira GJS, Franklin BS, Bortoluci KR. Lysosomal cathepsins act in concert with Gasdermin-D during NAIP/NLRC4-dependent IL-1β secretion. Cell Death Dis 2022; 13:1029. [PMID: 36481780 PMCID: PMC9731969 DOI: 10.1038/s41419-022-05476-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
The NAIP/NLRC4 inflammasome is classically associated with the detection of bacterial invasion to the cytosol. However, recent studies have demonstrated that NAIP/NLRC4 is also activated in non-bacterial infections, and in sterile inflammation. Moreover, in addition to the well-established model for the detection of bacterial proteins by NAIP proteins, the participation of other cytosolic pathways in the regulation of NAIP/NLRC4-mediated responses has been reported in distinct contexts. Using pharmacological inhibition and genetic deletion, we demonstrate here that cathepsins, well known for their involvement in NLRP3 activation, also regulate NAIP/NLRC4 responses to cytosolic flagellin in murine and human macrophages. In contrast to that observed for NLRP3 agonists, cathepsins inhibition did not reduce ASC speck formation or caspase-1 maturation in response to flagellin, ruling out their participation in the effector phase of NAIP/NLRC4 activation. Moreover, cathepsins had no impact on NF-κB-mediated priming of pro-IL-1β, thus suggesting these proteases act downstream of the NAIP/NLRC4 inflammasome activation. IL-1β levels secreted in response to flagellin were reduced in the absence of either cathepsins or Gasdermin-D (GSDMD), a molecule involved in the induction of pyroptosis and cytokines release. Notably, IL-1β secretion was abrogated in the absence of both GSDMD and cathepsins, demonstrating their non-redundant roles for the optimal IL-1β release in response to cytosolic flagellin. Given the central role of NAIP/NLRC4 inflammasomes in controlling infection and, also, induction of inflammatory pathologies, many efforts have been made to uncover novel molecules involved in their regulation. Thus, our findings bring together a relevant contribution by describing the role of cathepsins as players in the NAIP/NLRC4-mediated responses.
Collapse
Affiliation(s)
- Laura Migliari Branco
- grid.411249.b0000 0001 0514 7202Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Marcelo Pires Amaral
- grid.411249.b0000 0001 0514 7202Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Henning Boekhoff
- grid.411249.b0000 0001 0514 7202Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil ,grid.7497.d0000 0004 0492 0584Present Address: Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana Beatriz Figueiredo de Lima
- grid.411249.b0000 0001 0514 7202Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Ingrid Sancho Farias
- grid.411249.b0000 0001 0514 7202Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Silvia Lucena Lage
- grid.94365.3d0000 0001 2297 5165National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, USA
| | - Gustavo José Silva Pereira
- grid.411249.b0000 0001 0514 7202Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Bernardo Simões Franklin
- grid.10388.320000 0001 2240 3300Institute of Innate Immunity, University Hospitals, Bonn, Germany
| | - Karina Ramalho Bortoluci
- grid.411249.b0000 0001 0514 7202Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
112
|
Vasconcelos DP, Águas AP, Barbosa JN. The inflammasome in biomaterial-driven immunomodulation. J Tissue Eng Regen Med 2022; 16:1109-1120. [PMID: 36327091 PMCID: PMC10092308 DOI: 10.1002/term.3361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 11/05/2022]
Abstract
Inflammasomes are intracellular structures formed upon the assembly of several proteins that have a considerable size and are very important in innate immune responses being key players in host defense. They are assembled after the perception of pathogens or danger signals. The activation of the inflammasome pathway induces the production of high levels of the pro-inflammatory cytokines Interleukin (IL)-1β and IL-18 through the caspase activation. The procedure for the implantation of a biomaterial causes tissue injury, and the injured cells will secrete danger signals recognized by the inflammasome. There is growing evidence that the inflammasome participates in a number of inflammatory processes, including pathogen clearance, chronic inflammation and tissue repair. Therefore, the control of the inflammasome activity is a promising target in the development of capable approaches to be applied in regenerative medicine. In this review, we revisit current knowledge of the inflammasome in the inflammatory response to biomaterials and point to the yet underexplored potential of the inflammasome in the context of immunomodulation.
Collapse
Affiliation(s)
- Daniela P Vasconcelos
- i3S - Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Porto, Portugal
| | - Artur P Águas
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,UMIB - Unit for Multidisciplinary Biomedical Research of ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Judite N Barbosa
- i3S - Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
113
|
Pyroptosis and Its Role in Cervical Cancer. Cancers (Basel) 2022; 14:cancers14235764. [PMID: 36497244 PMCID: PMC9739612 DOI: 10.3390/cancers14235764] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Pyroptosis, an inflammatory programmed cell death, is characterized by the caspase-mediated pore formation of plasma membranes and the release of large quantities of inflammatory mediators. In recent years, the morphological characteristics, induction mechanism and action process of pyroptosis have been gradually unraveled. As a malignant tumor with high morbidity and mortality, cervical cancer is seriously harmful to women's health. It has been found that pyroptosis is closely related to the initiation and development of cervical cancer. In this review the mechanisms of pyroptosis and its role in the initiation, progression and treatment application of cervical cancer are summarized and discussed.
Collapse
|
114
|
Lucas-Ruiz F, Peñín-Franch A, Pons JA, Ramírez P, Pelegrín P, Cuevas S, Baroja-Mazo A. Emerging Role of NLRP3 Inflammasome and Pyroptosis in Liver Transplantation. Int J Mol Sci 2022; 23:ijms232214396. [PMID: 36430874 PMCID: PMC9698208 DOI: 10.3390/ijms232214396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The nucleotide-binding domain leucine-rich repeat-receptor, pyrin domain-containing-3 (NLRP3) inflammasome contributes to the inflammatory response by activating caspase-1, which in turn participates in the maturation of interleukin (IL)-1β and IL-18, which are mainly secreted via pyroptosis. Pyroptosis is a lytic type of cell death that is controlled by caspase-1 processing gasdermin D. The amino-terminal fragment of gasdermin D inserts into the plasma membrane, creating stable pores and enabling the release of several proinflammatory factors. The activation of NLRP3 inflammasome and pyroptosis has been involved in the progression of liver fibrosis and its end-stage cirrhosis, which is among the main etiologies for liver transplantation (LT). Moreover, the NLRP3 inflammasome is involved in ischemia-reperfusion injury and early inflammation and rejection after LT. In this review, we summarize the recent literature addressing the role of the NLRP3 inflammasome and pyroptosis in all stages involved in LT and argue the potential targeting of this pathway as a future therapeutic strategy to improve LT outcomes. Likewise, we also discuss the impact of graft quality influenced by donation after circulatory death and the expected role of machine perfusion technology to modify the injury response related to inflammasome activation.
Collapse
Affiliation(s)
- Fernando Lucas-Ruiz
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Alejandro Peñín-Franch
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
| | - José Antonio Pons
- Hepatology and Liver Transplant Unit, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Pablo Ramírez
- General Surgery and Abdominal Solid Organ Transplantation Unit, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Pablo Pelegrín
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain
- Correspondence: (P.P.); (A.B.-M.); Tel.: +34-86-8885-031 (P.P.); Tel.: +34-86-8885-039 (A.B.-M.)
| | - Santiago Cuevas
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Alberto Baroja-Mazo
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
- Correspondence: (P.P.); (A.B.-M.); Tel.: +34-86-8885-031 (P.P.); Tel.: +34-86-8885-039 (A.B.-M.)
| |
Collapse
|
115
|
Liao Y, Chen X, Miller‐Little W, Wang H, Willard B, Bulek K, Zhao J, Li X. The Ras GTPase-activating-like protein IQGAP1 bridges Gasdermin D to the ESCRT system to promote IL-1β release via exosomes. EMBO J 2022; 42:e110780. [PMID: 36373462 PMCID: PMC9811620 DOI: 10.15252/embj.2022110780] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/23/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
IL-1β can exit the cytosol as an exosomal cargo following inflammasome activation in intestinal epithelial cells (IECs) in a Gasdermin D (GSDMD)-dependent manner. The mechanistic connection linking inflammasome activation and the biogenesis of exosomes has so far remained largely elusive. Here, we report the Ras GTPase-activating-like protein IQGAP1 functions as an adaptor, bridging GSDMD to the endosomal sorting complexes required for transport (ESCRT) machinery to promote the biogenesis of pro-IL-1β-containing exosomes in response to NLPR3 inflammasome activation. We identified IQGAP1 as a GSDMD-interacting protein through a non-biased proteomic analysis. Functional investigation indicated the IQGAP1-GSDMD interaction is required for LPS and ATP-induced exosome release. Further analysis revealed that IQGAP1 serves as an adaptor which bridges GSDMD and associated IL-1β complex to Tsg101, a component of the ESCRT complex, and enables the packaging of GSDMD and IL-1β into exosomes. Importantly, this process is dependent on an LPS-induced increase in GTP-bound CDC42, a small GTPase known to activate IQGAP1. Taken together, this study reveals IQGAP1 as a link between inflammasome activation and GSDMD-dependent, ESCRT-mediated exosomal release of IL-1β.
Collapse
Affiliation(s)
- Yun Liao
- Department of Inflammation and ImmunityCleveland Clinic Lerner Research InstituteClevelandOHUSA
| | - Xing Chen
- Department of Inflammation and ImmunityCleveland Clinic Lerner Research InstituteClevelandOHUSA
| | - William Miller‐Little
- Department of Inflammation and ImmunityCleveland Clinic Lerner Research InstituteClevelandOHUSA
| | - Han Wang
- Department of Inflammation and ImmunityCleveland Clinic Lerner Research InstituteClevelandOHUSA
| | - Belinda Willard
- Proteomics and Metabolomics CoreCleveland Clinic Lerner Research InstituteClevelandOHUSA
| | - Katarzyna Bulek
- Department of Inflammation and ImmunityCleveland Clinic Lerner Research InstituteClevelandOHUSA
| | - Junjie Zhao
- Department of Inflammation and ImmunityCleveland Clinic Lerner Research InstituteClevelandOHUSA
| | - Xiaoxia Li
- Department of Inflammation and ImmunityCleveland Clinic Lerner Research InstituteClevelandOHUSA
| |
Collapse
|
116
|
Harju N. Regulation of oxidative stress and inflammatory responses in human retinal pigment epithelial cells. Acta Ophthalmol 2022; 100 Suppl 273:3-59. [DOI: 10.1111/aos.15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Niina Harju
- School of Pharmacy University of Eastern Finland Kuopio Finland
| |
Collapse
|
117
|
Patel V, Patel J. Cellular cross talk between epicardial fat and cardiovascular risk. J Basic Clin Physiol Pharmacol 2022; 33:683-694. [PMID: 36220013 DOI: 10.1515/jbcpp-2022-0230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/14/2022] [Indexed: 11/15/2022]
Abstract
A variety of fat compartments have several local and systemic effect and play a crucial role in the maintenance of health and development of disease. For the past few years, special attention has been paid to epicardial fat. It is the visceral fat compartment of the heart and has several local and systemic effects. It can perform a role in the development of cardiometabolic risk. The epicardial adipose tissue (EAT) is a unique and multifunctional fat compartment of the heart. It is located between the myocardium and the visceral pericardium. During normal physiological conditions, the EAT has metabolic, thermogenic, and mechanical (cardioprotective) characteristics. The EAT can produce several adipocytokines and chemokines depending on microenvironments. It can influence through paracrine and vasocrine mechanism and participate in the development and progression of cardiovascular (CVS) diseases. In addition, metabolic disease leads to changes in both thickness and volume of the EAT, and it can modify the structure and the function of heart. It has been associated with various CVS diseases such as, cardiomyopathy, atrial fibrillation, and coronary artery disease. Therefore, EAT is a potential therapeutic target for CVS risk.
Collapse
Affiliation(s)
- Vishwa Patel
- University of Texas at Austin, Austin 78712, Texas, USA
| | - Jimik Patel
- Thomas Jefferson University, 4201 Henry Ave, Philadelphia, PA 19144, USA
| |
Collapse
|
118
|
Sánchez KE, Bhaskar K, Rosenberg GA. Apoptosis-associated speck-like protein containing a CARD-mediated release of matrix metalloproteinase 10 stimulates a change in microglia phenotype. Front Mol Neurosci 2022; 15:976108. [PMID: 36305000 PMCID: PMC9595131 DOI: 10.3389/fnmol.2022.976108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammation contributes to amyloid-β and tau pathology in Alzheimer's disease (AD). Microglia facilitate an altered immune response that includes microgliosis, upregulation of inflammasome proteins, and elevation of matrix-metalloproteinases (MMPs). Studies of cerebrospinal fluid (CSF) and blood in dementia patients show upregulation of two potential biomarkers of inflammation at the cellular level, MMP10 and apoptosis-associated speck-like protein containing a CARD (ASC). However, little is known about their relationship in the context of brain inflammation. Therefore, we stimulated microglia cultures with purified insoluble ASC speck aggregates and MMP10 to elucidate their role. We found that ASC specks altered microglia shape and stimulated the release of MMP3 and MMP10. Furthermore, MMP10 stimulated microglia released additional MMP10 along with the inflammatory cytokines, tumor-necrosis factor-α (TNFα), Interleukin 6 (IL-6), and CXCL1 CXC motif chemokine ligand 1 (CXCL1). A broad-spectrum MMP inhibitor, GM6001, prevented TNFα release. With these results, we conclude that MMP10 and ASC specks act on microglial cells to propagate inflammation.
Collapse
Affiliation(s)
- Kathryn E. Sánchez
- Center for Memory and Aging, University of New Mexico, Albuquerque, NM, United States
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM, United States
- Department of Neurology, University of New Mexico, Albuquerque, NM, United States
| | - Gary A. Rosenberg
- Center for Memory and Aging, University of New Mexico, Albuquerque, NM, United States
- Department of Neurology, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
119
|
Al-Hakim A, Mistry A, Savic S. Improving Diagnosis and Clinical Management of Acquired Systemic Autoinflammatory Diseases. J Inflamm Res 2022; 15:5739-5755. [PMID: 36238769 PMCID: PMC9553278 DOI: 10.2147/jir.s343261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Systemic autoinflammatory diseases (SAID) are conditions caused by dysregulation or disturbance of the innate immune system, with neutrophils and macrophages the main effector cells. Although there are now more than 40 distinct, genetically defined SAIDs, the genetic/molecular diagnosis remains unknown for a significant proportion of patients with the disease onset in adulthood. This review focuses on new developments related to acquired/late onset SAID, including phenocopies of monogenic disorders, Schnitzler's syndrome, Adult onset Still's disease, VEXAS syndrome, and autoinflammatory complications associated with myelodysplastic syndrome.
Collapse
Affiliation(s)
- Adam Al-Hakim
- Department of Clinical Immunology and Allergy, St James’s University Hospital, Leeds, UK
| | - Anoop Mistry
- Department of Clinical Immunology and Allergy, St James’s University Hospital, Leeds, UK
| | - Sinisa Savic
- Department of Clinical Immunology and Allergy, St James’s University Hospital, Leeds, UK,Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK,Correspondence: Sinisa Savic, Leeds Institute of Rheumatic and Musculoskeletal Medicine, Clinical Science Building, St James’s University Hospital, Leeds, LS9 7TF, UK, Tel +441132065567, Email
| |
Collapse
|
120
|
Neel DV, Basu H, Gunner G, Chiu IM. Catching a killer: Mechanisms of programmed cell death and immune activation in Amyotrophic Lateral Sclerosis. Immunol Rev 2022; 311:130-150. [PMID: 35524757 PMCID: PMC9489610 DOI: 10.1111/imr.13083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 12/13/2022]
Abstract
In the central nervous system (CNS), execution of programmed cell death (PCD) is crucial for proper neurodevelopment. However, aberrant activation of these pathways in adult CNS leads to neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). How a cell dies is critical, as it can drive local immune activation and tissue damage. Classical apoptosis engages several mechanisms to evoke "immunologically silent" responses, whereas other forms of programmed death such as pyroptosis, necroptosis, and ferroptosis release molecules that can potentiate immune responses and inflammation. In ALS, a fatal neuromuscular disorder marked by progressive death of lower and upper motor neurons, several cell types in the CNS express machinery for multiple PCD pathways. The specific cell types engaging PCD, and ultimate mechanisms by which neuronal death occurs in ALS are not well defined. Here, we provide an overview of different PCD pathways implicated in ALS. We also examine immune activation in ALS and differentiate apoptosis from necrotic mechanisms based on downstream immunological consequences. Lastly, we highlight therapeutic strategies that target cell death pathways in the treatment of neurodegeneration and inflammation in ALS.
Collapse
Affiliation(s)
- Dylan V Neel
- Harvard Medical School, Department of Immunology, Blavatnik Institute, Boston, MA, USA
| | - Himanish Basu
- Harvard Medical School, Department of Immunology, Blavatnik Institute, Boston, MA, USA
| | - Georgia Gunner
- Harvard Medical School, Department of Immunology, Blavatnik Institute, Boston, MA, USA
| | - Isaac M Chiu
- Harvard Medical School, Department of Immunology, Blavatnik Institute, Boston, MA, USA
- Lead contact
| |
Collapse
|
121
|
de Almeida L, Devi S, Indramohan M, Huang QQ, Ratsimandresy RA, Pope RM, Dorfleutner A, Stehlik C. POP1 inhibits MSU-induced inflammasome activation and ameliorates gout. Front Immunol 2022; 13:912069. [PMID: 36225929 PMCID: PMC9550078 DOI: 10.3389/fimmu.2022.912069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/06/2022] [Indexed: 01/13/2023] Open
Abstract
Canonical inflammasomes are innate immune protein scaffolds that enable the activation of inflammatory caspase-1, and subsequently the processing and release of interleukin (IL)-1β, IL-18, and danger signals, as well as the induction of pyroptotic cell death. Inflammasome assembly and activation occurs in response to sensing of infectious, sterile and self-derived molecular patterns by cytosolic pattern recognition receptors, including the Nod-like receptor NLRP3. While these responses are essential for host defense, excessive and uncontrolled NLRP3 inflammasome responses cause and contribute to a wide spectrum of inflammatory diseases, including gout. A key step in NLRP3 inflammasome assembly is the sequentially nucleated polymerization of Pyrin domain (PYD)- and caspase recruitment domain (CARD)-containing inflammasome components. NLRP3 triggers polymerization of the adaptor protein ASC through PYD-PYD interactions, but ASC polymerization then proceeds in a self-perpetuating manner and represents a point of no return, which culminates in the activation of caspase-1 by induced proximity. In humans, small PYD-only proteins (POPs) lacking an effector domain regulate this key process through competitive binding, but limited information exists on their physiological role during health and disease. Here we demonstrate that POP1 expression in macrophages is sufficient to dampen MSU crystal-mediated inflammatory responses in animal models of gout. Whether MSU crystals are administered into a subcutaneous airpouch or into the ankle joint, the presence of POP1 significantly reduces neutrophil infiltration. Also, airpouch exudates have much reduced IL-1β and ASC, which are typical pro-inflammatory indicators that can also be detected in synovial fluids of gout patients. Exogenous expression of POP1 in mouse and human macrophages also blocks MSU crystal-induced NLRP3 inflammasome assembly, resulting in reduced IL-1β and IL-18 secretion. Conversely, reduced POP1 expression in human macrophages enhances IL-1β secretion. We further determined that the mechanism for the POP1-mediated inhibition of NLRP3 inflammasome activation is through its interference with the crucial NLRP3 and ASC interaction within the inflammasome complex. Strikingly, administration of an engineered cell permeable version of POP1 was able to ameliorate MSU crystal-mediated inflammation in vivo, as measured by neutrophil infiltration. Overall, we demonstrate that POP1 may play a crucial role in regulating inflammatory responses in gout.
Collapse
Affiliation(s)
- Lucia de Almeida
- 1Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Savita Devi
- 2Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Mohanalaxmi Indramohan
- 2Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Qi-Quan Huang
- 1Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Rojo A. Ratsimandresy
- 2Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Richard M. Pope
- 1Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Andrea Dorfleutner
- 2Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, United States,3Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, United States,4The Kao Autoimmunity Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States,*Correspondence: Andrea Dorfleutner, ; Christian Stehlik,
| | - Christian Stehlik
- 2Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, United States,3Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, United States,4The Kao Autoimmunity Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States,5Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States,*Correspondence: Andrea Dorfleutner, ; Christian Stehlik,
| |
Collapse
|
122
|
Bergmann C, Poli A, Agache I, Bianchini R, Bax HJ, Castells M, Crescioli S, Dombrowicz D, Ferastraoaru D, Fiebiger E, Gould HJ, Hartmann K, Izquierdo E, Jordakieva G, Josephs DH, Jutel M, Levi‐Schaffer F, de las Vecillas L, Lotze MT, Osborn G, Pascal M, Redegeld F, Rosenstreich D, Roth‐Walter F, Schmidt‐Weber C, Shamji M, Steveling EH, Turner MC, Untersmayr E, Jensen‐Jarolim E, Karagiannis SN. AllergoOncology: Danger signals in allergology and oncology: A European Academy of Allergy and Clinical Immunology (EAACI) Position Paper. Allergy 2022; 77:2594-2617. [PMID: 35152450 PMCID: PMC9545837 DOI: 10.1111/all.15255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 01/27/2023]
Abstract
The immune system interacts with many nominal 'danger' signals, endogenous danger-associated (DAMP), exogenous pathogen (PAMP) and allergen (AAMP)-associated molecular patterns. The immune context under which these are received can promote or prevent immune activating or inflammatory mechanisms and may orchestrate diverse immune responses in allergy and cancer. Each can act either by favouring a respective pathology or by supporting the immune response to confer protective effects, depending on acuity or chronicity. In this Position Paper under the collective term danger signals or DAMPs, PAMPs and AAMPs, we consider their diverse roles in allergy and cancer and the connection between these in AllergoOncology. We focus on their interactions with different immune cells of the innate and adaptive immune system and how these promote immune responses with juxtaposing clinical outcomes in allergy and cancer. While danger signals present potential targets to overcome inflammatory responses in allergy, these may be reconsidered in relation to a history of allergy, chronic inflammation and autoimmunity linked to the risk of developing cancer, and with regard to clinical responses to anti-cancer immune and targeted therapies. Cross-disciplinary insights in AllergoOncology derived from dissecting clinical phenotypes of common danger signal pathways may improve allergy and cancer clinical outcomes.
Collapse
Affiliation(s)
- Christoph Bergmann
- Department of OtorhinolaryngologyRKM740 Interdisciplinary ClinicsDüsseldorfGermany
| | - Aurélie Poli
- Neuro‐Immunology GroupDepartment of OncologyLuxembourg Institute of HealthLuxembourgLuxembourg
| | - Ioana Agache
- Faculty of MedicineTransylania University BrasovBrasovRomania
| | - Rodolfo Bianchini
- Comparative MedicineThe Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University of ViennaUniversity of ViennaViennaAustria
| | - Heather J. Bax
- St. John's Institute of DermatologySchool of Basic & Medical BiosciencesGuy's Hospital, King's College LondonLondonUnited Kindgom,School of Cancer and Pharmaceutical SciencesGuy's Hospital, King's College LondonLondonUnited Kingdom
| | - Mariana Castells
- Division of Allergy and Clinical Immunology, Department of MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Silvia Crescioli
- St. John's Institute of DermatologySchool of Basic & Medical BiosciencesGuy's Hospital, King's College LondonLondonUnited Kindgom
| | - David Dombrowicz
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille U1011‐EGIDLilleFrance
| | - Denisa Ferastraoaru
- Department of Internal Medicine/Allergy and Immunology, Montefiore Medical CenterAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Edda Fiebiger
- Division of Gastroenterology, Hepatology and Nutrition Research, Department of Medicine ResearchChildren's University Hospital BostonBostonMassachusettsUSA
| | - Hannah J. Gould
- Randall Centre for Cell and Molecular Biophysics, School of Basic & Medical BiosciencesKing's College London, New Hunt's HouseLondonUnited Kingdom,Medical Research Council & Asthma UK Centre in Allergic Mechanisms of AsthmaLondonUnited Kingdom
| | - Karin Hartmann
- Department of DermatologyUniversity of BaselBaselSwitzerland
| | - Elena Izquierdo
- IMMA, School of Medicine, Institute of Applied Molecular MedicineCEU San Pablo UniversityMadridSpain
| | - Galateja Jordakieva
- Department of Physical Medicine, Rehabilitation and Occupational MedicineMedical University of ViennaViennaAustria
| | - Debra H. Josephs
- St. John's Institute of DermatologySchool of Basic & Medical BiosciencesGuy's Hospital, King's College LondonLondonUnited Kindgom,School of Cancer and Pharmaceutical SciencesGuy's Hospital, King's College LondonLondonUnited Kingdom
| | - Marek Jutel
- Department of Clinical ImmunologyWroclaw Medical UniversityWroclawPoland,ALL‐MED Medical Research InstituteWroclawPoland
| | - Francesca Levi‐Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Faculty of MedicineThe Institute for Drug Research, The Hebrew University of JerusalemJerusalemIsrael
| | | | - Michael T. Lotze
- G.27A Hillman Cancer CenterUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Gabriel Osborn
- St. John's Institute of DermatologySchool of Basic & Medical BiosciencesGuy's Hospital, King's College LondonLondonUnited Kindgom
| | - Mariona Pascal
- Department of Immunology, CDB, Hospital Clinic de BarcelonaInstitut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de BarcelonaBarcelonaSpain
| | - Frank Redegeld
- Division of Pharmacology, Faculty of ScienceUtrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrechtThe Netherlands
| | - David Rosenstreich
- Department of Internal Medicine/Allergy and Immunology, Montefiore Medical CenterAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Franziska Roth‐Walter
- Comparative MedicineThe Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University of ViennaUniversity of ViennaViennaAustria,Center of Pathophysiology, Infectiology and ImmunologyInstitute of Pathophysiology and Allergy Research, Medical University ViennaViennaAustria
| | - Carsten Schmidt‐Weber
- Center of Allergy & Environment (ZAUM)Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental HealthMunichGermany,German Center for Lung Research (DZL)MunichGermany
| | - Mohamed Shamji
- Immunomodulation and Tolerance Group, Imperial College London, and Allergy and Clinical ImmunologyImperial College LondonLondonUnited Kingdom
| | | | | | - Eva Untersmayr
- Center of Pathophysiology, Infectiology and ImmunologyInstitute of Pathophysiology and Allergy Research, Medical University ViennaViennaAustria
| | - Erika Jensen‐Jarolim
- Comparative MedicineThe Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University of ViennaUniversity of ViennaViennaAustria,Center of Pathophysiology, Infectiology and ImmunologyInstitute of Pathophysiology and Allergy Research, Medical University ViennaViennaAustria
| | - Sophia N. Karagiannis
- St. John's Institute of DermatologySchool of Basic & Medical BiosciencesGuy's Hospital, King's College LondonLondonUnited Kindgom,Breast Cancer Now Research UnitSchool of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital,LondonSE1 9RTUnited Kindgom
| |
Collapse
|
123
|
Wei X, Xie F, Zhou X, Wu Y, Yan H, Liu T, Huang J, Wang F, Zhou F, Zhang L. Role of pyroptosis in inflammation and cancer. Cell Mol Immunol 2022; 19:971-992. [PMID: 35970871 PMCID: PMC9376585 DOI: 10.1038/s41423-022-00905-x] [Citation(s) in RCA: 362] [Impact Index Per Article: 120.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/11/2022] [Indexed: 12/13/2022] Open
Abstract
Pyroptosis is a form of programmed cell death mediated by gasdermin and is a product of continuous cell expansion until the cytomembrane ruptures, resulting in the release of cellular contents that can activate strong inflammatory and immune responses. Pyroptosis, an innate immune response, can be triggered by the activation of inflammasomes by various influencing factors. Activation of these inflammasomes can induce the maturation of caspase-1 or caspase-4/5/11, both of which cleave gasdermin D to release its N-terminal domain, which can bind membrane lipids and perforate the cell membrane. Here, we review the latest advancements in research on the mechanisms of pyroptosis, newly discovered influencing factors, antitumoral properties, and applications in various diseases. Moreover, this review also provides updates on potential targeted therapies for inflammation and cancers, methods for clinical prevention, and finally challenges and future directions in the field.
Collapse
Affiliation(s)
- Xiang Wei
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Feng Xie
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, PR China
| | - Xiaoxue Zhou
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Yuchen Wu
- Department of Clinical Medicine, The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, PR China
| | - Haiyan Yan
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, 310015, PR China
| | - Ting Liu
- Department of Cell Biology and Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, PR China
| | - Jun Huang
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang, 310030, PR China.
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| | - Fangwei Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, PR China.
| | - Long Zhang
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
124
|
Giuliani KTK, Grivei A, Nag P, Wang X, Rist M, Kildey K, Law B, Ng MS, Wilkinson R, Ungerer J, Forbes JM, Healy H, Kassianos AJ. Hypoxic human proximal tubular epithelial cells undergo ferroptosis and elicit an NLRP3 inflammasome response in CD1c + dendritic cells. Cell Death Dis 2022; 13:739. [PMID: 36030251 PMCID: PMC9420140 DOI: 10.1038/s41419-022-05191-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 01/21/2023]
Abstract
Inflammasomes are multiprotein platforms responsible for the release of pro-inflammatory cytokines interleukin (IL)-1β and IL-18. Mouse studies have identified inflammasome activation within dendritic cells (DC) as pivotal for driving tubulointerstitial fibrosis and inflammation, the hallmarks of chronic kidney disease (CKD). However, translation of this work to human CKD remains limited. Here, we examined the complex tubular cell death pathways mediating inflammasome activation in human kidney DC and, thus, CKD progression. Ex vivo patient-derived proximal tubular epithelial cells (PTEC) cultured under hypoxic (1% O2) conditions modelling the CKD microenvironment showed characteristics of ferroptotic cell death, including mitochondrial dysfunction, reductions in the lipid repair enzyme glutathione peroxidase 4 (GPX4) and increases in lipid peroxidation by-product 4-hydroxynonenal (4-HNE) compared with normoxic PTEC. The addition of ferroptosis inhibitor, ferrostatin-1, significantly reduced hypoxic PTEC death. Human CD1c+ DC activated in the presence of hypoxic PTEC displayed significantly increased production of inflammasome-dependent cytokines IL-1β and IL-18. Treatment of co-cultures with VX-765 (caspase-1/4 inhibitor) and MCC950 (NLRP3 inflammasome inhibitor) significantly attenuated IL-1β/IL-18 levels, supporting an NLRP3 inflammasome-dependent DC response. In line with these in vitro findings, in situ immunolabelling of human fibrotic kidney tissue revealed a significant accumulation of tubulointerstitial CD1c+ DC containing active inflammasome (ASC) specks adjacent to ferroptotic PTEC. These data establish ferroptosis as the primary pattern of PTEC necrosis under the hypoxic conditions of CKD. Moreover, this study identifies NLRP3 inflammasome signalling driven by complex tubulointerstitial PTEC-DC interactions as a key checkpoint for therapeutic targeting in human CKD.
Collapse
Affiliation(s)
- Kurt T. K. Giuliani
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland, Brisbane, QLD Australia
| | - Anca Grivei
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia
| | - Purba Nag
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia
| | - Xiangju Wang
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia
| | - Melissa Rist
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia
| | - Katrina Kildey
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia
| | - Becker Law
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia ,grid.1024.70000000089150953Institute of Health and Biomedical Innovation/School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD Australia
| | - Monica S. Ng
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Institute of Molecular Biosciences, University of Queensland, Brisbane, QLD Australia ,grid.412744.00000 0004 0380 2017Department of Nephrology, Princess Alexandra Hospital, Brisbane, QLD Australia
| | - Ray Wilkinson
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland, Brisbane, QLD Australia ,grid.1024.70000000089150953Institute of Health and Biomedical Innovation/School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD Australia
| | - Jacobus Ungerer
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland, Brisbane, QLD Australia
| | - Josephine M. Forbes
- grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Mater Research Institute, University of Queensland, Brisbane, QLD Australia
| | - Helen Healy
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland, Brisbane, QLD Australia
| | - Andrew J. Kassianos
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland, Brisbane, QLD Australia ,grid.1024.70000000089150953Institute of Health and Biomedical Innovation/School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD Australia
| |
Collapse
|
125
|
Hu Y, Wu Q, Wang Y, Zhang H, Liu X, Zhou H, Yang T. The molecular pathogenesis of triptolide-induced hepatotoxicity. Front Pharmacol 2022; 13:979307. [PMID: 36091841 PMCID: PMC9449346 DOI: 10.3389/fphar.2022.979307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Triptolide (TP) is the major pharmacologically active ingredient and toxic component of Tripterygium wilfordii Hook. f. However, its clinical potential is limited by a narrow therapeutic window and multiple organ toxicity, especially hepatotoxicity. Furthermore, TP-induced hepatotoxicity shows significant inter-individual variability. Over the past few decades, research has been devoted to the study of TP-induced hepatotoxicity and its mechanism. In this review, we summarized the mechanism of TP-induced hepatotoxicity. Studies have demonstrated that TP-induced hepatotoxicity is associated with CYP450s, P-glycoprotein (P-gp), oxidative stress, excessive autophagy, apoptosis, metabolic disorders, immunity, and the gut microbiota. These new findings provide a comprehensive understanding of TP-induced hepatotoxicity and detoxification.
Collapse
Affiliation(s)
- Yeqing Hu
- Institute of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, China
| | - Qiguo Wu
- Department of Pharmacy, Anqing Medical College, Anqing, China
| | - Yulin Wang
- Institute of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, China
| | - Haibo Zhang
- Institute of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, China
| | - Xueying Liu
- Institute of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, China
| | - Hua Zhou
- Institute of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, China
- *Correspondence: Tao Yang, ; Hua Zhou,
| | - Tao Yang
- Institute of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- *Correspondence: Tao Yang, ; Hua Zhou,
| |
Collapse
|
126
|
Wong WT, Wu CH, Li LH, Hung DY, Chiu HW, Hsu HT, Ho CL, Chernikov OV, Cheng SM, Yang SP, Chung CH, Hua KF, Wang CF. The leaves of the seasoning plant Litsea cubeba inhibit the NLRP3 inflammasome and ameliorate dextran sulfate sodium-induced colitis in mice. Front Nutr 2022; 9:871325. [PMID: 35967819 PMCID: PMC9363825 DOI: 10.3389/fnut.2022.871325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/04/2022] [Indexed: 11/22/2022] Open
Abstract
The intracellular sensor NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome controls caspase-1 activity and the maturation and release of the cytokines interleukin (IL)−1β and IL−18. The NLRP3 inflammasome has attracted the attention of the pharmaceutical industry because it promotes the pathogenesis of many diseases, making it a promising target for drug development. Litsea cubeba (Lour.) is a plant traditionally used as a seasoning in Taiwan and in other Asian countries. In this study, we investigated the inhibitory activity of the leaves of L. cubeba against the NLRP3 inflammasome. We found that the ethanol extract of L. cubeba leaves (MLE) inhibited the NLRP3 inflammasome in macrophages by reducing caspase−1 activation and IL−1β secretion. MLE reduced pyroptosis in macrophages and inhibited the release of NLRP3 and apoptosis-associated speck-like protein containing a CARD (ASC). In a mechanistic study, MLE reduced mitochondrial reactive oxygen species (ROS) production and preserved mitochondrial integrity, which led to reduced mitochondrial DNA release into the cytosol. MLE did not reduce the expression levels of NLRP3, IL−1β precursor or TNF-α in lipopolysaccharide (LPS)-activated macrophages. These results indicated that MLE inhibited the NLRP3 inflammasome by suppressing the activation signals of the NLRP3 inflammasome but not by reducing the priming signal induced by LPS. In addition, oral administration of MLE (20−80 mg/kg) ameliorated dextran sulfate sodium (DSS)−induced colitis in a mouse model. Notably, mice that received MLE (1 and 2 g/kg) daily for 7 days did not exhibit visible side effects. Gas chromatography-mass spectrometry (GC-MS) analysis found that α-Terpinyl acetate (27.2%) and 1,8−Cineole (17.7%) were the major compounds in MLE. These results indicated that L. cubeba leaves have the potential to be a nutraceutical for preventing and improving NLRP3 inflammasome-related diseases.
Collapse
Affiliation(s)
- Wei-Ting Wong
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Chun-Hsien Wu
- Division of Cardiology, Department of Internal Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Lan-Hui Li
- Department of Laboratory Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan.,Department of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - De-Yu Hung
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Hsiao-Wen Chiu
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Hsien-Ta Hsu
- Division of Neurosurgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan.,School of Medicine, Buddhist Tzu Chi University, Hualien, Taiwan
| | - Chen-Lung Ho
- Division of Wood Cellulose, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Oleg V Chernikov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, Vladivostok, Russia
| | - Shu-Meng Cheng
- Division of Cardiology, Department of Internal Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Shih-Ping Yang
- Division of Cardiology, Department of Internal Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Chih-Hsin Chung
- Department of Forestry and Natural Resources, National Ilan University, Ilan, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan.,Department of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chin-Fah Wang
- Center for General Education, National Ilan University, Ilan, Taiwan
| |
Collapse
|
127
|
Xu Y, Li P, Li K, Li N, Liu H, Zhang X, Liu W, Liu Y. Pathological mechanisms and crosstalk among different forms of cell death in systemic lupus erythematosus. J Autoimmun 2022; 132:102890. [PMID: 35963809 DOI: 10.1016/j.jaut.2022.102890] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disorder characterized by a profound immune dysregulation and the presence of a variety of autoantibodies. Aberrant activation of programmed cell death (PCD) signaling and accelerated cell death is critical in the immunopathogenesis of SLE. Accumulating cellular components from the dead cells and ineffective clearance of the dead cell debris, in particular the nucleic acids and nucleic acids-protein complexes, provide a stable source of self-antigens, which potently activate auto-reactive B cells and promote IFN-I responses in SLE. Different cell types display distinct susceptibility and characteristics to a certain type of cell death, while different PCDs in various cells have mutual and intricate connections to promote immune dysregulation and contribute to the development of SLE. In this review, we discuss the role of various cell death pathways and their interactions in the pathogenesis of SLE. An in depth understanding of the interconnections among various forms cell death in SLE will lead to a better understanding of disease pathogenesis, shedding light on the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Yue Xu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Pengchong Li
- Department of Gastroenterology, Beijing Friendship Hospital, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Capital Medical University, Beijing, China
| | - Ketian Li
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Nannan Li
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Huazhen Liu
- Peking Union Medical College Hospital, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yudong Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
128
|
Zhang H, Li H, Huang B, Wang S, Gao Y, Meng F, Chen Y, Zhou F, Guan Y, Wang X. Spatiotemporal evolution of pyroptosis and canonical inflammasome pathway in hSOD1 G93A ALS mouse model. BMC Neurosci 2022; 23:50. [PMID: 35945502 PMCID: PMC9364624 DOI: 10.1186/s12868-022-00733-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 07/20/2022] [Indexed: 12/05/2022] Open
Abstract
Background Evidences indicate that inflammasome compounds participate in amyotrophic lateral sclerosis (ALS), a fatal progressive motoneuron degenerative disease. Researchers have observed the expressions of nucleotide oligomerization domain (NOD)-like receptor protein 3 (NLRP3) related inflammasome components in specific regions of the central nervous system in different ALS models, but the cellular spatiotemporal evolution of this canonical inflammasome pathway and pyroptosis during ALS progression are unclear. Methods The spinal cords of hSOD1G93A mice (ALS mice) and age-matched littermates (CON mice) were dissected at pre-symptomatic stage (60 d), early- symptomatic stage (95 d), symptomatic stage (108 d) and late-symptomatic stage (122 d) of the disease. By using Nissl staining, double immunofluorescence labelling, qRT-PCR or western blot, we detected morphology change and the expression, cellular location of GSDMD, NLRP3, caspase-1 and IL-1β in the ventral horn of lumbar spinal cords over the course of disease. Results Neural morphology changes and GSDMD+/NeuN+ double positive cells were observed in ventral horn from ALS mice even at 60 d of age, even though there were no changes of GSDMD mRNA and protein expressions at this stage compared with CON mice. With disease progression, compared with age-matched CON mice, increased expressions of GSDMD, NLRP3, activated caspase-1 and IL-1β were detected. Double immunofluorescence labeling revealed that NLRP3, caspase-1, IL-1β positive signals mainly localized in ventral horn neurons at pre- and early-symptomatic stages. From symptomatic stage to late-symptomatic stage, robust positive signals were co-expressed in reactive astrocytes and microglia. Conclusions Early activation of the canonical NLRP3 inflammasome induced pyroptosis in ventral horn neurons, which may participate in motor neuron degeneration and initiate neuroinflammatory processes during ALS progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00733-9.
Collapse
Affiliation(s)
- Haoyun Zhang
- School of Basic Medical Sciences, Weifang Medical University, No. 7166 Baotong West Street, Weifang, 261053, Shandong, China.,Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, No. 7166 Baotong West Street, Weifang, 261053, Shandong, China
| | - Hao Li
- School of Life Science and Technology, Weifang Medical University, No.7166 Baotong West Street, Weifang, 261053, Shandong, China
| | - Bingkun Huang
- School of Basic Medical Sciences, Weifang Medical University, No. 7166 Baotong West Street, Weifang, 261053, Shandong, China.,Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, No. 7166 Baotong West Street, Weifang, 261053, Shandong, China
| | - Shaoye Wang
- School of Life Science and Technology, Weifang Medical University, No.7166 Baotong West Street, Weifang, 261053, Shandong, China
| | - Ying Gao
- School of Life Science and Technology, Weifang Medical University, No.7166 Baotong West Street, Weifang, 261053, Shandong, China
| | - Fandi Meng
- School of Basic Medical Sciences, Weifang Medical University, No. 7166 Baotong West Street, Weifang, 261053, Shandong, China.,Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, No. 7166 Baotong West Street, Weifang, 261053, Shandong, China
| | - Yanchun Chen
- School of Basic Medical Sciences, Weifang Medical University, No. 7166 Baotong West Street, Weifang, 261053, Shandong, China.,Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, No. 7166 Baotong West Street, Weifang, 261053, Shandong, China
| | - Fenghua Zhou
- School of Basic Medical Sciences, Weifang Medical University, No. 7166 Baotong West Street, Weifang, 261053, Shandong, China.,Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, No. 7166 Baotong West Street, Weifang, 261053, Shandong, China
| | - Yingjun Guan
- School of Basic Medical Sciences, Weifang Medical University, No. 7166 Baotong West Street, Weifang, 261053, Shandong, China. .,Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, No. 7166 Baotong West Street, Weifang, 261053, Shandong, China.
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
129
|
Sušjan-Leite P, Ramuta TŽ, Boršić E, Orehek S, Hafner-Bratkovič I. Supramolecular organizing centers at the interface of inflammation and neurodegeneration. Front Immunol 2022; 13:940969. [PMID: 35979366 PMCID: PMC9377691 DOI: 10.3389/fimmu.2022.940969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
The pathogenesis of neurodegenerative diseases involves the accumulation of misfolded protein aggregates. These deposits are both directly toxic to neurons, invoking loss of cell connectivity and cell death, and recognized by innate sensors that upon activation release neurotoxic cytokines, chemokines, and various reactive species. This neuroinflammation is propagated through signaling cascades where activated sensors/receptors, adaptors, and effectors associate into multiprotein complexes known as supramolecular organizing centers (SMOCs). This review provides a comprehensive overview of the SMOCs, involved in neuroinflammation and neurotoxicity, such as myddosomes, inflammasomes, and necrosomes, their assembly, and evidence for their involvement in common neurodegenerative diseases. We discuss the multifaceted role of neuroinflammation in the progression of neurodegeneration. Recent progress in the understanding of particular SMOC participation in common neurodegenerative diseases such as Alzheimer's disease offers novel therapeutic strategies for currently absent disease-modifying treatments.
Collapse
Affiliation(s)
- Petra Sušjan-Leite
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Elvira Boršić
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Sara Orehek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Ljubljana, Slovenia
| |
Collapse
|
130
|
Qin W, Luo H, Yang L, Hu D, Jiang SP, Peng DY, Hu JM, Liu SJ. Rubia cordifolia L. ameliorates DSS-induced ulcerative colitis in mice through dual inhibition of NLRP3 inflammasome and IL-6/JAK2/STAT3 pathways. Heliyon 2022; 8:e10314. [PMID: 36082330 PMCID: PMC9445285 DOI: 10.1016/j.heliyon.2022.e10314] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/01/2022] [Accepted: 08/11/2022] [Indexed: 10/25/2022] Open
|
131
|
Pizzuto M, Pelegrin P, Ruysschaert JM. Lipid-protein interactions regulating the canonical and the non-canonical NLRP3 inflammasome. Prog Lipid Res 2022; 87:101182. [PMID: 35901922 DOI: 10.1016/j.plipres.2022.101182] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/25/2022] [Accepted: 07/24/2022] [Indexed: 01/05/2023]
Abstract
The inflammatory response is a complex regulated effector mechanism of the innate immune system that is initiated after tissue injury or infection. The NLRP3 inflammasome is an important initiator of inflammation by regulating the activation of caspase-1, the maturation of pro-inflammatory cytokines and the induction of pyroptotic cell death. Numerous studies demonstrate that the NLRP3 inflammasome could be modulated by lipids, existing a relation between lipids and the activation of different inflammatory processes. In this review we will summarize how the mechanism of NLRP3 inflammasome activation is regulated by different lipids and how these lipids control specific cellular localization of NLRP3 during activation. Although being a cytosolic protein, NLRP3 interacts with lipids accessible in neighbor membranes. Also, the modulation of NLRP3 by endogenous lipids has been found causative of different metabolic diseases and bacterial-pathogenic lipids lead to NLRP3 activation during infection. The understanding of the modulation of the NLRP3 inflammasome by lipids has resulted not only in a better knowledge about the mechanism of NLRP3 activation and its implication in disease, but also opens a new avenue for the development of novel therapeutics and vaccines, as NLRP3 could be modulated by synthetic lipids used as adjuvants.
Collapse
Affiliation(s)
- Malvina Pizzuto
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; Laboratoire de Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, Brussels, Belgium.
| | - Pablo Pelegrin
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Biology, University of Murcia, Spain.
| | - Jean-Marie Ruysschaert
- Laboratoire de Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
132
|
Hong XX, Wang HY, Yang JM, Lin BF, Min QQ, Liang YZ, Huang PD, Zhong ZY, Guo SJ, Huang B, Xu YF. Systemic injury caused by taurocholate-induced severe acute pancreatitis in rats. Exp Ther Med 2022; 24:468. [PMID: 35747153 PMCID: PMC9204573 DOI: 10.3892/etm.2022.11395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/13/2022] [Indexed: 11/06/2022] Open
Abstract
Systemic injury plays a central role in severe acute pancreatitis (SAP). Retrograde biliopancreatic duct infusion of sodium taurocholate (NaT) is commonly used to establish SAP animal models. To better characterize the systemic injury in this model, SAP was induced in Sprague-Dawley rats by NaT administration (3.5 or 5%), followed by sacrifice at 3, 6, 9, 12, 24, 48 and 72 h. Normal saline was used as a control in Sham-operated rats. The mortality rate, ascites volume, and serum and ascitic fluid amylase and lipase activities were assessed. Multiple organ dysfunction, including dysfunction of the pancreas, lung, ileum, liver, and kidney, was investigated using hematoxylin and eosin staining. The interleukin (IL)-1β, IL-6, and tumor necrosis factor-α levels in the ascitic fluid, serum, and ileum tissues were evaluated using an enzyme-linked immunosorbent assay (ELISA). Tight junction proteins, zonula occludens-1 (ZO-1) and occludin, in ileum tissues were studied using immunofluorescence. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine (CRE) and urea levels were measured using an automatic biochemical analyzer. The results of the present study indicated that both 3.5 and 5% NaT could induce a stable elevation of pancreatitis indices, with histopathological injury of the pancreas, lungs and ileum (5% NaT). The ascitic fluid levels of IL-6 and IL-1β were increased in the 5% NaT group. ALT and AST levels increased temporarily and recovered in 72 h, without a significant increase in CRE and urea levels or apparent hepatic and renal pathological injury. In conclusion, rats with NaT-induced SAP have characteristics of necrotizing hemorrhagic pancreatitis with multiple organ injuries, including inflammatory lung injury, ischemic intestinal injury and slight liver and kidney injuries.
Collapse
Affiliation(s)
- Xin-Xin Hong
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Hong-Yan Wang
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Jiong-Ming Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Bao-Fu Lin
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Qin-Qin Min
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Yi-Zhong Liang
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Pei-Di Huang
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Zi-You Zhong
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Shao-Ju Guo
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Bin Huang
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Yi-Fei Xu
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| |
Collapse
|
133
|
Tovar A, Gomez A, Serrano A, Blanco MP, Galor A, Swaminathan SS, de Rivero Vaccari JP, Sabater AL. Role of Caspase-1 as a Biomarker of Ocular Surface Damage. Am J Ophthalmol 2022; 239:74-83. [PMID: 35151638 DOI: 10.1016/j.ajo.2022.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE To examine the potential of caspase-1 as a biomarker for ocular surface damage. DESIGN Cross-sectional study. METHODS A total of 113 tear samples (64 subjects) were analyzed. Sixty-one samples were from individuals with dry eye disease (DED), defined as Ocular Surface Disease Index (OSDI) ≥13 and/or corneal staining (CS) ≥3; 32 were from individuals who used glaucoma medication, irrespective of DED metrics; and 20 were from controls (CS <3 and OSDI <13). All individuals completed a medical history form and underwent an ocular surface assessment. Protein levels of caspase-1 were determined by enzyme-linked immunosorbent assay off Schirmer's strips. The primary analysis compared caspase-1 levels in individuals with signs of ocular surface damage (CS ≥3) in both case groups and controls. Secondary correlational analyses were conducted to examine relationships between caspase-1 levels and ocular signs and symptoms. Finally, area under the curve (AUC) analyses were performed to examine relationships between inflammatory markers and CS. RESULTS The mean age of the population was 58±18 years; 70% were female. Tear samples from individuals with ocular surface damage presented higher caspase-1 levels than the control group. Caspase-1 levels showed a moderate positive correlation with CS (Spearman r = 0.31; P = .001) and eye redness (Spearman r = 0.39; P = .004), and a negative correlation with Schirmer's (Spearman r = -0.46; P < .001) and tear break-up time (Spearman r = -0.33; P = .0006). Caspase-1 showed higher sensitivity and AUC for detecting ocular surface damage than InflammaDry, and its expression was not affected by anti-inflammatory agents. CONCLUSION Caspase-1 levels were higher in the tears of individuals with ocular surface damage, suggesting its potential to be used as a biomarker and/or therapeutic target.
Collapse
Affiliation(s)
- Arianna Tovar
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA (A.T, A.G, A.S, M.P.B, S.S.S, A.L.S)
| | - Angela Gomez
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA (A.T, A.G, A.S, M.P.B, S.S.S, A.L.S)
| | - Andres Serrano
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA (A.T, A.G, A.S, M.P.B, S.S.S, A.L.S)
| | - Maricarmen Perez Blanco
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA (A.T, A.G, A.S, M.P.B, S.S.S, A.L.S)
| | - Anat Galor
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA (A.T, A.G, A.S, M.P.B, S.S.S, A.L.S)
| | - Swarup S Swaminathan
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA (A.T, A.G, A.S, M.P.B, S.S.S, A.L.S)
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA (J.P.R.V)
| | - Alfonso L Sabater
- From the Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA (A.T, A.G, A.S, M.P.B, S.S.S, A.L.S).
| |
Collapse
|
134
|
Liu YT, Hu YQ, Wang YL, Huang K, Chen GF, Zhou H, Liu CH, Yang T. Antibiotic pretreatment promotes orally-administered triptolide absorption and aggravates hepatotoxicity and intestinal injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115224. [PMID: 35351577 DOI: 10.1016/j.jep.2022.115224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/27/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Triptolide (TP) exhibits extensive pharmacological activity, but its hepatotoxicity and intestinal injury are significant and limit its clinical use. AIM OF THE STUDY To investigate the effect of gut microbiota disturbance after antibiotic pretreatment on TP-induced hepatotoxicity, intestinal injury and their mechanism. MATERIALS AND METHODS We compared the characteristics of TP-induced hepatotoxicity and intestinal injury in mice with or without antibiotic pretreatment. The levels of cytokines in the serum, immunohistochemistry, and the pharmacokinetics of TP were determined. RESULT Antibiotic pretreatment aggravates TP-induced hepatotoxicity and ileum/colon injury. TP induces hepatotoxicity in a dose-dependent manner after antibiotic pretreatment. Serum IL-1β and IL-6 levels were increased in mice given oral TP after antibiotic pretreatment. TP can increase the expression of NLRP3 inflammasome in hepatocytes, and Oral TP after antibiotic pretreatment can significantly enhance its expression, but NLRP3 inflammasome no significant change in colon and ileum. The pharmacokinetic characteristics of TP are altered significantly by antibiotic pretreatment, as shown by a 145.87% increase in Cmax, a 155.11% increase in AUC0-t, a 155.1% increase in relative bioavailability, and a 15.44% delay in MRT. Moreover, TP causes hepatotoxicity in a time-dependent manner. CONCLUSIONS Antibiotic pretreatment aggravates triptolide-induced hepatotoxicity and intestinal injury through elevated inflammatory response and promoted triptolide absorption.
Collapse
Affiliation(s)
- Yu-Ting Liu
- Institute of Cardiovascular Disease, Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ye-Qing Hu
- Institute of Cardiovascular Disease, Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu-Lin Wang
- Institute of Cardiovascular Disease, Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Kai Huang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China
| | - Gao-Feng Chen
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China
| | - Hua Zhou
- Institute of Cardiovascular Disease, Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Cheng-Hai Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China
| | - Tao Yang
- Institute of Cardiovascular Disease, Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China.
| |
Collapse
|
135
|
Evavold CL, Kagan JC. Diverse Control Mechanisms of the Interleukin-1 Cytokine Family. Front Cell Dev Biol 2022; 10:910983. [PMID: 35832789 PMCID: PMC9272893 DOI: 10.3389/fcell.2022.910983] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/17/2022] [Indexed: 11/15/2022] Open
Abstract
The majority of interleukin-1 (IL-1) family cytokines lack amino terminal secretion signals or transmembrane domains for secretion along the conventional biosynthetic pathway. Yet, these factors must be translocated from the cytoplasm across the plasma membrane into the extracellular space in order to regulate inflammation. Recent work has identified an array of mechanisms by which IL-1 family cytokines can be released into the extracellular space, with supramolecular organizing centers known as inflammasomes serving as dominant drivers of this process. In this review, we discuss current knowledge of the mechanisms of IL-1 family cytokine synthesis, processing, and release from cells. Using this knowledge, we propose a model whereby host metabolic state dictates the route of IL-1β secretion, with implications for microbial infection and sterile inflammation.
Collapse
Affiliation(s)
- Charles L. Evavold
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
- *Correspondence: Charles L. Evavold, ; Jonathan C. Kagan,
| | - Jonathan C. Kagan
- Division of Gastroenterology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- *Correspondence: Charles L. Evavold, ; Jonathan C. Kagan,
| |
Collapse
|
136
|
Zhang S, Liang Y, Yao J, Li DF, Wang LS. Role of Pyroptosis in Inflammatory Bowel Disease (IBD): From Gasdermins to DAMPs. Front Pharmacol 2022; 13:833588. [PMID: 35677444 PMCID: PMC9168461 DOI: 10.3389/fphar.2022.833588] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/22/2022] [Indexed: 12/11/2022] Open
Abstract
Pyroptosis is a pro-inflammatory cell death executed by gasdermin family proteins that involve the formation of pores on cells, recognition of danger signals, and release of pro-inflammatory cytokines IL-1β and IL-18. Pyroptosis modulates mucosal innate immunity and enteropathogenic bacterial infection. Similarly, the gasdermin family has been reported to be involved in the defense of the intestinal epithelium against bacterial infection and in the regulation of intestinal inflammation. Pyroptosis initiates damage signals that activate multiple pathways to cause inflammation, which may be a potential cause of chronic intestinal inflammation. In this review, we discuss the impact of pyroptosis on inflammatory bowel disease (IBD), with a focus on the executive proteins of pyroptosis (GSDMB, GADMD, and GSDME) and IBD-related endogenous damage-associated molecular patterns (DAMPs) produced by pyroptosis.
Collapse
Affiliation(s)
- Shuxia Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen People Hospital, Shenzhen, China
| | | | - Jun Yao
- Department of Gastroenterology, The Second Clinical Medicine College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - De-Feng Li
- Department of Gastroenterology, The Second Clinical Medicine College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Li-Sheng Wang
- Department of Gastroenterology, The Second Clinical Medicine College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| |
Collapse
|
137
|
Rajesh Y, Kanneganti TD. Innate Immune Cell Death in Neuroinflammation and Alzheimer's Disease. Cells 2022; 11:1885. [PMID: 35741014 PMCID: PMC9221514 DOI: 10.3390/cells11121885] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder molecularly characterized by the formation of amyloid β (Aβ) plaques and type 2 microtubule-associated protein (Tau) abnormalities. Multiple studies have shown that many of the brain's immunological cells, specifically microglia and astrocytes, are involved in AD pathogenesis. Cells of the innate immune system play an essential role in eliminating pathogens but also regulate brain homeostasis and AD. When activated, innate immune cells can cause programmed cell death through multiple pathways, including pyroptosis, apoptosis, necroptosis, and PANoptosis. The cell death often results in the release of proinflammatory cytokines that propagate the innate immune response and can eliminate Aβ plaques and aggregated Tau proteins. However, chronic neuroinflammation, which can result from cell death, has been linked to neurodegenerative diseases and can worsen AD. Therefore, the innate immune response must be tightly balanced to appropriately clear these AD-related structural abnormalities without inducing chronic neuroinflammation. In this review, we discuss neuroinflammation, innate immune responses, inflammatory cell death pathways, and cytokine secretion as they relate to AD. Therapeutic strategies targeting these innate immune cell death mechanisms will be critical to consider for future preventive or palliative treatments for AD.
Collapse
|
138
|
García-Villalba J, Hurtado-Navarro L, Peñín-Franch A, Molina-López C, Martínez-Alarcón L, Angosto-Bazarra D, Baroja-Mazo A, Pelegrin P. Soluble P2X7 Receptor Is Elevated in the Plasma of COVID-19 Patients and Correlates With Disease Severity. Front Immunol 2022; 13:894470. [PMID: 35663992 PMCID: PMC9161710 DOI: 10.3389/fimmu.2022.894470] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/19/2022] [Indexed: 12/19/2022] Open
Abstract
Inflammation is a tightly coordinated response against bacterial and viral infections, triggered by the production of pro-inflammatory cytokines. SARS-CoV-2 infection induces COVID-19 disease, characterized by an inflammatory response mediated through the activation of the NLRP3 inflammasome, which results in the production of IL-1β and IL-18 along with pyroptotic cell death. The NLRP3 inflammasome could be also activated by sterile danger signals such as extracellular ATP triggering the purinergic P2X7 receptor. Severe inflammation in the lungs of SARS-CoV-2-infected individuals is associated with pneumonia, hypoxia and acute respiratory distress syndrome, these being the causes of death associated with COVID-19. Both the P2X7 receptor and NLRP3 have been considered as potential pharmacological targets for treating inflammation in COVID-19. However, there is no experimental evidence of the involvement of the P2X7 receptor during COVID-19 disease. In the present study, we determined the concentration of different cytokines and the P2X7 receptor in the plasma of COVID-19 patients and found that along with the increase in IL-6, IL-18 and the IL-1 receptor antagonist in the plasma of COVID-19 patients, there was also an increase in the purinergic P2X7 receptor. The increase in COVID-19 severity and C-reactive protein concentration positively correlated with increased concentration of the P2X7 receptor in the plasma, but not with the IL-18 cytokine. The P2X7 receptor was found in the supernatant of human peripheral blood mononuclear cells after inflammasome activation. Therefore, our data suggest that determining the levels of the P2X7 receptor in the plasma could be a novel biomarker of COVID-19 severity.
Collapse
Affiliation(s)
- Julio García-Villalba
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital Virgen Arrixaca, Murcia, Spain
| | - Laura Hurtado-Navarro
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital Virgen Arrixaca, Murcia, Spain
| | - Alejandro Peñín-Franch
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital Virgen Arrixaca, Murcia, Spain
| | - Cristina Molina-López
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital Virgen Arrixaca, Murcia, Spain
| | - Laura Martínez-Alarcón
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital Virgen Arrixaca, Murcia, Spain
| | - Diego Angosto-Bazarra
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital Virgen Arrixaca, Murcia, Spain
| | - Alberto Baroja-Mazo
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital Virgen Arrixaca, Murcia, Spain
| | - Pablo Pelegrin
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital Virgen Arrixaca, Murcia, Spain.,Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| |
Collapse
|
139
|
Kogel A, Fikenzer S, Uhlmann L, Opitz L, Kneuer JM, Haeusler KG, Endres M, Kratzsch J, Schwarz V, Werner C, Kalwa H, Gaul S, Laufs U. Extracellular Inflammasome Particles Are Released After Marathon Running and Induce Proinflammatory Effects in Endothelial Cells. Front Physiol 2022; 13:866938. [PMID: 35669577 PMCID: PMC9163349 DOI: 10.3389/fphys.2022.866938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives: The intracellular NLRP3 inflammasome is an important regulator of sterile inflammation. Recent data suggest that inflammasome particles can be released into circulation. The effects of exercise on circulating extracellular apoptosis-associated speck-like protein (ASC) particles and their effects on endothelial cells are not known. Methods: We established a flow cytometric method to quantitate extracellular ASC specks in human serum. ASC specks were quantitated in 52 marathon runners 24–72 h before, immediately after, and again 24–58 h after the run. For mechanistic characterization, NLRP3 inflammasome particles were isolated from a stable mutant NLRP3 (p.D303N)-YFP HEK cell line and used to treat primary human coronary artery endothelial cells. Results: Athletes showed a significant increase in serum concentration of circulating ASC specks immediately after the marathon (+52% compared with the baseline, p < 0.05) and a decrease during the follow-up after 24–58 h (12% reduction compared with immediately after the run, p < 0.01). Confocal microscopy revealed that human endothelial cells can internalize extracellular NLRP3 inflammasome particles. After internalization, endothelial cells showed an inflammatory response with a higher expression of the cell adhesion molecule ICAM1 (6.9-fold, p < 0.05) and increased adhesion of monocytes (1.5-fold, p < 0.05). Conclusion: These findings identify extracellular inflammasome particles as novel systemic mediators of cell–cell communication that are transiently increased after acute extensive exercise with a high mechanical muscular load.
Collapse
Affiliation(s)
- Alexander Kogel
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Sven Fikenzer
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Luisa Uhlmann
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Lena Opitz
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Jasmin M Kneuer
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | | | - Matthias Endres
- Department of Neurology and Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE) and German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Jürgen Kratzsch
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
| | - Viktoria Schwarz
- Department for Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Saarland University, Saarbrücken, Germany
| | - Christian Werner
- Department for Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Saarland University, Saarbrücken, Germany
| | - Hermann Kalwa
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Universität Leipzig, Leipzig, Germany
| | - Susanne Gaul
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| |
Collapse
|
140
|
Lai B, Wu CH, Wu CY, Luo SF, Lai JH. Ferroptosis and Autoimmune Diseases. Front Immunol 2022; 13:916664. [PMID: 35720308 PMCID: PMC9203688 DOI: 10.3389/fimmu.2022.916664] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/09/2022] [Indexed: 12/21/2022] Open
Abstract
Adequate control of autoimmune diseases with an unclear etiology resulting from autoreactivation of the immune system remains a major challenge. One of the factors that trigger autoimmunity is the abnormal induction of cell death and the inadequate clearance of dead cells that leads to the exposure or release of intracellular contents that activate the immune system. Different from other cell death subtypes, such as apoptosis, necroptosis, autophagy, and pyroptosis, ferroptosis has a unique association with the cellular iron load (but not the loads of other metals) and preserves its distinguishable morphological, biological, and genetic features. This review addresses how ferroptosis is initiated and how it contributes to the pathogenesis of autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, and inflammatory bowel diseases. The mechanisms responsible for ferroptosis-associated events are discussed. We also cover the perspective of targeting ferroptosis as a potential therapeutic for patients with autoimmune diseases. Collectively, this review provides up-to-date knowledge regarding how ferroptosis occurs and its significance in autoimmune diseases.
Collapse
Affiliation(s)
- Benjamin Lai
- Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chien-Hsiang Wu
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shue-Fen Luo
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jenn-Haung Lai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
- *Correspondence: Jenn-Haung Lai,
| |
Collapse
|
141
|
Xu YJ, Au NPB, Ma CHE. Functional and Phenotypic Diversity of Microglia: Implication for Microglia-Based Therapies for Alzheimer’s Disease. Front Aging Neurosci 2022; 14:896852. [PMID: 35693341 PMCID: PMC9178186 DOI: 10.3389/fnagi.2022.896852] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease and is closely associated with the accumulation of β-amyloid (Aβ) and neurofibrillary tangles (NFTs). Apart from Aβ and NFT pathologies, AD patients also exhibit a widespread microglial activation in various brain regions with elevated production of pro-inflammatory cytokines, a phenomenon known as neuroinflammation. In healthy central nervous system, microglia adopt ramified, “surveying” phenotype with compact cell bodies and elongated processes. In AD, the presence of pathogenic proteins such as extracellular Aβ plaques and hyperphosphorylated tau, induce the transformation of ramified microglia into amoeboid microglia. Ameboid microglia are highly phagocytic immune cells and actively secrete a cascade of pro-inflammatory cytokines and chemokines. However, the phagocytic ability of microglia gradually declines with age, and thus the clearance of pathogenic proteins becomes highly ineffective, leading to the accumulation of Aβ plaques and hyperphosphorylated tau in the aging brain. The accumulation of pathogenic proteins further augments the neuroinflammatory responses and sustains the activation of microglia. The excessive production of pro-inflammatory cytokines induces a massive loss of functional synapses and neurons, further worsening the disease condition of AD. More recently, the identification of a subset of microglia by transcriptomic studies, namely disease-associated microglia (DAM), the progressive transition from homeostatic microglia to DAM is TREM2-dependent and the homeostatic microglia gradually acquire the state of DAM during the disease progression of AD. Recent in-depth transcriptomic analysis identifies ApoE and Trem2 from microglia as the major risk factors for AD pathogenesis. In this review, we summarize current understandings of the functional roles of age-dependent microglial activation and neuroinflammation in the pathogenesis of AD. To this end, the exponential growth in transcriptomic data provides a solid foundation for in silico drug screening and gains further insight into the development of microglia-based therapeutic interventions for AD.
Collapse
Affiliation(s)
- Yi-Jun Xu
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ngan Pan Bennett Au
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Chi Him Eddie Ma
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- *Correspondence: Chi Him Eddie Ma,
| |
Collapse
|
142
|
Adriouch S, Pelegrin P. ASC nanobodies to counteract the consequences of inflammasome activation. EMBO Mol Med 2022; 14:e16087. [PMID: 35574976 PMCID: PMC9174878 DOI: 10.15252/emmm.202216087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/03/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammasomes are multiprotein complexes that signal by oligomerizing the apoptosis speck‐like protein with caspase recruitment and activator domain (ASC) and are involved in multiple inflammatory, metabolic and degenerative diseases. Pharmacological targeting of specific inflammasomes with small molecules is leading to the development of novel drugs for most common diseases. The targeting of ASC oligomers will result in a pan‐inflammasome treatment. In their study, Bertheloot et al (2022) developed specific anti‐ASC nanobodies and showed their efficacy to disaggregate already formed ASC oligomers and to treat inflammatory diseases in animal models. This approach represents a novel biologic‐based treatment for inflammasomes‐initiated inflammatory diseases.
Collapse
Affiliation(s)
- Sahil Adriouch
- UNIROUEN, INSERM, U1234 (PANTHER), Normandie University, Rouen, France
| | - Pablo Pelegrin
- Biomedical Research Institute of Murcia (IMIB), University of Murcia, Murcia, Spain
| |
Collapse
|
143
|
The Role of Inflammasomes in Osteoarthritis and Secondary Joint Degeneration Diseases. Life (Basel) 2022; 12:life12050731. [PMID: 35629398 PMCID: PMC9146751 DOI: 10.3390/life12050731] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/23/2022] Open
Abstract
Osteoarthritis is age-related and the most common form of arthritis. The main characteristics of the disease are progressive loss of cartilage and secondary synovial inflammation, which finally result in pain, joint stiffness, and functional disability. Similarly, joint degeneration is characteristic of systemic inflammatory diseases such as rheumatoid arthritis and gout, with the associated secondary type of osteoarthritis. Studies suggest that inflammation importantly contributes to the progression of the disease. Particularly, cytokines TNFα and IL-1β drive catabolic signaling in affected joints. IL-1β is a product of inflammasome activation. Inflammasomes are inflammatory multiprotein complexes that propagate inflammation in various autoimmune and autoinflammatory conditions through cell death and the release of inflammatory cytokines and damage-associated molecule patterns. In this article, we review genetic, marker, and animal studies that establish inflammasomes as important drivers of secondary arthritis and discuss the current evidence for inflammasome involvement in primary osteoarthritis. The NLRP3 inflammasome has a significant role in the development of secondary osteoarthritis, and several studies have provided evidence of its role in the development of primary osteoarthritis, while other inflammasomes cannot be excluded. Inflammasome-targeted therapeutic options might thus provide a promising strategy to tackle these debilitating diseases.
Collapse
|
144
|
Hochheiser IV, Behrmann H, Hagelueken G, Rodríguez-Alcázar JF, Kopp A, Latz E, Behrmann E, Geyer M. Directionality of PYD filament growth determined by the transition of NLRP3 nucleation seeds to ASC elongation. SCIENCE ADVANCES 2022; 8:eabn7583. [PMID: 35559676 PMCID: PMC9106292 DOI: 10.1126/sciadv.abn7583] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/30/2022] [Indexed: 05/03/2023]
Abstract
Inflammasomes sense intrinsic and extrinsic danger signals to trigger inflammatory responses and pyroptotic cell death. Homotypic pyrin domain (PYD) interactions of inflammasome forming nucleotide-binding oligomerization domain (NOD)-like receptors with the adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD) mediate oligomerization into filamentous assemblies. We describe the cryo-electron microscopy (cryo-EM) structure of the human NLRP3PYD filament and identify a pattern of highly polar interface residues that form the homomeric interactions leading to characteristic filament ends designated as A- and B-ends. Coupling a titration polymerization assay to cryo-EM, we demonstrate that ASC adaptor protein elongation on NLRP3PYD nucleation seeds is unidirectional, associating exclusively to the B-end of the filament. Notably, NLRP3 and ASC PYD filaments exhibit the same symmetry in rotation and axial rise per subunit, allowing a continuous transition between NLRP3 and ASC. Integrating the directionality of filament growth, we present a molecular model of the ASC speck consisting of active NLRP3, ASC, and Caspase-1 proteins.
Collapse
Affiliation(s)
- Inga V. Hochheiser
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Heide Behrmann
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Gregor Hagelueken
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | | | - Anja Kopp
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 12 Parkville, VIC 3052, Australia
| | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Elmar Behrmann
- Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, 50674 Cologne, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
145
|
Mishchenko T, Balalaeva I, Gorokhova A, Vedunova M, Krysko DV. Which cell death modality wins the contest for photodynamic therapy of cancer? Cell Death Dis 2022; 13:455. [PMID: 35562364 PMCID: PMC9106666 DOI: 10.1038/s41419-022-04851-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
Abstract
Photodynamic therapy (PDT) was discovered more than 100 years ago. Since then, many protocols and agents for PDT have been proposed for the treatment of several types of cancer. Traditionally, cell death induced by PDT was categorized into three types: apoptosis, cell death associated with autophagy, and necrosis. However, with the discovery of several other regulated cell death modalities in recent years, it has become clear that this is a rather simple understanding of the mechanisms of action of PDT. New observations revealed that cancer cells exposed to PDT can pass through various non-conventional cell death pathways, such as paraptosis, parthanatos, mitotic catastrophe, pyroptosis, necroptosis, and ferroptosis. Nowadays, immunogenic cell death (ICD) has become one of the most promising ways to eradicate tumor cells by activation of the T-cell adaptive immune response and induction of long-term immunological memory. ICD can be triggered by many anti-cancer treatment methods, including PDT. In this review, we critically discuss recent findings on the non-conventional cell death mechanisms triggered by PDT. Next, we emphasize the role and contribution of ICD in these PDT-induced non-conventional cell death modalities. Finally, we discuss the obstacles and propose several areas of research that will help to overcome these challenges and lead to the development of highly effective anti-cancer therapy based on PDT.
Collapse
Affiliation(s)
- Tatiana Mishchenko
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Irina Balalaeva
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Anastasia Gorokhova
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Maria Vedunova
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Dmitri V. Krysko
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation ,grid.5342.00000 0001 2069 7798Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium ,grid.510942.bCancer Research Institute Ghent, Ghent, Belgium ,grid.448878.f0000 0001 2288 8774Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| |
Collapse
|
146
|
Tanaka T, Shiba T, Honda Y, Izawa K, Yasumi T, Saito MK, Nishikomori R. Induced Pluripotent Stem Cell-Derived Monocytes/Macrophages in Autoinflammatory Diseases. Front Immunol 2022; 13:870535. [PMID: 35603217 PMCID: PMC9120581 DOI: 10.3389/fimmu.2022.870535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
The concept of autoinflammation, first proposed in 1999, refers to a seemingly unprovoked episode of sterile inflammation manifesting as unexplained fever, skin rashes, and arthralgia. Autoinflammatory diseases are caused mainly by hereditary abnormalities of innate immunity, without the production of autoantibodies or autoreactive T cells. The revolutionary discovery of induced pluripotent stem cells (iPSCs), whereby a patient’s somatic cells can be reprogrammed into an embryonic pluripotent state by forced expression of a defined set of transcription factors, has the transformative potential to enable in vitro disease modeling and drug candidate screening, as well as to provide a resource for cell replacement therapy. Recent reports demonstrate that recapitulating a disease phenotype in vitro is feasible for numerous monogenic diseases, including autoinflammatory diseases. In this review, we provide a comprehensive overview of current advances in research into autoinflammatory diseases involving iPSC-derived monocytes/macrophages. This review may aid in the planning of new studies of autoinflammatory diseases.
Collapse
Affiliation(s)
- Takayuki Tanaka
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Pediatrics, Japanese Red Cross Otsu Hospital, Otsu, Japan
- *Correspondence: Takayuki Tanaka,
| | - Takeshi Shiba
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Yoshitaka Honda
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahiro Yasumi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Megumu K. Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Ryuta Nishikomori
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
147
|
Wu D, Zhang Z, Jiang X, Du Y, Zhang S, Yang XD. Inflammasome Meets Centrosome: Understanding the Emerging Role of Centrosome in Controlling Inflammasome Activation. Front Immunol 2022; 13:826106. [PMID: 35281071 PMCID: PMC8907152 DOI: 10.3389/fimmu.2022.826106] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/07/2022] [Indexed: 12/30/2022] Open
Abstract
Inflammasomes are multi-protein platforms that are assembled in response to microbial and danger signals to activate proinflammatory caspase-1 for production of active form of IL-1β and induction of pyroptotic cell death. Where and how an inflammasome is assembled in cells has remained controversial. While the endoplasmic reticulum, mitochondria and Golgi apparatus have been reported to be associated with inflammasome assembly, none of these sites seems to match the morphology, number and size of activated inflammasomes that are microscopically observable as one single perinuclear micrometer-sized punctum in each cell. Recently, emerging evidence shows that NLRP3 and pyrin inflammasomes are assembled, activated and locally regulated at the centrosome, the major microtubule organizing center in mammalian cells, elegantly accounting for the singularity, size and perinuclear location of activated inflammasomes. These new exciting findings reveal the previously unappreciated importance of the centrosome in controlling inflammasome assembly and activation as well as inflammasome-related diseases.
Collapse
Affiliation(s)
- Dandan Wu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenzhen Zhang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Jiang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaning Du
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangyan Zhang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Dong Yang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
148
|
Coll RC, Schroder K, Pelegrín P. NLRP3 and pyroptosis blockers for treating inflammatory diseases. Trends Pharmacol Sci 2022; 43:653-668. [PMID: 35513901 DOI: 10.1016/j.tips.2022.04.003] [Citation(s) in RCA: 395] [Impact Index Per Article: 131.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022]
Abstract
The nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome has emerged as a key mediator of pathological inflammation in many diseases and is an exciting drug target. Here, we review the molecular basis of NLRP3 inhibition by drug-like small molecules under development as novel therapeutics. We also summarize recent strategies to block pyroptosis as a novel approach to suppress chronic inflammation. Major recent developments in this area include the elucidation of mechanisms of action (MoAs) by which small molecules block NLRP3 inflammasome assembly and gasdermin D (GSDMD)-induced pyroptosis. We also discuss the status of clinical trials using agents that block specific components of the NLRP3 pathway, including their potential clinical applications for the treatment of many diseases.
Collapse
Affiliation(s)
- Rebecca C Coll
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK.
| | - Kate Schroder
- Institute for Molecular Bioscience and IMB Centre for Inflammation and Disease Research, The University of Queensland, QLD 4072, Australia.
| | - Pablo Pelegrín
- Biomedical Research Institute of Murcia (IMIB), Faculty of Medicine, University of Murcia, 30120 Murcia, Spain.
| |
Collapse
|
149
|
Hurtado-Navarro L, Angosto-Bazarra D, Pelegrín P, Baroja-Mazo A, Cuevas S. NLRP3 Inflammasome and Pyroptosis in Liver Pathophysiology: The Emerging Relevance of Nrf2 Inducers. Antioxidants (Basel) 2022; 11:antiox11050870. [PMID: 35624734 PMCID: PMC9137763 DOI: 10.3390/antiox11050870] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammasomes, particularly the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3 (NLRP3) inflammasome, apparently serve as crucial regulators of the inflammatory response through the activation of Caspase-1 and induction of pro-inflammatory cytokines and pyroptotic cell death. Pyroptosis is a type of programmed cell death mediated by Caspase-1 cleavage of Gasdermin D and the insertion of its N-terminal fragment into the plasma membrane, where it forms pores, enabling the release of different pro-inflammatory mediators. Pyroptosis is considered not only a pro-inflammatory pathway involved in liver pathophysiology but also an important pro-fibrotic mediator. Diverse molecular mechanisms linking oxidative stress, inflammasome activation, pyroptosis, and the progression of liver pathologies have been documented. Numerous studies have indicated the protective effects of several antioxidants, with the ability to induce nuclear factor erythroid 2-related factor 2 (Nrf2) activity on liver inflammation and fibrosis. In this review, we have summarised recent studies addressing the role of the NLRP3 inflammasome and pyroptosis in the pathogenesis of various hepatic diseases, highlighting the potential application of Nrf2 inducers in the prevention of pyroptosis as liver protective compounds.
Collapse
Affiliation(s)
- Laura Hurtado-Navarro
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain; (L.H.-N.); (D.A.-B.); (P.P.)
| | - Diego Angosto-Bazarra
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain; (L.H.-N.); (D.A.-B.); (P.P.)
| | - Pablo Pelegrín
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain; (L.H.-N.); (D.A.-B.); (P.P.)
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | - Alberto Baroja-Mazo
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain; (L.H.-N.); (D.A.-B.); (P.P.)
- Correspondence: (A.B.-M.); (S.C.); Tel.: +34-868-885-039 (A.B.-M.); +34-868-885-031 (S.C.)
| | - Santiago Cuevas
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain; (L.H.-N.); (D.A.-B.); (P.P.)
- Correspondence: (A.B.-M.); (S.C.); Tel.: +34-868-885-039 (A.B.-M.); +34-868-885-031 (S.C.)
| |
Collapse
|
150
|
Nicotinic Acetylcholine Receptors and Microglia as Therapeutic and Imaging Targets in Alzheimer's Disease. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092780. [PMID: 35566132 PMCID: PMC9102429 DOI: 10.3390/molecules27092780] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022]
Abstract
Amyloid-β (Aβ) accumulation and tauopathy are considered the pathological hallmarks of Alzheimer’s disease (AD), but attenuation in choline signaling, including decreased nicotinic acetylcholine receptors (nAChRs), is evident in the early phase of AD. Currently, there are no drugs that can suppress the progression of AD due to a limited understanding of AD pathophysiology. For this, diagnostic methods that can assess disease progression non-invasively before the onset of AD symptoms are essential, and it would be valuable to incorporate the concept of neurotheranostics, which simultaneously enables diagnosis and treatment. The neuroprotective pathways activated by nAChRs are attractive targets as these receptors may regulate microglial-mediated neuroinflammation. Microglia exhibit both pro- and anti-inflammatory functions that could be modulated to mitigate AD pathogenesis. Currently, single-cell analysis is identifying microglial subpopulations that may have specific functions in different stages of AD pathologies. Thus, the ability to image nAChRs and microglia in AD according to the stage of the disease in the living brain may lead to the development of new diagnostic and therapeutic methods. In this review, we summarize and discuss the recent findings on the nAChRs and microglia, as well as their methods for live imaging in the context of diagnosis, prophylaxis, and therapy for AD.
Collapse
|