101
|
Knura M, Garczorz W, Borek A, Drzymała F, Rachwał K, George K, Francuz T. The Influence of Anti-Diabetic Drugs on Prostate Cancer. Cancers (Basel) 2021; 13:cancers13081827. [PMID: 33921222 PMCID: PMC8068793 DOI: 10.3390/cancers13081827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/27/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
The incidences of prostate cancer (PC) and diabetes are increasing, with a sustained trend. The occurrence of PC and type 2 diabetes mellitus (T2DM) is growing with aging. The correlation between PC occurrence and diabetes is noteworthy, as T2DM is correlated with a reduced risk of incidence of prostate cancer. Despite this reduction, diabetes mellitus increases the mortality in many cancer types, including prostate cancer. The treatment of T2DM is based on lifestyle changes and pharmacological management. Current available drugs, except insulin, are aimed at increasing insulin secretion (sulfonylureas, incretin drugs), improving insulin sensitivity (biguanides, thiazolidinediones), or increasing urinary glucose excretion (gliflozin). Comorbidities should be taken into consideration during the treatment of T2DM. This review describes currently known information about the mechanism and impact of commonly used antidiabetic drugs on the incidence and progression of PC. Outcomes of pre-clinical studies are briefly presented and their correlations with available clinical trials have also been observed. Available reports and meta-analyses demonstrate that most anti-diabetic drugs do not increase the risk during the treatment of patients with PC. However, some reports show a potential advantage of treatment of T2DM with specific drugs. Based on clinical reports, use of metformin should be considered as a therapeutic option. Moreover, anticancer properties of metformin were augmented while combined with GLP-1 analogs.
Collapse
|
102
|
Valdés-Mora F, Salomon R, Gloss BS, Law AMK, Venhuizen J, Castillo L, Murphy KJ, Magenau A, Papanicolaou M, Rodriguez de la Fuente L, Roden DL, Colino-Sanguino Y, Kikhtyak Z, Farbehi N, Conway JRW, Sikta N, Oakes SR, Cox TR, O'Donoghue SI, Timpson P, Ormandy CJ, Gallego-Ortega D. Single-cell transcriptomics reveals involution mimicry during the specification of the basal breast cancer subtype. Cell Rep 2021; 35:108945. [PMID: 33852842 DOI: 10.1016/j.celrep.2021.108945] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/29/2020] [Accepted: 03/14/2021] [Indexed: 01/02/2023] Open
Abstract
Basal breast cancer is associated with younger age, early relapse, and a high mortality rate. Here, we use unbiased droplet-based single-cell RNA sequencing (RNA-seq) to elucidate the cellular basis of tumor progression during the specification of the basal breast cancer subtype from the luminal progenitor population in the MMTV-PyMT (mouse mammary tumor virus-polyoma middle tumor-antigen) mammary tumor model. We find that basal-like cancer cells resemble the alveolar lineage that is specified upon pregnancy and encompass the acquisition of an aberrant post-lactation developmental program of involution that triggers remodeling of the tumor microenvironment and metastatic dissemination. This involution mimicry is characterized by a highly interactive multicellular network, with involution cancer-associated fibroblasts playing a pivotal role in extracellular matrix remodeling and immunosuppression. Our results may partially explain the increased risk and poor prognosis of breast cancer associated with childbirth.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cancer-Associated Fibroblasts/metabolism
- Cancer-Associated Fibroblasts/pathology
- Carcinoma, Basal Cell/genetics
- Carcinoma, Basal Cell/metabolism
- Carcinoma, Basal Cell/pathology
- Cell Lineage/genetics
- Chemokine CXCL12/genetics
- Chemokine CXCL12/metabolism
- Collagen Type I, alpha 1 Chain/genetics
- Collagen Type I, alpha 1 Chain/metabolism
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
- Female
- Gene Expression Regulation, Neoplastic
- High-Throughput Nucleotide Sequencing
- Humans
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Glands, Animal/virology
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/pathology
- Mammary Tumor Virus, Mouse/growth & development
- Mammary Tumor Virus, Mouse/pathogenicity
- Matrix Metalloproteinase 3/genetics
- Matrix Metalloproteinase 3/metabolism
- Mice
- Neoplasm Metastasis
- Pregnancy
- Single-Cell Analysis
- Transcriptome
- Tumor Microenvironment/genetics
Collapse
Affiliation(s)
- Fátima Valdés-Mora
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; Personalised Medicine, Children's Cancer Institute, Sydney, NSW 2031, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Garvan-Weizmann Centre for Cellular Genomics. Garvan Institute of Medical Research, Sydney, NSW 2010, Australia.
| | - Robert Salomon
- Personalised Medicine, Children's Cancer Institute, Sydney, NSW 2031, Australia; Garvan-Weizmann Centre for Cellular Genomics. Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; Institute for Biomedical Materials and Devices, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Brian Stewart Gloss
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Andrew Man Kit Law
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Jeron Venhuizen
- Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Lesley Castillo
- Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Kendelle Joan Murphy
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Astrid Magenau
- Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Michael Papanicolaou
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Laura Rodriguez de la Fuente
- Personalised Medicine, Children's Cancer Institute, Sydney, NSW 2031, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Daniel Lee Roden
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Garvan-Weizmann Centre for Cellular Genomics. Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Yolanda Colino-Sanguino
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; Personalised Medicine, Children's Cancer Institute, Sydney, NSW 2031, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia
| | - Zoya Kikhtyak
- Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Nona Farbehi
- Garvan-Weizmann Centre for Cellular Genomics. Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | | | - Neblina Sikta
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Samantha Richelle Oakes
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Thomas Robert Cox
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Seán Ignatius O'Donoghue
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; CSIRO Data61, Eveleigh, NSW 2015, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia
| | - Paul Timpson
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Christopher John Ormandy
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - David Gallego-Ortega
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Garvan-Weizmann Centre for Cellular Genomics. Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia.
| |
Collapse
|
103
|
Serum soluble CD26/DPP4 titer variation is a potential prognostic biomarker in cancer therapy with a humanized anti-CD26 antibody. Biomark Res 2021; 9:21. [PMID: 33757558 PMCID: PMC7989014 DOI: 10.1186/s40364-021-00273-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/10/2021] [Indexed: 01/01/2023] Open
Abstract
Background The phase I trial of the humanized anti-CD26 monoclonal antibody YS110 for CD26-expressing tumors was conducted recently. The present study identifies a potential prognostic biomarker for CD26-targeted therapy based on the phase I data. Methods Box and Whisker plot analysis, Scatter plot analysis, Peason product moment correlation/Spearman’s rank-difference correlation, Bar graph analysis, and Receiver Operating Characteristics (ROC) were used to examine the correlation between sCD26 titer variation with YS110 administration and tumor volume change, RECIST criteria evaluation and progression free survival (PFS). Mechanism for serum sCD26 titer variation was confirmed by in vitro experimentation. Results Serum sCD26/DPP4 titer was reduced following YS110 administration and gradually recovered until the next infusion. Serum sCD26/DPP4 titer before the next infusion was sustained at lower levels in Stable Disease (SD) cases compared to Progressive Disease cases. ROC analysis defined the cut-off level of serum sCD26/DPP4 titer variation at day 29 pre/post for the clinical outcome of SD as tumor response or PFS. In vitro experimentation confirmed that YS110 addition reduced sCD26 production from CD26-expressing tumor and non-tumor cells. Conclusions Our study indicates that serum sCD26/DPP4 titer variation in the early phase of YS110 treatment is a predictive biomarker for evaluating therapeutic efficacy. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-021-00273-0.
Collapse
|
104
|
Metzemaekers M, Abouelasrar Salama S, Vandooren J, Mortier A, Janssens R, Vandendriessche S, Ganseman E, Martens E, Gouwy M, Neerinckx B, Verschueren P, De Somer L, Wouters C, Struyf S, Opdenakker G, Van Damme J, Proost P. From ELISA to Immunosorbent Tandem Mass Spectrometry Proteoform Analysis: The Example of CXCL8/Interleukin-8. Front Immunol 2021; 12:644725. [PMID: 33777041 PMCID: PMC7991300 DOI: 10.3389/fimmu.2021.644725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/12/2021] [Indexed: 11/15/2022] Open
Abstract
With ELISAs one detects the ensemble of immunoreactive molecules in biological samples. For biomolecules undergoing proteolysis for activation, potentiation or inhibition, other techniques are necessary to study biology. Here we develop methodology that combines immunosorbent sample preparation and nano-scale liquid chromatography—tandem mass spectrometry (nano-LC-MS/MS) for proteoform analysis (ISTAMPA) and apply this to the aglycosyl chemokine CXCL8. CXCL8, the most powerful human chemokine with neutrophil chemotactic and –activating properties, occurs in different NH2-terminal proteoforms due to its susceptibility to site-specific proteolytic modification. Specific proteoforms display up to 30-fold enhanced activity. The immunosorbent ion trap top-down mass spectrometry-based approach for proteoform analysis allows for simultaneous detection and quantification of full-length CXCL8(1-77), elongated CXCL8(-2-77) and all naturally occurring truncated CXCL8 forms in biological samples. For the first time we demonstrate site-specific proteolytic activation of CXCL8 in synovial fluids from patients with chronic joint inflammation and address the importance of sample collection and processing.
Collapse
Affiliation(s)
- Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sara Abouelasrar Salama
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Anneleen Mortier
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Rik Janssens
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sofie Vandendriessche
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Eva Ganseman
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Erik Martens
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Barbara Neerinckx
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Patrick Verschueren
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lien De Somer
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Carine Wouters
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
105
|
Parking CAR T Cells in Tumours: Oncolytic Viruses as Valets or Vandals? Cancers (Basel) 2021; 13:cancers13051106. [PMID: 33807553 PMCID: PMC7961585 DOI: 10.3390/cancers13051106] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/18/2022] Open
Abstract
Oncolytic viruses (OVs) and adoptive T cell therapy (ACT) each possess direct tumour cytolytic capabilities, and their combination potentially seems like a match made in heaven to complement the strengths and weakness of each modality. While providing strong innate immune stimulation that can mobilize adaptive responses, the magnitude of anti-tumour T cell priming induced by OVs is often modest. Chimeric antigen receptor (CAR) modified T cells bypass conventional T cell education through introduction of a synthetic receptor; however, realization of their full therapeutic properties can be stunted by the heavily immune-suppressive nature of the tumour microenvironment (TME). Oncolytic viruses have thus been seen as a natural ally to overcome immunosuppressive mechanisms in the TME which limit CAR T cell infiltration and functionality. Engineering has further endowed viruses with the ability to express transgenes in situ to relieve T cell tumour-intrinsic resistance mechanisms and decorate the tumour with antigen to overcome antigen heterogeneity or loss. Despite this helpful remodeling of the tumour microenvironment, it has simultaneously become clear that not all virus induced effects are favourable for CAR T, begging the question whether viruses act as valets ushering CAR T into their active site, or vandals which cause chaos leading to both tumour and T cell death. Herein, we summarize recent studies combining these two therapeutic modalities and seek to place them within the broader context of viral T cell immunology which will help to overcome the current limitations of effective CAR T therapy to make the most of combinatorial strategies.
Collapse
|
106
|
Yoon H, Sung JH, Song MJ. Effects of the Antidiabetic Drugs Evogliptin and Sitagliptin on the Immune Function of CD26/DPP4 in Th1 Cells. Biomol Ther (Seoul) 2021; 29:154-165. [PMID: 33148870 PMCID: PMC7921863 DOI: 10.4062/biomolther.2020.150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 01/20/2023] Open
Abstract
This study aimed to investigate whether the antidiabetic drugs dipeptidyl peptidase 4 (DPP4) inhibitors such as evogliptin and sitagliptin affect the membrane DPP4 (mDPP4) enzymatic activity and immune function of T helper1 (Th1) cells in terms of cytokine expression and cell profiles. The mDPP4 enzymatic activity, cytokine expression, and cell profiles, including cell counts, cell viability, DNA synthesis, and apoptosis, were measured in pokeweed mitogen (PWM)-activated CD4+CD26+ H9 Th1 cells with or without the DPP4 inhibitors, evogliptin and sitagliptin. PWM treatment alone strongly stimulated the expression of mDPP4 and cytokines such as interleukin (IL)-2, IL-10, tumor necrosis factor-alpha, interferon-gamma, IL-13, and granulocyte-macrophage colony stimulating factor in the CD4+CD26+ H9 Th1 cells. Evogliptin or sitagliptin treatment potently inhibited mDPP4 activity in a dose-dependent manner but did not affect either the cytokine profile or cell viability in PWM-activated CD4+CD26+ H9 Th1 cells. These results suggest that, following immune stimulation, Th1 cell signaling pathways for cytokine expression function normally after treatment with evogliptin or sitagliptin, which efficiently inhibit mDPP4 enzymatic activity in Th1 cells.
Collapse
Affiliation(s)
- Hyunyee Yoon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.,Protein Immunology Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Kore
| | - Ji Hyun Sung
- Flow Cytometry Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Moon Jung Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
107
|
Chen J, Zhang H, Zhou L, Hu Y, Li M, He Y, Li Y. Enhancing the Efficacy of Tumor Vaccines Based on Immune Evasion Mechanisms. Front Oncol 2021; 10:584367. [PMID: 33614478 PMCID: PMC7886973 DOI: 10.3389/fonc.2020.584367] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Tumor vaccines aim to expand tumor-specific T cells and reactivate existing tumor-specific T cells that are in a dormant or unresponsive state. As such, there is growing interest in improving the durable anti-tumor activity of tumor vaccines. Failure of vaccine-activated T cells to protect against tumors is thought to be the result of the immune escape mechanisms of tumor cells and the intricate immunosuppressive tumor microenvironment. In this review, we discuss how tumor cells and the tumor microenvironment influence the effects of tumor infiltrating lymphocytes and summarize how to improve the efficacy of tumor vaccines by improving the design of current tumor vaccines and combining tumor vaccines with other therapies, such as metabolic therapy, immune checkpoint blockade immunotherapy and epigenetic therapy.
Collapse
Affiliation(s)
- Jianyu Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Honghao Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lijuan Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Meifang Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanjie He
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
108
|
Choi YW, Kim YH, Oh SY, Suh KW, Kim Y, Lee G, Yoon JE, Park SS, Lee Y, Park YJ, Kim HS, Park SH, Kim J, Park TJ. Senescent Tumor Cells Build a Cytokine Shield in Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002497. [PMID: 33643790 PMCID: PMC7887594 DOI: 10.1002/advs.202002497] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/09/2020] [Indexed: 05/25/2023]
Abstract
Cellular senescence can either support or inhibit cancer progression. Here, it is shown that intratumoral infiltration of CD8+ T cells is negatively associated with the proportion of senescent tumor cells in colorectal cancer (CRC). Gene expression analysis reveals increased expression of C-X-C motif chemokine ligand 12 (CXCL12) and colony stimulating factor 1 (CSF1) in senescent tumor cells. Senescent tumor cells inhibit CD8+ T cell infiltration by secreting a high concentration of CXCL12, which induces a loss of CXCR4 in T cells that result in impaired directional migration. CSF1 from senescent tumor cells enhance monocyte differentiation into M2 macrophages, which inhibit CD8+ T cell activation. Neutralization of CXCL12/CSF1 increases the effect of anti-PD1 antibody in allograft tumors. Furthermore, inhibition of CXCL12 from senescent tumor cells enhances T cell infiltration and results in reducing the number and size of tumors in azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced CRC. These findings suggest senescent tumor cells generate a cytokine barrier protecting nonsenescent tumor cells from immune attack and provide a new target for overcoming the immunotherapy resistance of CRC.
Collapse
Affiliation(s)
- Yong Won Choi
- Department of Biochemistry and Molecular BiologyAjou University School of MedicineSuwon16499Korea
- Department of Hematology–OncologyAjou University School of MedicineSuwon16499Korea
- Inflamm‐Aging Translational Research CenterAjou University Medical CenterSuwon16499Korea
| | - Young Hwa Kim
- Department of Biochemistry and Molecular BiologyAjou University School of MedicineSuwon16499Korea
- Department of Biomedical SciencesAjou University Graduate School of MedicineSuwon16499Korea
| | - Seung Yeop Oh
- Department of SurgeryAjou University School of MedicineSuwon16499Korea
| | - Kwang Wook Suh
- Department of SurgeryAjou University School of MedicineSuwon16499Korea
| | - Young‐Sam Kim
- Department of Biochemistry and Molecular BiologyAjou University School of MedicineSuwon16499Korea
- Department of Biomedical SciencesAjou University Graduate School of MedicineSuwon16499Korea
| | - Ga‐Yeon Lee
- Department of Biochemistry and Molecular BiologyAjou University School of MedicineSuwon16499Korea
- Department of Biomedical SciencesAjou University Graduate School of MedicineSuwon16499Korea
| | - Jung Eun Yoon
- Department of Biochemistry and Molecular BiologyAjou University School of MedicineSuwon16499Korea
- Department of Biomedical SciencesAjou University Graduate School of MedicineSuwon16499Korea
| | - Soon Sang Park
- Department of Biochemistry and Molecular BiologyAjou University School of MedicineSuwon16499Korea
- Department of Biomedical SciencesAjou University Graduate School of MedicineSuwon16499Korea
| | - Young‐Kyoung Lee
- Department of Biochemistry and Molecular BiologyAjou University School of MedicineSuwon16499Korea
- Inflamm‐Aging Translational Research CenterAjou University Medical CenterSuwon16499Korea
- Department of Biomedical SciencesAjou University Graduate School of MedicineSuwon16499Korea
| | - Yoo Jung Park
- Department of Hematology–OncologyAjou University School of MedicineSuwon16499Korea
| | - Hong Seok Kim
- Department of Molecular MedicineInha University School of MedicineIncheon22212Korea
| | - So Hyun Park
- Department of PathologyAjou University School of MedicineSuwon16499Korea
| | - Jang‐Hee Kim
- Inflamm‐Aging Translational Research CenterAjou University Medical CenterSuwon16499Korea
- Department of PathologyAjou University School of MedicineSuwon16499Korea
| | - Tae Jun Park
- Department of Biochemistry and Molecular BiologyAjou University School of MedicineSuwon16499Korea
- Inflamm‐Aging Translational Research CenterAjou University Medical CenterSuwon16499Korea
- Department of Biomedical SciencesAjou University Graduate School of MedicineSuwon16499Korea
| |
Collapse
|
109
|
Wilson AL, Moffitt LR, Wilson KL, Bilandzic M, Wright MD, Gorrell MD, Oehler MK, Plebanski M, Stephens AN. DPP4 Inhibitor Sitagliptin Enhances Lymphocyte Recruitment and Prolongs Survival in a Syngeneic Ovarian Cancer Mouse Model. Cancers (Basel) 2021; 13:487. [PMID: 33513866 PMCID: PMC7865851 DOI: 10.3390/cancers13030487] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Immunity plays a key role in epithelial ovarian cancer (EOC) progression with a well-documented correlation between patient survival and high intratumoral CD8+ to T regulatory cell (Treg) ratios. We previously identified dysregulated DPP4 activity in EOCs as a potentially immune-disruptive influence contributing to a reduction in CXCR3-mediated T-cell infiltration in solid tumours. We therefore hypothesized that inhibition of DPP4 activity by sitagliptin, an FDA-approved inhibitor, would improve T-cell infiltration and function in a syngeneic ID8 mouse model of EOC. Daily oral sitagliptin at 50 mg/kg was provided to mice with established primary EOCs. Sitagliptin treatment decreased metastatic tumour burden and significantly increased overall survival and was associated with significant changes to the immune landscape. Sitagliptin increased overall CXCR3-mediated CD8+ T-cell trafficking to the tumour and enhanced the activation and proliferation of CD8+ T-cells in tumour tissue and the peritoneal cavity. Substantial reductions in suppressive cytokines, including CCL2, CCL17, CCL22 and IL-10, were also noted and were associated with reduced CD4+ CD25+ Foxp3+ Treg recruitment in the tumour. Combination therapy with paclitaxel, however, typical of standard-of-care for patients in palliative care, abolished CXCR3-specific T-cell recruitment stimulated by sitagliptin. Our data suggest that sitagliptin may be suitable as an adjunct therapy for patients between chemotherapy cycles as a novel approach to enhance immunity, optimise T-cell-mediated function and improve overall survival.
Collapse
Affiliation(s)
- Amy L. Wilson
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton 3168, Australia; (A.L.W.); (L.R.M.); (M.B.)
- Department of Molecular and Translational Sciences, Monash Health, Clayton 3168, Australia
- Department of Immunology and Pathology, Monash University, Clayton 3800, Australia;
| | - Laura R. Moffitt
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton 3168, Australia; (A.L.W.); (L.R.M.); (M.B.)
- Department of Molecular and Translational Sciences, Monash Health, Clayton 3168, Australia
| | - Kirsty L. Wilson
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia;
| | - Maree Bilandzic
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton 3168, Australia; (A.L.W.); (L.R.M.); (M.B.)
- Department of Molecular and Translational Sciences, Monash Health, Clayton 3168, Australia
| | - Mark D. Wright
- Department of Immunology and Pathology, Monash University, Clayton 3800, Australia;
| | - Mark D. Gorrell
- Centenary Institute, Faculty of Medicine and Health, University of Sydney, Camperdown 2006, Australia;
| | - Martin K. Oehler
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide 5000, Australia;
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia;
| | - Andrew N. Stephens
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton 3168, Australia; (A.L.W.); (L.R.M.); (M.B.)
- Department of Molecular and Translational Sciences, Monash Health, Clayton 3168, Australia
| |
Collapse
|
110
|
Xia M, Chen J, Meng G, Shen H, Dong J. CXCL10 encoding synNotch T cells enhance anti-tumor immune responses without systemic side effect. Biochem Biophys Res Commun 2021; 534:765-772. [PMID: 33213838 DOI: 10.1016/j.bbrc.2020.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/18/2022]
Abstract
Modifying T cells to attack tumors using engineered chimeric receptors display powerful new therapeutic capabilities. Unfortunately, the effectiveness of therapeutic T cells is limited due to the inherent T cell responses: certain facets of endogenous response programs may be toxic, and the ability to overcome the immunosuppression in TME is deficient. Here we developed a Notch receptor based synNotch T cell platform that is able to response to target tumor cells and selectively lead to CXCL10 production. Further study showed that the administration of synNotch T cells significantly inhibited the tumor growth in a humanized murine model, accompanied by the increased infiltration of CD3+T cells and elevated level of CXCL10 and IFN-γ in the tumor site. A slightly increased level of CXCL10 and limited IFN-γ were found in the serum in mice received synNotch T cells, suggesting a high security of this treatment. Finally, we demonstrated that CXCL10 is sufficient and indispensable for the synNotch T cells induced anti-tumor effect. This study provided theoretical and experimental bases for the clinical implication of CXCL10 encoding synNotch T cells.
Collapse
Affiliation(s)
- Mao Xia
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| | - Junhao Chen
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| | - Gang Meng
- The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| | - Han Shen
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| | - Jie Dong
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 210093, China.
| |
Collapse
|
111
|
Barrett RL, Puré E. Cancer-associated fibroblasts and their influence on tumor immunity and immunotherapy. eLife 2020; 9:57243. [PMID: 33370234 PMCID: PMC7769568 DOI: 10.7554/elife.57243] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 12/12/2020] [Indexed: 12/15/2022] Open
Abstract
Fibroblasts play an essential role in organogenesis and the integrity of tissue architecture and function. Growth in most solid tumors is dependent upon remodeling 'stroma', composed of cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM), which plays a critical role in tumor initiation, progression, metastasis, and therapeutic resistance. Recent studies have clearly established that the potent immunosuppressive activity of stroma is a major mechanism by which stroma can promote tumor progression and confer resistance to immune-based therapies. Herein, we review recent advances in identifying the stroma-dependent mechanisms that regulate cancer-associated inflammation and antitumor immunity, in particular, the interactions between fibroblasts and immune cells. We also review the potential mechanisms by which stroma can confer resistance to immune-based therapies for solid tumors and current advancements in stroma-targeted therapies.
Collapse
Affiliation(s)
| | - Ellen Puré
- University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
112
|
Nintedanib promotes antitumour immunity and shows antitumour activity in combination with PD-1 blockade in mice: potential role of cancer-associated fibroblasts. Br J Cancer 2020; 124:914-924. [PMID: 33299131 PMCID: PMC7921555 DOI: 10.1038/s41416-020-01201-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/16/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) in the tumour microenvironment (TME) suppress antitumour immunity, and the tyrosine kinase inhibitor nintedanib has antifibrotic effects. METHODS We performed a preclinical study to evaluate whether nintedanib might enhance antitumour immunity by targeting CAFs and thereby improve the response to immune checkpoint blockade (ICB). RESULTS Whereas nintedanib did not suppress the growth of B16-F10 melanoma cells in vitro, it prolonged survival in a syngeneic mouse model of tumour formation by these cells, suggestive of an effect on the TME without direct cytotoxicity. Gene expression profiling indeed showed that nintedanib influenced antitumour immunity and fibrosis. Tumoural infiltration of CD8+ T cells and granzyme B production were increased by nintedanib, and its antitumour activity was attenuated by antibody-mediated depletion of these cells, indicating that nintedanib suppressed tumour growth in a CD8+ T cell-dependent manner. Moreover, nintedanib inhibited the proliferation and activation of fibroblasts. Finally, the combination of nintedanib with ICB showed enhanced antitumour efficacy in B16-F10 tumour-bearing mice. CONCLUSIONS Our results suggest that nintedanib targeted CAFs and thereby attenuated the immunosuppressive nature of the TME and promoted the intratumoural accumulation and activation of CD8+ T cells, with these effects contributing to enhanced antitumour activity in combination with ICB.
Collapse
|
113
|
Russo E, Santoni A, Bernardini G. Tumor inhibition or tumor promotion? The duplicity of CXCR3 in cancer. J Leukoc Biol 2020; 108:673-685. [PMID: 32745326 DOI: 10.1002/jlb.5mr0320-205r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/23/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor tissue includes cancer cells and normal stromal cells such as vascular endothelial cells, connective tissue cells (cancer associated fibroblast, mesenchymal stem cell), and immune cells (tumor-infiltrating lymphocytes or TIL, dendritic cells, eosinophils, basophils, mast cells, tumor-associated macrophages or TAM, myeloid-derived suppressor cells or MDSC). Anti-tumor activity is mainly mediated by infiltration of NK cells, Th1 and CD8+ T cells, and correlates with expression of NK cell and T cell attracting chemokines. Nevertheless, cancer cells hijack tissue homeostasis through secretion of cytokines and chemokines that mediate not only the induction of an inflamed status that supports cancer cell survival and growth, but also the recruitment and/or activation of immune suppressive cells. CXCL9, CXCL10, and CXCL11 are known for their tumor-inhibiting properties, but their overexpression in several hematologic and solid tumors correlates with disease severity, suggesting a role in tumor promotion. The dichotomous nature of CXCR3 ligands activity mainly depends on several molecular mechanisms induced by cancer cells themselves able to divert immune responses and to alter the whole local environment. A deep understanding of the nature of such phenomenon may provide a rationale to build up a CXCR3/ligand axis targeting strategy. In this review, we will discuss the role of CXCR3 in cancer progression and in regulation of anti-tumor immune response and immunotherapy.
Collapse
Affiliation(s)
- Eleonora Russo
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur-Italia, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur-Italia, Rome, Italy.,IRCCS, Neuromed, Pozzilli, Isernia, Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur-Italia, Rome, Italy
| |
Collapse
|
114
|
Moffitt LR, Bilandzic M, Wilson AL, Chen Y, Gorrell MD, Oehler MK, Plebanski M, Stephens AN. Hypoxia Regulates DPP4 Expression, Proteolytic Inactivation, and Shedding from Ovarian Cancer Cells. Int J Mol Sci 2020; 21:8110. [PMID: 33143089 PMCID: PMC7672561 DOI: 10.3390/ijms21218110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/28/2020] [Indexed: 01/03/2023] Open
Abstract
The treatment of ovarian cancer has not significantly changed in decades and it remains one of the most lethal malignancies in women. The serine protease dipeptidyl peptidase 4 (DPP4) plays key roles in metabolism and immunity, and its expression has been associated with either pro- or anti-tumour effects in multiple tumour types. In this study, we provide the first evidence that DPP4 expression and enzyme activity are uncoupled under hypoxic conditions in ovarian cancer cells. Whilst we identified strong up-regulation of DPP4 mRNA expression under hypoxic growth, the specific activity of secreted DPP4 was paradoxically decreased. Further investigation revealed matrix metalloproteinases (MMP)-dependent inactivation and proteolytic shedding of DPP4 from the cell surface, mediated by at least MMP10 and MMP13. This is the first report of uncoupled DPP4 expression and activity in ovarian cancer cells, and suggests a previously unrecognized, cell- and tissue-type-dependent mechanism for the regulation of DPP4 in solid tumours. Further studies are necessary to identify the functional consequences of DPP4 processing and its potential prognostic or therapeutic value.
Collapse
Affiliation(s)
- Laura R. Moffitt
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia; (L.R.M.); (M.B.); (A.L.W.); (Y.C.)
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Maree Bilandzic
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia; (L.R.M.); (M.B.); (A.L.W.); (Y.C.)
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Amy L. Wilson
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia; (L.R.M.); (M.B.); (A.L.W.); (Y.C.)
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Yiqian Chen
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia; (L.R.M.); (M.B.); (A.L.W.); (Y.C.)
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Mark D. Gorrell
- Centenary Institute, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia;
| | - Martin K. Oehler
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia;
- Robinson Institute, University of Adelaide, Adelaide, SA 5000, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia;
| | - Andrew N. Stephens
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia; (L.R.M.); (M.B.); (A.L.W.); (Y.C.)
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| |
Collapse
|
115
|
Sasaki K, Nishina S, Yamauchi A, Fukuda K, Hara Y, Yamamura M, Egashira K, Hino K. Nanoparticle-Mediated Delivery of 2-Deoxy-D-Glucose Induces Antitumor Immunity and Cytotoxicity in Liver Tumors in Mice. Cell Mol Gastroenterol Hepatol 2020; 11:739-762. [PMID: 33191170 PMCID: PMC7841526 DOI: 10.1016/j.jcmgh.2020.10.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Immune checkpoint inhibitors have shed light on the importance of antitumor immunity as a therapeutic strategy for hepatocellular carcinoma (HCC). The altered glucose metabolism known as the Warburg effect recently has gained attention as a cancer immune-resistance mechanism. Considering glycolysis inhibitors as therapeutic agents, their specific delivery to cancer cells is critical not to induce adverse effects. Thus, we investigated antitumor effects of a glycolysis inhibitor, consisting of 2-deoxy-D-glucose (2DG)-encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (2DG-PLGA-NPs), against hepatocellular carcinoma in mice. METHODS The antitumor effects of 2DG-PLGA-NPs were examined using hepatoma cell lines, xenograft tumors, and hepatocarcinogenic and syngeneic mouse models. RESULTS The 2DG-PLGA-NPs induced cytotoxic effects and antitumor immunity through enhanced T-cell trafficking. In addition, 2DG-PLGA-NPs induced decreased lactate production and increased interferon-γ-positive T cells in liver tumors. Human CD8+ T cells cocultured with 2DG-PLGA-NP-treated Huh7 cells showed their increased interferon-γ production and glucose uptake compared with the CD8+ T cells co-cultured with PLGA-NP-treated Huh7 cells. Chemotaxis of CD8+ T cells was suppressed by lactate and enhanced by glucose. Interferon-γ enhanced CD8+ T-cell chemotaxis in both an autocrine and paracrine manner. Notably, the 2DG-PLGA-NPs augmented chemokine (CXCL9/CXCL10) production in liver tumors via interferon-γ-Janus kinase-signal transducers and activator of transcription pathway and 5' adenosine monophosphate-activated protein kinase-mediated suppression of histone H3 lysine 27 trimethylation. These 2DG-PLGA-NPs not only amplified antitumor effects induced by sorafenib or an anti-programmed death-1 antibody, but also suppressed anti-programmed death-1-resistant tumors. CONCLUSIONS The newly developed 2DG-PLGA-NPs showed antitumor immunity and cytotoxicity in liver tumors in mice, suggesting the potential of 2DG-PLGA-NPs for future clinical applications.
Collapse
Affiliation(s)
- Kyo Sasaki
- Department of Hepatology and Pancreatology
| | - Sohji Nishina
- Department of Hepatology and Pancreatology,Correspondence Address correspondence to: Keisuke Hino, MD, PhD, or Sohji Nishina, MD, PhD, Kawasaki Medical School, Kurashiki, Okayama, 701-0192 Japan. fax: (81) 864641196.
| | | | | | | | - Masahiro Yamamura
- Department of Clinical Oncology, Kawasaki Medical School, Kurashiki, Japan
| | - Kensuke Egashira
- Sentan Pharma, Inc, Japan,Department of Translational Medicine, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | - Keisuke Hino
- Department of Hepatology and Pancreatology,Correspondence Address correspondence to: Keisuke Hino, MD, PhD, or Sohji Nishina, MD, PhD, Kawasaki Medical School, Kurashiki, Okayama, 701-0192 Japan. fax: (81) 864641196.
| |
Collapse
|
116
|
Xiao X, Mo H, Tu K. CTNNB1 mutation suppresses infiltration of immune cells in hepatocellular carcinoma through miRNA-mediated regulation of chemokine expression. Int Immunopharmacol 2020; 89:107043. [PMID: 33039961 DOI: 10.1016/j.intimp.2020.107043] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/06/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Mutations in the CTNNB1 gene in hepatocellular carcinoma (HCC) are related to immune exclusion, and HCC patients with CTNNB1 mutations tend to be primarily resistant to anti-PD1 therapy. However, systemic evaluation of immune cell infiltration in HCC with mutant CTNNB1 is lacking, and the mechanism of immune exclusion resulting from CTNNB1 mutations remains unclear. Based on CTNNB1 mutation status in HCC, we investigated RNA and miRNA expression and infiltration of immune cells. Data downloaded from TCGA showed that HCC with CTNNB1 mutation had an increased expression of CTNNB1. HCC with CTNNB1 mutation showed a reduction in infiltration score as well as in abundance of certain kinds of immune cells, including CD4 naïve T cells, CD4+ T cells, Tex cells, Th2 cells, Tfh cells, B cells, macrophages, and NK cells. Furthermore, there were 13 chemokines downregulated among all the 14 differentially expressed chemokines (DE-CKs) in CTNNB1 mutants compared to those in the wild type. A positive correlation was found between the expression of DE-CKs and infiltration score, as well as infiltration level of 6 types of immune cells, namely B cells, CD8+ cells, CD4+ cells, macrophages, neutrophils, and dendritic cells. Additionally, 302 differentially expressed immune-related genes (DE-IRGs) were involved mainly in the human immune response and cytokine-cytokine receptor interaction. The target DE-IRGs of differentially expressed miRNAs (DE-miRNAs) were identified and used to construct a network with DE-miRNAs and DE-CKs. Overall, CTNNB1 mutation in HCC led to a decrease in chemokine expression and subsequent suppression of immune cell infiltration partly through regulating specific miRNA-IRG-CK axes, pointing to a potential combination of interference of Wnt/β-catenin signaling with immunotherapy in HCC with CTNNB1 mutation.
Collapse
Affiliation(s)
- Xuelian Xiao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi Province 710061, China
| | - Huanye Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi Province 710061, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi Province 710061, China.
| |
Collapse
|
117
|
Xu XY, Guo WJ, Pan SH, Zhang Y, Gao FL, Wang JT, Zhang S, Li HY, Wang R, Zhang X. TILRR (FREM1 isoform 2) is a prognostic biomarker correlated with immune infiltration in breast cancer. Aging (Albany NY) 2020; 12:19335-19351. [PMID: 33031059 PMCID: PMC7732299 DOI: 10.18632/aging.103798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/07/2020] [Indexed: 01/24/2023]
Abstract
In atherosclerosis, upregulated TILRR (FREM1 isoform 2) expression increases immune cell infiltration. We hypothesized that TILRR expression is also correlated with cancer progression. By analyzing data from Oncomine and the Tumor Immune Estimation Resource, we found that TILRR mRNA expression was significantly lower in breast cancer tissue than adjacent normal tissue. Kaplan-Meier survival analysis and immunohistochemical staining revealed shortened overall survival and disease-free survival in patients with low TILRR expression. TILRR transcript expression was positively correlated with immune score, immune cell biomarkers and the expression of CXCL10 and CXCL11. TILRR expression was also positively correlated with CD8+ and CD4+ T-cell infiltration. These correlations were verified using the ESTIMATE algorithm, gene set enrichment analysis and Q-PCR. We concluded that impaired TILRR expression is correlated with breast cancer prognosis and immune cell infiltration.
Collapse
Affiliation(s)
- Xiao-Yi Xu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, and Guangzhou Medical University, Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Wen-Jing Guo
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, and Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shi-Hua Pan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, and Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ying Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, and Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangdong, China
| | - Feng-Lin Gao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, and Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangdong, China
| | - Jiang-Tao Wang
- Department of Pathology, First People Hospital, Changde 415003, Hunan, China
| | - Sheng Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, and Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangdong, China
| | - He-Ying Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, and Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ren Wang
- Affiliated Cancer Hospital and Institute, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Xiao Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, and Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510530, Guangdong, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangdong, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangdong, Guangdong, China
| |
Collapse
|
118
|
The immuno-oncological challenge of COVID-19. ACTA ACUST UNITED AC 2020; 1:946-964. [DOI: 10.1038/s43018-020-00122-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
|
119
|
McGonagle D, O'Donnell JS, Sharif K, Emery P, Bridgewood C. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. THE LANCET. RHEUMATOLOGY 2020. [PMID: 32835247 DOI: 10.1016/s2665-9913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The lung pathology seen in patients with coronavirus disease 2019 (COVID-19) shows marked microvascular thrombosis and haemorrhage linked to extensive alveolar and interstitial inflammation that shares features with macrophage activation syndrome (MAS). We have termed the lung-restricted vascular immunopathology associated with COVID-19 as diffuse pulmonary intravascular coagulopathy, which in its early stages is distinct from disseminated intravascular coagulation. Increased circulating D-dimer concentrations (reflecting pulmonary vascular bed thrombosis with fibrinolysis) and elevated cardiac enzyme concentrations (reflecting emergent ventricular stress induced by pulmonary hypertension) in the face of normal fibrinogen and platelet levels are key early features of severe pulmonary intravascular coagulopathy related to COVID-19. Extensive immunothrombosis over a wide pulmonary vascular territory without confirmation of COVID-19 viraemia in early disease best explains the adverse impact of male sex, hypertension, obesity, and diabetes on the prognosis of patients with COVID-19. The immune mechanism underlying diffuse alveolar and pulmonary interstitial inflammation in COVID-19 involves a MAS-like state that triggers extensive immunothrombosis, which might unmask subclinical cardiovascular disease and is distinct from the MAS and disseminated intravascular coagulation that is more familiar to rheumatologists.
Collapse
Affiliation(s)
- Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,National Institute for Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals National Health Service Trust, Leeds, UK
| | - James S O'Donnell
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kassem Sharif
- Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paul Emery
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,National Institute for Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals National Health Service Trust, Leeds, UK
| | - Charles Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,National Institute for Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals National Health Service Trust, Leeds, UK
| |
Collapse
|
120
|
Caligiuri A, Pastore M, Lori G, Raggi C, Di Maira G, Marra F, Gentilini A. Role of Chemokines in the Biology of Cholangiocarcinoma. Cancers (Basel) 2020; 12:cancers12082215. [PMID: 32784743 PMCID: PMC7463556 DOI: 10.3390/cancers12082215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA), a heterogeneous tumor with poor prognosis, can arise at any level in the biliary tree. It may derive from epithelial cells in the biliary tracts and peribiliary glands and possibly from progenitor cells or even hepatocytes. Several risk factors are responsible for CCA onset, however an inflammatory milieu nearby the biliary tree represents the most common condition favoring CCA development. Chemokines play a key role in driving the immunological response upon liver injury and may sustain tumor initiation and development. Chemokine receptor-dependent pathways influence the interplay among various cellular components, resulting in remodeling of the hepatic microenvironment towards a pro-inflammatory, pro-fibrogenic, pro-angiogenic and pre-neoplastic setting. Moreover, once tumor develops, chemokine signaling may influence its progression. Here we review the role of chemokines in the regulation of CCA development and progression, and the modulation of angiogenesis, metastasis and immune control. The potential role of chemokines and their receptors as possible biomarkers and/or therapeutic targets for hepatobiliary cancer is also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Fabio Marra
- Correspondence: (F.M.); (A.G.); Tel.: +39-055-2758095 or +39-055-2758498 or +39-055-2758499 (F.M.); +39-055-2751801 (A.G.)
| | - Alessandra Gentilini
- Correspondence: (F.M.); (A.G.); Tel.: +39-055-2758095 or +39-055-2758498 or +39-055-2758499 (F.M.); +39-055-2751801 (A.G.)
| |
Collapse
|
121
|
Mumtaz T, Qindeel M, Asim Ur Rehman, Tarhini M, Ahmed N, Elaissari A. Exploiting proteases for cancer theranostic through molecular imaging and drug delivery. Int J Pharm 2020; 587:119712. [PMID: 32745499 DOI: 10.1016/j.ijpharm.2020.119712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
The measurement of biological processes at a molecular and cellular level serves as a basis for molecular imaging. As compared with traditional imaging approaches, molecular imaging functions to probe molecular anomalies that are the basis of a disease rather than the evaluation of end results of these molecular changes. Proteases play central role in tumor invasion, angiogenesis and metastasis thus can be exploited as a target for imaging probes in early diagnosis and treatment of tumors. Molecular imaging of protease has undergone tremendous breakthroughs in the field of diagnosis. It allows the clinicians not only to see the tumor location but also provides an insight into the expression and activity of different types of markers associated with the tumor microenvironment. These imaging techniques are expected to have a huge impact on early cancer detection and personalized cancer treatment. Effective development of protease imaging probes with the highest in vivo biocompatibility, stability and most appropriate pharmacokinetics for clinical translation will upsurge the success level of early cancer detection and treatment.
Collapse
Affiliation(s)
- Tehreem Mumtaz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Maimoona Qindeel
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Mohamad Tarhini
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, LAGEPP-UMR 5007, F-69622 Lyon, France
| | - Naveed Ahmed
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, LAGEPP-UMR 5007, F-69622 Lyon, France.
| |
Collapse
|
122
|
Pleiotropic effects of anti-diabetic drugs: A comprehensive review. Eur J Pharmacol 2020; 884:173349. [PMID: 32650008 DOI: 10.1016/j.ejphar.2020.173349] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus characterized by hyperglycaemia presents an array of comorbidities such as cardiovascular and renal failure, dyslipidemia, and cognitive impairments. Populations above the age of 60 are in an urgent need of effective therapies to deal with the complications associated with diabetes mellitus. Widely used anti-diabetic drugs have good safety profiles and multiple reports indicate their pleiotropic effects in diabetic patients or models. This review has been written with the objective of identifying the widely-marketed anti-diabetic drugs which can be efficiently repurposed for the treatment of other diseases or disorders. It is an updated, comprehensive review, describing the protective role of various classes of anti-diabetic drugs in mitigating the macro and micro vascular complications of diabetes mellitus, and differentiating these drugs on the basis of their mode of action. Notably, metformin, the anti-diabetic drug most commonly explored for cancer therapy, has also exhibited some antimicrobial effects. Unlike class specific effects, few instances of drug specific effects in managing cardiovascular complications have also been reported. A major drawback is that the pleiotropic effects of anti-diabetic drugs have been mostly investigated only in diabetic patients. Thus, for effective repurposing, more clinical trials devoted to analyse the effects of anti-diabetic drugs in patients irrespective of their diabetic condition, are required.
Collapse
|
123
|
McGonagle D, O'Donnell JS, Sharif K, Emery P, Bridgewood C. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. THE LANCET. RHEUMATOLOGY 2020; 2:e437-e445. [PMID: 32835247 PMCID: PMC7252093 DOI: 10.1016/s2665-9913(20)30121-1] [Citation(s) in RCA: 551] [Impact Index Per Article: 110.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The lung pathology seen in patients with coronavirus disease 2019 (COVID-19) shows marked microvascular thrombosis and haemorrhage linked to extensive alveolar and interstitial inflammation that shares features with macrophage activation syndrome (MAS). We have termed the lung-restricted vascular immunopathology associated with COVID-19 as diffuse pulmonary intravascular coagulopathy, which in its early stages is distinct from disseminated intravascular coagulation. Increased circulating D-dimer concentrations (reflecting pulmonary vascular bed thrombosis with fibrinolysis) and elevated cardiac enzyme concentrations (reflecting emergent ventricular stress induced by pulmonary hypertension) in the face of normal fibrinogen and platelet levels are key early features of severe pulmonary intravascular coagulopathy related to COVID-19. Extensive immunothrombosis over a wide pulmonary vascular territory without confirmation of COVID-19 viraemia in early disease best explains the adverse impact of male sex, hypertension, obesity, and diabetes on the prognosis of patients with COVID-19. The immune mechanism underlying diffuse alveolar and pulmonary interstitial inflammation in COVID-19 involves a MAS-like state that triggers extensive immunothrombosis, which might unmask subclinical cardiovascular disease and is distinct from the MAS and disseminated intravascular coagulation that is more familiar to rheumatologists.
Collapse
Affiliation(s)
- Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK; National Institute for Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals National Health Service Trust, Leeds, UK.
| | - James S O'Donnell
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kassem Sharif
- Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paul Emery
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK; National Institute for Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals National Health Service Trust, Leeds, UK
| | - Charles Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK; National Institute for Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals National Health Service Trust, Leeds, UK
| |
Collapse
|
124
|
Meng Q, Zhang Y, Hu LG. Targeting Autophagy Facilitates T Lymphocyte Migration by Inducing the Expression of CXCL10 in Gastric Cancer Cell Lines. Front Oncol 2020; 10:886. [PMID: 32582551 PMCID: PMC7280490 DOI: 10.3389/fonc.2020.00886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/05/2020] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a type of cellular catabolic degradation process that occurs in response to nutrient starvation or metabolic stress, and is a valuable resource for highly proliferating cancer cells. Autophagy also facilitates the resistance of cancer cells to antitumor therapies. However, the involvement of autophagy in regulating CXCL10 expression in gastric cancer (GC) cells and T lymphocyte migration remains unclear. In this study, we aimed to investigate the effect of autophagy inhibition on CXCL10 expression and T lymphocyte infiltration in GC and elucidate the underlying mechanism. Analysis of public databases revealed a positive correlation between CXCL10 expression and both prognosis of patients with GC and the expression profile of T lymphocyte markers in the GCs. Chemotaxis and spheroid infiltration assays revealed that CXCL10 induced T lymphocyte migration and infiltration into GC spheroids, an in vitro three-dimensional cell culture model. In addition, in vitro autophagy inhibition in GC cells increased CXCL10 expression under both normal and hypoxic culture conditions. Further investigation on the underlying mechanism showed that in vitro autophagy inhibition suppressed the JNK signaling pathway and further enhanced CXCL10 expression in GC cells. Collectively, our results provide novel insights for understanding the role of autophagy in regulation of intra-tumor immunity.
Collapse
Affiliation(s)
- Qingyuan Meng
- Department of Comparative Biology and Safety Science, Amgen Biopharmaceutical R&D (Shanghai) Co., Ltd, Shanghai, China
| | - Yihong Zhang
- Department of Comparative Biology and Safety Science, Amgen Biopharmaceutical R&D (Shanghai) Co., Ltd, Shanghai, China
| | - Liangbiao George Hu
- Department of Comparative Biology and Safety Science, Amgen Biopharmaceutical R&D (Shanghai) Co., Ltd, Shanghai, China
| |
Collapse
|
125
|
Karin N. CXCR3 Ligands in Cancer and Autoimmunity, Chemoattraction of Effector T Cells, and Beyond. Front Immunol 2020; 11:976. [PMID: 32547545 PMCID: PMC7274023 DOI: 10.3389/fimmu.2020.00976] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
CXCR3 is a chemokine receptor with three ligands; CXCL9, CXCL10, and CXCL11. CXCL11 binds CXCR3 with a higher affinity than the other ligands leading to receptor internalization. Long ago we reported that one of these chemokines, CXCL10, not only attracts CXCR3+ CD4+ and CD8+ effector T cells to sites of inflammation, but also direct their polarization into highly potent effector T cells. Later we showed that CXCL11 directs the linage development of T-regulatory-1 cells (Tr1). We also observed that CXCL11 and CXCL10 induce different signaling cascades via CXCR3. Collectively this suggests that CXCR3 ligands differentially regulate the biological function of T cells via biased signaling. It is generally accepted that tumor cells evolved to express several chemokine receptors and secrete their ligands. Vast majority of these chemokines support tumor growth by different mechanisms that are discussed. We suggest that CXCL10 and possibly CXCL9 differ from other chemokines by their ability to restrain tumor growth and enhance anti-tumor immunity. Along with this an accumulating number of studies showed in various human cancers a clear association between poor prognosis and low expression of CXCL10 at tumor sites, and vice versa. Finally, we discuss the possibility that CXCL9 and CXCL10 may differ in their biological function via biased signaling and its possible relevance to cancer immunotherapy. The current mini review focuses on exploring the role of CXCR3 ligands in directing the biological properties of CD4+ and CD8+ T cells in the context of cancer and autoimmunity. We believe that the combined role of these chemokines in attracting T cells and also directing their biological properties makes them key drivers of immune function.
Collapse
Affiliation(s)
- Nathan Karin
- Department of Immunology, Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
126
|
Huang XY, Zhang PF, Wei CY, Peng R, Lu JC, Gao C, Cai JB, Yang X, Fan J, Ke AW, Zhou J, Shi GM. Circular RNA circMET drives immunosuppression and anti-PD1 therapy resistance in hepatocellular carcinoma via the miR-30-5p/snail/DPP4 axis. Mol Cancer 2020; 19:92. [PMID: 32430013 PMCID: PMC7236145 DOI: 10.1186/s12943-020-01213-6] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/07/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Amplification of chromosome 7q21-7q31 is associated with tumor recurrence and multidrug resistance, and several genes in this region are powerful drivers of hepatocellular carcinoma (HCC). We aimed to investigate the key circular RNAs (circRNAs) in this region that regulate the initiation and development of HCC. METHODS We used qRT-PCR to assess the expression of 43 putative circRNAs in this chromosomal region in human HCC and matched nontumor tissues. In addition, we used cultured HCC cells to modify circRNA expression and assessed the effects in several cell-based assays as well as gene expression analyses via RNA-seq. Modified cells were implanted into immunocompetent mice to assess the effects on tumor development. We performed additional experiments to determine the mechanism of action of these effects. RESULTS circMET (hsa_circ_0082002) was overexpressed in HCC tumors, and circMET expression was associated with survival and recurrence in HCC patients. By modifying the expression of circMET in HCC cells in vitro, we found that circMET overexpression promoted HCC development by inducing an epithelial to mesenchymal transition and enhancing the immunosuppressive tumor microenvironment. Mechanistically, circMET induced this microenvironment through the miR-30-5p/Snail/ dipeptidyl peptidase 4(DPP4)/CXCL10 axis. In addition, the combination of the DPP4 inhibitor sitagliptin and anti-PD1 antibody improved antitumor immunity in immunocompetent mice. Clinically, HCC tissues from diabetic patients receiving sitagliptin showed higher CD8+ T cell infiltration than those from HCC patients with diabetes without sitagliptin treatment. CONCLUSIONS circMET is an onco-circRNA that induces HCC development and immune tolerance via the Snail/DPP4/CXCL10 axis. Furthermore, sitagliptin may enhance the efficacy of anti-PD1 therapy in a subgroup of patients with HCC.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Cell Movement
- Cell Proliferation
- Dipeptidyl Peptidase 4/genetics
- Dipeptidyl Peptidase 4/metabolism
- Drug Resistance, Neoplasm
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Male
- Mice
- Mice, Inbred C57BL
- MicroRNAs/genetics
- Middle Aged
- Neoplasm Invasiveness
- Prognosis
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Proto-Oncogene Proteins c-met/genetics
- RNA, Circular/genetics
- Snail Family Transcription Factors/genetics
- Snail Family Transcription Factors/metabolism
- Survival Rate
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Xiao-Yong Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Peng-Fei Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Chuan-Yuan Wei
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Rui Peng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Jia-Cheng Lu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Chao Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Jia-Bing Cai
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Xuan Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Cancer Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200031, P.R. China
| | - Ai-Wu Ke
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China.
- Cancer Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200031, P.R. China.
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China.
- Cancer Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200031, P.R. China.
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Guo-Ming Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China.
- Cancer Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200031, P.R. China.
| |
Collapse
|
127
|
Shao S, Xu Q, Yu X, Pan R, Chen Y. Dipeptidyl peptidase 4 inhibitors and their potential immune modulatory functions. Pharmacol Ther 2020; 209:107503. [PMID: 32061923 PMCID: PMC7102585 DOI: 10.1016/j.pharmthera.2020.107503] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/30/2020] [Indexed: 12/25/2022]
Abstract
Dipeptidyl peptidase 4 (DPP4) inhibitors (DPP4is) are oral anti-diabetic drugs (OADs) for the treatment of type 2 diabetes mellitus (T2DM) through inhibiting the degradation of incretin peptides. Numerous investigations have been focused on the effects of DPP4is on glucose homeostasis. However, there are limited evidences demonstrating their Potential modulatory functions in the immune system. DPP4, originally known as the lymphocyte cell surface protein CD26, is widely expressed in many types of immune cells including CD4(+) and CD8(+) T cells, B cells, NK cells, dendritic cells, and macrophages; and regulate the functions of these cells. In addition, DPP4 is capable of modulating plenty of cytokines, chemokines and peptide hormones. Accordingly, DPP4/CD26 is speculated to be involved in various immune/inflammatory diseases and DPP4is may become a new drug class applied in these diseases. This review focuses on the regulatory effects of DPP4is on immune functions and their possible underlying mechanisms. Further clinical studies will be necessitated to fully evaluate the administration of DPP4is in diabetic patients with or without immune diseases.
Collapse
Affiliation(s)
- Shiying Shao
- Division of Endocrinology, Department of Internal Medicine, Tongji hospital, Tongji medical college, Huazhong University of Science & Technology, Wuhan 430030, PR China
| | - QinQin Xu
- Division of Endocrinology, Department of Internal Medicine, Tongji hospital, Tongji medical college, Huazhong University of Science & Technology, Wuhan 430030, PR China
| | - Xuefeng Yu
- Division of Endocrinology, Department of Internal Medicine, Tongji hospital, Tongji medical college, Huazhong University of Science & Technology, Wuhan 430030, PR China
| | - Ruping Pan
- Department of Nuclear Medicine, Tongji hospital, Tongji medical college, Huazhong University of Science & Technology, Wuhan 430030, PR China
| | - Yong Chen
- Division of Endocrinology, Department of Internal Medicine, Tongji hospital, Tongji medical college, Huazhong University of Science & Technology, Wuhan 430030, PR China.
| |
Collapse
|
128
|
Maryamchik E, Gallagher KME, Preffer FI, Kadauke S, Maus MV. New directions in chimeric antigen receptor T cell [CAR-T] therapy and related flow cytometry. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 98:299-327. [PMID: 32352629 DOI: 10.1002/cyto.b.21880] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Chimeric antigen receptor (CAR) T cells provide a promising approach to the treatment of hematologic malignancies and solid tumors. Flow cytometry is a powerful analytical modality, which plays an expanding role in all stages of CAR T therapy, from lymphocyte collection, to CAR T cell manufacturing, to in vivo monitoring of the infused cells and evaluation of their function in the tumor environment. Therefore, a thorough understanding of the new directions is important for designing and implementing CAR T-related flow cytometry assays in the clinical and investigational settings. However, the speed of new discoveries and the multitude of clinical and preclinical trials make it challenging to keep up to date in this complex field. In this review, we summarize the current state of CAR T therapy, highlight the areas of emergent research, discuss applications of flow cytometry in modern cell therapy, and touch upon several considerations particular to CAR detection and assessing the effectiveness of CAR T therapy.
Collapse
Affiliation(s)
- Elena Maryamchik
- Department of Pathology and Laboratory Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Frederic I Preffer
- Clinical Cytometry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Stephan Kadauke
- Department of Pathology and Laboratory Medicine, Cell and Gene Therapy Laboratory, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Marcela V Maus
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Cellular Immunotherapy Program, Department of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
129
|
Teijeira Á, Garasa S, Gato M, Alfaro C, Migueliz I, Cirella A, de Andrea C, Ochoa MC, Otano I, Etxeberria I, Andueza MP, Nieto CP, Resano L, Azpilikueta A, Allegretti M, de Pizzol M, Ponz-Sarvisé M, Rouzaut A, Sanmamed MF, Schalper K, Carleton M, Mellado M, Rodriguez-Ruiz ME, Berraondo P, Perez-Gracia JL, Melero I. CXCR1 and CXCR2 Chemokine Receptor Agonists Produced by Tumors Induce Neutrophil Extracellular Traps that Interfere with Immune Cytotoxicity. Immunity 2020; 52:856-871.e8. [PMID: 32289253 DOI: 10.1016/j.immuni.2020.03.001] [Citation(s) in RCA: 480] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 12/14/2019] [Accepted: 03/04/2020] [Indexed: 02/06/2023]
Abstract
Neutrophils are expanded and abundant in cancer-bearing hosts. Under the influence of CXCR1 and CXCR2 chemokine receptor agonists and other chemotactic factors produced by tumors, neutrophils, and granulocytic myeloid-derived suppressor cells (MDSCs) from cancer patients extrude their neutrophil extracellular traps (NETs). In our hands, CXCR1 and CXCR2 agonists proved to be the major mediators of cancer-promoted NETosis. NETs wrap and coat tumor cells and shield them from cytotoxicity, as mediated by CD8+ T cells and natural killer (NK) cells, by obstructing contact between immune cells and the surrounding target cells. Tumor cells protected from cytotoxicity by NETs underlie successful cancer metastases in mice and the immunotherapeutic synergy of protein arginine deiminase 4 (PAD4) inhibitors, which curtail NETosis with immune checkpoint inhibitors. Intravital microscopy provides evidence of neutrophil NETs interfering cytolytic cytotoxic T lymphocytes (CTLs) and NK cell contacts with tumor cells.
Collapse
Affiliation(s)
- Álvaro Teijeira
- Program for Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain.
| | - Saray Garasa
- Program for Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, 31008 Pamplona, Spain
| | - María Gato
- Program for Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Carlos Alfaro
- Program for Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Itziar Migueliz
- Program for Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, 31008 Pamplona, Spain
| | - Assunta Cirella
- Program for Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, 31008 Pamplona, Spain
| | - Carlos de Andrea
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain; Department of Oncology, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Maria Carmen Ochoa
- Program for Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Itziar Otano
- Program for Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Iñaki Etxeberria
- Program for Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Maria Pilar Andueza
- Department of Oncology, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Celia P Nieto
- Program for Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, 31008 Pamplona, Spain
| | - Leyre Resano
- Department of Oncology, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Arantza Azpilikueta
- Program for Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | | | - Mariano Ponz-Sarvisé
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain; Department of Oncology, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Ana Rouzaut
- Program for Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Miguel F Sanmamed
- Program for Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Kurt Schalper
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Mario Mellado
- Chemokine Signaling Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - María E Rodriguez-Ruiz
- Program for Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Pedro Berraondo
- Program for Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Jose L Perez-Gracia
- Department of Oncology, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Ignacio Melero
- Program for Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain.
| |
Collapse
|
130
|
Šimková A, Bušek P, Šedo A, Konvalinka J. Molecular recognition of fibroblast activation protein for diagnostic and therapeutic applications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140409. [PMID: 32171757 DOI: 10.1016/j.bbapap.2020.140409] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/24/2020] [Accepted: 03/05/2020] [Indexed: 01/09/2023]
Abstract
Fibroblast activation protein (FAP) is a non-classical serine protease expressed predominantly in conditions accompanied by tissue remodeling, particularly cancer. Due to its plasma membrane localization, FAP represents a promising molecular target for tumor imaging and treatment. The unique enzymatic activity of FAP facilitates development of diagnostic and therapeutic tools based on molecular recognition of FAP by substrates and small-molecule inhibitors, in addition to conventional antibody-based strategies. In this review, we provide background on the pathophysiological role of FAP and discuss its potential for diagnostic and therapeutic applications. Furthermore, we present a detailed analysis of the structural patterns crucial for substrate and inhibitor recognition by the FAP active site and determinants of selectivity over the related proteases dipeptidyl peptidase IV and prolyl endopeptidase. We also review published data on targeting of the tumor microenvironment with FAP antibodies, FAP-targeted prodrugs, activity-based probes and small-molecule inhibitors. We describe use of a recently developed, selective FAP inhibitor with low-nanomolar potency in inhibitor-based targeting strategies including synthetic antibody mimetics based on hydrophilic polymers and inhibitor conjugates for PET imaging. In conclusion, recent advances in understanding of the molecular structure and function of FAP have significantly contributed to the development of several tools with potential for translation into clinical practice.
Collapse
Affiliation(s)
- Adéla Šimková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 166 10 Praha 6, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843 Praha 2, Czech Republic.
| | - Petr Bušek
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 5, 128 53 Praha 2, Czech Republic.
| | - Aleksi Šedo
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 5, 128 53 Praha 2, Czech Republic.
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 166 10 Praha 6, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 12843 Praha 2, Czech Republic.
| |
Collapse
|
131
|
Wang Q, Lu P, Wang T, Zheng Q, Li Y, Leng SX, Meng X, Wang B, Xie J, Zhang H. Sitagliptin affects gastric cancer cells proliferation by suppressing Melanoma-associated antigen-A3 expression through Yes-associated protein inactivation. Cancer Med 2020; 9:3816-3828. [PMID: 32227453 PMCID: PMC7286447 DOI: 10.1002/cam4.3024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/18/2020] [Accepted: 03/08/2020] [Indexed: 12/18/2022] Open
Abstract
Sitagliptin is an emerging oral hypoglycemic agent that inhibits the development of a wide variety of tumors. Current researches indicate that the abnormal activation of Yes-associated protein (YAP) promotes the proliferation and poor prognosis of multiple tumors. However, the ability of sitagliptin to regulate YAP and its effects on gastric cancer (GC) cells remain unclear. Here, we first showed that sitagliptin inhibited the proliferation of GC cells, and this inhibition was regulated by Hippo pathway. Sitagliptin phosphorylated YAP in a large tumor suppressor homolog-dependent manner, thereby inhibiting YAP nuclear translocation, and promoted YAP cytoplasm retention. This inhibition can be blocked by adenosine 5'-monophosphate-activated protein kinase (AMPK). Moreover, sitagliptin could reduce the expression of tumor-testis antigen Melanoma-associated antigen-A3 through YAP. In conclusion, sitagliptin may have a potential inhibitory effect on GC by AMPK/YAP/melanoma-associated antigen-A3 pathway.
Collapse
Affiliation(s)
- Qi Wang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Pan Lu
- Department of Urinary Surgery, The Central Hospital of Xiaogan, Xiaogan, Hubei, China
| | - Tao Wang
- Department of Pathology, Shenyang KingMed Center for Clinical Laboratory Co., Ltd., Shenyang, Liaoning, China
| | - Qianqian Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| | - Yan Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Sean X Leng
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning, China
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning, China
| | - Jisheng Xie
- Department of Histology and Embryology, Youjiang Medical College for Nationalities, Baise, Guangxi, China
| | - Haiyan Zhang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
132
|
Abstract
BACKGROUND Melanoma is a malignancy that stems from melanocytes and is defined as the most dangerous skin malignancy in terms of metastasis and mortality rates. CXC motif chemokine 10 (CXCL10), also known as interferon gamma-induced protein-10 (IP-10), is a small cytokine-like protein secreted by a wide variety of cell types. CXCL10 is a ligand of the CXC chemokine receptor-3 (CXCR3) and is predominantly expressed by T helper cells (Th cells), cytotoxic T lymphocytes (CTLs), dendritic cells, macrophages, natural killer cells (NKs), as well as some epithelial and cancer cells. Similar to other chemokines, CXCL10 plays a role in immunomodulation, inflammation, hematopoiesis, chemotaxis and leukocyte trafficking. CONCLUSIONS Recent studies indicate that the CXCL10/CXCR3 axis may act as a double-edged sword in terms of pro- and anti-cancer activities in a variety of tissues and cells, especially in melanoma cells and their microenvironments. Most of these activities arise from the CXCR3 splice variants CXCR3-A, CXCR3-B and CXCR3-Alt. In this review, we discuss the pro- and anti-cancer properties of CXCL10 in various types of tissues and cells, particularly melanoma cells, including its potential as a therapeutic target.
Collapse
|
133
|
Pein M, Insua-Rodríguez J, Hongu T, Riedel A, Meier J, Wiedmann L, Decker K, Essers MAG, Sinn HP, Spaich S, Sütterlin M, Schneeweiss A, Trumpp A, Oskarsson T. Metastasis-initiating cells induce and exploit a fibroblast niche to fuel malignant colonization of the lungs. Nat Commun 2020; 11:1494. [PMID: 32198421 PMCID: PMC7083860 DOI: 10.1038/s41467-020-15188-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
Metastatic colonization relies on interactions between disseminated cancer cells and the microenvironment in secondary organs. Here, we show that disseminated breast cancer cells evoke phenotypic changes in lung fibroblasts, forming a supportive metastatic niche. Colonization of the lungs confers an inflammatory phenotype in metastasis-associated fibroblasts. Specifically, IL-1α and IL-1β secreted by breast cancer cells induce CXCL9 and CXCL10 production in lung fibroblasts via NF-κB signaling, fueling the growth of lung metastases. Notably, we find that the chemokine receptor CXCR3, that binds CXCL9/10, is specifically expressed in a small subset of breast cancer cells, which exhibits tumor-initiating ability when co-transplanted with fibroblasts and has high JNK signaling that drives IL-1α/β expression. Importantly, disruption of the intercellular JNK-IL-1-CXCL9/10-CXCR3 axis reduces metastatic colonization in xenograft and syngeneic mouse models. These data mechanistically demonstrate an essential role for the molecular crosstalk between breast cancer cells and their fibroblast niche in the progression of metastasis. How cancer cells engage the microenvironment to establish metastasis is poorly understood. Here, the authors show that CXCR3-expressing breast cancer cells secrete IL-1 to induce a paracrine crosstalk with fibroblasts in the lung, which involves CXCL9/10 production and results in colonization of the lung.
Collapse
Affiliation(s)
- Maren Pein
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Jacob Insua-Rodríguez
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Tsunaki Hongu
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Angela Riedel
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Jasmin Meier
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Lena Wiedmann
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Kristin Decker
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Marieke A G Essers
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany.,Division of Inflammatory Stress in Stem Cells, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Hans-Peter Sinn
- Institute of Pathology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Saskia Spaich
- Department of Obstetrics and Gynaecology, University Medical Centre Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Marc Sütterlin
- Department of Obstetrics and Gynaecology, University Medical Centre Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Andreas Schneeweiss
- National Center for Tumor Diseases, Heidelberg University Hospital, German Cancer Research Center, 69120, Heidelberg, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany.,German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Thordur Oskarsson
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany. .,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. .,German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.
| |
Collapse
|
134
|
Magnadóttir B, Uysal-Onganer P, Kraev I, Svansson V, Hayes P, Lange S. Deiminated proteins and extracellular vesicles - Novel serum biomarkers in whales and orca. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 34:100676. [PMID: 32114311 DOI: 10.1016/j.cbd.2020.100676] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/16/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
Peptidylarginine deiminases (PADs) are a family of phylogenetically conserved calcium-dependent enzymes which cause post-translational protein deimination. This can result in neoepitope generation, affect gene regulation and allow for protein moonlighting via functional and structural changes in target proteins. Extracellular vesicles (EVs) carry cargo proteins and genetic material and are released from cells as part of cellular communication. EVs are found in most body fluids where they can be useful biomarkers for assessment of health status. Here, serum-derived EVs were profiled, and post-translationally deiminated proteins and EV-related microRNAs are described in 5 ceataceans: minke whale, fin whale, humpback whale, Cuvier's beaked whale and orca. EV-serum profiles were assessed by transmission electron microscopy and nanoparticle tracking analysis. EV profiles varied between the 5 species and were identified to contain deiminated proteins and selected key inflammatory and metabolic microRNAs. A range of proteins, critical for immune responses and metabolism were identified to be deiminated in cetacean sera, with some shared KEGG pathways of deiminated proteins relating to immunity and physiology, while some KEGG pathways were species-specific. This is the first study to characterise and profile EVs and to report deiminated proteins and putative effects of protein-protein interaction networks via such post-translationald deimination in cetaceans, revealing key immune and metabolic factors to undergo this post-translational modification. Deiminated proteins and EVs profiles may possibly be developed as new biomarkers for assessing health status of sea mammals.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK.
| | - Vilhjálmur Svansson
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland
| | - Polly Hayes
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|
135
|
Bronger H, Magdolen V, Goettig P, Dreyer T. Proteolytic chemokine cleavage as a regulator of lymphocytic infiltration in solid tumors. Cancer Metastasis Rev 2020; 38:417-430. [PMID: 31482487 PMCID: PMC6890590 DOI: 10.1007/s10555-019-09807-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the past decade, immune-based therapies such as monoclonal antibodies against tumor epitopes or immune checkpoint inhibitors have become an integral part of contemporary cancer treatment in many entities. However, a fundamental prerequisite for the success of such therapies is a sufficient trafficking of tumor-infiltrating lymphocytes into the tumor microenvironment. This infiltration is facilitated by chemokines, a group of about 50 small proteins capable of chemotactically guiding leukocytes. Proteolytic inactivation of chemokines leading to an impaired infiltration of immune effector cells appears to be an efficient immune escape mechanism of solid cancers. The CXCR3 and CX3CR1 chemokine receptor ligands CXCL9-11 and CX3CL1, respectively, are mainly responsible for the tumor-suppressive lymphocytic infiltration into the tumor micromilieu. Their structure explains the biochemical basis of their proteolytic cleavage, while in vivo data from mouse models and patient samples shed light on the corresponding processes in cancer. The emerging roles of proteases, e.g., matrix metalloproteinases, cathepsins, and dipeptidyl peptidase 4, in chemokine inactivation define new resistance mechanisms against immunotherapies and identify attractive new targets to enhance immune intervention in cancer.
Collapse
Affiliation(s)
- Holger Bronger
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, Ismaninger Straße 22, D-81675, Munich, Germany.
| | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, Ismaninger Straße 22, D-81675, Munich, Germany
| | - Peter Goettig
- Division of Structural Biology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Tobias Dreyer
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, Ismaninger Straße 22, D-81675, Munich, Germany
| |
Collapse
|
136
|
Criscitiello MF, Kraev I, Lange S. Deiminated proteins in extracellular vesicles and serum of llama (Lama glama)-Novel insights into camelid immunity. Mol Immunol 2020; 117:37-53. [PMID: 31733447 PMCID: PMC7112542 DOI: 10.1016/j.molimm.2019.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/05/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023]
Abstract
Peptidylarginine deiminases (PADs) are phylogenetically conserved calcium-dependent enzymes which post-translationally convert arginine into citrulline in target proteins in an irreversible manner, causing functional and structural changes in target proteins. Protein deimination causes generation of neo-epitopes, affects gene regulation and also allows for protein moonlighting. Furthermore, PADs have been found to be a phylogenetically conserved regulator for extracellular vesicle (EVs) release. EVs are found in most body fluids and participate in cellular communication via transfer of cargo proteins and genetic material. In this study, post-translationally deiminated proteins in serum and serum-EVs are described for the first time in camelids, using the llama (Lama glama L. 1758) as a model animal. We report a poly-dispersed population of llama serum EVs, positive for phylogenetically conserved EV-specific markers and characterised by TEM. In serum, 103 deiminated proteins were overall identified, including key immune and metabolic mediators including complement components, immunoglobulin-based nanobodies, adiponectin and heat shock proteins. In serum, 60 deiminated proteins were identified that were not in EVs, and 25 deiminated proteins were found to be unique to EVs, with 43 shared deiminated protein hits between both serum and EVs. Deiminated histone H3, a marker of neutrophil extracellular trap formation, was also detected in llama serum. PAD homologues were identified in llama serum by Western blotting, via cross reaction with human PAD antibodies, and detected at an expected 70 kDa size. This is the first report of deiminated proteins in serum and EVs of a camelid species, highlighting a hitherto unrecognized post-translational modification in key immune and metabolic proteins in camelids, which may be translatable to and inform a range of human metabolic and inflammatory pathologies.
Collapse
Affiliation(s)
- Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA; Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, 77843, USA.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes, MK7 6AA, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|
137
|
Eckert EC, Nace RA, Tonne JM, Evgin L, Vile RG, Russell SJ. Generation of a Tumor-Specific Chemokine Gradient Using Oncolytic Vesicular Stomatitis Virus Encoding CXCL9. MOLECULAR THERAPY-ONCOLYTICS 2019; 16:63-74. [PMID: 31930167 PMCID: PMC6951834 DOI: 10.1016/j.omto.2019.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/07/2019] [Indexed: 02/08/2023]
Abstract
Genetically modified vesicular stomatitis virus (VSV) is an attractive agent for cancer treatment due to rapid intratumoral replication and observed clinical responses. Although VSV selectively kills malignant cells and can boost antitumor immunity, limited induction of intratumoral immune infiltration remains a barrier to efficacy in some cancer models. Here we engineered the oncolytic VSV platform to encode the T cell chemokine CXCL9, which is known to mediate the recruitment of activated CD8+ cytotoxic T cells and CD4+ T helper cells, and demonstrates conserved protein function between mice and humans. Chemotactic activity of the virally encoded chemokine was confirmed in vitro. Intratumoral concentration of CXCL9 was shown to increase after VSV therapy in three different cancer models, but to a much greater degree after VSV-CXCL9 therapy as compared with VSV control viruses. Despite a steep chemokine gradient from the tumor to the bloodstream, tumor trafficking of adoptively transferred and endogenous T cells was not measurably increased following VSV-CXCL9 therapy. Our results indicate that oncolytic VSV infection promotes release of CXCL9 in the tumor microenvironment, but further boosting of the functional chemokine gradient through virus engineering has little incremental impact on intratumoral immune cell infiltration in mouse and human tumor models.
Collapse
Affiliation(s)
- Elizabeth C Eckert
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Clinical and Translational Science Track, Mayo Graduate School of Biomedical Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Rebecca A Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jason M Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Laura Evgin
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard G Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephen J Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
138
|
Inhibition of dipeptidyl peptidase 4 (DPP4) activates immune cells chemotaxis in hepatocellular carcinoma. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.onsig.2019.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
139
|
House IG, Savas P, Lai J, Chen AXY, Oliver AJ, Teo ZL, Todd KL, Henderson MA, Giuffrida L, Petley EV, Sek K, Mardiana S, Gide TN, Quek C, Scolyer RA, Long GV, Wilmott JS, Loi S, Darcy PK, Beavis PA. Macrophage-Derived CXCL9 and CXCL10 Are Required for Antitumor Immune Responses Following Immune Checkpoint Blockade. Clin Cancer Res 2019; 26:487-504. [PMID: 31636098 DOI: 10.1158/1078-0432.ccr-19-1868] [Citation(s) in RCA: 408] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/11/2019] [Accepted: 10/09/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Response rates to immune checkpoint blockade (ICB; anti-PD-1/anti-CTLA-4) correlate with the extent of tumor immune infiltrate, but the mechanisms underlying the recruitment of T cells following therapy are poorly characterized. A greater understanding of these processes may see the development of therapeutic interventions that enhance T-cell recruitment and, consequently, improved patient outcomes. We therefore investigated the chemokines essential for immune cell recruitment and subsequent therapeutic efficacy of these immunotherapies. EXPERIMENTAL DESIGN The chemokines upregulated by dual PD-1/CTLA-4 blockade were assessed using NanoString-based analysis with results confirmed at the protein level by flow cytometry and cytometric bead array. Blocking/neutralizing antibodies confirmed the requirement for key chemokines/cytokines and immune effector cells. Results were confirmed in patients treated with immune checkpoint inhibitors using single-cell RNA-sequencing (RNA-seq) and paired survival analyses. RESULTS The CXCR3 ligands, CXCL9 and CXCL10, were significantly upregulated following dual PD-1/CTLA-4 blockade and both CD8+ T-cell infiltration and therapeutic efficacy were CXCR3 dependent. In both murine models and patients undergoing immunotherapy, macrophages were the predominant source of CXCL9 and their depletion abrogated CD8+ T-cell infiltration and the therapeutic efficacy of dual ICB. Single-cell RNA-seq analysis of patient tumor-infiltrating lymphocytes (TIL) revealed that CXCL9/10/11 was predominantly expressed by macrophages following ICB and we identified a distinct macrophage signature that was associated with positive responses to ICB. CONCLUSIONS These data underline the fundamental importance of macrophage-derived CXCR3 ligands for the therapeutic efficacy of ICB and highlight the potential of manipulating this axis to enhance patient responses.
Collapse
Affiliation(s)
- Imran G House
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Peter Savas
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Division of Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Junyun Lai
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Amanda X Y Chen
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Amanda J Oliver
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Zhi L Teo
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Division of Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Kirsten L Todd
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Melissa A Henderson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Lauren Giuffrida
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Emma V Petley
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Kevin Sek
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Sherly Mardiana
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Tuba N Gide
- The University of Sydney, Melanoma Institute Australia, Sydney, New South Wales, Australia
| | - Camelia Quek
- The University of Sydney, Melanoma Institute Australia, Sydney, New South Wales, Australia
| | - Richard A Scolyer
- The University of Sydney, Melanoma Institute Australia, Sydney, New South Wales, Australia.,Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Georgina V Long
- The University of Sydney, Melanoma Institute Australia, Sydney, New South Wales, Australia.,Royal North Shore Hospital, Sydney, New South Wales, Australia.,Mater Hospital, North Sydney, New South Wales, Australia
| | - James S Wilmott
- The University of Sydney, Melanoma Institute Australia, Sydney, New South Wales, Australia
| | - Sherene Loi
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Division of Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. .,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Department of Pathology, University of Melbourne, Parkville, Victoria, Australia.,Department of Immunology, Monash University, Clayton, Victoria, Australia
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. .,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
140
|
Seys LJM, Widagdo W, Verhamme FM, Kleinjan A, Janssens W, Joos GF, Bracke KR, Haagmans BL, Brusselle GG. DPP4, the Middle East Respiratory Syndrome Coronavirus Receptor, is Upregulated in Lungs of Smokers and Chronic Obstructive Pulmonary Disease Patients. Clin Infect Dis 2019; 66:45-53. [PMID: 29020176 PMCID: PMC7108100 DOI: 10.1093/cid/cix741] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/12/2017] [Indexed: 12/18/2022] Open
Abstract
Background Middle East respiratory syndrome coronavirus (MERS-CoV) causes pneumonia with a relatively high case fatality rate in humans. Smokers and chronic obstructive pulmonary disease (COPD) patients have been reported to be more susceptible to MERS-CoV infection. Here, we determined the expression of MERS-CoV receptor, dipeptidyl peptidase IV (DPP4), in lung tissues of smokers without airflow limitation and COPD patients in comparison to nonsmoking individuals (never-smokers). Methods DPP4 expression was measured in lung tissue of lung resection specimens of never-smokers, smokers without airflow limitation, COPD GOLD stage II patients and in lung explants of end-stage COPD patients. Both control subjects and COPD patients were well phenotyped and age-matched. The mRNA expression was determined using qRT-PCR and protein expression was quantified using immunohistochemistry. Results In smokers and subjects with COPD, both DPP4 mRNA and protein expression were significantly higher compared to never-smokers. Additionally, we found that both DPP4 mRNA and protein expression were inversely correlated with lung function and diffusing capacity parameters. Conclusions We provide evidence that DPP4 is upregulated in the lungs of smokers and COPD patients, which could partially explain why these individuals are more susceptible to MERS-CoV infection. These data also highlight a possible role of DPP4 in COPD pathogenesis.
Collapse
Affiliation(s)
- Leen J M Seys
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University HospitalGhent, Belgium.,Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - W Widagdo
- Departments of Viroscience, Rotterdam, The Netherlands
| | - Fien M Verhamme
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University HospitalGhent, Belgium
| | - Alex Kleinjan
- Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Wim Janssens
- University Hospital Leuven, Respiratory Division and Rehabilitation, Leuven, Belgium
| | - Guy F Joos
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University HospitalGhent, Belgium
| | - Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University HospitalGhent, Belgium
| | | | - Guy G Brusselle
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University HospitalGhent, Belgium
| |
Collapse
|
141
|
What patents tell us about drug repurposing for cancer: A landscape analysis. Semin Cancer Biol 2019; 68:3-7. [PMID: 31546010 DOI: 10.1016/j.semcancer.2019.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Abstract
Intellectual property documents (patents and their published applications) are not only collections of legal exclusivity claims but also repositories of scientific and technical information, even though they are not peer reviewed. We have identified and analyzed international disclosures concerning drug repurposing for cancer that were published under the Patent Convention Treaty during the past five years, and show this burgeoning field from an angle that is not routinely captured in review papers of the field. We find that patenting activity for cancer-related new uses for known compounds has been quite constant recently and has targeted mainly small molecule active ingredients that are currently marketed as drugs. Universities contributed most applications, closely followed by corporations. The strong representation of non-academic research institutes from the public and private sector and foundations was surprising and indicates that drug repurposing for cancer has transcended the classical corporate-academia dichotomy. Many of the identified patent documents report findings that are not reflected in the peer review literature (e.g., sumatriptan for mycosis fungoides) or appear there only later (e.g., ibudilast for glioblastoma). Synergistic combinations of several repurposed compounds were also identified, as were two documents related to the repurposing of vaccines. Our findings underscore the necessity for drug repurposers as well as for oncologists to investigate patent documents in addition to the usual peer review literature search to obtain a comprehensive perspective of the state of the art.
Collapse
|
142
|
Phase I study of YS110, a recombinant humanized monoclonal antibody to CD26, in Japanese patients with advanced malignant pleural mesothelioma. Lung Cancer 2019; 137:64-70. [PMID: 31557561 DOI: 10.1016/j.lungcan.2019.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/26/2019] [Accepted: 09/13/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVES CD26 is a transmembrane glycoprotein with dipeptidyl peptidase IV activity that is overexpressed in malignant pleural mesothelioma (MPM). We performed a phase I study to determine the maximum tolerated dose, pharmacokinetics, and antitumor activity of YS110, a monoclonal antibody to CD26, in Japanese patients with MPM intolerant of or refractory to prior standard therapies. MATERIAL AND METHODS The study was designed as an open-label, 3 + 3 dose-escalation, phase I trial. Patients were sequentially assigned to three dosing cohorts (2, 4, or 6 mg/kg). Each 6-week treatment cycle consisted of YS110 administration weekly for 5 weeks followed by a 1-week rest period. Treatment was continued until disease progression, death, or intolerable toxicity. Corticosteroid, antihistamine, and acetaminophen administration before each infusion was adopted to limit infusion-related reactions (IRRs). RESULTS Nine Japanese patients (seven men and two women, mean age of 62.2 years), three in each dosing cohort, were enrolled in the study. No patient developed a dose-limiting toxicity. Adverse events of grade 3 or 4 developed in seven patients, with the most common such event being a decreased lymphocyte count. Two patients had mild or moderate IRRs. The serum concentration of YS110 increased in a dose-dependent manner. Among seven patients evaluable for tumor response, four showed stable disease and one achieved a partial response. CONCLUSIONS YS110 showed promising antitumor efficacy and was generally well tolerated in Japanese patients with advanced MPM at doses of up to 6 mg/kg. YS110 will be tested at 6 mg/kg in a subsequent phase II study.
Collapse
|
143
|
Yuan X, Liu Y, Li G, Lan Z, Ma M, Li H, Kong J, Sun J, Hou G, Hou X, Ma Y, Ren F, Zhou F, Gao S. Blockade of Immune-Checkpoint B7-H4 and Lysine Demethylase 5B in Esophageal Squamous Cell Carcinoma Confers Protective Immunity against P. gingivalis Infection. Cancer Immunol Res 2019; 7:1440-1456. [PMID: 31350278 DOI: 10.1158/2326-6066.cir-18-0709] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/14/2019] [Accepted: 07/22/2019] [Indexed: 11/16/2022]
Abstract
Pathogens are capable of hijacking immune defense mechanisms, thereby creating a tolerogenic environment for hypermutated malignant cells that arise within the site of infection. Immune checkpoint-oriented immunotherapies have shown considerable promise. Equally important, the epigenetic reprogramming of an immune-evasive phenotype that activates the immune system in a synergistic manner can improve immunotherapy outcomes. These advances have led to combinations of epigenetic- and immune-based therapeutics. We previously demonstrated that Porphyromonas gingivalis isolated from esophageal squamous cell carcinoma (ESCC) lesions represents a major pathogen associated with this deadly disease. In this study, we examined the mechanisms associated with host immunity during P. gingivalis infection and demonstrated that experimentally infected ESCC responds by increasing the expression of B7-H4 and lysine demethylase 5B, which allowed subsequent in vivo analysis of the immunotherapeutic effects of anti-B7-H4 and histone demethylase inhibitors in models of chronic infection and immunity against xenografted human tumors. Using three different preclinical mouse models receiving combined therapy, we showed that mice mounted strong resistance against P. gingivalis infection and tumor challenge. This may have occurred via generation of a T cell-mediated response in the microenvironment and formation of immune memory. In ESCC subjects, coexpression of B7-H4 and KDM5B correlated more significantly with bacterial load than with the expression of either molecule alone. These results highlight the unique ability of P. gingivalis to evade immunity and define potential targets that can be exploited therapeutically to improve the control of P. gingivalis infection and the development of associated neoplasia.
Collapse
Affiliation(s)
- Xiang Yuan
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China.,Department of Medical Oncology, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Yiwen Liu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Guifang Li
- Department of Pulmonary Tumor Surgery, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Zijun Lan
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Mingyang Ma
- Department of Pulmonary Tumor Surgery, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Huaxu Li
- Queen Mary College, Medical College of Nanchang University, Nanchang, China
| | - Jinyu Kong
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Jiangtao Sun
- Department of Pulmonary Tumor Surgery, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Gaochao Hou
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Xurong Hou
- Department of Medical Oncology, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Yingjian Ma
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Feng Ren
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Fuyou Zhou
- Department of Thoracic Surgery, Anyang Tumor Hospital, Anyang, Henan, China.
| | - Shegan Gao
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China. .,Department of Medical Oncology, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
144
|
Shergold AL, Millar R, Nibbs RJ. Understanding and overcoming the resistance of cancer to PD-1/PD-L1 blockade. Pharmacol Res 2019; 145:104258. [DOI: 10.1016/j.phrs.2019.104258] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/01/2019] [Accepted: 05/01/2019] [Indexed: 12/22/2022]
|
145
|
Reynders N, Abboud D, Baragli A, Noman MZ, Rogister B, Niclou SP, Heveker N, Janji B, Hanson J, Szpakowska M, Chevigné A. The Distinct Roles of CXCR3 Variants and Their Ligands in the Tumor Microenvironment. Cells 2019; 8:cells8060613. [PMID: 31216755 PMCID: PMC6627231 DOI: 10.3390/cells8060613] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/14/2019] [Accepted: 06/16/2019] [Indexed: 12/22/2022] Open
Abstract
First thought to orchestrate exclusively leukocyte trafficking, chemokines are now acknowledged for their multiple roles in the regulation of cell proliferation, differentiation, and survival. Dysregulation of their normal functions contributes to various pathologies, including inflammatory diseases and cancer. The two chemokine receptor 3 variants CXCR3-A and CXCR3-B, together with their cognate chemokines (CXCL11, CXCL10, CXCL9, CXCL4, and CXCL4L1), are involved in the control but also in the development of many tumors. CXCR3-A drives the infiltration of leukocytes to the tumor bed to modulate tumor progression (paracrine axis). Conversely, tumor-driven changes in the expression of the CXCR3 variants and their ligands promote cancer progression (autocrine axis). This review summarizes the anti- and pro-tumoral activities of the CXCR3 variants and their associated chemokines with a focus on the understanding of their distinct biological roles in the tumor microenvironment.
Collapse
Affiliation(s)
- Nathan Reynders
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg.
- Faculty of Science, Technology and Communication, University of Luxembourg, L-1526 Luxembourg, Luxembourg.
| | - Dayana Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, CHU, B-4000 Liège, Belgium.
| | - Alessandra Baragli
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg.
| | - Muhammad Zaeem Noman
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg.
| | - Bernard Rogister
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, B-4000 Liège, Belgium.
- Neurology Department, CHU, Academic Hospital, University of Liège, B-4000 Liège, Belgium.
| | - Simone P Niclou
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg.
| | - Nikolaus Heveker
- Research Centre, Saint-Justine Hospital, University of Montreal, Montréal H3T 1C5, Canada.
- Department of Biochemistry, University of Montreal, Montréal H3T 1J4, Canada.
| | - Bassam Janji
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg.
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, CHU, B-4000 Liège, Belgium.
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicine (CIRM), University of Liège, CHU, B-4000 Liège, Belgium.
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg.
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg.
| |
Collapse
|
146
|
Han LT, Hu JQ, Ma B, Wen D, Zhang TT, Lu ZW, Wei WJ, Wang YL, Wang Y, Liao T, Ji QH. IL-17A increases MHC class I expression and promotes T cell activation in papillary thyroid cancer patients with coexistent Hashimoto's thyroiditis. Diagn Pathol 2019; 14:52. [PMID: 31159823 PMCID: PMC6547553 DOI: 10.1186/s13000-019-0832-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/23/2019] [Indexed: 02/08/2023] Open
Abstract
Background The incidence of coexisting papillary thyroid cancer (PTC) and Hashimoto’s thyroiditis (HT) is increasing. The impact of HT on PTC prognosis and its possible mechanism remains controversial. Interleukin-17A (IL-17A) has been reported to participate in the pathogenesis of multiple autoimmune diseases and cancers. The aim of this study is to investigate the role of IL-17A in PTC with coexistent HT and evaluate the changes in tumor antigenicity. Methods Expression of IL-17A and major histocompatibility complex (MHC) class I molecules were compared on PTC tissue samples with or without HT. PTC cell lines K1 and TPC-1 were stimulated with IL-17A and analyzed for MHC class I expression afterwards. Cluster of differentiation (CD) 8+T cell activation, production of Interleukin-2 (IL-2) and Interferon-gamma (IFN-γ) as well as the programmed death-1 (PD-1) expression on lymphocytes were assessed by coculture of donor peripheral blood lymphocytes (PBLs) with IL-17A pretreated PTC cells. Results Elevated IL-17A and MHC class I expression were observed in PTC tissue samples with coexistent HT. Stimulation of PTC cells with IL-17A effectively increased MHC class I expression in vitro. Coculture of PBLs with IL-17A pretreated PTC cells resulted in enhanced T cell activation (%CD25+ of CD3+T cells) and increased IL-2 production along with decreased IFN-γ secretion and PD-1 expression of the lymphocytes. Conclusions Papillary thyroid cancer with coexisting Hashimoto’s thyroiditis presents elevated MHC class I expression, which may be the result of IL-17A secretion. T cell activation is enhanced in vitro by IL-17A and may provide future utility in PTC immunotherapy. Electronic supplementary material The online version of this article (10.1186/s13000-019-0832-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li-Tao Han
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jia-Qian Hu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ben Ma
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Duo Wen
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ting-Ting Zhang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhong-Wu Lu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wen-Jun Wei
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yu-Long Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tian Liao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Qing-Hai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
147
|
Zhang W, Song Z, Xiao J, Liu X, Luo Y, Yang Z, Luo R, Li A. Blocking the PD-1/PD-L1 axis in dendritic cell-stimulated Cytokine-Induced Killer Cells with pembrolizumab enhances their therapeutic effects against hepatocellular carcinoma. J Cancer 2019; 10:2578-2587. [PMID: 31258764 PMCID: PMC6584335 DOI: 10.7150/jca.26961] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 04/25/2019] [Indexed: 12/11/2022] Open
Abstract
Immune checkpoint therapies for cancer, like the anti-programmed cell death 1 (PD-1) agent pembrolizumab, have gained considerable attention. However, the use of immune checkpoint inhibitors in the context of adoptive immunotherapy is poorly characterized. We investigated the therapeutic efficacy of dendritic cell-stimulated CIK (DC-CIK) cells pretreated with pembrolizumab against hepatocellular carcinoma (HCC) in cytotoxicity assay in vitro and in a nude mouse xenograft model. We used time-lapse imaging to investigate tumor killing. We also performed a survival analysis based on lymphocyte subpopulation-specific mRNA signatures using The Cancer Genome Atlas (TCGA) HCC cohort (n=371 patients). The results indicated that PD-1 inhibition increased the anti-tumor effects of DC-CIK cells over those of DC-CIK cells alone, resulting in a survival benefit importantly. Time-lapse imaging revealed that DC-CIK cells appeared to be more effective and aggressive after anti-PD-1 treatment than after culture in control conditions. The PD-1 inhibitor also induced more effective immune cell infiltration of the tumor. Our analysis of the TCGA HCC cohort confirmed that a genetic signature consistent with a high degree of intratumoral CD8+ T cell infiltration is associated with good prognosis. These results suggest that blockade of the PD-1/PD-L1 axis in DC-CIK cells with a PD-1 inhibitor prior to infusion is a promising therapeutic strategy against HCC.
Collapse
Affiliation(s)
- Wan Zhang
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University Guangzhou, 510315, China.,Cancer Center, Southern Medical University Guangzhou, 510315, China
| | - Zhenghui Song
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University Guangzhou, 510315, China.,Cancer Center, Southern Medical University Guangzhou, 510315, China
| | - Jianpeng Xiao
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University Guangzhou, 510315, China.,Cancer Center, Southern Medical University Guangzhou, 510315, China
| | - Xinhui Liu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University Guangzhou, 510315, China.,Cancer Center, Southern Medical University Guangzhou, 510315, China.,Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Yue Luo
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University Guangzhou, 510315, China.,Cancer Center, Southern Medical University Guangzhou, 510315, China
| | - Zike Yang
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University Guangzhou, 510315, China.,Cancer Center, Southern Medical University Guangzhou, 510315, China
| | - Rongcheng Luo
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University Guangzhou, 510315, China.,Cancer Center, Southern Medical University Guangzhou, 510315, China
| | - Aimin Li
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University Guangzhou, 510315, China.,Cancer Center, Southern Medical University Guangzhou, 510315, China.,Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
148
|
Bishnoi R, Hong YR, Shah C, Ali A, Skelton WP, Huo J, Dang NH, Dang LH. Dipeptidyl peptidase 4 inhibitors as novel agents in improving survival in diabetic patients with colorectal cancer and lung cancer: A Surveillance Epidemiology and Endpoint Research Medicare study. Cancer Med 2019; 8:3918-3927. [PMID: 31124302 PMCID: PMC6639187 DOI: 10.1002/cam4.2278] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 12/31/2022] Open
Abstract
Background Dipeptidyl peptidase 4 (DPP4) is a cell surface protein that can act as a tumor suppressor or activator, depending upon the level of expression and interaction with the microenvironment and chemokines. DPP4 inhibitors are used to treat diabetes. Methods We conducted this Surveillance Epidemiology and Endpoint Research‐Medicare database study to evaluate the role of DPP4 inhibitors on the overall survival (OS) of diabetic patients diagnosed with colorectal (CRC) and lung cancers. Results Diabetic patients with CRC or lung cancer who were treated with DPP4 inhibitors exhibited a statistically significant survival advantage (hazard ratio [HR] of 0.89; CI: 0.82‐0.97, P = 0.007) that remained significant after controlling for all other confounders. When DPP4 inhibitors were used in combination of metformin which is known to suppress cancer, the survival advantage was even more pronounced (HR of 0.83; CI: 0.77‐0.90, P < 0.0001). Data were then analyzed separately for two cancer types. In the CRC‐only cohort, the use of DPP4 inhibitors alone had a positive trend but did not meet statistically significant threshold (HR of 0.87; CI: 0.75‐1.00, P = 0.055), while the combined use of DPP4 inhibitors and metformin was associated with statistically significant survival advantage (HR of 0.77; CI: 0.67‐0.89, P = 0.003). Similarly, for the lung cancer cohort, use of DPP4 alone was not found to be statistically significant (HR of 0.93; CI: 0.83‐1.03, P = 0.153), whereas lung cancer patients treated with the combination of DPP4 inhibitors and metformin showed statistically significant survival advantage (HR of 0.88; CI: 0.80‐0.97, P = 0.010). Conclusions DPP4 inhibition in CRC and lung cancer is associated with improved OS, which possibly may be due to the effect of DPP4 inhibition on immunoregulation of cancer.
Collapse
Affiliation(s)
- Rohit Bishnoi
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL
| | - Young-Rock Hong
- Department of Health Services Research, Management and Policy, College of Public Health and Health Professions, University of Florida, Gainesville, FL
| | - Chintan Shah
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL
| | - Azka Ali
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL
| | - William P Skelton
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL
| | - Jinhai Huo
- Department of Health Services Research, Management and Policy, College of Public Health and Health Professions, University of Florida, Gainesville, FL
| | - Nam H Dang
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL
| | - Long H Dang
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
149
|
Palucci I, Battah B, Salustri A, De Maio F, Petrone L, Ciccosanti F, Sali M, Bondet V, Duffy D, Fimia GM, Goletti D, Delogu G. IP-10 contributes to the inhibition of mycobacterial growth in an ex vivo whole blood assay. Int J Med Microbiol 2019; 309:299-306. [PMID: 31147175 DOI: 10.1016/j.ijmm.2019.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/17/2019] [Accepted: 05/21/2019] [Indexed: 02/05/2023] Open
Abstract
Interferon-γ inducible protein 10 (IP-10), is a potent chemoattractant that promotes migration of monocytes and activated T-cells to inflammation foci. IP-10 is elevated in serum of patients with chronic hepatitis C virus (HCV) and tuberculosis (TB) infections, although it remains to be determined the contribution of IP-10 in restricting Mycobacterium tuberculosis (Mtb) replication. Here, we investigated the impact of IP-10 on mycobacteria replication using the ex vivo model of human whole-blood (WB) assay. In particular, we compared the levels of IP-10 upon infection with different Mtb clinical strains and species of non-tuberculous mycobacteria (NTM) and evaluated how IP-10 may contain bacterial replication. Interestingly, we observed that the inhibition of the host enzyme dipeptidyl peptidase IV (DPP-IV), which inactivates IP-10 through cleavage of two amino acids at the chemokine N-terminus, restricted mycobacterial persistence in WB, supporting the critical role of full length IP-10 in mediating an anti-Mtb response. Addition of recombinant IP-10 expressed in eukaryotic cells enhanced the anti-mycobacterial activity in WB, although no differences were observed when IP-10 containing different proportions of cleaved and non-cleaved forms of the chemokine were added. Moreover, recombinant IP-10 did not exert a direct anti-mycobacterial effect. Our results underscore the clinical relevance of IP-10 in mycobacteria pathogenesis and support the potential outcomes that may derive by targeting the IP-10/CXCR3 pathway as host directed therapies for the treatment of Mtb or NTM infections.
Collapse
Affiliation(s)
- Ivana Palucci
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy
| | - Basem Battah
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy
| | | | - Flavio De Maio
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Linda Petrone
- Translational Research Unit, Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases, L. Spallanzani IRCCS, Rome, Italy
| | - Fabiola Ciccosanti
- Cellular Biology Unit, Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases, L. Spallanzani IRCCS, Rome, Italy
| | - Michela Sali
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy
| | - Vincent Bondet
- Institut Pasteur, Laboratoire Immunobiologie des Cellules Dendritiques, Département d'Immunologie, INSERM U1223, Institut Pasteur, Paris, France
| | - Darragh Duffy
- Institut Pasteur, Laboratoire Immunobiologie des Cellules Dendritiques, Département d'Immunologie, INSERM U1223, Institut Pasteur, Paris, France
| | - Gian Maria Fimia
- Cellular Biology Unit, Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases, L. Spallanzani IRCCS, Rome, Italy; Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento, Lecce, 73100, Italy
| | - Delia Goletti
- Translational Research Unit, Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases, L. Spallanzani IRCCS, Rome, Italy
| | - Giovanni Delogu
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy; Mater Olbia Hospital, Olbia, Italy.
| |
Collapse
|
150
|
Unver N. Macrophage chemoattractants secreted by cancer cells: Sculptors of the tumor microenvironment and another crucial piece of the cancer secretome as a therapeutic target. Cytokine Growth Factor Rev 2019; 50:13-18. [PMID: 31151747 DOI: 10.1016/j.cytogfr.2019.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022]
Abstract
Beyond their essential role in leukocyte homing in the context of inflammation, chemokines orchestrate the host response to cancer progression. Chemokines are key accelerators in the amplification of inflammatory signals and metastasis in the distal zone of tumors, indicating possible immune editing of tumor cells in the microenvironment. This review summarizes the main macrophage-attracting chemokines secreted from cancer cells and how these mediators can be targeted to improve cancer immunotherapy in multiple cancer types.
Collapse
Affiliation(s)
- Nese Unver
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, Sihhiye, 06100, Ankara, Turkey.
| |
Collapse
|