101
|
Riegelhaupt PM, Frame IJ, Akabas MH. Transmembrane segment 11 appears to line the purine permeation pathway of the Plasmodium falciparum equilibrative nucleoside transporter 1 (PfENT1). J Biol Chem 2010; 285:17001-10. [PMID: 20335165 DOI: 10.1074/jbc.m110.115758] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purine transport is essential for malaria parasites to grow because they lack the enzymes necessary for de novo purine biosynthesis. The Plasmodium falciparum Equilibrative Nucleoside Transporter 1 (PfENT1) is a member of the equilibrative nucleoside transporter (ENT) gene family. PfENT1 is a primary purine transport pathway across the P. falciparum plasma membrane because PfENT1 knock-out parasites are not viable at physiologic extracellular purine concentrations. Topology predictions and experimental data indicate that ENT family members have eleven transmembrane (TM) segments although their tertiary structure is unknown. In the current work, we showed that a naturally occurring polymorphism, F394L, in TM11 affects transport substrate K(m). We investigated the structure and function of the TM11 segment using the substituted cysteine accessibility method. We showed that mutation to Cys of two highly conserved glycine residues in a GXXXG motif significantly reduces PfENT1 protein expression levels. We speculate that the conserved TM11 GXXXG glycines may be critical for folding and/or assembly. Small, cysteine-specific methanethiosulfonate (MTS) reagents reacted with four TM11 Cys substitution mutants, L393C, I397C, T400C, and Y403C. Larger MTS reagents do not react with the more cytoplasmic positions. Hypoxanthine, a transported substrate, protected L393C, I397C, and T400C from covalent modification by the MTS reagents. Plotted on an alpha-helical wheel, Leu-393, Ile-397, and Thr-400 lie on one face of the helix in a 60 degrees arc suggesting that TM11 is largely alpha helical. We infer that they line a water-accessible surface, possibly the purine permeation pathway. These results advance our understanding of the ENT structure.
Collapse
Affiliation(s)
- Paul M Riegelhaupt
- Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | | | | |
Collapse
|
102
|
Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 2010; 62:1-96. [PMID: 20103563 PMCID: PMC2835398 DOI: 10.1124/pr.109.002014] [Citation(s) in RCA: 578] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory factors that influence transporter expression and function, including transcriptional activation and post-translational modifications as well as subcellular trafficking. Sex differences, ontogeny, and pharmacological and toxicological regulation of transporters are also addressed. Transporters are important transmembrane proteins that mediate the cellular entry and exit of a wide range of substrates throughout the body and thereby play important roles in human physiology, pharmacology, pathology, and toxicology.
Collapse
Affiliation(s)
- Curtis D Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7417, USA.
| | | |
Collapse
|
103
|
Yamamoto T, Sugawara M, Kikukawa T, Miyauchi S, Yamaguchi M, Tero A, Takagi S, Nakagaki T. Kinetic study of anti-viral ribavirin uptake mediated by hCNT3 and hENT1 in Xenopus laevis oocytes. Biophys Chem 2010; 147:59-65. [DOI: 10.1016/j.bpc.2009.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 12/25/2009] [Accepted: 12/28/2009] [Indexed: 01/09/2023]
|
104
|
Paproski RJ, Young JD, Cass CE. Predicting gemcitabine transport and toxicity in human pancreatic cancer cell lines with the positron emission tomography tracer 3'-deoxy-3'-fluorothymidine. Biochem Pharmacol 2010; 79:587-95. [PMID: 19788890 DOI: 10.1016/j.bcp.2009.09.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 09/22/2009] [Accepted: 09/23/2009] [Indexed: 12/14/2022]
Abstract
The abundance of human equilibrative nucleoside transporter 1 (hENT1) has recently been shown to be a predictive marker of benefit from gemcitabine therapy in patients with pancreatic cancer. Since hENT1 is also important for the uptake of positron emission tomography (PET) tracer 3'-deoxy-3'-fluorothymidine (FLT) in various cultured human cell lines, this study was undertaken to determine if FLT uptake predicts gemcitabine uptake and/or toxicity in a panel of human pancreatic cancer cell lines (Capan-2, AsPC-1, BxPC-3, PL45, MIA PaCa-2, and PANC-1). Capan-2 cells displayed the lowest levels of (1) extracellular nitrobenzylmercaptopurine ribonucleoside (NBMPR) binding, which represents cell-surface hENT1, (2) FLT and gemcitabine uptake during short (1-45s) and prolonged (1h) periods, and (3) gemcitabine sensitivity. Exposure to NBMPR (inhibits only hENT1) or dilazep (inhibits hENT1 and hENT2) reduced FLT and gemcitabine uptake and gemcitabine sensitivity, with dilazep having greater effects than NBMPR. Gemcitabine permeation was almost completely mediated, primarily by hENT1 and to a lesser extent by hENT2, whereas FLT permeation included a substantial component of passive diffusion. In five of six cell lines, correlations were observed between (1) FLT and gemcitabine initial rates of uptake, (2) gemcitabine uptake and gemcitabine toxicity, (3) FLT uptake and gemcitabine toxicity, and (4) ribonucleotide reductase subunit M1 expression and gemcitabine toxicity. FLT and gemcitabine uptake were comparable for predicting gemcitabine toxicity in the tested pancreatic cancer cell lines suggesting that FLT PET may provide clinically useful information about tumor gemcitabine transport capacity and sensitivity.
Collapse
Affiliation(s)
- Robert J Paproski
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Ave., Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
105
|
Pafundo DE, Alvarez CL, Krumschnabel G, Schwarzbaum PJ. A volume regulatory response can be triggered by nucleosides in human erythrocytes, a perfect osmometer no longer. J Biol Chem 2009; 285:6134-44. [PMID: 20040601 DOI: 10.1074/jbc.m109.078246] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human erythrocytes have been regarded as perfect osmometers, which swell or shrink as dictated by their osmotic environment. In contrast, in most other cells, swelling elicits a regulatory volume decrease (RVD) modulated by the activation of purinic and pyrimidinic receptors (P receptors). For human erythrocytes this modulation has not been tested, and we thus investigated whether P receptor activation can induce RVD in these cells. Further, because ectonucleotidases may scavenge ATP or ADP or act as a source for extracellular adenosine and therefore modulate P receptor activation and RVD, we also determined their activity in intact erythrocytes. We found relatively low ectoATPase but significant ectoADPase and ectoAMPase activities. When erythrocytes were exposed to hypotonic medium alone, they swelled as expected for an osmometric response and showed no RVD. Activation of P2 receptors by exogenous ATP or ADP did not trigger RVD, whereas P1 agonists adenosine and adenosine-5'-N-ethylcarboxamide induced significant RVD. The effect of adenosine-5'-N-ethylcarboxamide was dose-dependent (maximal RVD of 27%; apparent K((1/2)) of 1.6 +/- 1.7 microM). The RVD induced by adenosine was blocked 80% with the non-selective P1 antagonist 8-(p-sulfophenyl theophylline) or the P1-A(2B) inhibitor MRS1754, but not by inhibitors of P1 subtypes A(1), A(2A), and A(3). In addition, forskolin (an inducer of intracellular cAMP formation) could mimic the effect of adenosine, supporting the idea of P1-A(2B) receptor activation. In conclusion, we report a novel P1-A(2B) receptor-mediated RVD activation in mature human erythrocytes and thus indicate that these long held perfect osmometers are not so perfect after all.
Collapse
Affiliation(s)
- Diego E Pafundo
- Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, C1113AAD Buenos Aires, Argentina
| | | | | | | |
Collapse
|
106
|
Rose JB, Naydenova Z, Bang A, Eguchi M, Sweeney G, Choi DS, Hammond JR, Coe IR. Equilibrative nucleoside transporter 1 plays an essential role in cardioprotection. Am J Physiol Heart Circ Physiol 2009; 298:H771-7. [PMID: 20035027 DOI: 10.1152/ajpheart.00711.2009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To better understand the role of equilibrative nucleoside transporters (ENT) in purine nucleoside-dependent physiology of the cardiovascular system, we investigated whether the ENT1-null mouse heart was cardioprotected in response to ischemia (coronary occlusion for 30 min followed by reperfusion for 2 h). We observed that ENT1-null mouse hearts showed significantly less myocardial infarction compared with wild-type littermates. We confirmed that isolated wild-type adult mouse cardiomyocytes express predominantly ENT1, which is primarily responsible for purine nucleoside uptake in these cells. However, ENT1-null cardiomyocytes exhibit severely impaired nucleoside transport and lack ENT1 transcript and protein expression. Adenosine receptor expression profiles and expression levels of ENT2, ENT3, and ENT4 were similar in cardiomyocytes isolated from ENT1-null adult mice compared with cardiomyocytes isolated from wild-type littermates. Moreover, small interfering RNA knockdown of ENT1 in the cardiomyocyte cell line, HL-1, mimics findings in ENT1-null cardiomyocytes. Taken together, our data demonstrate that ENT1 plays an essential role in cardioprotection, most likely due to its effects in modulating purine nucleoside-dependent signaling and that the ENT1-null mouse is a powerful model system for the study of the role of ENTs in the physiology of the cardiomyocyte.
Collapse
|
107
|
Dalpiaz A, Vighi E, Pavan B, Leo E. Fabrication via a nonaqueous nanoprecipitation method, characterization and in vitro biological behavior of N6-cyclopentyladenosine-loaded nanoparticles. J Pharm Sci 2009; 98:4272-84. [DOI: 10.1002/jps.21710] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
108
|
Disrupted plasma membrane localization and loss of function reveal regions of human equilibrative nucleoside transporter 1 involved in structural integrity and activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2326-34. [PMID: 19699178 DOI: 10.1016/j.bbamem.2009.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 07/16/2009] [Accepted: 08/12/2009] [Indexed: 01/08/2023]
Abstract
Human Equilibrative Nucleoside Transporter 1 (hENT1) is an integral membrane protein that transports nucleosides and analog drugs across cellular membranes. Very little is known about intracellular processing and localization of hENT1. Here we show that disruption of a highly conserved triplet (PWN) near the N-terminus, or the last eight C-terminal residues (two hydrophobic triplets separated by a positive arginine) result in loss of plasma membrane localization and/or transport function. To understand the role of specific residues within these regions, we studied the localization patterns of N- or C-terminal deletion and/or substitution mutants of GFP-hENT1 using confocal microscopy. Quantification of GFP-hENT1 (mutant and wildtype) protein at the plasma membrane was conducted using nitrobenzylthioinosine (NBTI) binding. Functionality of the GFP-hENT1 mutants was determined by heterologous expression in Xenopus laevis oocytes followed by measurement of uridine uptake. Mutation of the proline within the PWN motif disrupts plasma membrane localization. C-terminal mutations (primarily within the hydrophobic triplets) lead to hENT1 retention within the cell (e.g. in the ER). Some mutants still localize to the plasma membrane but show reduced transport activity. These data suggest that these two regions contribute to the structural integrity and thus correct processing and function of hENT1.
Collapse
|
109
|
Vickers MF, Young JD, Baldwin SA, Ellison MJ, Cass CE. Functional production of mammalian concentrative nucleoside transporters inSaccharomyces cerevisiae. Mol Membr Biol 2009. [DOI: 10.1080/09687680010033306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
110
|
Sylvia Y. M. Yao, Amy M. L. Ng, Man. Transport of antiviral 3'-deoxy-nucleoside drugs by recombinant human and rat equilibrative, nitrobenzylthioinosine (NBMPR)-insensitive (ENT2) nucleoside transporter proteins produced inXenopusoocytes. Mol Membr Biol 2009. [DOI: 10.1080/09687680118681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
111
|
Appleford PJ, Griffiths M, Yao SYM, Ng AML, Chomey EG, Isaac RE, Coates D, Hope IA, Cass CE, Young JD, Baldwin SA. Functional redundancy of two nucleoside transporters of the ENT family (CeENT1, CeENT2) required for development ofCaenorhabditis elegans. Mol Membr Biol 2009; 21:247-59. [PMID: 15371014 DOI: 10.1080/09687680410001712550] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The genome of Caenorhabditis elegans encodes multiple homologues of the two major families of mammalian equilibrative and concentrative nucleoside transporters. As part of a programme aimed at understanding the biological rationale underlying the multiplicity of eukaryote nucleoside transporters, we have now demonstrated that the nematode genes ZK809.4 (ent-1) and K09A9.3 (ent-2) encode equilibrative transporters, which we designate CeENT1 and CeENT2 respectively. These transporters resemble their human counterparts hENT1 and hENT2 in exhibiting similar broad permeant specificities for nucleosides, while differing in their permeant selectivities for nucleobases. They are insensitive to the classic inhibitors of mammalian nucleoside transport, nitrobenzylthioinosine, dilazep and draflazine, but are inhibited by the vasoactive drug dipyridamole. Use of green fluorescent protein reporter constructs indicated that the transporters are present in a limited number of locations in the adult, including intestine and pharynx. Their potential roles in these tissues were explored by using RNA interference to disrupt gene expression. Although disruption of ent-1 or ent-2 expression alone had no effect, simultaneous disruption of both genes yielded pronounced developmental defects involving the intestine and vulva.
Collapse
Affiliation(s)
- Peter J Appleford
- School of Biochemistry & Microbiology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Hyde RJ, Cass CE, Young JD, Stephen A. Baldwin JD. The ENT family of eukaryote nucleoside and nucleobase transporters: recent advances in the investigation of structure/function relationships and the identification of novel isoforms. Mol Membr Biol 2009. [DOI: 10.1080/09687680118799] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
113
|
Mabel W. L. Ritzel, Amy M. L. Ng, S. Recent molecular advances in studies of the concentrative Na+-dependent nucleoside transporter (CNT) family: identification and characterization of novel human and mouse proteins (hCNT3 and mCNT3) broadly selective for purine and pyrimidine nucleosides (systemcib). Mol Membr Biol 2009. [DOI: 10.1080/09687680118530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
114
|
Elwi AN, Damaraju VL, Kuzma ML, Mowles DA, Baldwin SA, Young JD, Sawyer MB, Cass CE. Transepithelial fluxes of adenosine and 2′-deoxyadenosine across human renal proximal tubule cells: roles of nucleoside transporters hENT1, hENT2, and hCNT3. Am J Physiol Renal Physiol 2009; 296:F1439-51. [DOI: 10.1152/ajprenal.90411.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study examined the roles of human nucleoside transporters (hNTs) in mediating transepithelial fluxes of adenosine, 2′-deoxyadenosine, and three purine nucleoside anti-cancer drugs across polarized monolayers of human renal proximal tubule cells (hRPTCs), which were shown in previous studies to have human equilibrative NT 1 (hENT1) and 2 (hENT2) and human concentrative NT 3 (hCNT3) activities ( 11 ). Early passage hRPTCs were cultured on transwell inserts under conditions that induced formation of polarized monolayers with experimentally accessible apical and basolateral domains. Polarized hRPTC cultures were monitored for inhibitor sensitivities and sodium-dependence of the following: 1) transepithelial fluxes of radiolabeled adenosine, 2′-deoxyadenosine, fludarabine (9-β-d-arabinosyl-2-fluoroadenine), cladribine (2-chloro-2′-deoxyadenosine), and clofarabine (2-chloro-2′-fluoro-deoxy-9-β-d-arabinofuranosyladenine); 2) mediated uptake of radiolabeled adenosine, 2′-deoxyadenosine, fludarabine, cladribine, and clofarabine from either apical or basolateral surfaces; and 3) relative apical cell surface hCNT3 protein levels. Transepithelial fluxes of adenosine were mediated from apical-to-basolateral sides by apical hCNT3 and basolateral hENT2, whereas transepithelial fluxes of 2′-deoxyadenosine were mediated from basolateral-to-apical sides by apical hENT1 and basolateral human organic anion transporters (hOATs). The transepithelial fluxes of adenosine, hCNT3-mediated cellular uptake of adenosine, and relative apical cell surface hCNT3 protein levels correlated positively in polarized hRPTCs. The purine nucleoside anti-cancer drugs fludarabine, cladribine, and clofarabine, like adenosine exhibited apical-to-basolateral fluxes. Collectively, this evidence suggested that apical hCNT3 and basolateral hENT2 are involved in proximal tubular reabsorption of adenosine and some nucleoside drugs and that apical hENT1 and basolateral hOATs are involved in proximal tubular secretion of 2′-deoxyadenosine.
Collapse
|
115
|
Li RWS, Seto SW, Au ALS, Kwan YW, Chan SW, Lee SMY, Tse CM, Leung GPH. Inhibitory effect of nonsteroidal anti-inflammatory drugs on adenosine transport in vascular smooth muscle cells. Eur J Pharmacol 2009; 612:15-20. [DOI: 10.1016/j.ejphar.2009.04.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 04/02/2009] [Accepted: 04/09/2009] [Indexed: 01/04/2023]
|
116
|
Abstract
In adults, the hepatobiliary system, together with the kidney, constitute the main routes for the elimination of several endogenous and xenobiotic compounds into bile and urine, respectively. However, during intrauterine life the biliary route of excretion for cholephilic compounds, such as bile acids and biliary pigments, is very poor. Although very early in pregnancy the fetal liver produces bile acids, bilirubin and biliverdin, these compounds cannot be efficiently eliminated by the fetal hepatobiliary system, owing to the immaturity of the excretory machinery in the fetal liver. Therefore, the potentially harmful accumulation of cholephilic compounds in the fetus is prevented by their elimination across the placenta. Owing to the presence of detoxifying enzymes and specific transport systems at different locations of the placental barrier, such as the endothelial cells of chorionic vessels and trophoblast cells, this organ plays an important role in the hepatobiliary-like function during intrauterine life. The relevance of this excretory function in normal fetal physiology is evident in situations where high concentrations of biliary compounds are accumulated in the mother. This may result in oxidative stress and apoptosis, mainly in the placenta and fetal liver, which might affect normal fetal development and challenge the fate of the pregnancy. The present article reviews current knowledge of the mechanisms underlying the hepatobiliary function of the fetal-placental unit and the repercussions of several pathological conditions on this tandem.
Collapse
|
117
|
Vega JL, Puebla C, Vásquez R, Farías M, Alarcón J, Pastor-Anglada M, Krause B, Casanello P, Sobrevia L. TGF-beta1 inhibits expression and activity of hENT1 in a nitric oxide-dependent manner in human umbilical vein endothelium. Cardiovasc Res 2009; 82:458-67. [PMID: 19193655 DOI: 10.1093/cvr/cvp045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS We studied whether transforming growth factor beta1 (TGF-beta1) modulates human equilibrative nucleoside transporters 1 (hENT1) expression and activity in human umbilical vein endothelial cells (HUVECs). hENT1-mediated adenosine transport and expression are reduced in gestational diabetes and hyperglycaemia, conditions associated with increased synthesis and release of nitric oxide (NO) and TGF-beta1 in this cell type. TGF-beta1 increases NO synthesis via activation of TGF-beta receptor type II (TbetaRII), and NO inhibits hENT1 expression and activity in HUVECs. METHODS AND RESULTS HUVECs (passage 2) were used for experiments. Total and hENT1-mediated adenosine transport was measured in the absence or presence of TGF-beta1, NG-nitro-L-arginine methyl ester (L-NAME, NO synthase inhibitor), S-nitroso-N-acetyl-L,D-penicillamine (SNAP, NO donor), and/or KT-5823 (protein kinase G inhibitor) in control cells and cells expressing a truncated form of TGF-beta1 receptor type II (TTbetaRII). Western blot and real-time PCR were used to determine hENT1 protein abundance and mRNA expression. SLC29A1 gene promoter and specific protein 1 (Sp1) transcription factor activity was assayed. Vascular reactivity was assayed in endothelium-intact or -denuded umbilical vein rings. TGF-beta1 reduced hENT1-mediated adenosine transport, hENT1 protein abundance, hENT1 mRNA expression, and SLC29A1 gene promoter activity, but increased Sp1 binding to DNA. TGF-beta1 effect was blocked by L-NAME and KT-5823 and mimicked by SNAP in control cells. However, TGF-beta1 was ineffective in cells expressing TTbetaRII or a mutated Sp1 consensus sequence. Vasodilatation in response to TGF-beta1 and S-(4-nitrobenzyl)-6-thio-inosine (an ENT inhibitor) was endothelium-dependent and blocked by KT-5823 and ZM-241385. CONCLUSION hENT1 is down-regulated by activation of TbetaRII by TGF-beta1 in HUVECs, a phenomenon where NO and Sp1 play key roles. These findings comprise physiological mechanisms that could be important in diseases where TGF-beta1 plasma level is increased as in gestational diabetic mothers or patients with diabetes mellitus.
Collapse
Affiliation(s)
- José L Vega
- Cellular and Molecular Physiology Laboratory, Department of Obstetrics and Gynaecology, Medical Research Centre (CIM), School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, PO Box 114-D, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Baliani A, Peal V, Gros L, Brun R, Kaiser M, Barrett MP, Gilbert IH. Novel functionalized melamine-based nitroheterocycles: synthesis and activity against trypanosomatid parasites. Org Biomol Chem 2009; 7:1154-66. [PMID: 19262935 DOI: 10.1039/b813394h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human African trypanosomiasis (HAT), caused by the protozoan parasite Trypanosoma brucei spp., is a major health problem in sub-Saharan Africa. New drugs are urgently required for the disease. Selective uptake of toxic compounds into trypanosomes has been achieved by exploiting plasma membrane transporters. For example, the P2 aminopurine transporter, along with other transporters, selectively concentrates melamine and benzamidine moieties into trypanosomes. We have previously reported the use of the melamine motif to selectively target nitrofuran to the trypanosome. In this paper we report the further investigation of the structure activity relationships and the effect of the introduction of different functionalized substituents onto the melamine unit. Most of the compounds tested in vitro for their trypanocidal activity showed activities in the submicromolar range against T. b. rhodesiense.
Collapse
Affiliation(s)
- Alessandro Baliani
- School of Life Sciences, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, UK
| | | | | | | | | | | | | |
Collapse
|
119
|
Gupte A, Buolamwini JK. CoMFA and CoMSIA 3D-QSAR studies on S6-(4-nitrobenzyl)mercaptopurine riboside (NBMPR) analogs as inhibitors of human equilibrative nucleoside transporter 1 (hENT1). Bioorg Med Chem Lett 2009; 19:314-8. [DOI: 10.1016/j.bmcl.2008.11.092] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 11/20/2008] [Accepted: 11/24/2008] [Indexed: 11/15/2022]
|
120
|
Gupte A, Buolamwini JK. Synthesis and biological evaluation of phloridzin analogs as human concentrative nucleoside transporter 3 (hCNT3) inhibitors. Bioorg Med Chem Lett 2008; 19:917-21. [PMID: 19097778 DOI: 10.1016/j.bmcl.2008.11.112] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 11/24/2008] [Accepted: 11/26/2008] [Indexed: 11/16/2022]
Abstract
Nucleoside transporter inhibitors have potential therapeutic applications as anticancer, antiviral, cardioprotective and neuroprotective agents. Although quite a few potent inhibitors of the equilibrative nucleoside transporters are known, largely missing are the concentrative nucleoside transporter inhibitors. Phloridzin (3, K(i)=16.00 microM) is a known moderate inhibitor of the concentrative nucleoside transporters. We have synthesized and evaluated analogs of phloridzin at the hCNT3 nucleoside transporter. Within the series of synthesized analogs compound 16 (K(i)=2.88 microM), possessing a ribofuranose sugar unit instead of a glucopyranose as present in phloridzin, exhibited the highest binding affinity at the hCNT3 transporter. Phloridzin and compound 16 have also been shown to be selective for the hCNT3 transporter as compared with the hENT1 transporter. Compound 16 can serve as a new lead which after further modifications could yield selective and potent hCNT3 inhibitors.
Collapse
Affiliation(s)
- Amol Gupte
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences Center, 847 Monroe Avenue Suite 327, Memphis, TN 38163, USA
| | | |
Collapse
|
121
|
Young JD, Yao SYM, Sun L, Cass CE, Baldwin SA. Human equilibrative nucleoside transporter (ENT) family of nucleoside and nucleobase transporter proteins. Xenobiotica 2008; 38:995-1021. [PMID: 18668437 DOI: 10.1080/00498250801927427] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1. The human (h) SLC29 family of integral membrane proteins is represented by four members, designated equilibrative nucleoside transporters (ENTs) because of the properties of the first-characterized family member, hENT1. They belong to the widely distributed eukaryotic ENT family of equilibrative and concentrative nucleoside/nucleobase transporter proteins. 2. A predicted topology of eleven transmembrane helices has been experimentally confirmed for hENT1. The best-characterized members of the family, hENT1 and hENT2, possess similar broad permeant selectivities for purine and pyrimidine nucleosides, but hENT2 also efficiently transports nucleobases. hENT3 has a similar broad permeant selectivity for nucleosides and nucleobases and appears to function in intracellular membranes, including lysosomes. 3. hENT4 is uniquely selective for adenosine, and also transports a variety of organic cations. hENT3 and hENT4 are pH sensitive, and optimally active under acidic conditions. ENTs, including those in parasitic protozoa, function in nucleoside and nucleobase uptake for salvage pathways of nucleotide synthesis and, in humans, are also responsible for the cellular uptake of nucleoside analogues used in the treatment of cancers and viral diseases. 4. By regulating the concentration of adenosine available to cell surface receptors, mammalian ENTs additionally influence physiological processes ranging from cardiovascular activity to neurotransmission.
Collapse
Affiliation(s)
- J D Young
- Membrane Protein Research Group, Department of Physiology and Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | |
Collapse
|
122
|
Paproski RJ, Ng AML, Yao SYM, Graham K, Young JD, Cass CE. The role of human nucleoside transporters in uptake of 3'-deoxy-3'-fluorothymidine. Mol Pharmacol 2008; 74:1372-80. [PMID: 18669604 DOI: 10.1124/mol.108.048900] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
3'-Deoxy-3'-fluorothymidine (FLT) is a positron emission tomography (PET) tracer used to identify proliferating tumor cells. The purpose of this study was to characterize FLT transport by human nucleoside transporters (hNTs) and to determine the role of hNTs for FLT uptake in various human cancer cell lines. FLT binding to hNTs was monitored by the inhibitory effects of FLT on [(3)H]uridine uptake in yeast cells producing recombinant hNT proteins. hCNT1 displayed the lowest FLT K(i) value for inhibition of [(3)H]uridine uptake, followed by hCNT3, hENT2, hENT1, and hCNT2. [(3)H]FLT was efficiently transported in Xenopus laevis oocytes individually producing hENT1, hENT2, hCNT1, or hCNT3. [(3)H]FLT uptake in MCF-7, A549, U251, A498, MIA PaCa-2, and Capan-2 cells was inhibited at least 50% by the hENT1 inhibitor nitrobenzylmercaptopurine ribonucleoside (NBMPR). According to results of real-time polymerase chain reactions, hENT1 and hENT2 had the most abundant hNT transcripts in all cell lines. Cell lines also underwent 1) [(3)H]NBMPR equilibrium binding assays with or without 5-S-{2-(1-[(fluorescein-5-yl)thioureido]hexanamido)ethyl}-6-N-(4-nitrobenzyl)-5-thioadenosine, a membrane-impermeable NBMPR analog, to determine plasma membrane hENT1 levels, and 2) dose-response NBMPR inhibition of [(3)H]FLT uptake. MCF-7, A549, and Capan-2 cells displayed NBMPR IC(50) values that were smaller or equal to NBMPR K(d) values, suggesting that 50% inhibition of hENT1 reduced [(3)H]FLT uptake by at least 50%. A strong correlation between extracellular NBMPR binding sites/cell and [(3)H]FLT uptake was observed for all cell lines except MIA PaCa-2. These data suggest that plasma membrane hNTs (especially hENT1) are important determinants of cellular FLT uptake.
Collapse
Affiliation(s)
- Robert J Paproski
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Ave., Edmonton, Alberta, Canada T6G 1Z2
| | | | | | | | | | | |
Collapse
|
123
|
Wu SK, Ann DK, Kim KJ, Lee VHL. Fine tuning of rabbit equilibrative nucleoside transporter activity by an alternatively spliced variant. J Drug Target 2008; 13:521-33. [PMID: 16332577 DOI: 10.1080/10611860500403099] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The full-length cDNA encoding an equilibrative nucleoside transporter (rbENT2) and its novel C-terminal variant, rbENT2A, were isolated from rabbit trachea. Rabbit ENT2 protein consists of 456 amino acid residues; rbENT2A is shorter by 41 residues. Both rbENT2 and rbENT2A transcripts are found in rabbit tissues including intestine, kidney cortex, kidney, and trachea, at varying levels of expression. When transfected in a heterologous expression system-Madin Darby canine kidney (MDCK) epithelial cell line-both rbENT2 and rbENT2A were expressed. rbENT2 had a molecular mass of 49 kDa; rbENT2A had a molecular mass of 44 kDa. Clones of both transporters yielded functional proteins that were capable of mediating uridine uptake and efflux without the needing to be coupled to a secondary ion (e.g. Na(+)). Remarkably, rbENT2A displayed a higher affinity (K(m) = 41 microM) and a lower capacity (V(max) = 0.6 nmol/mg protein/5 min) towards substrates than rbENT2 (K(m) = 272.8 microM, V(max) = 1.26 nmol/mg protein/5 min). Pharmacological profiles showed that nitro-benzyl-mercapto-purine-ribose (NBMPR) potently inhibited (3)H-uridine uptake mediated by rbENT2A, but not uptake mediated by rbENT2. The constitutive splicing, broad expression, markedly different kinetics, and distinct pharmacological characteristics of rbENT2A appear to act in conjunction with the wild type, rbENT2, to fine-tune basolateral nucleoside transport function in rabbit trachea.
Collapse
Affiliation(s)
- Sharon K Wu
- Department of Pharmaceutical Sciences, University of Southern California, Los Angeles, 90089-9121, USA
| | | | | | | |
Collapse
|
124
|
Carter NS, Yates P, Arendt CS, Boitz JM, Ullman B. Purine and pyrimidine metabolism in Leishmania. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 625:141-54. [PMID: 18365665 DOI: 10.1007/978-0-387-77570-8_12] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Purines and pyrimidines are indispensable to all life, performing many vital functions for cells: ATP serves as the universal currency of cellular energy, cAMP and cGMP are key second messenger molecules, purine and pyrimidine nucleotides are precursors for activated forms of both carbohydrates and lipids, nucleotide derivatives of vitamins are essential cofactors in metabolic processes, and nucleoside triphosphates are the immediate precursors for DNA and RNA synthesis. Unlike their mammalian and insect hosts, Leishmania lack the metabolic machinery to make purine nucleotides de novo and must rely on their host for preformed purines. The obligatory nature of purine salvage offers, therefore, a plethora of potential targets for drug targeting, and the pathway has consequently been the focus of considerable scientific investigation. In contrast, Leishmania are prototrophic for pyrimidines and also express a small complement of pyrimidine salvage enzymes. Because the pyrimidine nucleotide biosynthetic pathways of Leishmania and humans are similar, pyrimidine metabolism in Leishmania has generally been considered less amenable to therapeutic manipulation than the purine salvage pathway. However, evidence garnered from a variety of parasitic protozoa suggests that the selective inhibition of pyrimidine biosynthetic enzymes offers a rational therapeutic paradigm. In this chapter, we present an overview of the purine and pyrimidine pathways in Leishmania, make comparisons to the equivalent pathways in their mammalian host, and explore how these pathways might be amenable to selective therapeutic targeting.
Collapse
Affiliation(s)
- Nicola S Carter
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, Oregon 97239-3098, USA
| | | | | | | | | |
Collapse
|
125
|
Mutation of Trp29 of human equilibrative nucleoside transporter 1 alters affinity for coronary vasodilator drugs and nucleoside selectivity. Biochem J 2008; 414:291-300. [PMID: 18462193 DOI: 10.1042/bj20080074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
hENT1 (human equilibrative nucleoside transporter 1) is inhibited by nanomolar concentrations of various structurally distinct coronary vasodilator drugs, including dipyridamole, dilazep, draflazine, soluflazine and NBMPR (nitrobenzylmercaptopurine ribonucleoside). When a library of randomly mutated hENT1 cDNAs was screened using a yeast-based functional complementation assay for resistance to dilazep, a clone containing the W29G mutation was identified. Multiple sequence alignments revealed that this residue was highly conserved. Mutations at Trp29 were generated and tested for adenosine transport activity and inhibitor sensitivity. Trp29 mutations significantly reduced the apparent V(max) and/or increased the apparent K(m) values for adenosine transport. Trp29 mutations increased the IC50 values for hENT1 inhibition by dipyridamole, dilazep, NBMPR, soluflazine and draflazine. NBMPR and soluflazine displayed remarkably similar trends, with large aromatic substitutions at residue 29 resulting in the lowest IC50 values, suggesting that both drugs could interact via ring-stacking interactions with Trp29. The W29T mutant displayed a selective loss of pyrimidine nucleoside transport activity, which contrasts with the previously identified L442I mutant that displayed a selective loss of purine nucleoside transport. W29T, L442I and the double mutant W29T/L442I were characterized kinetically for nucleoside transport activity. A helical wheel projection of TM (transmembrane segment) 1 suggests that Trp29 is positioned close to Met33, implicated previously in nucleoside and inhibitor recognition, and that both residues line the permeant translocation pathway. The data also suggest that Trp29 forms part of, or lies close to, the binding sites for dipyridamole, dilazep, NBMPR, soluflazine and draflazine.
Collapse
|
126
|
Robillard KR, Bone DBJ, Park JS, Hammond JR. Characterization of mENT1Delta11, a novel alternative splice variant of the mouse equilibrative nucleoside transporter 1. Mol Pharmacol 2008; 74:264-73. [PMID: 18413666 DOI: 10.1124/mol.107.041871] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Mammalian cells require specific transport mechanisms for the cellular uptake and release of endogenous nucleosides such as adenosine, and nucleoside analogs used in chemotherapy. We have identified a novel splice variant of the mouse equilibrative nucleoside transporter, mENT1, that results from the exclusion of exon 11 during pre-RNA processing. This variant encodes a truncated protein (mENT1Delta11) missing the last three transmembrane domains of the full-length mENT1. The mENT1Delta11 transcript and protein were found to be differentially distributed among tissues relative to full-length mENT1. PK15-NTD (nucleoside transport deficient) cells were transfected with mENT1 or mENT1Delta11 and assessed for nucleoside transport function. No significant differences were observed between the mENT1 and mENT1Delta11 in terms of transport function or inhibitor binding affinity. PK15-mENT1Delta11 transfected cells bound the ENT1 probe [3H]nitrobenzylthioinosine (NBMPR) with high affinity and mediated the cellular accumulation of both [3H]2-chloroadenosine and [3H]uridine. The only significant differences between the mENT1 variants were that mENT1Delta11 could not be photolabeled with [3H]NBMPR and that mENT1Delta11 was insensitive to the transporter-modifying effects of N-ethylmaleimide. These data suggest that the last three transmembrane domains of mENT1 are not necessary for transport activity, but this region does contain the cysteines responsible for the sensitivity of mENT1 to sulfhydryl reagents, and the residues important for covalent modification of the protein with NBMPR. These results provide important guidelines for future mutagenesis studies aimed at elucidating the tertiary structure of the ENT1 protein and the domains involved in inhibitor binding and substrate translocation.
Collapse
Affiliation(s)
- Kevin R Robillard
- Dept. of Physiology and Pharmacology, M266 Medical Sciences Building, University of Western Ontario, London, Ontario N6A5C1, Canada
| | | | | | | |
Collapse
|
127
|
Elwi AN, Damaraju VL, Kuzma ML, Baldwin SA, Young JD, Sawyer MB, Cass CE. Human concentrative nucleoside transporter 3 is a determinant of fludarabine transportability and cytotoxicity in human renal proximal tubule cell cultures. Cancer Chemother Pharmacol 2008; 63:289-301. [DOI: 10.1007/s00280-008-0739-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 03/11/2008] [Indexed: 01/24/2023]
|
128
|
Pérez-Torras S, García-Manteiga J, Mercadé E, Casado FJ, Carbó N, Pastor-Anglada M, Mazo A. Adenoviral-mediated overexpression of human equilibrative nucleoside transporter 1 (hENT1) enhances gemcitabine response in human pancreatic cancer. Biochem Pharmacol 2008; 76:322-9. [PMID: 18589402 DOI: 10.1016/j.bcp.2008.05.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 05/09/2008] [Accepted: 05/13/2008] [Indexed: 01/16/2023]
Abstract
Nucleoside-derived anticancer agents must be transported across the plasma membrane as a preliminary step to their conversion into active drugs. Hence, modulation of a specific nucleoside transporter may affect bioavailability and contribute significantly to sensitizing tumor cells to these anticancer agents. We have generated and functionally characterized a new recombinant adenovirus (Ad-hENT1) that has allowed us to overexpress the equilibrative nucleoside transporter hENT1 and to analyze its effects in human pancreatic tumor cells. Overexpression of hENT1 is associated with changes in cell cycle profile, in a variable manner depending on the particular cell type, thus suggesting a metabolic link between hENT1-mediated transport processes and the enzymatic machinery responsible for intracellular nucleoside metabolism. When assayed in vivo in a human pancreatic adenocarcinoma xenograft, intratumoral Ad-hENT1 injection improved the therapeutic response to gemcitabine. In summary, hENT1 overexpression is associated with alterations in nucleoside enzymatic machinery and cell cycle progression in cultured cells and enhances gemcitabine action in vivo.
Collapse
Affiliation(s)
- Sandra Pérez-Torras
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
129
|
Chishu T, Sai Y, Nishimura T, Sato K, Kose N, Nakashima E. Potential of various drugs to inhibit nucleoside uptake in rat syncytiotrophoblast cell line, TR-TBT 18d-1. Placenta 2008; 29:461-7. [PMID: 18329095 DOI: 10.1016/j.placenta.2008.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 01/17/2008] [Accepted: 01/22/2008] [Indexed: 10/22/2022]
Abstract
The placenta requires nucleosides as nutrients for fetal growth, so it is important to examine potential interactions between placental transports of nucleosides and drugs to ensure the safety of pharmacotherapy during pregnancy. The purposes of this study are to clarify the uptake mechanisms of nucleosides from the maternal side of the syncytiotrophoblast and to investigate the inhibitory effect of various drugs on nucleoside uptake, using the rat syncytiotrophoblast cell line TR-TBT 18d-1, which shows syncytial-like morphology and functional expression of several transporters. Initial uptake of [(3)H]uridine or [(3)H]adenosine from the apical side of TR-TBT 18d-1 was markedly reduced by an excess of the respective unlabelled compound, and was slightly reduced by replacement of Na(+) with N-methyl-d-glucamine, indicating that both uptakes were Na(+)-independent. [(3)H]Uridine and [(3)H]adenosine uptakes in the absence of Na(+) were significantly and concentration-dependently inhibited by both 0.1 microM and 100 microM nitrobenzylthioinosine, suggesting the involvement of equilibrative nucleoside transporters (ENTs, SLC29). Kinetic analysis of adenosine uptake yielded a K(m) value of approximately 17 microM. These results are consistent with the reported uptake characteristics of uridine and adenosine by ENT1 and ENT2. The uptakes were significantly reduced by high concentrations of several nucleoside drugs, including cytarabine, vidarabine, zidovudine, mizoribine, caffeine and amitriptyline, but the effects were small within the therapeutic concentration ranges. In summary, our results suggest that ENTs are involved in apical uptake of uridine and adenosine in the syncytiotrophoblast. However, therapeutic concentrations of the drugs tested in this study might have little influence on maternal-to-fetal nucleoside transfer.
Collapse
Affiliation(s)
- T Chishu
- Department of Pharmaceutics, Kyoritsu University of Pharmacy, 1-5-30 Shiba-koen, Minato-ku, Tokyo 105-8512, Japan
| | | | | | | | | | | |
Collapse
|
130
|
Rose JB, Coe IR. Physiology of Nucleoside Transporters: Back to the Future. . . . Physiology (Bethesda) 2008; 23:41-8. [DOI: 10.1152/physiol.00036.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nucleoside transporters (NTs) are integral membrane proteins responsible for mediating and facilitating the flux of nucleosides and nucleobases across cellular membranes. NTs are also responsible for the uptake of nucleoside analog drugs used in the treatment of cancer and viral infections, and they are the target of certain compounds used in the treatment of some types of cardiovascular disease. The important role of NTs as drug transporters and therapeutic targets has necessarily led to intense interest into their structure and function and the relationship between these proteins and drug efficacy. In contrast, we still know relatively little about the fundamental physiology of NTs. In this review, we discuss various aspects of the physiology of NTs in mammalian systems, particularly noting tissues and cells where there has been little recent research. Our central thesis is reference back to some of the older literature, combined with current findings, will provide direction for future research into NT physiology that will lead to a fuller understanding of the role of these intriguing proteins in the everyday lives of cells, tissues, organs, and whole animals.
Collapse
Affiliation(s)
- Jennifer B. Rose
- Department of Biology, York University, Toronto, Ontario, Canada,
| | - Imogen R. Coe
- Department of Biology, York University, Toronto, Ontario, Canada,
| |
Collapse
|
131
|
Leung GPH, Tse CM. The role of mitochondrial and plasma membrane nucleoside transporters in drug toxicity. Expert Opin Drug Metab Toxicol 2008; 3:705-18. [PMID: 17916056 DOI: 10.1517/17425255.3.5.705] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many anticancer and antiviral drugs are nucleoside analogues, which interfere with nucleotide metabolism and DNA replication to produce pharmacological effects. Clinical efficacy and toxicity of nucleoside drugs are closely associated with nucleoside transporters because they mediate the transport of nucleoside drugs across biological membranes. Two families of human nucleoside transporters (equilibrative nucleoside transporters and concentrative nucleoside transporters) have been extensively studied for several decades. They are widely distributed, from the plasma membrane to membranes of organelles such as mitochondria, and the distribution differs in different tissues. In addition, they have different specificities to nucleoside drugs. The characteristics of equilibrative and concentrative nucleoside transporters affect the therapeutic outcomes achieved with anticancer and antiviral nucleoside drugs. In this review, an overview of the role of mitochondrial and plasma membrane nucleoside transporters in nucleoside drug toxicity is provided. Rational design and therapeutic application of nucleoside analogues are also discussed.
Collapse
Affiliation(s)
- George P H Leung
- The University of Hong Kong, Department of Pharmacology, Hong Kong.
| | | |
Collapse
|
132
|
Abstract
An account is given of how a sensitive bioassay system for measurement of the neurotransmitter acetylcholine serendipitously led to the identification of adenosine triphosphate (ATP) released in vitro from active skeletal muscle. Subsequent application of the identification procedures to exercising human muscle in vivo, cardiac muscle cells in vitro, and human erythrocytes exposed to hypoxia gave rise to the general concept of ATP as a molecule that could influence cell function from the extracellular direction. Mechanisms of ATP release from cells in terms of “trigger” events such as mechanical distortion of the membrane, depolarization of the membrane, and exposure to hypoxia are discussed. Potential therapeutic uses of extracellular ATP in cancer therapy, radiation therapy, and a possible influence upon aging are discussed. Possible roles (distant and local) of extracellular ATP released from muscle during whole body exercise are discussed.
Collapse
|
133
|
Gupte A, Buolamwini JK. Novel C2-purine position analogs of nitrobenzylmercaptopurine riboside as human equilibrative nucleoside transporter 1 inhibitors. Bioorg Med Chem 2007; 15:7726-37. [PMID: 17881236 PMCID: PMC2692207 DOI: 10.1016/j.bmc.2007.08.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 08/22/2007] [Accepted: 08/28/2007] [Indexed: 11/30/2022]
Abstract
Nucleoside transporter inhibitors have potential therapeutic applications as anticancer, antiviral, cardioprotective, and neuroprotective agents. S(6)-(4-nitrobenzyl)mercaptopurine riboside (NBMPR) is a prototype inhibitor of the human equilibrative nucleoside transporter (hENT1), and is a high affinity ligand with a K(d) of 0.1-1.0 nM. We have synthesized and flow cytometrically evaluated the binding affinity of a series of novel C(2)-purine position substituted analogs of NBMPR at the hENT1. The aim of this research was to understand the substituent requirements at the C(2)-purine position of NBMPR. Structure-activity relationships (SAR) indicate that increasing the steric bulk at the C(2)-purine position of NBMPR led to a decrease in binding affinity of these ligands at the hENT1. New high affinity inhibitors were identified, with the best compound, 2-fluoro-4-nitrobenzyl mercaptopurine riboside (7), exhibiting a K(i) of 2.1 nM. This information, when coupled with the information obtained from other structure-activity relationship studies should prove useful in efforts aimed at modeling the NMBPR and analogs pharmacophore of hENT1 inhibitors.
Collapse
Affiliation(s)
| | - John K. Buolamwini
- Address correspondence to this author at: Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences Center, 847 Monroe Avenue Suite 327, Memphis, TN 38163, Phone (901) 448-7533, Fax (901) 448-6828, E-mail:
| |
Collapse
|
134
|
Oguri T, Achiwa H, Muramatsu H, Ozasa H, Sato S, Shimizu S, Yamazaki H, Eimoto T, Ueda R. The absence of human equilibrative nucleoside transporter 1 expression predicts nonresponse to gemcitabine-containing chemotherapy in non-small cell lung cancer. Cancer Lett 2007; 256:112-9. [PMID: 17658213 DOI: 10.1016/j.canlet.2007.06.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 05/24/2007] [Accepted: 06/05/2007] [Indexed: 02/06/2023]
Abstract
We report here the development of a polyclonal antibody for human equilibrative nucleoside transporter 1 (hENT1) and assess the expression of hENT1 in non-small cell lung cancer (NSCLC) patients who were treated with gemcitabine-containing chemotherapy. hENT1 expression was analyzed by immunohistochemical staining in 24 NSCLC biopsy samples of formalin-fixed, paraffin-embedded tissues. The hENT1-positive staining in NSCLC samples was significantly associated with response to gemcitabine-containing chemotherapy. Responses to gemcitabine-containing chemotherapy were evident in none of the seven patients with no hENT1 expression. These results indicate that the absence of hENT1 expression may be useful to predict NSCLC patients who will not respond to gemcitabine-containing chemotherapy.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Aged
- Aged, 80 and over
- Antimetabolites, Antineoplastic/pharmacology
- Carcinoma, Large Cell/genetics
- Carcinoma, Large Cell/metabolism
- Carcinoma, Large Cell/pathology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Drug Resistance, Neoplasm
- Equilibrative Nucleoside Transporter 1/genetics
- Equilibrative Nucleoside Transporter 1/metabolism
- Female
- Humans
- Immunoenzyme Techniques
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Middle Aged
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Gemcitabine
Collapse
Affiliation(s)
- Tetsuya Oguri
- Department of Medical Oncology and Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Zhang J, Visser F, King KM, Baldwin SA, Young JD, Cass CE. The role of nucleoside transporters in cancer chemotherapy with nucleoside drugs. Cancer Metastasis Rev 2007; 26:85-110. [PMID: 17345146 DOI: 10.1007/s10555-007-9044-4] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nucleoside analogs are important components of treatment regimens for various malignancies. Nucleoside-specific membrane transporters mediate plasma membrane permeation of physiologic nucleosides and most nucleoside analogs, for which the initial event is cellular conversion of nucleosides to active agents. Understanding of the roles of nucleoside transporters in nucleoside drug toxicity and resistance will provide opportunities for potentiating anticancer efficacy and avoiding resistance. Because transportability is a possible determinant of toxicity and resistance of many nucleoside analogs, nucleoside transporter abundance might be a prognostic marker to assess drug resistance. Elucidation of the structural determinants of nucleoside analogs for interaction with transporter proteins as well as the structural features of transporter proteins required for permeant interaction and translocation will lead to "transportability guidelines" for the rational design and therapeutic application of nucleoside analogs as anticancer drugs. It should eventually be possible to develop clinical assays that predict sensitivity and/or resistance to nucleoside anti-cancer drugs and thus to identify those patient populations that will most likely benefit from optimal nucleoside analog treatments. This review discusses recent results from structure/function studies of human nucleoside transporters, the role of nucleoside transport processes in the cytotoxicity and resistance of several anticancer nucleoside analogs and strategies to improve the nucleoside transporter-related anticancer effects of nucleoside analogs.
Collapse
Affiliation(s)
- Jing Zhang
- Membrane Protein Research Group, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | |
Collapse
|
136
|
Li RWS, Tse CM, Man RYK, Vanhoutte PM, Leung GPH. Inhibition of human equilibrative nucleoside transporters by dihydropyridine-type calcium channel antagonists. Eur J Pharmacol 2007; 568:75-82. [PMID: 17512522 DOI: 10.1016/j.ejphar.2007.04.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 04/12/2007] [Accepted: 04/17/2007] [Indexed: 10/23/2022]
Abstract
Dihydropyridine-type calcium channel antagonists, in addition to having a vasodilatory effect, are known to inhibit cellular uptake of nucleosides such as adenosine. However, the nucleoside transporter subtypes involved and the mechanism by which this occurs are not known. Therefore, we have studied the inhibitory effects of dihydropyridines on both human equilibrative nucleoside transporters, hENT-1 and hENT-2, which are the major transporters mediating nucleoside transport in most tissues. Among the dihydropyridines tested, nimodipine proved to be the most potent inhibitor of hENT-1, with an IC(50) value of 60+/-31 muM, whereas nifedipine, nicardipine, nitrendipine, and felodipine exhibited 100-fold less effective inhibitory activity. Nifedipine, nitrendipine, and nimodipine inhibited hENT-2 with IC(50) values in the micromolar range; however, nicardipine and felodipine had no significant effect on hENT-2. Removal of the 4-aryl ring or changing the nitro group at the 4-aryl ring proved not to be detrimental to the inhibitory effects of dihydropyridines on hENT-1, but resulted in a drastic decrease in their inhibitory effects on hENT-2. Kinetic studies revealed that nimodipine and nifedipine reduced V(max) of [(3)H]uridine transport without affecting K(m). The inhibitory effects of nimodipine and nifedipine could be washed out. In addition, nimodipine and nifedipine inhibited the rate of NBTGR-induced dissociation of [(3)H]NBMPR from hENT-1 cell membrane. We conclude that dihydropyridines are non-competitive inhibitors of hENT-1 and hENT-2, probably working through reversible interactions with the allosteric sites. The inhibitory potencies of dihydropyridines may be associated with the structure of the 4-aryl ring, as well as the ester groups at the C-3 and C-5 positions.
Collapse
Affiliation(s)
- Rachel W S Li
- Department of Pharmacology, The University of Hong Kong, Hong Kong
| | | | | | | | | |
Collapse
|
137
|
Visser F, Sun L, Damaraju V, Tackaberry T, Peng Y, Robins MJ, Baldwin SA, Young JD, Cass CE. Residues 334 and 338 in transmembrane segment 8 of human equilibrative nucleoside transporter 1 are important determinants of inhibitor sensitivity, protein folding, and catalytic turnover. J Biol Chem 2007; 282:14148-57. [PMID: 17379602 DOI: 10.1074/jbc.m701735200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Equilibrative nucleoside transporters (ENTs) are important for the metabolic salvage of nucleosides and the cellular uptake of antineoplastic and antiviral nucleoside analogs. Human equilibrative nucleoside transporter 1 (hENT1) is inhibited by nanomolar concentrations of structurally diverse compounds, including dipyridamole, dilazep, nitrobenzylmercaptopurine ribonucleoside (NBMPR), draflazine, and soluflazine. Random mutagenesis and screening by functional complementation for inhibitor-resistant mutants in yeast revealed mutations at Phe-334 and Asn-338. Both residues are predicted to lie in transmembrane segment 8 (TM 8), which contains residues that are highly conserved in the ENT family. F334Y displayed increased V(max) values that were attributed to increased rates of catalytic turnover, and N338Q and N338C displayed altered membrane distributions that appeared to be because of protein folding defects. Mutations of Phe-334 or Asn-338 impaired interactions with dilazep and dipyridamole, whereas mutations of Asn-338 impaired interactions with draflazine and soluflazine. A helical wheel projection of TM 8 predicted that Phe-334 and Asn-338 lie in close proximity to other highly conserved and/or hydrophilic residues, suggesting that they form part of a structurally important region that influences interactions with inhibitors, protein folding, and rates of conformational change during the transport cycle.
Collapse
Affiliation(s)
- Frank Visser
- Membrane Protein Research Group, Departments of Oncology and Physiology, University of Alberta, Alberta, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Chen J, Rinaldo L, Lim SJ, Young H, Messing RO, Choi DS. The type 1 equilibrative nucleoside transporter regulates anxiety-like behavior in mice. GENES BRAIN AND BEHAVIOR 2007; 6:776-83. [PMID: 17376149 PMCID: PMC2831285 DOI: 10.1111/j.1601-183x.2007.00311.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Activation of adenosine receptors in the brain reduces anxiety-like behavior in animals and humans. Because nucleoside transporters regulate adenosine levels, we used mice lacking the type 1 equilibrative nucleoside transporter (ENT1) to investigate whether ENT1 contributes to anxiety-like behavior. The ENT1 null mice spent more time in the center of an open field compared with wild-type littermates. In the elevated plus maze, ENT1 null mice entered more frequently into and spent more time exploring the open arms. The ENT1 null mice also spent more time exploring the light side of a light-dark box compared with wild-type mice. Microinjection of an ENT1-specific antagonist, nitrobenzylthioinosine (nitrobenzylmercaptopurine riboside), into the amygdala of C57BL/6J mice reduced anxiety-like behavior in the open field and elevated plus maze. These findings show that amygdala ENT1 modulates anxiety-like behavior. The ENT1 may be a drug target for the treatment of anxiety disorders.
Collapse
Affiliation(s)
- J. Chen
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN
| | - L. Rinaldo
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN
| | - S.-J. Lim
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN
| | - H. Young
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - R. O. Messing
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - D.-S. Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN
- Corresponding author: D.-S. Choi, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, 200 First Street, Rochester, MN 55905, USA.
| |
Collapse
|
139
|
Löffler M, Morote-Garcia JC, Eltzschig SA, Coe IR, Eltzschig HK. Physiological roles of vascular nucleoside transporters. Arterioscler Thromb Vasc Biol 2007; 27:1004-13. [PMID: 17332491 DOI: 10.1161/atvbaha.106.126714] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Nucleoside transporters (NTs) comprise 2 widely expressed families, the equilibrative nucleoside transporters (diffusion-limited channels) and concentrative nucleoside transporters (sodium-dependent transporters). Because of their anatomic position at the blood-tissue interface, vascular NTs are in an ideal position to influence vascular nucleoside levels, particularly adenosine, which among others plays an important role in tissue protection during acute injury. For example, endothelial NTs contribute to preserving the vascular integrity during conditions of limited oxygen availability (hypoxia). Indeed, hypoxia-inducible factor-1-dependent repression of NTs results in enhanced extracellular adenosine signaling and thus attenuates hypoxia-associated increases in vascular leakage. In addition, vascular NTs also contribute to cardiac ischemic preconditioning, coronary vasodilation, and inhibition of platelet aggregation. Moreover, vascular nucleoside uptake via NTs is important for nucleoside recovery, particularly in cells lacking de novo nucleotide synthesis pathways (erythrocytes, leukocytes). Taken together, vascular NTs are critical in modulating adenosine-mediated responses during conditions such as inflammation or hypoxia.
Collapse
Affiliation(s)
- Michaela Löffler
- Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Waldhörnle Str. 22, 72072, Tübingen, Germany
| | | | | | | | | |
Collapse
|
140
|
Fausther M, Lecka J, Kukulski F, Lévesque SA, Pelletier J, Zimmermann H, Dranoff JA, Sévigny J. Cloning, purification, and identification of the liver canalicular ecto-ATPase as NTPDase8. Am J Physiol Gastrointest Liver Physiol 2007; 292:G785-95. [PMID: 17095758 PMCID: PMC3952495 DOI: 10.1152/ajpgi.00293.2006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Extracellular nucleotides regulate critical liver functions via the activation of specific transmembrane receptors. The hepatic levels of extracellular nucleotides, and therefore the related downstream signaling cascades, are modulated by cell-surface enzymes called ectonucleotidases, including nucleoside triphosphate diphosphohydrolase-1 (NTPDase1/CD39), NTPDase2/CD39L1, and ecto-5'-nucleotidase/CD73. The goal of this study was to determine the molecular identity of the canalicular ecto-ATPase/ATPDase that we hypothesized to correspond to the recently cloned NTPDase8. Human and rat NTPDase8 cDNAs were cloned, and the genes were located on chromosome loci 9q34 and 3p13, respectively. The recombinant proteins, expressed in COS-7 and HEK293T cells, were biochemically characterized. NTPDase8 was also purified from rat liver by Triton X-100 solubilization, followed by DEAE, Affigel Blue, and concanavalin A chromatographies. Importantly, NTPDase8 was responsible for the major ectonucleotidase activity in liver. The ion requirement, apparent K(m) values, nucleotide hydrolysis profile, and preference as well as the resistance to azide were similar for recombinant NTPDase8s and both purified rat NTPDase8 and porcine canalicular ecto-ATPase/ATPDase. The partial NH(2)-terminal amino acid sequences of all NTPDase8s share high identity with the purified liver canalicular ecto-ATPase/ATPDase. Histochemical analysis showed high ectonucleotidase activities in bile canaliculi and large blood vessels of rat liver, in agreement with the immunolocalization of NTPDase1, 2, and 8 with antibodies developed for this study. No NTPDase3 expression could be detected in liver. In conclusion, NTPDase8 is the canalicular ecto-ATPase/ATPDase and is responsible for the main hepatic NTPDase activity. The canalicular localization of this enzyme suggests its involvement in the regulation of bile secretion and/or nucleoside salvage.
Collapse
Affiliation(s)
- Michel Fausther
- Centre de Recherche en Rhumatologie et Immunologie, 2705 Boulevard Laurier, local T1-49, G1V 4G2 Québec, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Machado J, Abdulla P, Hanna WJB, Hilliker AJ, Coe IR. Genomic analysis of nucleoside transporters in Diptera and functional characterization ofDmENT2, a Drosophila equilibrative nucleoside transporter. Physiol Genomics 2007; 28:337-47. [PMID: 17090699 DOI: 10.1152/physiolgenomics.00087.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The recent completion of genome sequencing projects in a number of eukaryotes allows comparative analysis of orthologs, which can aid in identifying evolutionary constraints on protein structure and function. Nucleoside transporters (NTs) are present in a diverse array of organisms and previous studies have suggested that there is low protein sequence similarity but conserved structure in invertebrate and vertebrate NT orthologs. In addition, most taxa possess multiple NT isoforms but their respective roles in the physiology of the organism are not clear. To investigate the evolution of the structure and function of NTs, we have extended our previous studies by identifying NT orthologs in the Dipteran Anopheles gambiae and comparing these proteins to human and Drosophila melanogaster (Dm) NTs. In addition, we have functionally characterized DmENT2, one of three putative D. melanogaster ENTs that we have previously described. DmENT2 has broad substrate specificity, is insensitive to standard nucleoside transport inhibitors and is expressed in the digestive tract of late stage embryos based on in situ hybridization. DmENT1 and DmENT2 are expressed in most stages during development with the exception of early embryogenesis suggesting specific physiological roles for each isoform. These data represent the first complete genomic analysis of Dipteran NTs and the first report of the functional characterization of any Dipteran NT.
Collapse
Affiliation(s)
- Jerry Machado
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
142
|
Slugoski MD, Loewen SK, Ng AML, Smith KM, Yao SYM, Karpinski E, Cass CE, Baldwin SA, Young JD. Specific Mutations in Transmembrane Helix 8 of Human Concentrative Na+/Nucleoside Cotransporter hCNT1 Affect Permeant Selectivity and Cation Coupling. Biochemistry 2007; 46:1684-93. [PMID: 17279631 DOI: 10.1021/bi061692s] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Na+/nucleoside cotransporters hCNT1 (650 residues) and hCNT2 (658 residues) are 72% identical in amino acid sequence and contain 13 putative transmembrane helices (TMs). Both transport uridine and adenosine but are otherwise selective for pyrimidine (system cit) and purine (system cif) nucleosides, respectively. Previously, we used site-directed mutagenesis and functional expression in Xenopus oocytes to identify two pairs of adjacent residues in TMs 7 and 8 of hCNT1 (Ser319-Gln320 and Ser353-Leu354) that, when converted to the corresponding residues in hCNT2 (Gly-Met and Thr-Val, respectively), changed the permeant selectivity of the transporter from cit to cif. We now report an investigation of the effects of corresponding mutations in TM 8 alone and demonstrate unique S353T- and L354V-induced changes in nucleoside specificity and cation coupling, respectively. hCNT1 mutation S353T produced a profound decrease in cytidine transport efficiency (Vmax/Km ratio) and, in combination with L354V (S353T/L354V), resulted in a novel uridine-preferring transport phenotype. In addition, the L354V mutation markedly increased the apparent affinity of hCNT1 for Na+ and Li+. Both hCNT1 TM 8 residues exhibited uridine-protectable inhibition by p-chloromercuribenzene sulfonate when converted to Cys, suggesting that they occupy positions within or closely adjacent to a common cation/nucleoside translocation pore.
Collapse
Affiliation(s)
- Melissa D Slugoski
- Membrane Protein Research Group, Department of Physiology, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Park J, Vaidyanathan G, Singh B, Gupta RS. Identification and Biochemical Studies on Novel Non-Nucleoside Inhibitors of the Enzyme Adenosine Kinase. Protein J 2007; 26:203-12. [PMID: 17205396 DOI: 10.1007/s10930-006-9062-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The enzyme adenosine kinase (AK) plays a key role in the regulation of intracellular and extracellular concentration of adenosine (Ado), which exhibits potent hormonal activity in cardiovascular, nervous and immune systems. In view of the pharmacological effects of Ado, there is much interest in identifying inhibitors of AK, which can augment its tissue-protective effects. In this study, we have screened 1040 compounds from a chemical library of putative kinase inhibitors for their effect on purified human recombinant AK. These studies have identified 8 novel, non-nucleoside AK inhibitors. Four of these compounds (viz. 2-tert-butyl-4H-benzo[1,2,4]thiadiazine-3-thione (2759-0749); N-(5,6-diphenyl-furo[2,3-d]pyrimidin-4-yl)-propionamide (3998-0118); 3-[5,6-Bis-(4-methoxy-phenyl)-furo[2,3-d]pyrimidin-4-ylamino]-propan-1-ol (4072-2732); and 2-[2-(3,4-dihydroxy-phenyl)-5-phenyl-1H-imidazol-4-yl]-fluoren-9-one (8008-6198)), which inhibited human AK in a concentration-dependent manner in a low micromolar range (IC(50) = 0.38 approximately 1.98 microM) were further studied. Kinetic and structural studies on these compounds provide evidence that inhibition of AK by these compounds was competitive with respect to Ado and non-competitive for ATP. All of these compounds also inhibited uptake of Ado and its metabolism in cultured mammalian cells at comparable concentrations indicating their efficient cellular penetrability. These AK inhibitors, whose chemical structures differ significantly from all previously known inhibitors, provide useful lead compounds for identification of more potent but less toxic AK inhibitors that may prove useful for therapeutic purposes.
Collapse
Affiliation(s)
- Jae Park
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
144
|
Takahashi E, Inanami O, Ohta T, Matsuda A, Kuwabara M. Lipid raft disruption prevents apoptosis induced by 2-chloro-2′-deoxyadenosine (Cladribine) in leukemia cell lines. Leuk Res 2006; 30:1555-61. [PMID: 16730061 DOI: 10.1016/j.leukres.2006.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 04/10/2006] [Accepted: 04/15/2006] [Indexed: 10/24/2022]
Abstract
To clarify the role of lipid rafts in 2-chloro-2'-deoxyadenosine (2CdA; Cladribine)-induced apoptosis, the effects of disruption of lipid rafts by methyl-beta-cyclodextrin (MbetaCD) and filipin on 2CdA-induced apoptosis were investigated in four human acute lymphoblastic leukemia (ALL) cell lines comprised of T cells (MOLT-4, Jurkat) and B cells (NALM, BALL-1). The disruption of lipid rafts significantly inhibited 2CdA-induced apoptosis, indicating the crucial role of lipid rafts in the induction of apoptosis in leukemia cells. These reagents significantly inhibited 2CdA-induced elevation of the intracellular calcium concentration ([Ca(2+)](i)) in MOLT-4 cells, and 2CdA-induced apoptosis was partly inhibited by the Ca(2+) chelators BAPTA-AM and EGTA, and the L-type Ca(2+) channel blocker nifedipine. On the other hand, they had no effects on the cellular uptake of 2CdA. These results indicated that lipid rafts partly contributed to 2CdA-induced apoptosis by regulating Ca(2+) influx via the plasma membrane.
Collapse
Affiliation(s)
- Eriko Takahashi
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18 jo Nishi 9 chome, Sapporo, Japan
| | | | | | | | | |
Collapse
|
145
|
Elwi AN, Damaraju VL, Baldwin SA, Young JD, Sawyer MB, Cass CE. Renal nucleoside transporters: physiological and clinical implicationsThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB — Membrane Proteins in Health and Disease. Biochem Cell Biol 2006; 84:844-58. [PMID: 17215872 DOI: 10.1139/o06-198] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Renal handling of physiological and pharmacological nucleosides is a major determinant of their plasma levels and tissue availabilities. Additionally, the pharmacokinetics and normal tissue toxicities of nucleoside drugs are influenced by their handling in the kidney. Renal reabsorption or secretion of nucleosides is selective and dependent on integral membrane proteins, termed nucleoside transporters (NTs) present in renal epithelia. The 7 known human NTs (hNTs) exhibit varying permeant selectivities and are divided into 2 protein families: the solute carrier (SLC) 29 (SLC29A1, SLC29A2, SLC29A3, SLC29A4) and SLC28 (SLC28A1, SLC28A2, SLC28A3) proteins, otherwise known, respectively, as the human equilibrative NTs (hENTs, hENT1, hENT2, hENT3, hENT4) and human concentrative NTs (hCNTs, hCNT1, hCNT2, hCNT3). The well characterized hENTs (hENT1 and hENT2) are bidirectional facilitative diffusion transporters in plasma membranes; hENT3 and hENT4 are much less well known, although hENT3, found in lysosomal membranes, transports nucleosides and is pH dependent, whereas hENT4–PMAT is a H+-adenosine cotransporter as well as a monoamine–organic cation transporter. The 3 hCNTs are unidirectional secondary active Na+-nucleoside cotransporters. In renal epithelial cells, hCNT1, hCNT2, and hCNT3 at apical membranes, and hENT1 and hENT2 at basolateral membranes, apparently work in concert to mediate reabsorption of nucleosides from lumen to blood, driven by Na+ gradients. Secretion of some physiological nucleosides, therapeutic nucleoside analog drugs, and nucleotide metabolites of therapeutic nucleoside and nucleobase drugs likely occurs through various xenobiotic transporters in renal epithelia, including organic cation transporters, organic anion transporters, multidrug resistance related proteins, and multidrug resistance proteins. Mounting evidence suggests that hENT1 may have a presence at both apical and basolateral membranes of renal epithelia, and thus may participate in both selective secretory and reabsorptive fluxes of nucleosides. In this review, the renal handling of nucleosides is examined with respect to physiological and clinical implications for the regulation of human kidney NTs and adenosine signaling, intracellular nucleoside transport, and nephrotoxicities associated with some nucleoside drugs.
Collapse
Affiliation(s)
- Adam N Elwi
- Department of Oncology and the Membrane Protein Research Group, University of Alberta, Edmonton, Alta., Canada
| | | | | | | | | | | |
Collapse
|
146
|
Yamamoto T, Kuniki K, Takekuma Y, Hirano T, Iseki K, Sugawara M. Ribavirin uptake by cultured human choriocarcinoma (BeWo) cells and Xenopus laevis oocytes expressing recombinant plasma membrane human nucleoside transporters. Eur J Pharmacol 2006; 557:1-8. [PMID: 17140564 DOI: 10.1016/j.ejphar.2006.10.062] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 10/23/2006] [Accepted: 10/30/2006] [Indexed: 01/23/2023]
Abstract
We investigated the mechanism of the transport of ribavirin (1-beta-D-ribofuranosyl-1,2,4-trizole-3-carboxamide) into placental epithelial cells using human choriocarcinoma (BeWo) cells and Xenopus oocytes expressing human nucleoside transporters. In BeWo cells, when a relatively low concentration (123 nM) of ribavirin was used, both Na(+)-dependent uptake and -independent uptake of ribavirin were observed. On the other hand, when a higher concentration (100 microM) of ribavirin was used, Na(+)-independent uptake was observed, but there was only a slight Na(+)-dependent uptake. In Xenopus oocytes, influxes of ribavirin mediated by hCNT2 (concentrative nucleoside transporter 2), hCNT3 (concentrative nucleoside transporter 3), hENT1 (equilibrative nucleoside transporter 1) and hENT2 (equilibrative nucleoside transporter 2) were saturable, and apparent K(m) values were 18.0 microM, 14.2 microM, 3.46 mM and 3.71 mM, respectively. These data indicate that hCNT2 and hCNT3 have higher affinity for ribavirin than do hENT1 and hENT2. Moreover, analysis by RT-PCR showed that BeWo cells express mRNA of hCNT3, hENT1 and hENT2. These results suggest that ribavirin is taken up by BeWo cells via both the high-affinity Na(+)-dependent transporter hCNT3 and the low-affinity Na(+)-independent transporters hENT1 and hENT2.
Collapse
Affiliation(s)
- Takashi Yamamoto
- Department of Pharmacy, Hokkaido University Hospital, Sapporo 060-8648, Japan
| | | | | | | | | | | |
Collapse
|
147
|
Parkinson FE, Ferguson J, Zamzow CR, Xiong W. Gene expression for enzymes and transporters involved in regulating adenosine and inosine levels in rat forebrain neurons, astrocytes and C6 glioma cells. J Neurosci Res 2006; 84:801-8. [PMID: 16862552 DOI: 10.1002/jnr.20988] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In brain, levels of adenosine increase up to 100-fold during cerebral ischemia. Based on in vitro studies, both astrocytes and neurons contribute to this adenosine release. Neurons release adenosine per se whereas astrocytes release adenine nucleotides that are metabolized to adenosine extracellularly. In contrast, inosine is released from both cell types via a nucleoside transporter. C6 glioma cells, which are derived from astrocytes, release inosine but not adenosine. The present study investigated the relative expression of purine metabolizing enzymes and transporters in neurons, astrocytes and C6 glioma cells by real-time PCR analysis. In agreement with the extracellular formation of adenosine and intracellular formation of inosine by astrocytes, the present study showed high expression of ecto 5'-nucleotidase and AMP deaminase type 3 in astrocytes. The lack of adenosine release from C6 glioma cells was consistent with the absence of expression of the AMP-preferring cytosolic 5'-nucleotidase in these cells. The predominance of nitrobenzylthioinosine (NBMPR) insensitive equilibrative nucleoside transport (ENT2) in all three cell types was consistent with the greater activity of this isoform in comparison to NBMPR-sensitive ENT1 in these rat cells. Thus, cell type differences in adenosine formation and release are primarily a function of differences in expression of purinergic enzymes and transporters.
Collapse
Affiliation(s)
- Fiona E Parkinson
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada.
| | | | | | | |
Collapse
|
148
|
Flanagan SA, Meckling KA. Nucleoside transporter expression and activity is regulated during granulocytic differentiation of NB4 cells in response to all-trans-retinoic acid. Leuk Res 2006; 31:955-68. [PMID: 17045336 DOI: 10.1016/j.leukres.2006.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 09/08/2006] [Accepted: 09/09/2006] [Indexed: 01/05/2023]
Abstract
NB4 cells express multiple nucleoside transporters (NTs), including: hENT1 (es), and hENT2 (ei), and the CNT subtype referred to as, csg; a concentrative sensitive guanosine specific transporter. csg activity is a distinguishing feature of the NB4 cell line and its presence suggests a particular requirement of these cells for guanosine salvage. Proliferation and differentiation pathways determine, in part, the number of NTs in cells and tissues. In this study, all-trans-retinoic acid (ATRA)-induced granulocytic differentiation of NB4 cells resulted in biphasic changes in guanosine transport. Transient increases in csg and es activity, the result of an increase in V(max) (pmol/muls) of both transporter systems, served as early markers of differentiation while expression of a fully differentiated phenotype was accompanied by a selective loss of csg activity and the return of es activity to that of proliferating cells. Intracellular incorporation of [(3)H]-guanosine decreased as cells matured despite increased transport rates and suggested a reduced intracellular requirement of NB4-granulocytes compared to their proliferating counterparts. Whether a loss of csg activity could serve to assess clinical response to differentiation therapies is not known. Nitrobenzylthioinosine (NBMPR) binding sites within nuclear membrane (NM) preparations, suggested the presence of functional intracellular NTs. An increase in plasma membrane (PM) associated transporters coincided with the early increase in guanosine transport and a decrease in NBMPR binding to NM fractions and suggests that intracellular NTs may serve as a reserve pool for translocation to the (PM) when additional transport capacity is required. The modulation of transporters during differentiation could potentially regulate drug bioavailability and cytotoxicity and should be evaluated prior to combining differentiating agents with traditional nucleoside analogs in the treatment of APL.
Collapse
Affiliation(s)
- Sheryl A Flanagan
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
149
|
Guieu R, Sampieri F, Bechis G, Halimi G, Dussol B, Berland Y, Sampol J, Rochat H. DEVELOPMENT OF AN HPLC/DIODE ARRAY DETECTOR METHOD FOR THE DETERMINATION OF HUMAN PLASMA ADENOSINE CONCENTRATIONS. J LIQ CHROMATOGR R T 2006. [DOI: 10.1081/jlc-100101769] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | | | | | - B. Dussol
- a Centre d'Investigation Clinique , Hôpital Sainte Marguerite , Service de Néphrologie, Bd. Sainte Marguerite, Marseille , 13009 , France
| | - Y. Berland
- a Centre d'Investigation Clinique , Hôpital Sainte Marguerite , Service de Néphrologie, Bd. Sainte Marguerite, Marseille , 13009 , France
| | - J. Sampol
- a Centre d'Investigation Clinique , Hôpital Sainte Marguerite , Service de Néphrologie, Bd. Sainte Marguerite, Marseille , 13009 , France
| | | |
Collapse
|
150
|
Nitani N, Nakamura KI, Nakagawa C, Masukata H, Nakagawa T. Regulation of DNA replication machinery by Mrc1 in fission yeast. Genetics 2006; 174:155-65. [PMID: 16849602 PMCID: PMC1569812 DOI: 10.1534/genetics.106.060053] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Faithful replication of chromosomes is crucial to genome integrity. In yeast, the ORC binds replication origins throughout the cell cycle. However, Cdc45 binds these before S-phase, and, during replication, it moves along the DNA with MCM helicase. When replication progression is inhibited, checkpoint regulation is believed to stabilize the replication fork; the detailed mechanism, however, remains unclear. To examine the relationship between replication initiation and elongation defects and the response to replication elongation block, we used fission yeast mutants of Orc1 and Cdc45--orp1-4 and sna41-928, respectively--at their respective semipermissive temperatures with regard to BrdU incorporation. Both orp1 and sna41 cells exhibited HU hypersensitivity in the absence of Chk1, a DNA damage checkpoint kinase, and were defective in full activation of Cds1, a replication checkpoint kinase, indicating that normal replication is required for Cds1 activation. Mrc1 is required to activate Cds1 and prevent the replication machinery from uncoupling from DNA synthesis. We observed that, while either the orp1 or the sna41 mutation partially suppressed HU sensitivity of cds1 cells, sna41 specifically suppressed that of mrc1 cells. Interestingly, sna41 alleviated the defect in recovery from HU arrest without increasing Cds1 activity. In addition to sna41, specific mutations of MCM suppressed the HU sensitivity of mrc1 cells. Thus, during elongation, Mrc1 may negatively regulate Cdc45 and MCM helicase to render stalled forks capable of resuming replication.
Collapse
Affiliation(s)
- Naoki Nitani
- Department of Biological Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | |
Collapse
|