101
|
El-Husseiny HM, Mady EA, El-Dakroury WA, Doghish AS, Tanaka R. Stimuli-responsive hydrogels: smart state of-the-art platforms for cardiac tissue engineering. Front Bioeng Biotechnol 2023; 11:1174075. [PMID: 37449088 PMCID: PMC10337592 DOI: 10.3389/fbioe.2023.1174075] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Biomedicine and tissue regeneration have made significant advancements recently, positively affecting the whole healthcare spectrum. This opened the way for them to develop their applications for revitalizing damaged tissues. Thus, their functionality will be restored. Cardiac tissue engineering (CTE) using curative procedures that combine biomolecules, biomimetic scaffolds, and cells plays a critical part in this path. Stimuli-responsive hydrogels (SRHs) are excellent three-dimensional (3D) biomaterials for tissue engineering (TE) and various biomedical applications. They can mimic the intrinsic tissues' physicochemical, mechanical, and biological characteristics in a variety of ways. They also provide for 3D setup, adequate aqueous conditions, and the mechanical consistency required for cell development. Furthermore, they function as competent delivery platforms for various biomolecules. Many natural and synthetic polymers were used to fabricate these intelligent platforms with innovative enhanced features and specialized capabilities that are appropriate for CTE applications. In the present review, different strategies employed for CTE were outlined. The light was shed on the limitations of the use of conventional hydrogels in CTE. Moreover, diverse types of SRHs, their characteristics, assembly and exploitation for CTE were discussed. To summarize, recent development in the construction of SRHs increases their potential to operate as intelligent, sophisticated systems in the reconstruction of degenerated cardiac tissues.
Collapse
Affiliation(s)
- Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Eman A. Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Walaa A. El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Egypt
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
102
|
Merotto E, Pavan PG, Piccoli M. Three-Dimensional Bioprinting of Naturally Derived Hydrogels for the Production of Biomimetic Living Tissues: Benefits and Challenges. Biomedicines 2023; 11:1742. [PMID: 37371837 DOI: 10.3390/biomedicines11061742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Three-dimensional bioprinting is the process of manipulating cell-laden bioinks to fabricate living structures. Three-dimensional bioprinting techniques have brought considerable innovation in biomedicine, especially in the field of tissue engineering, allowing the production of 3D organ and tissue models for in vivo transplantation purposes or for in-depth and precise in vitro analyses. Naturally derived hydrogels, especially those obtained from the decellularization of biological tissues, are promising bioinks for 3D printing purposes, as they present the best biocompatibility characteristics. Despite this, many natural hydrogels do not possess the necessary mechanical properties to allow a simple and immediate application in the 3D printing process. In this review, we focus on the bioactive and mechanical characteristics that natural hydrogels may possess to allow efficient production of organs and tissues for biomedical applications, emphasizing the reinforcement techniques to improve their biomechanical properties.
Collapse
Affiliation(s)
- Elena Merotto
- Tissue Engineering Lab, Istituto di Ricerca Pediatrica Città della Speranza, Corso Statu Uniti 4, 35127 Padova, Italy
- Department of Industrial Engineering, University of Padova, Via Gradenigo 6a, 35129 Padova, Italy
| | - Piero G Pavan
- Tissue Engineering Lab, Istituto di Ricerca Pediatrica Città della Speranza, Corso Statu Uniti 4, 35127 Padova, Italy
- Department of Industrial Engineering, University of Padova, Via Gradenigo 6a, 35129 Padova, Italy
| | - Martina Piccoli
- Tissue Engineering Lab, Istituto di Ricerca Pediatrica Città della Speranza, Corso Statu Uniti 4, 35127 Padova, Italy
| |
Collapse
|
103
|
Uzarski JS, Beck EC, Russell EE, Vanderslice EJ, Holzner ML, Wadhera V, Adamson D, Shapiro R, Davidow DS, Ross JJ, Florman SS. Sustained in vivo perfusion of a re-endothelialized tissue engineered kidney graft in a human-scale animal model. Front Bioeng Biotechnol 2023; 11:1184408. [PMID: 37388767 PMCID: PMC10307518 DOI: 10.3389/fbioe.2023.1184408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/25/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction: Despite progress in whole-organ decellularization and recellularization, maintaining long-term perfusion in vivo remains a hurdle to realizing clinical translation of bioengineered kidney grafts. The objectives for the present study were to define a threshold glucose consumption rate (GCR) that could be used to predict in vivo graft hemocompatibility and utilize this threshold to assess the in vivo performance of clinically relevant decellularized porcine kidney grafts recellularized with human umbilical vein endothelial cells (HUVECs). Materials and methods: Twenty-two porcine kidneys were decellularized and 19 were re-endothelialized using HUVECs. Functional revascularization of control decellularized (n = 3) and re-endothelialized porcine kidneys (n = 16) was tested using an ex vivo porcine blood flow model to define an appropriate metabolic glucose consumption rate (GCR) threshold above which would sustain patent blood flow. Re-endothelialized grafts (n = 9) were then transplanted into immunosuppressed pigs with perfusion measured using angiography post-implant and on days 3 and 7 with 3 native kidneys used as controls. Patent recellularized kidney grafts underwent histological analysis following explant. Results: The glucose consumption rate of recellularized kidney grafts reached a peak of 39.9 ± 9.7 mg/h at 21 ± 5 days, at which point the grafts were determined to have sufficient histological vascular coverage with endothelial cells. Based on these results, a minimum glucose consumption rate threshold of 20 mg/h was set. The revascularized kidneys had a mean perfusion percentage of 87.7% ± 10.3%, 80.9% ± 33.1%, and 68.5% ± 38.6% post-reperfusion on Days 0, 3 and 7, respectively. The 3 native kidneys had a mean post-perfusion percentage of 98.4% ± 1.6%. These results were not statistically significant. Conclusion: This study is the first to demonstrate that human-scale bioengineered porcine kidney grafts developed via perfusion decellularization and subsequent re-endothelialization using HUVEC can maintain patency with consistent blood flow for up to 7 days in vivo. These results lay the foundation for future research to produce human-scale recellularized kidney grafts for transplantation.
Collapse
Affiliation(s)
| | - Emily C. Beck
- Miromatrix Medical Inc., Eden Prairie, MN, United States
| | | | | | - Matthew L. Holzner
- Icahn School of Medicine at Mount Sinai, Recanati/Miller Transplantation Institute, New York, NY, United States
| | - Vikram Wadhera
- Icahn School of Medicine at Mount Sinai, Recanati/Miller Transplantation Institute, New York, NY, United States
| | - Dylan Adamson
- Icahn School of Medicine at Mount Sinai, Recanati/Miller Transplantation Institute, New York, NY, United States
| | - Ron Shapiro
- Icahn School of Medicine at Mount Sinai, Recanati/Miller Transplantation Institute, New York, NY, United States
| | | | - Jeff J. Ross
- Miromatrix Medical Inc., Eden Prairie, MN, United States
| | - Sander S. Florman
- Icahn School of Medicine at Mount Sinai, Recanati/Miller Transplantation Institute, New York, NY, United States
| |
Collapse
|
104
|
Fang Y, Guo Y, Wu B, Liu Z, Ye M, Xu Y, Ji M, Chen L, Lu B, Nie K, Wang Z, Luo J, Zhang T, Sun W, Xiong Z. Expanding Embedded 3D Bioprinting Capability for Engineering Complex Organs with Freeform Vascular Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205082. [PMID: 36796025 DOI: 10.1002/adma.202205082] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 01/29/2023] [Indexed: 06/02/2023]
Abstract
Creating functional tissues and organs in vitro on demand is a major goal in biofabrication, but the ability to replicate the external geometry of specific organs and their internal structures such as blood vessels simultaneously remains one of the greatest impediments. Here, this limitation is addressed by developing a generalizable bioprinting strategy of sequential printing in a reversible ink template (SPIRIT). It is demonstrated that this microgel-based biphasic (MB) bioink can be used as both an excellent bioink and a suspension medium that supports embedded 3D printing due to its shear-thinning and self-healing behavior. When encapsulating human-induced pluripotent stem cells, the MB bioink is 3D printed to generate cardiac tissues and organoids by extensive stem cell proliferation and cardiac differentiation. By incorporating MB bioink, the SPIRIT strategy enables the effective printing of a ventricle model with a perfusable vascular network, which is not possible to fabricate using extant 3D printing strategies. This SPIRIT technique offers an unparalleled bioprinting capability to replicate the complex organ geometry and internal structure in a faster manner, which will accelerate the biofabrication and therapeutic applications of tissue and organ constructs.
Collapse
Affiliation(s)
- Yongcong Fang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Yihan Guo
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Bingyan Wu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Zibo Liu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Min Ye
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Yuanyuan Xu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Mengke Ji
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Li Chen
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Bingchuan Lu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Kaiji Nie
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Zixuan Wang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Jianbin Luo
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Zhuo Xiong
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| |
Collapse
|
105
|
Okcu A, Yazir Y, Şimşek T, Mert S, Duruksu G, Öztürk A, Kiliç KC, Akpinar G, Kasap M. Investigation of the effect of pancreatic decellularized matrix on encapsulated Islets of Langerhans with mesenchymal stem cells. Tissue Cell 2023; 82:102110. [PMID: 37235912 DOI: 10.1016/j.tice.2023.102110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
OBJECTIVE In this study, it was aimed to provide a therapeutic approach for T1DM by encapsulating the pancreatic islets with mesenchymal stem cells and decellularized pancreatic extracellular matrix to support the survival of islets while maintaining their cellular activity. METHOD Pancreatic extracellular matrix was decellularized using different concentrations of detergent series. After the preparation of the protein-based tissue extracellular matrix was shown to be free of cells or any genetic material by molecular, immunofluorescence and histochemical techniques. Following the homogenization of the decellularized pancreatic extracellular matrix and the analysis of its protein composition by LC-MS, the matrix proteins were incorporated with pancreatic islets and rat adipose tissue-derived MSCs (rAT-MSCs) in alginate microcapsules. Glucose-stimulated insulin secretion property of the islet cells in the microbeads was evaluated by insulin ELISA. The gene expression profile of the encapsulated cells was analyzed by Real-Time PCR. RESULTS Unlike the protein composition of whole pancreatic tissue, the decellularized pancreas matrix was free of histone proteins or proteins originated from mitochondria. The protein matrix derived from pancreatic tissue was shown to support the growth and maintenance of the islet cells. When compared to the non-encapsulated pancreatic islet, the encapsulated cells demonstrate to be more efficient in terms of insulin expression. CONCLUSION The extracellular pancreatic matrix obtained in this study was directly used as supplementary in the alginate-based microcapsule enhancing the cell survival. The tissue matrix protein and alginate had a synergistic effect on total insulin secretion, which might have the potential to overcome the insulin deficiency. Despite the improvement in the cell viability and the number, the efficiency of the insulin secretion in response to glucose stimulation from the alginate microcapsules did not meet the expectation when compared with the non-encapsulated pancreatic islets.
Collapse
Affiliation(s)
- Alparslan Okcu
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey; Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey
| | - Yusufhan Yazir
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey; Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Department of Histology and Embryology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey.
| | - Turgay Şimşek
- Department of General Surgery, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Serap Mert
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey; Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Department of Chemistry and Chemical Processing Technology, Kocaeli University, Turkey; Department of Polymer Science and Technology, Kocaeli University, Kocaeli, Turkey
| | - Gökhan Duruksu
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey; Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey
| | - Ahmet Öztürk
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey; Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey
| | - Kamil Can Kiliç
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey; Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey
| | - Gürler Akpinar
- Department of Medical Biology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Murat Kasap
- Department of Medical Biology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
106
|
Alhejailan RS, Garoffolo G, Raveendran VV, Pesce M. Cells and Materials for Cardiac Repair and Regeneration. J Clin Med 2023; 12:jcm12103398. [PMID: 37240504 DOI: 10.3390/jcm12103398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
After more than 20 years following the introduction of regenerative medicine to address the problem of cardiac diseases, still questions arise as to the best cell types and materials to use to obtain effective clinical translation. Now that it is definitively clear that the heart does not have a consistent reservoir of stem cells that could give rise to new myocytes, and that there are cells that could contribute, at most, with their pro-angiogenic or immunomodulatory potential, there is fierce debate on what will emerge as the winning strategy. In this regard, new developments in somatic cells' reprogramming, material science and cell biophysics may be of help, not only for protecting the heart from the deleterious consequences of aging, ischemia and metabolic disorders, but also to boost an endogenous regeneration potential that seems to be lost in the adulthood of the human heart.
Collapse
Affiliation(s)
- Reem Saud Alhejailan
- Cell Biology Department, King's Faisal Specialist Hospital & Research Center, Riyadh 11564, Saudi Arabia
| | - Gloria Garoffolo
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
| | - Vineesh Vimala Raveendran
- Cell Biology Department, King's Faisal Specialist Hospital & Research Center, Riyadh 11564, Saudi Arabia
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
| |
Collapse
|
107
|
Waxman S, Strzalkowska A, Wang C, Loewen R, Dang Y, Loewen NA. Tissue-engineered anterior segment eye cultures demonstrate hallmarks of conventional organ culture. Graefes Arch Clin Exp Ophthalmol 2023; 261:1359-1368. [PMID: 36565327 PMCID: PMC10148776 DOI: 10.1007/s00417-022-05915-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Glaucoma is a blinding disease largely caused by dysregulation of outflow through the trabecular meshwork (TM), resulting in elevated intraocular pressure (IOP). We hypothesized that transplanting TM cells into a decellularized, tissue-engineered anterior segment eye culture could restore the outflow structure and function. METHODS Porcine eyes were decellularized with freeze-thaw cycles and perfusion of surfactant. We seeded control scaffolds with CrFK cells transduced with lentiviral vectors to stably express eGFP and compared them to scaffolds seeded with primary TM cells as well as to normal, unaltered eyes. We tracked the repopulation behavior, performed IOP maintenance challenges, and analyzed the histology. RESULTS Transplanted cells localized to the TM and progressively infiltrated the extracellular matrix, reaching a distribution comparable to normal, unaltered eyes. After a perfusion rate challenge to mimic a glaucomatous pressure elevation, transplanted and normal eyes reestablished a normal intraocular pressure (transplanted = 16.5 ± 0.9 mmHg, normal = 16.9 ± 0.9). However, eyes reseeded with eGFP-expressing CrFK cells could not regulate IOP, remaining high and unstable (27.0 ± 6.2 mmHg) instead. CONCLUSION Tissue-engineered anterior segment scaffolds can serve as readily available, scalable ocular perfusion cultures. This could reduce dependency on scarce donor globes in outflow research and may allow engineering perfusion cultures with specific geno- and phenotypes.
Collapse
Affiliation(s)
- Susannah Waxman
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Chao Wang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ralitsa Loewen
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Ophthalmology, University of Würzburg, Würzburg, Germany
| | - Yalong Dang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Sanmenxia Central Hospital, Sanmenxia, Henan, China
| | - Nils A Loewen
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Ophthalmology, University of Würzburg, Würzburg, Germany.
- Artemis Eye Centers of Frankfurt, Hanauer Landstr. 147-149, 60314, Frankfurt, Germany.
| |
Collapse
|
108
|
Zhuang X, Deng G, Wu X, Xie J, Li D, Peng S, Tang D, Zhou G. Recent advances of three-dimensional bioprinting technology in hepato-pancreato-biliary cancer models. Front Oncol 2023; 13:1143600. [PMID: 37188191 PMCID: PMC10175665 DOI: 10.3389/fonc.2023.1143600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Hepato-pancreato-biliary (HPB) cancer is a serious category of cancer including tumors originating in the liver, pancreas, gallbladder and biliary ducts. It is limited by two-dimensional (2D) cell culture models for studying its complicated tumor microenvironment including diverse contents and dynamic nature. Recently developed three-dimensional (3D) bioprinting is a state-of-the-art technology for fabrication of biological constructs through layer-by-layer deposition of bioinks in a spatially defined manner, which is computer-aided and designed to generate viable 3D constructs. 3D bioprinting has the potential to more closely recapitulate the tumor microenvironment, dynamic and complex cell-cell and cell-matrix interactions compared to the current methods, which benefits from its precise definition of positioning of various cell types and perfusing network in a high-throughput manner. In this review, we introduce and compare multiple types of 3D bioprinting methodologies for HPB cancer and other digestive tumors. We discuss the progress and application of 3D bioprinting in HPB and gastrointestinal cancers, focusing on tumor model manufacturing. We also highlight the current challenges regarding clinical translation of 3D bioprinting and bioinks in the field of digestive tumor research. Finally, we suggest valuable perspectives for this advanced technology, including combination of 3D bioprinting with microfluidics and application of 3D bioprinting in the field of tumor immunology.
Collapse
Affiliation(s)
- Xiaomei Zhuang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Gang Deng
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaoying Wu
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Juping Xie
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dong Li
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Songlin Peng
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Di Tang
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Guoying Zhou
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
109
|
Messner B, Grab M, Grefen L, Laufer G, Hagl C, König F. Cyclic pressure induced decellularization of porcine descending aortas. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:19. [PMID: 37074546 PMCID: PMC10115674 DOI: 10.1007/s10856-023-06723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
The demand for decellularized xenogeneic tissues used in reconstructive heart surgery has increased over the last decades. Complete decellularization of longer and tubular aortic sections suitable for clinical application has not been achieved so far. The present study aims at analyzing the effect of pressure application on decellularization efficacy of porcine aortas using a device specifically designed for this purpose. Fresh porcine descending aortas of 8 cm length were decellularized using detergents. To increase decellularization efficacy, detergent treatment was combined with pressure application and different treatment schemes. Quantification of penetration depth as well as histological staining, scanning electron microscopy, and tensile strength tests were used to evaluate tissue structure. In general, application of pressure to aortic tissue does neither increase the decellularization success nor the penetration depth of detergents. However, it is of importance from which side of the aorta the pressure is applied. Application of intermittent pressure from the adventitial side does significantly increase the decellularization degree at the intimal side (compared to the reference group), but had no influence on the penetration depth of SDC/SDS at both sides. Although the present setup does not significantly improve the decellularization success of aortas, it is interesting that the application of pressure from the adventitial side leads to improved decellularization of the intimal side. As no adverse effects on tissue structure nor on mechanical properties were observed, optimization of the present protocol may potentially lead to complete decellularization of larger aortic segments.
Collapse
Affiliation(s)
- Barbara Messner
- Department of Cardiac Surgery, Ludwig Maximilians University, Munich, Germany.
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria.
| | - Maximilian Grab
- Department of Cardiac Surgery, Ludwig Maximilians University, Munich, Germany
- Chair of Medical Materials and Implants, Technical University Munich, Munich, Germany
| | - Linda Grefen
- Department of Cardiac Surgery, Ludwig Maximilians University, Munich, Germany
| | - Günther Laufer
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Christian Hagl
- Department of Cardiac Surgery, Ludwig Maximilians University, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
| | - Fabian König
- Department of Cardiac Surgery, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
110
|
Bonciog DD, Lascu MR, Mâțiu-Iovan L, Ordodi VL. Automation and Optimization of Rat Heart Decellularization Using a Vibrating Fluid Column. SENSORS (BASEL, SWITZERLAND) 2023; 23:4045. [PMID: 37112386 PMCID: PMC10140852 DOI: 10.3390/s23084045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 06/19/2023]
Abstract
This paper presents the validation of a software application to optimize the discoloration process in simulated hearts and to automate and determine the final moment of decellularization in rat hearts using a vibrating fluid column. The implemented algorithm specifically for the automated verification of a simulated heart's discoloration process was optimized in this study. Initially, we used a latex balloon containing enough dye to reach the opacity of a heart. The complete discoloration process corresponds to complete decellularization. The developed software automatically detects the complete discoloration of a simulated heart. Finally, the process stops automatically. Another goal was to optimize the Langendorff-type experimental apparatus, which is pressure-controlled and equipped with a vibrating fluid column that shortens the decellularization time by mechanically acting directly on cell membranes. Control experiments were performed with the designed experimental device and the vibrating liquid column using different decellularization protocols for hearts taken from rats. In this work, we used a commonly utilized solution based on sodium dodecyl sulfate. Ultraviolet spectrophotometry was used to measure the evolution of the dye concentration in the simulated hearts and, similarly, to determine the concentrations of deoxyribonucleic acid (DNA) and proteins in the rat hearts.
Collapse
Affiliation(s)
- Dumitru-Daniel Bonciog
- Measurements and Optical Electronics Department, Politehnica University Timisoara, 300006 Timisoara, Romania; (D.-D.B.); (M.-R.L.); (L.M.-I.)
| | - Mihaela-Ruxandra Lascu
- Measurements and Optical Electronics Department, Politehnica University Timisoara, 300006 Timisoara, Romania; (D.-D.B.); (M.-R.L.); (L.M.-I.)
| | - Liliana Mâțiu-Iovan
- Measurements and Optical Electronics Department, Politehnica University Timisoara, 300006 Timisoara, Romania; (D.-D.B.); (M.-R.L.); (L.M.-I.)
| | - Valentin Laurențiu Ordodi
- Chemistry and Engineering of Organic and Natural Compounds Department, University Politehnica Timisoara, 300006 Timisoara, Romania
| |
Collapse
|
111
|
Zhang Q, Chiu Y, Chen Y, Wu Y, Dunne LW, Largo RD, Chang EI, Adelman DM, Schaverien MV, Butler CE. Harnessing the synergy of perfusable muscle flap matrix and adipose-derived stem cells for prevascularization and macrophage polarization to reconstruct volumetric muscle loss. Bioact Mater 2023; 22:588-614. [PMID: 36382023 PMCID: PMC9646752 DOI: 10.1016/j.bioactmat.2022.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/09/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Muscle flaps must have a strong vascular network to support a large tissue volume and ensure successful engraftment. We developed porcine stomach musculofascial flap matrix (PDSF) comprising extracellular matrix (ECM) and intact vasculature. PDSF had a dominant vascular pedicle, microcirculatory vessels, a nerve network, well-retained 3-dimensional (3D) nanofibrous ECM structures, and no allo- or xenoantigenicity. In-depth proteomic analysis demonstrated that PDSF was composed of core matrisome proteins (e.g., collagens, glycoproteins, proteoglycans, and ECM regulators) that, as shown by Gene Ontology term enrichment analysis, are functionally related to musculofascial biological processes. Moreover, PDSF-human adipose-derived stem cell (hASC) synergy not only induced monocytes towards IL-10-producing M2 macrophage polarization through the enhancement of hASCs' paracrine effect but also promoted the proliferation and interconnection of both human skeletal muscle myoblasts (HSMMs) and human umbilical vein endothelial cells (HUVECs) in static triculture conditions. Furthermore, PDSF was successfully prevascularized through a dynamic perfusion coculture of hASCs and HUVECs, which integrated with PDSF and induced the maturation of vascular networks in vitro. In a xenotransplantation model, PDSF demonstrated myoconductive and immunomodulatory properties associated with the predominance of M2 macrophages and regulatory T cells. In a volumetric muscle loss (VML) model, prevascularized PDSF augmented neovascularization and constructive remodeling, which was characterized by the predominant infiltration of M2 macrophages and significant musculofascial tissue formation. These results indicate that hASCs' integration with PDSF enhances the cells' dual function in immunomodulation and angiogenesis. Owing in part to this PDSF-hASC synergy, our platform shows promise for vascularized muscle flap engineering for VML reconstruction.
Collapse
Affiliation(s)
- Qixu Zhang
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yulun Chiu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Youbai Chen
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Plastic Surgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yewen Wu
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lina W. Dunne
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rene D. Largo
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Edward I. Chang
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David M. Adelman
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mark V. Schaverien
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Charles E. Butler
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
112
|
Cehajic-Kapetanovic J, Singh MS, Zrenner E, MacLaren RE. Bioengineering strategies for restoring vision. Nat Biomed Eng 2023; 7:387-404. [PMID: 35102278 DOI: 10.1038/s41551-021-00836-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 11/30/2021] [Indexed: 12/15/2022]
Abstract
Late-stage retinal degenerative disease involving photoreceptor loss can be treated by optogenetic therapy, cell transplantation and retinal prostheses. These approaches aim to restore light sensitivity to the retina as well as visual perception by integrating neuronal responses for transmission to the cortex. In age-related macular degeneration, some cell-based therapies also aim to restore photoreceptor-supporting tissue to prevent complete photoreceptor loss. In the earlier stages of degeneration, gene-replacement therapy could attenuate retinal-disease progression and reverse loss of function. And gene-editing strategies aim to correct the underlying genetic defects. In this Review, we highlight the most promising gene therapies, cell therapies and retinal prostheses for the treatment of retinal disease, discuss the benefits and drawbacks of each treatment strategy and the factors influencing whether functional tissue is reconstructed and repaired or replaced with an electronic device, and summarize upcoming technologies for enhancing the restoration of vision.
Collapse
Affiliation(s)
- Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK.
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | | | - Eberhart Zrenner
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
113
|
Kishino Y, Tohyama S, Morita Y, Soma Y, Tani H, Okada M, Kanazawa H, Fukuda K. Cardiac Regenerative Therapy Using Human Pluripotent Stem Cells for Heart Failure: A State-of-the-Art Review. J Card Fail 2023; 29:503-513. [PMID: 37059512 DOI: 10.1016/j.cardfail.2022.10.433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 04/16/2023]
Abstract
Heart transplantation (HT) is the only definitive treatment available for patients with end-stage heart failure who are refractory to medical and device therapies. However, HT as a therapeutic option, is limited by a significant shortage of donors. To overcome this shortage, regenerative medicine using human pluripotent stem cells (hPSCs), such as human embryonic stem cells and human-induced pluripotent stem cells (hiPSCs), has been considered an alternative to HT. Several issues, including the methods of large-scale culture and production of hPSCs and cardiomyocytes, the prevention of tumorigenesis secondary to contamination of undifferentiated stem cells and non-cardiomyocytes, and the establishment of an effective transplantation strategy in large-animal models, need to be addressed to fulfill this unmet need. Although post-transplantation arrhythmia and immune rejection remain problems, the ongoing rapid technological advances in hPSC research have been directed toward the clinical application of this technology. Cell therapy using hPSC-derived cardiomyocytes is expected to serve as an integral component of realistic medicine in the near future and is being potentially viewed as a treatment that would revolutionize the management of patients with severe heart failure.
Collapse
Affiliation(s)
- Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | - Yuika Morita
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yusuke Soma
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Marina Okada
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
114
|
Xiao H, Chen X, Liu X, Wen G, Yu Y. Recent advances in decellularized biomaterials for wound healing. Mater Today Bio 2023; 19:100589. [PMID: 36880081 PMCID: PMC9984902 DOI: 10.1016/j.mtbio.2023.100589] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
The skin is one of the most essential organs in the human body, interacting with the external environment and shielding the body from diseases and excessive water loss. Thus, the loss of the integrity of large portions of the skin due to injury and illness may lead to significant disabilities and even death. Decellularized biomaterials derived from the extracellular matrix of tissues and organs are natural biomaterials with large quantities of bioactive macromolecules and peptides, which possess excellent physical structures and sophisticated biomolecules, and thus, promote wound healing and skin regeneration. Here, we highlighted the applications of decellularized materials in wound repair. First, the wound-healing process was reviewed. Second, we elucidated the mechanisms of several extracellular matrix constitutes in facilitating wound healing. Third, the major categories of decellularized materials in the treatment of cutaneous wounds in numerous preclinical models and over decades of clinical practice were elaborated. Finally, we discussed the current hurdles in the field and anticipated the future challenges and novel avenues for research on decellularized biomaterials-based wound treatment.
Collapse
Affiliation(s)
- Huimin Xiao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xin Chen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Gen Wen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaling Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
115
|
Spagnol G, Sensi F, De Tommasi O, Marchetti M, Bonaldo G, Xhindoli L, Noventa M, Agostini M, Tozzi R, Saccardi C. Patient Derived Organoids (PDOs), Extracellular Matrix (ECM), Tumor Microenvironment (TME) and Drug Screening: State of the Art and Clinical Implications of Ovarian Cancer Organoids in the Era of Precision Medicine. Cancers (Basel) 2023; 15:2059. [PMID: 37046719 PMCID: PMC10093183 DOI: 10.3390/cancers15072059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Ovarian cancer (OC) has the highest mortality rate of all gynecological malignancies due to the high prevalence of advanced stages of diagnosis and the high rate of recurrence. Furthermore, the heterogeneity of OC tumors contributes to the rapid development of resistance to conventional chemotherapy. In recent years, in order to overcome these problems, targeted therapies have been introduced in various types of tumors, including gynecological cancer. However, the lack of predictive biomarkers showing different clinical benefits limits the effectiveness of these therapies. This requires the development of preclinical models that can replicate the histological and molecular characteristics of OC subtypes. In this scenario, organoids become an important preclinical model for personalized medicine. In fact, patient-derived organoids (PDO) recapture tumor heterogeneity with the possibility of performing drug screening. However, to best reproduce the patient's characteristics, it is necessary to develop a specific extracellular matrix (ECM) and introduce a tumor microenvironment (TME), which both represent an actual object of study to improve drug screening, particularly when used in targeted therapy and immunotherapy to guide therapeutic decisions. In this review, we summarize the current state of the art for the screening of PDOs, ECM, TME, and drugs in the setting of OC, as well as discussing the clinical implications and future perspectives for the research of OC organoids.
Collapse
Affiliation(s)
- Giulia Spagnol
- Department of Women and Children’s Health, Clinic of Gynecology and Obstetrics, University of Padua, 35100 Padua, Italy
| | - Francesca Sensi
- Department of Women and Children’s Health, University of Padua, 35100 Padua, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35129 Padua, Italy
| | - Orazio De Tommasi
- Department of Women and Children’s Health, Clinic of Gynecology and Obstetrics, University of Padua, 35100 Padua, Italy
| | - Matteo Marchetti
- Department of Women and Children’s Health, Clinic of Gynecology and Obstetrics, University of Padua, 35100 Padua, Italy
| | - Giulio Bonaldo
- Department of Women and Children’s Health, Clinic of Gynecology and Obstetrics, University of Padua, 35100 Padua, Italy
| | - Livia Xhindoli
- Department of Women and Children’s Health, Clinic of Gynecology and Obstetrics, University of Padua, 35100 Padua, Italy
| | - Marco Noventa
- Department of Women and Children’s Health, Clinic of Gynecology and Obstetrics, University of Padua, 35100 Padua, Italy
| | - Marco Agostini
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35129 Padua, Italy
- General Surgery 3, Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padua, 35100 Padua, Italy
| | - Roberto Tozzi
- Department of Women and Children’s Health, Clinic of Gynecology and Obstetrics, University of Padua, 35100 Padua, Italy
| | - Carlo Saccardi
- Department of Women and Children’s Health, Clinic of Gynecology and Obstetrics, University of Padua, 35100 Padua, Italy
| |
Collapse
|
116
|
Liu S, Yu JM, Gan YC, Qiu XZ, Gao ZC, Wang H, Chen SX, Xiong Y, Liu GH, Lin SE, McCarthy A, John JV, Wei DX, Hou HH. Biomimetic natural biomaterials for tissue engineering and regenerative medicine: new biosynthesis methods, recent advances, and emerging applications. Mil Med Res 2023; 10:16. [PMID: 36978167 PMCID: PMC10047482 DOI: 10.1186/s40779-023-00448-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering (TE) and regenerative medicine. In contrast to conventional biomaterials or synthetic materials, biomimetic scaffolds based on natural biomaterial can offer cells a broad spectrum of biochemical and biophysical cues that mimic the in vivo extracellular matrix (ECM). Additionally, such materials have mechanical adaptability, microstructure interconnectivity, and inherent bioactivity, making them ideal for the design of living implants for specific applications in TE and regenerative medicine. This paper provides an overview for recent progress of biomimetic natural biomaterials (BNBMs), including advances in their preparation, functionality, potential applications and future challenges. We highlight recent advances in the fabrication of BNBMs and outline general strategies for functionalizing and tailoring the BNBMs with various biological and physicochemical characteristics of native ECM. Moreover, we offer an overview of recent key advances in the functionalization and applications of versatile BNBMs for TE applications. Finally, we conclude by offering our perspective on open challenges and future developments in this rapidly-evolving field.
Collapse
Affiliation(s)
- Shuai Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, The Fifth Affiliated Hospital, School of Basic Medical Science, Southern Medical University, Guangzhou, 510900 China
| | - Jiang-Ming Yu
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, 200336 China
| | - Yan-Chang Gan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, The Fifth Affiliated Hospital, School of Basic Medical Science, Southern Medical University, Guangzhou, 510900 China
| | - Xiao-Zhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, The Fifth Affiliated Hospital, School of Basic Medical Science, Southern Medical University, Guangzhou, 510900 China
| | - Zhe-Chen Gao
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, 200336 China
| | - Huan Wang
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033 Guangdong China
| | - Shi-Xuan Chen
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011 Zhejiang China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Guo-Hui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Si-En Lin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, 999077 China
| | - Alec McCarthy
- Department of Functional Materials, Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Johnson V. John
- Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68130 USA
| | - Dai-Xu Wei
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, 200336 China
- Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong Institute of Brain Science, Zigong, 643002 Sichuan China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, 710127 China
| | - Hong-Hao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, The Fifth Affiliated Hospital, School of Basic Medical Science, Southern Medical University, Guangzhou, 510900 China
| |
Collapse
|
117
|
Mirzaeian L, Eivazkhani F, Saber M, Moini A, Esfandiari F, Valojerdi MR, Fathi R. In-vivo oogenesis of oogonial and mesenchymal stem cells seeded in transplanted ovarian extracellular matrix. J Ovarian Res 2023; 16:56. [PMID: 36941728 PMCID: PMC10029222 DOI: 10.1186/s13048-023-01131-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/27/2023] [Indexed: 03/23/2023] Open
Abstract
OBJECTIVE (S) One way to overcome the recurrence of cancer cells following ovarian tissue transplantation is to use decellularized tissues as a scaffold that does not have any cellular components. These cell-free scaffolds can be seeded with different type of stem cells for ovarian restoration. MATERIALS AND METHODS OSCs, PMSCs and BMSCs (oogonial, peritoneal and bone marrow mesenchymal stem cells, respectively) were seeded into human decellularized ovarian tissue as 4 groups: Scaffold + OSCs (SO), Scaffold + OSC + PMSCs (SOP), Scaffold + OSC + BMSCs (SOB) and Scaffold + OSC + PMSCs + BMSCs (SOPB). The produced grafts were transplanted into the sub-peritoneal space of ovariectomized NMRI mice as artificial ovary (AO). The expression of Vegf, CD34, Gdf9, Zp3, Ddx4, Amh and Lhr genes in AOs were measured by qRT-PCR. Also, histotechniques were considered to detect the anti GFP, PCNA, VEGF, GDF9, ZP3 and AMH proteins. RESULTS H & E staining showed follicle-like structures in all groups; the number of these structures, in the SOP and SOB groups, were the highest. In SO group, differentiation ability to oocyte and granulosa cells was observed. Endothelial, oocyte, germ, and granulosa cell-like cells were specially seen in SOP and angiogenesis capability was more in SOB group. However, angiogenesis ability and differentiation to theca cell-like cells were more often in SOPB group. While none of the groups showed a significant difference in AMH level, estradiol levels were significantly higher in SOPB group. CONCLUSION Integration of OSCs + PMSCs and those OSCs + BMSCs were more conducive to oogenesis.
Collapse
Affiliation(s)
- Leila Mirzaeian
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, 1665659911, Iran
| | - Farideh Eivazkhani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, 1665659911, Iran
| | - Maryam Saber
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ashraf Moini
- Breast Disease Research Center (BDRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Surgery, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Endocrinology and Female Infertility at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mojtaba Rezazadeh Valojerdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, 1665659911, Iran
- Department of Anatomy, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, 1665659911, Iran.
| |
Collapse
|
118
|
Kawaguchi N, Nakanishi T. Animal Disease Models and Patient-iPS-Cell-Derived In Vitro Disease Models for Cardiovascular Biology-How Close to Disease? BIOLOGY 2023; 12:468. [PMID: 36979160 PMCID: PMC10045735 DOI: 10.3390/biology12030468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023]
Abstract
Currently, zebrafish, rodents, canines, and pigs are the primary disease models used in cardiovascular research. In general, larger animals have more physiological similarities to humans, making better disease models. However, they can have restricted or limited use because they are difficult to handle and maintain. Moreover, animal welfare laws regulate the use of experimental animals. Different species have different mechanisms of disease onset. Organs in each animal species have different characteristics depending on their evolutionary history and living environment. For example, mice have higher heart rates than humans. Nonetheless, preclinical studies have used animals to evaluate the safety and efficacy of human drugs because no other complementary method exists. Hence, we need to evaluate the similarities and differences in disease mechanisms between humans and experimental animals. The translation of animal data to humans contributes to eliminating the gap between these two. In vitro disease models have been used as another alternative for human disease models since the discovery of induced pluripotent stem cells (iPSCs). Human cardiomyocytes have been generated from patient-derived iPSCs, which are genetically identical to the derived patients. Researchers have attempted to develop in vivo mimicking 3D culture systems. In this review, we explore the possible uses of animal disease models, iPSC-derived in vitro disease models, humanized animals, and the recent challenges of machine learning. The combination of these methods will make disease models more similar to human disease.
Collapse
Affiliation(s)
- Nanako Kawaguchi
- Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan;
| | | |
Collapse
|
119
|
Sauter J, Degenhardt H, Tuebel J, Foehr P, Knoeckel P, Florian K, Charitou F, Burgkart R, Schmitt A. Effect of different decellularization protocols on reendothelialization with human cells for a perfused renal bioscaffold of the rat. BMC Biotechnol 2023; 23:8. [PMID: 36927344 PMCID: PMC10022115 DOI: 10.1186/s12896-022-00767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 11/09/2022] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Scaffolds for tissue engineering can be received by whole organ decellularization while maintaining the site-specific extracellular matrix and the vascular tree. One among other decellularization techniques is the perfusion-based method using specific agents e.g. SDS for the elimination of cellular components. While SDS can disrupt the composition of the extracellular matrix and impair the adherence and growth of site-specific cells there are indications that xenogeneic cell types may benefit from protein denaturation by using higher detergent concentrations. The aim of this work is to investigate the effect of two different SDS-concentrations (i.e. 0.66% and 3%) on the ability of human endothelial cells to adhere and proliferate in an acellular rat kidney scaffold. MATERIAL AND METHODS Acellular rat kidney scaffold was obtained by perfusion-based decellularization through the renal artery using a standardized protocol including SDS at concentrations of 0.66% or 3%. Subsequently cell seeding was performed with human immortalized endothelial cells EA.hy 926 via the renal artery. Recellularized kidneys were harvested after five days of pressure-controlled dynamic culture followed sectioning, histochemical and immunohistochemical staining as well as semiquantitative analysis. RESULTS Efficacy of decellularization was verified by absence of cellular components as well as preservation of ultrastructure and adhesive proteins of the extracellular matrix. In semiquantitative analysis of recellularization, cell count after five days of dynamic culture more than doubled when using the gentle decellularization protocol with a concentration of SDS at 0.66% compared to 3%. Detectable cells maintained their endothelial phenotype and presented proliferative behavior while only a negligible fraction underwent apoptosis. CONCLUSION Recellularization of acellular kidney scaffold with endothelial cells EA.hy 926 seeded through the renal artery benefits from gentle decellularization procedure. Because of that, decellularization with a SDS concentration at 0.66% should be preferred in further studies and coculture experiments.
Collapse
Affiliation(s)
- Johannes Sauter
- Department of Orthopedics and Sports Orthopedics, Klinikum Rechts der Isar der Technischen Universität München, Munich, Germany.,Department of Medicine II, LMU Klinikum München, Munich, Germany
| | - Hannes Degenhardt
- Division of Sports Orthopedics, Klinikum Rechts der Isar der Technischen Universität München, Munich, Germany
| | - Jutta Tuebel
- Department of Orthopedics and Sports Orthopedics, Klinikum Rechts der Isar der Technischen Universität München, Munich, Germany
| | - Peter Foehr
- Department of Orthopedics and Sports Orthopedics, Klinikum Rechts der Isar der Technischen Universität München, Munich, Germany
| | | | - Kira Florian
- Department of Orthopedics and Sports Orthopedics, Klinikum Rechts der Isar der Technischen Universität München, Munich, Germany
| | - Fiona Charitou
- Department of Orthopedics and Sports Orthopedics, Klinikum Rechts der Isar der Technischen Universität München, Munich, Germany
| | - Rainer Burgkart
- Department of Orthopedics and Sports Orthopedics, Klinikum Rechts der Isar der Technischen Universität München, Munich, Germany.
| | - Andreas Schmitt
- Division of Sports Orthopedics, Klinikum Rechts der Isar der Technischen Universität München, Munich, Germany.,Orthopädisches Fachzentrum Weilheim, Weilheim, Germany
| |
Collapse
|
120
|
Zhu L, Yuhan J, Yu H, Zhang B, Huang K, Zhu L. Decellularized Extracellular Matrix for Remodeling Bioengineering Organoid's Microenvironment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207752. [PMID: 36929582 DOI: 10.1002/smll.202207752] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Over the past decade, stem cell- and tumor-derived organoids are the most promising models in developmental biology and disease modeling, respectively. The matrix is one of three main elements in the construction of an organoid and the most important module of its extracellular microenvironment. However, the source of the currently available commercial matrix, Matrigel, limits the application of organoids in clinical medicine. It is worth investigating whether the original decellularized extracellular matrix (dECM) can be exploited as the matrix of organoids and improving organoid construction are very important. In this review, tissue decellularization protocols and the characteristics of decellularization methods, the mechanical support and biological cues of extraccellular matrix (ECM), methods for construction of multifunctional dECM and responsive dECM hydrogel, and the potential applications of functional dECM are summarized. In addition, some expectations are provided for dECM as the matrix of organoids in clinical applications.
Collapse
Affiliation(s)
- Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, P. R. China
- College of Veterinary Medicine, China Agricultural University, Beijing, 100094, P. R. China
| | - Jieyu Yuhan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Hao Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Boyang Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, P. R. China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, P. R. China
| |
Collapse
|
121
|
Ma H, Zheng L, Yang S, Cheng YY, Liu T, Wu S, Wang H, Zhang J, Song K. Construction and properties detection of 3D micro-structure scaffolds base on decellularized sheep kidney before and after crosslinking. J Biomater Appl 2023; 37:1593-1604. [PMID: 36919373 DOI: 10.1177/08853282231163758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Decellularized extracellular matrix is one form of natural material in tissue engineering. The process of dECM retains the tissue microstructure, provides good cell adhesion sites, maintains most of biological signals that promotes the survival and differentiation ability of cells. In this study, sheep kidney was decellularized followed by histochemical staining, elemental analysis and scanning electron microscopy characterizations. The dECM scaffold was prepared with different sequences of freeze drying technology, crosslinking and the water absorption, porosity, mechanical strength with subsequent thermogravimetric analysis, Infrared spectroscopy and biocompatibility tests. Our results indicated that these decellularized treatments of sheep kidney can effectively remove DNA and retain uniform pore size distribution. After crosslinking the scaffold's water absorption decreased from 987.56 ± 40.21% to 934.39 ± 39.61%, the porosity decreased from 89.64 ± 3.2% to 85.09 ± 17.63%, and the compression modulus increased from 304.32 ± 25.43 kPa to 459.53 ± 38.92 kPa, with thermal process the percentage of weight loss decreased from 66.57% to 44.731%, in addition, the composition didn't change significantly, crosslinking could also promote the stability. In terms of biocompatibility, the number of viable cells increased significantly with the days. In conclusion, the crosslinked decellularized sheep kidney extracellular matrix scaffold reduced water absorption and porosity slightly, but has a significant increase in mechanical properties, and presented excellent biocompatibility which are beneficial to cell adhesion, growth and differentiation.
Collapse
Affiliation(s)
- Hailin Ma
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, 12399Dalian University of Technology, Dalian, China
| | - Le Zheng
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, 12399Dalian University of Technology, Dalian, China
| | - Shuangjia Yang
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, 12399Dalian University of Technology, Dalian, China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, 1994University of Technology Sydney, Sydney, NSW, Australia
| | - Tianqing Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, 12399Dalian University of Technology, Dalian, China
| | - Shuo Wu
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, 12399Cancer Hospital of Dalian University of Technology, Shenyang, China
| | - Hongfei Wang
- Department of Orthopedics, 36674Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingying Zhang
- The Second Clinical Medical College, 12453Guangdong Medical University, Dongguan, China
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, 12399Dalian University of Technology, Dalian, China
| |
Collapse
|
122
|
Omid H, Abdollahi S, Bonakdar S, Haghighipour N, Shokrgozar MA, Mohammadi J. Biomimetic vascular tissue engineering by decellularized scaffold and concurrent cyclic tensile and shear stresses. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:12. [PMID: 36917304 PMCID: PMC10014704 DOI: 10.1007/s10856-023-06716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Decellularization by chemical approaches has harmful effects on extracellular matrix (ECM) proteins, and damages lots of functional peptides and biomolecules present in the ultrastructure. In this study, we employed a combination of chemical and physical decellularization methods to overcome these disadvantages. The induced osmotic pressure by hypertonic/hypotonic solutions dissociated and removed most of cellular membranes significantly without any detergent or chemical agent. In total, 0.025% trypsin solution was found adequate to remove the remaining debrides, and ultimately 1% Triton X-100 was utilized for final cleansing. In addition, conducting all the decellularization processes at 4 °C yielded an ECM with least damages in the ultrastructure which could be inferred by close mechanical strength and swelling ratio to the native vessel, and high quality and quantity of cell attachment, migration and proliferation which were examined by optical microscopy and scanning electron microscopy (SEM) of the histology samples. Moreover, the obtained biological scaffold (BS) had no cytotoxicity according to the MTT assay, and this scaffold is storable at -20 °C. Employing bioreactor for concurrent cyclic tensile and shear stresses improved the cell migration into pores of the BS and made the cells and the scaffold compact in analogous to native tissue. As opening angle test showed by decellularizing of the blood vessel, the residual stress dropped significantly which revealed the role of cells in the amount of induced stress in the structure. However, intact and healthy ECM explicitly recovered upon recellularization and beat the initial residual stress of the native tissue. The tensile test of the blood vessels in longitudinal and radial directions revealed orthotropic behavior which can be explained by collagen fibers direction in the ECM. Furthermore, by the three regions of the stress-strain curve can be elucidated the roles of cells, elastin and collagen fibers in mechanical behavior of the vascular tissues.
Collapse
Affiliation(s)
- Hamed Omid
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
- National Cell Bank of Iran, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran, 1316943551, Iran
| | - Sorosh Abdollahi
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank of Iran, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran, 1316943551, Iran
| | - Nooshin Haghighipour
- National Cell Bank of Iran, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran, 1316943551, Iran
| | - Mohammad Ali Shokrgozar
- National Cell Bank of Iran, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran, 1316943551, Iran.
| | - Javad Mohammadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| |
Collapse
|
123
|
Rai R, Nitin N. Apple-derived 3D scaffold for improving gastrointestinal viability and in-situ growth of probiotics. Food Res Int 2023; 168:112758. [PMID: 37120209 DOI: 10.1016/j.foodres.2023.112758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 02/21/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
This study develops a novel low-cost microbial delivery system by transforming common food materials such as apple tissue into a 3D scaffold. Apple tissue scaffold was constructed by decellularization of intact tissue using a minimal amount of sodium dodecyl sulfate (0.5 % w/v). Vacuum-assisted infusion of model probiotic Lactobacillus cells led to a high encapsulation yield of probiotic cells (1010 CFU/g of scaffold) in 3D scaffolds on a wet basis. The bio-polymer coated 3D scaffolds with infused cells significantly enhanced the survivability of infused probiotic cells during simulated gastric and intestinal digestions. In addition, imaging and plate counting results validate the growth of the infused cells in the 3D scaffold after 1-2 days of fermentation in MRS media, while cells without infusion in the scaffold had limited attachment with the intact apple tissue. Overall, these results highlight the potential of the apple tissue-derived 3D scaffold to deliver probiotic cells and include the biochemical compositions to support the growth of delivered microbial cells in the colon.
Collapse
|
124
|
Tripathy S, Das SK. Strategies for organ preservation: Current prospective and challenges. Cell Biol Int 2023; 47:520-538. [PMID: 36626269 DOI: 10.1002/cbin.11984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 01/11/2023]
Abstract
In current therapeutic approaches, transplantation of organs provides the best available treatment for a myriad of end-stage organ failures. However, shortage of organ donors, lacunae in preservation methods, and lack of a suitable match are the major constraints in advocating this life-sustaining therapy. There has been continuous progress in the strategies for organ preservation since its inception. Current strategies for organ preservation are based on the University of Wisconsin (UW) solution using the machine perfusion technique, which allows successful preservation of intra-abdominal organs (kidney and liver) but not intra-thoracic organs (lungs and heart). However, novel concepts with a wide range of adapted preservation technologies that can increase the shelf life of retrieved organs are still under investigation. The therapeutic interventions of in vitro-cultured stem cells could provide novel strategies for replacement of nonfunctional cells of damaged organs with that of functional ones. This review describes existing strategies, highlights recent advances, discusses challenges and innovative approaches for effective organ preservation, and describes application of stem cells to restore the functional activity of damaged organs for future clinical practices.
Collapse
Affiliation(s)
- Seema Tripathy
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneshwar, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
125
|
Afzal Z, Huguet EL. Bioengineering liver tissue by repopulation of decellularised scaffolds. World J Hepatol 2023; 15:151-179. [PMID: 36926238 PMCID: PMC10011915 DOI: 10.4254/wjh.v15.i2.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Liver transplantation is the only curative therapy for end stage liver disease, but is limited by the organ shortage, and is associated with the adverse consequences of immunosuppression. Repopulation of decellularised whole organ scaffolds with appropriate cells of recipient origin offers a theoretically attractive solution, allowing reliable and timely organ sourcing without the need for immunosuppression. Decellularisation methodologies vary widely but seek to address the conflicting objectives of removing the cellular component of tissues whilst keeping the 3D structure of the extra-cellular matrix intact, as well as retaining the instructive cell fate determining biochemicals contained therein. Liver scaffold recellularisation has progressed from small rodent in vitro studies to large animal in vivo perfusion models, using a wide range of cell types including primary cells, cell lines, foetal stem cells, and induced pluripotent stem cells. Within these models, a limited but measurable degree of physiologically significant hepatocyte function has been reported with demonstrable ammonia metabolism in vivo. Biliary repopulation and function have been restricted by challenges relating to the culture and propagations of cholangiocytes, though advances in organoid culture may help address this. Hepatic vasculature repopulation has enabled sustainable blood perfusion in vivo, but with cell types that would limit clinical applications, and which have not been shown to have the specific functions of liver sinusoidal endothelial cells. Minority cell groups such as Kupffer cells and stellate cells have not been repopulated. Bioengineering by repopulation of decellularised scaffolds has significantly progressed, but there remain significant experimental challenges to be addressed before therapeutic applications may be envisaged.
Collapse
Affiliation(s)
- Zeeshan Afzal
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre; Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Emmanuel Laurent Huguet
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre; Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
126
|
Goh SK, Bertera S, Richardson T, Banerjee I. Repopulation of decellularized organ scaffolds with human pluripotent stem cell-derived pancreatic progenitor cells. Biomed Mater 2023; 18. [PMID: 36720168 DOI: 10.1088/1748-605x/acb7bf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
Diabetes is an emerging global epidemic that affects more that 285 million people worldwide. Engineering of endocrine pancreas tissue holds great promise for the future of diabetes therapy. Here we demonstrate the feasibility of re-engineering decellularized organ scaffolds using regenerative cell source. We differentiated human pluripotent stem cells (hPSC) toward pancreatic progenitor (PP) lineage and repopulated decellularized organ scaffolds with these hPSC-PP cells. We observed that hPSCs cultured and differentiated as aggregates are more suitable for organ repopulation than isolated single cell suspension. However, recellularization with hPSC-PP aggregates require a more extensive vascular support, which was found to be superior in decellularized liver over the decellularized pancreas scaffolds. Upon continued culture for nine days with chemical induction in the bioreactor, the seeded hPSC-PP aggregates demonstrated extensive and uniform cellular repopulation and viability throughout the thickness of the liver scaffolds. Furthermore, the decellularized liver scaffolds was supportive of the endocrine cell fate of the engrafted cells. Our novel strategy to engineer endocrine pancreas construct is expected to find potential applications in preclinical testing, drug discovery and diabetes therapy.
Collapse
Affiliation(s)
- Saik-Kia Goh
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Suzanne Bertera
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States of America
| | - Thomas Richardson
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Ipsita Banerjee
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
127
|
Pantoja BTDS, Carvalho RC, Miglino MA, Carreira ACO. The Canine Pancreatic Extracellular Matrix in Diabetes Mellitus and Pancreatitis: Its Essential Role and Therapeutic Perspective. Animals (Basel) 2023; 13:ani13040684. [PMID: 36830471 PMCID: PMC9952199 DOI: 10.3390/ani13040684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 02/18/2023] Open
Abstract
Diabetes mellitus and pancreatitis are common pancreatic diseases in dogs, affecting the endocrine and exocrine portions of the organ. Dogs have a significant role in the history of research related to genetic diseases, being considered potential models for the study of human diseases. This review discusses the importance of using the extracellular matrix of the canine pancreas as a model for the study of diabetes mellitus and pancreatitis, in addition to focusing on the importance of using extracellular matrix in new regenerative techniques, such as decellularization and recellularization. Unlike humans, rabbits, mice, and pigs, there are no reports in the literature characterizing the healthy pancreatic extracellular matrix in dogs, in addition to the absence of studies related to matrix components that are involved in triggering diabetes melittus and pancreatitis. The extracellular matrix plays the role of physical support for the cells and allows the regulation of various cellular processes. In this context, it has already been demonstrated that physiologic and pathologic pancreatic changes lead to ECM remodeling, highlighting the importance of an in-depth study of the changes associated with pancreatic diseases.
Collapse
Affiliation(s)
- Bruna Tássia dos Santos Pantoja
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil
| | - Rafael Cardoso Carvalho
- Department of Animal Science, Center for Agricultural and Environmental Sciences, Federal University of Maranhao, Chapadinha 65500-000, MA, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre 09280-550, SP, Brazil
- Correspondence: or ; Tel.: +55-11-983229615
| |
Collapse
|
128
|
Borges MF, Maurmann N, Pranke P. Easy-to-Assembly System for Decellularization and Recellularization of Liver Grafts in a Bioreactor. MICROMACHINES 2023; 14:449. [PMID: 36838149 PMCID: PMC9962055 DOI: 10.3390/mi14020449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Decellularization of organs creates an acellular scaffold, ideal for being repopulated by cells. In this work, a low-cost perfusion system was created to be used in the process of liver decellularization and as a bioreactor after recellularization. It consists of a glass chamber to house the organ coupled to a peristaltic pump to promote liquid flow through the organ vascular tree. The rats' liver decellularization was made with a solution of sodium dodecyl sulfate. The recellularization was made with 108 mesenchymal stromal/stem cells and cultivated for seven days. The decellularized matrices showed an absence of DNA while preserving the collagen and glycosaminoglycans quantities, confirming the efficiency of the process. The functional analyses showed a rise in lactate dehydrogenase levels occurring in the first days of the cultivation, suggesting that there is cell death in this period, which stabilized on the seventh day. Histological analysis showed conservation of the collagen web and some groups of cells next to the vessels. It was possible to establish a system for decellularization and a bioreactor to use for the recellularization method. It is easy to assemble, can be ready to use in little time and be easily sterilized.
Collapse
Affiliation(s)
- Maurício Felisberto Borges
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, Brazil
| | - Natasha Maurmann
- Postgraduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90050-170, Brazil
| | - Patricia Pranke
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, Brazil
| |
Collapse
|
129
|
Wang B, Qinglai T, Yang Q, Li M, Zeng S, Yang X, Xiao Z, Tong X, Lei L, Li S. Functional acellular matrix for tissue repair. Mater Today Bio 2023; 18:100530. [PMID: 36601535 PMCID: PMC9806685 DOI: 10.1016/j.mtbio.2022.100530] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
In view of their low immunogenicity, biomimetic internal environment, tissue- and organ-like physicochemical properties, and functionalization potential, decellularized extracellular matrix (dECM) materials attract considerable attention and are widely used in tissue engineering. This review describes the composition of extracellular matrices and their role in stem-cell differentiation, discusses the advantages and disadvantages of existing decellularization techniques, and presents methods for the functionalization and characterization of decellularized scaffolds. In addition, we discuss progress in the use of dECMs for cartilage, skin, nerve, and muscle repair and the transplantation or regeneration of different whole organs (e.g., kidneys, liver, uterus, lungs, and heart), summarize the shortcomings of using dECMs for tissue and organ repair after refunctionalization, and examine the corresponding future prospects. Thus, the present review helps to further systematize the application of functionalized dECMs in tissue/organ transplantation and keep researchers up to date on recent progress in dECM usage.
Collapse
Affiliation(s)
- Bin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Tang Qinglai
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Shiying Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinying Tong
- Department of Hemodialysis, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
130
|
Xu B, Ye J, Fan BS, Wang X, Zhang JY, Song S, Song Y, Jiang WB, Wang X, Yu JK. Protein-spatiotemporal partition releasing gradient porous scaffolds and anti-inflammatory and antioxidant regulation remodel tissue engineered anisotropic meniscus. Bioact Mater 2023; 20:194-207. [PMID: 35702607 PMCID: PMC9160676 DOI: 10.1016/j.bioactmat.2022.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 01/02/2023] Open
Abstract
Meniscus is a wedge-shaped fibrocartilaginous tissue, playing important roles in maintaining joint stability and function. Meniscus injuries are difficult to heal and frequently progress into structural breakdown, which then leads to osteoarthritis. Regeneration of heterogeneous tissue engineering meniscus (TEM) continues to be a scientific and translational challenge. The morphology, tissue architecture, mechanical strength, and functional applications of the cultivated TEMs have not been able to meet clinical needs, which may due to the negligent attention on the importance of microenvironment in vitro and in vivo. Herein, we combined the 3D (three-dimensional)-printed gradient porous scaffolds, spatiotemporal partition release of growth factors, and anti-inflammatory and anti-oxidant microenvironment regulation of Ac2-26 peptide to prepare a versatile meniscus composite scaffold with heterogeneous bionic structures, excellent biomechanical properties and anti-inflammatory and anti-oxidant effects. By observing the results of cell activity and differentiation, and biomechanics under anti-inflammatory and anti-oxidant microenvironments in vitro, we explored the effects of anti-inflammatory and anti-oxidant microenvironments on construction of regional and functional heterogeneous TEM via the growth process regulation, with a view to cultivating a high-quality of TEM from bench to bedside. A polycaprolactone meniscus scaffold with the gradient porous architecture. Spatiotemporal partition release of two growth factors to promote heterogeneous phenotypes. Anti-inflammatory and antioxidant regulation by Ac2-26 peptide. Scaffold with biomimetic morphology, biomechanics, heterogeneity of native meniscus.
Collapse
|
131
|
Brimmer S, Ji P, Birla AK, Keswani SG, Caldarone CA, Birla RK. Recent advances in biological pumps as a building block for bioartificial hearts. Front Bioeng Biotechnol 2023; 11:1061622. [PMID: 36741765 PMCID: PMC9895798 DOI: 10.3389/fbioe.2023.1061622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023] Open
Abstract
The field of biological pumps is a subset of cardiac tissue engineering and focused on the development of tubular grafts that are designed generate intraluminal pressure. In the simplest embodiment, biological pumps are tubular grafts with contractile cardiomyocytes on the external surface. The rationale for biological pumps is a transition from planar 3D cardiac patches to functional biological pumps, on the way to complete bioartificial hearts. Biological pumps also have applications as a standalone device, for example, to support the Fontan circulation in pediatric patients. In recent years, there has been a lot of progress in the field of biological pumps, with innovative fabrication technologies. Examples include the use of cell sheet engineering, self-organized heart muscle, bioprinting and in vivo bio chambers for vascularization. Several materials have been tested for biological pumps and included resected aortic segments from rodents, type I collagen, and fibrin hydrogel, to name a few. Multiple bioreactors have been tested to condition biological pumps and replicate the complex in vivo environment during controlled in vitro culture. The purpose of this article is to provide an overview of the field of the biological pumps, outlining progress in the field over the past several years. In particular, different fabrication methods, biomaterial platforms for tubular grafts and examples of bioreactors will be presented. In addition, we present an overview of some of the challenges that need to be overcome for the field of biological pumps to move forward.
Collapse
Affiliation(s)
- Sunita Brimmer
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, TX, United States,Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States,Division of Congenital Heart Surgery, Texas Children’s Hospital, Houston, TX, United States
| | - Pengfei Ji
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, TX, United States,Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States,Division of Congenital Heart Surgery, Texas Children’s Hospital, Houston, TX, United States
| | - Aditya K. Birla
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, TX, United States,Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States
| | - Sundeep G. Keswani
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, TX, United States,Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States,Department of Surgery, Baylor College of Medicine, Houston, TX, United States,Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX, United States
| | - Christopher A. Caldarone
- Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States,Division of Congenital Heart Surgery, Texas Children’s Hospital, Houston, TX, United States,Department of Surgery, Baylor College of Medicine, Houston, TX, United States,Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX, United States
| | - Ravi K. Birla
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, TX, United States,Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States,Division of Congenital Heart Surgery, Texas Children’s Hospital, Houston, TX, United States,Department of Surgery, Baylor College of Medicine, Houston, TX, United States,Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX, United States,*Correspondence: Ravi K. Birla,
| |
Collapse
|
132
|
Sarmah H, Sawada A, Hwang Y, Miura A, Shimamura Y, Tanaka J, Yamada K, Mori M. Towards human organ generation using interspecies blastocyst complementation: Challenges and perspectives for therapy. Front Cell Dev Biol 2023; 11:1070560. [PMID: 36743411 PMCID: PMC9893295 DOI: 10.3389/fcell.2023.1070560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Millions of people suffer from end-stage refractory diseases. The ideal treatment option for terminally ill patients is organ transplantation. However, donor organs are in absolute shortage, and sadly, most patients die while waiting for a donor organ. To date, no technology has achieved long-term sustainable patient-derived organ generation. In this regard, emerging technologies of chimeric human organ production via blastocyst complementation (BC) holds great promise. To take human organ generation via BC and transplantation to the next step, we reviewed current emerging organ generation technologies and the associated efficiency of chimera formation in human cells from the standpoint of developmental biology.
Collapse
Affiliation(s)
- Hemanta Sarmah
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Anri Sawada
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Youngmin Hwang
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Akihiro Miura
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Yuko Shimamura
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Junichi Tanaka
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Kazuhiko Yamada
- Department of Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Munemasa Mori
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
133
|
Rougier G, Maistriaux L, Fievé L, Xhema D, Evrard R, Manon J, Olszewski R, Szmytka F, Thurieau N, Boisson J, Kadlub N, Gianello P, Behets C, Lengelé B. Decellularized vascularized bone grafts: A preliminary in vitro porcine model for bioengineered transplantable bone shafts. Front Bioeng Biotechnol 2023; 10:1003861. [PMID: 36743653 PMCID: PMC9890275 DOI: 10.3389/fbioe.2022.1003861] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/09/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction: Durable reconstruction of critical size bone defects is still a surgical challenge despite the availability of numerous autologous and substitute bone options. In this paper, we have investigated the possibility of creating a living bone allograft, using the perfusion/decellularization/recellularization (PDR) technique, which was applied to an original model of vascularized porcine bone graft. Materials and Methods: 11 porcine bone forelimbs, including radius and ulna, were harvested along with their vasculature including the interosseous artery and then decellularized using a sequential detergent perfusion protocol. Cellular clearance, vasculature, extracellular matrix (ECM), and preservation of biomechanical properties were evaluated. The cytocompatibility and in vitro osteoinductive potential of acellular extracellular matrix were studied by static seeding of NIH-3T3 cells and porcine adipose mesenchymal stem cells (pAMSC), respectively. Results: The vascularized bone grafts were successfully decellularized, with an excellent preservation of the 3D morphology and ECM microarchitecture. Measurements of DNA and ECM components revealed complete cellular clearance and preservation of ECM's major proteins. Bone mineral density (BMD) acquisitions revealed a slight, yet non-significant, decrease after decellularization, while biomechanical testing was unmodified. Cone beam computed tomography (CBCT) acquisitions after vascular injection of barium sulphate confirmed the preservation of the vascular network throughout the whole graft. The non-toxicity of the scaffold was proven by the very low amount of residual sodium dodecyl sulfate (SDS) in the ECM and confirmed by the high live/dead ratio of fibroblasts seeded on periosteum and bone ECM-grafts after 3, 7, and 16 days of culture. Moreover, cell proliferation tests showed a significant multiplication of seeded cell populations at the same endpoints. Lastly, the differentiation study using pAMSC confirmed the ECM graft's potential to promote osteogenic differentiation. An osteoid-like deposition occurred when pAMSC were cultured on bone ECM in both proliferative and osteogenic differentiation media. Conclusion: Fully decellularized bone grafts can be obtained by perfusion decellularization, thereby preserving ECM architecture and their vascular network, while promoting cell growth and differentiation. These vascularized decellularized bone shaft allografts thus present a true potential for future in vivo reimplantation. Therefore, they may offer new perspectives for repairing large bone defects and for bone tissue engineering.
Collapse
Affiliation(s)
- Guillaume Rougier
- Pole of Morphology (MORF)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium,Department of Oncological and Cervicofacial Reconstructive Surgery, Otorhinolaryngology, Maxillofacial Surgery—Institut Curie, Paris, France
| | - Louis Maistriaux
- Pole of Morphology (MORF)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium,Pole of Experimental Surgery and Transplantation (CHEX)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium,*Correspondence: Louis Maistriaux,
| | - Lies Fievé
- Pole of Morphology (MORF)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium
| | - Daela Xhema
- Pole of Experimental Surgery and Transplantation (CHEX)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium
| | - Robin Evrard
- Pole of Experimental Surgery and Transplantation (CHEX)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium,Neuromusculoskeletal Lab (NMSK)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium
| | - Julie Manon
- Pole of Morphology (MORF)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium,Neuromusculoskeletal Lab (NMSK)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium
| | - Raphael Olszewski
- Neuromusculoskeletal Lab (NMSK)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium,Department of Maxillofacial Surgery and Stomatology—Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Fabien Szmytka
- IMSIA, ENSTA Paris, Institut Polytechnique de Paris, Palaiseau, France
| | - Nicolas Thurieau
- IMSIA, ENSTA Paris, Institut Polytechnique de Paris, Palaiseau, France
| | - Jean Boisson
- IMSIA, ENSTA Paris, Institut Polytechnique de Paris, Palaiseau, France
| | - Natacha Kadlub
- IMSIA, ENSTA Paris, Institut Polytechnique de Paris, Palaiseau, France,Department of Maxillofacial and Reconstructive Surgery—Necker Enfants Malades, Paris, France
| | - Pierre Gianello
- Pole of Experimental Surgery and Transplantation (CHEX)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium
| | - Catherine Behets
- Pole of Morphology (MORF)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium
| | - Benoît Lengelé
- Pole of Morphology (MORF)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium,Department of Plastic and Reconstructive Surgery—Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
134
|
Toprakhisar B, Verfaillie CM, Kumar M. Advances in Recellularization of Decellularized Liver Grafts with Different Liver (Stem) Cells: Towards Clinical Applications. Cells 2023; 12:301. [PMID: 36672236 PMCID: PMC9856398 DOI: 10.3390/cells12020301] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Liver transplantation is currently the only curative therapy for patients with acute or chronic liver failure. However, a dramatic gap between the number of available liver grafts and the number of patients on the transplantation waiting list emphasizes the need for valid liver substitutes. Whole-organ engineering is an emerging field of tissue engineering and regenerative medicine. It aims to generate transplantable and functional organs to support patients on transplantation waiting lists until a graft becomes available. It comprises two base technologies developed in the last decade; (1) organ decellularization to generate a three-dimensional (3D) extracellular matrix scaffold of an organ, and (2) scaffold recellularization to repopulate both the parenchymal and vascular compartments of a decellularized organ. In this review article, recent advancements in both technologies, in relation to liver whole-organ engineering, are presented. We address the potential sources of hepatocytes and non-parenchymal liver cells for repopulation studies, and the role of stem-cell-derived liver progeny is discussed. In addition, different cell seeding strategies, possible graft modifications, and methods used to evaluate the functionality of recellularized liver grafts are outlined. Based on the knowledge gathered from recent transplantation studies, future directions are summarized.
Collapse
Affiliation(s)
- Burak Toprakhisar
- Stem Cell Institute, Department of Stem Cell and Developmental Biology, KU Leuven, 3000 Leuven, Belgium
| | | | | |
Collapse
|
135
|
Whole-Heart Tissue Engineering and Cardiac Patches: Challenges and Promises. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010106. [PMID: 36671678 PMCID: PMC9855348 DOI: 10.3390/bioengineering10010106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Despite all the advances in preventing, diagnosing, and treating cardiovascular disorders, they still account for a significant part of mortality and morbidity worldwide. The advent of tissue engineering and regenerative medicine has provided novel therapeutic approaches for the treatment of various diseases. Tissue engineering relies on three pillars: scaffolds, stem cells, and growth factors. Gene and cell therapy methods have been introduced as primary approaches to cardiac tissue engineering. Although the application of gene and cell therapy has resulted in improved regeneration of damaged cardiac tissue, further studies are needed to resolve their limitations, enhance their effectiveness, and translate them into the clinical setting. Scaffolds from synthetic, natural, or decellularized sources have provided desirable characteristics for the repair of cardiac tissue. Decellularized scaffolds are widely studied in heart regeneration, either as cell-free constructs or cell-seeded platforms. The application of human- or animal-derived decellularized heart patches has promoted the regeneration of heart tissue through in vivo and in vitro studies. Due to the complexity of cardiac tissue engineering, there is still a long way to go before cardiac patches or decellularized whole-heart scaffolds can be routinely used in clinical practice. This paper aims to review the decellularized whole-heart scaffolds and cardiac patches utilized in the regeneration of damaged cardiac tissue. Moreover, various decellularization methods related to these scaffolds will be discussed.
Collapse
|
136
|
Kanda M, Nagai T, Kondo N, Matsuura K, Akazawa H, Komuro I, Kobayashi Y. Pericardial Grafting of Cardiac Progenitor Cells in Self-Assembling Peptide Scaffold Improves Cardiac Function After Myocardial Infarction. Cell Transplant 2023; 32:9636897231174078. [PMID: 37191272 PMCID: PMC10192947 DOI: 10.1177/09636897231174078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/03/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Many studies have explored cardiac progenitor cell (CPC) therapy for heart disease. However, optimal scaffolds are needed to ensure the engraftment of transplanted cells. We produced a three-dimensional hydrogel scaffold (CPC-PRGmx) in which high-viability CPCs were cultured for up to 8 weeks. CPC-PRGmx contained an RGD peptide-conjugated self-assembling peptide with insulin-like growth factor-1 (IGF-1). Immediately after creating myocardial infarction (MI), we transplanted CPC-PRGmx into the pericardial space on to the surface of the MI area. Four weeks after transplantation, red fluorescent protein-expressing CPCs and in situ hybridization analysis in sex-mismatched transplantations revealed the engraftment of CPCs in the transplanted scaffold (which was cellularized with host cells). The average scar area of the CPC-PRGmx-treated group was significantly smaller than that of the non-treated group (CPC-PRGmx-treated group = 46 ± 5.1%, non-treated MI group = 59 ± 4.5%; p < 0.05). Echocardiography showed that the transplantation of CPC-PRGmx improved cardiac function and attenuated cardiac remodeling after MI. The transplantation of CPCs-PRGmx promoted angiogenesis and inhibited apoptosis, compared to the untreated MI group. CPCs-PRGmx secreted more vascular endothelial growth factor than CPCs cultured on two-dimensional dishes. Genetic fate mapping revealed that CPC-PRGmx-treated mice had more regenerated cardiomyocytes than non-treated mice in the MI area (CPC-PRGmx-treated group = 0.98 ± 0.25%, non-treated MI group = 0.25 ± 0.04%; p < 0.05). Our findings reveal the therapeutic potential of epicardial-transplanted CPC-PRGmx. Its beneficial effects may be mediated by sustainable cell viability, paracrine function, and the enhancement of de novo cardiomyogenesis.
Collapse
Affiliation(s)
- Masato Kanda
- Department of Cardiovascular Medicine,
Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshio Nagai
- Department of Cardiology, Chemotherapy
Research Institute, KAKEN Hospital, International University of Health and Welfare,
Ichikawa-shi, Japan
| | - Naomichi Kondo
- Department of Cardiovascular Medicine,
Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsuhisa Matsuura
- Institute of Advanced Biomedical
Engineering and Science, Tokyo Women’s Medical University, Tokyo, Japan
- Department of Cardiology, Tokyo Women’s
Medical University, Tokyo, Japan
| | - Hiroshi Akazawa
- Department of Cardiovascular Medicine,
Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine,
Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine,
Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
137
|
Charbe NB, Tambuwala M, Palakurthi SS, Warokar A, Hromić‐Jahjefendić A, Bakshi H, Zacconi F, Mishra V, Khadse S, Aljabali AA, El‐Tanani M, Serrano‐Aroca Ã, Palakurthi S. Biomedical applications of three-dimensional bioprinted craniofacial tissue engineering. Bioeng Transl Med 2023; 8:e10333. [PMID: 36684092 PMCID: PMC9842068 DOI: 10.1002/btm2.10333] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023] Open
Abstract
Anatomical complications of the craniofacial regions often present considerable challenges to the surgical repair or replacement of the damaged tissues. Surgical repair has its own set of limitations, including scarcity of the donor tissues, immune rejection, use of immune suppressors followed by the surgery, and restriction in restoring the natural aesthetic appeal. Rapid advancement in the field of biomaterials, cell biology, and engineering has helped scientists to create cellularized skeletal muscle-like structures. However, the existing method still has limitations in building large, highly vascular tissue with clinical application. With the advance in the three-dimensional (3D) bioprinting technique, scientists and clinicians now can produce the functional implants of skeletal muscles and bones that are more patient-specific with the perfect match to the architecture of their craniofacial defects. Craniofacial tissue regeneration using 3D bioprinting can manage and eliminate the restrictions of the surgical transplant from the donor site. The concept of creating the new functional tissue, exactly mimicking the anatomical and physiological function of the damaged tissue, looks highly attractive. This is crucial to reduce the donor site morbidity and retain the esthetics. 3D bioprinting can integrate all three essential components of tissue engineering, that is, rehabilitation, reconstruction, and regeneration of the lost craniofacial tissues. Such integration essentially helps to develop the patient-specific treatment plans and damage site-driven creation of the functional implants for the craniofacial defects. This article is the bird's eye view on the latest development and application of 3D bioprinting in the regeneration of the skeletal muscle tissues and their application in restoring the functional abilities of the damaged craniofacial tissue. We also discussed current challenges in craniofacial bone vascularization and gave our view on the future direction, including establishing the interactions between tissue-engineered skeletal muscle and the peripheral nervous system.
Collapse
Affiliation(s)
- Nitin Bharat Charbe
- Irma Lerma Rangel College of PharmacyTexas A&M Health Science CenterKingsvilleTexasUSA
| | - Murtaza Tambuwala
- School of Pharmacy and Pharmaceutical ScienceUlster UniversityColeraineUK
| | | | - Amol Warokar
- Department of PharmacyDadasaheb Balpande College of PharmacyNagpurIndia
| | - Altijana Hromić‐Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural SciencesInternational University of SarajevoSarajevoBosnia and Herzegovina
| | - Hamid Bakshi
- School of Pharmacy and Pharmaceutical ScienceUlster UniversityColeraineUK
| | - Flavia Zacconi
- Departamento de Quimica Orgánica, Facultad de Química y de FarmaciaPontificia Universidad Católica de ChileSantiagoChile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
| | - Vijay Mishra
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraIndia
| | - Saurabh Khadse
- Department of Pharmaceutical ChemistryR.C. Patel Institute of Pharmaceutical Education and ResearchDhuleIndia
| | - Alaa A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical SciencesYarmouk UniversityIrbidJordan
| | - Mohamed El‐Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of PharmacyAl‐Ahliyya Amman UniversityAmmanJordan
| | - Ãngel Serrano‐Aroca
- Biomaterials and Bioengineering Lab Translational Research Centre San Alberto MagnoCatholic University of Valencia San Vicente MártirValenciaSpain
| | - Srinath Palakurthi
- Irma Lerma Rangel College of PharmacyTexas A&M Health Science CenterKingsvilleTexasUSA
| |
Collapse
|
138
|
Goulart E. A Review of Stem Cell Technology Targeting Hepatocyte Growth as an Alternative to Organ Transplantation. Methods Mol Biol 2023; 2575:181-193. [PMID: 36301476 DOI: 10.1007/978-1-0716-2716-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Currently, the only feasible option for patients with progressive and/or end-stage organ degeneration is to undergo transplantation. Due to the growing unmatched demand of available organ donors and, as a consequence, the continuous growth of patients' waiting lists, the development of new tissue engineering technologies is a relevant need. In this chapter, we will focus on the liver as a model organ to discuss contemporary tissue engineering strategies. Induced pluripotent cells are an attractive alternative to serve as a cell source for tissue engineering applications due to their pluripotency, the potentiality to generate autologous transplantation, and for their high proliferation rate. Among the main liver tissue engineering technologies, 3D bioprinting, hepatic organoids, and decellularization/recellularization of biological matrixes have grown much attention as alternatives to derive functional liver grafts. Thus, this chapter will discuss how recent publications have demonstrated the use of induced pluripotent cells in the development of the aforementioned technologies. Bioprinting is an additive manufacturing biofabrication process where cells are dispersed within a matrix formulation (i.e., bioink) and extruded in a modified 3D-printer. Polymers within bioink can be cross-linked to increase stiffness. Hepatic spheroids showed greater viability and liver function, due to preserved epithelial phenotype over time. Organoid is multi-lineage tissue constructs derived from a stem cell that recapitulates the early stages of organogenesis. The influence of cellular composition of non-parenchymal cells using induced pluripotent-derived cells or primary adult cells for hepatic organoid formation was recently tested. Decellularization is a process where harvested tissues or organs are washed with a detergent-based solution, to lyse and remove all cellular components. The final product is an extracellular scaffold with preserved tissue vasculature and ultra-structure, which can be used for subsequent recellularization with recipient cells. This chapter sheds light on recent works on the use of induced pluripotent-derived cells for liver tissue engineering approaches and on how such technologies could potentially generate therapeutic alternatives for patients on waiting lists for liver transplantation.
Collapse
Affiliation(s)
- Ernesto Goulart
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), São Paulo, SP, Brazil.
| |
Collapse
|
139
|
Lu Y, Li J, Hou N, Zhou L, Quan X, Tang Y, Luo X, Huang S, Ma R. Decellularized tympanic membrane scaffold with bone marrow mesenchymal stem cells for repairing tympanic membrane perforation. Artif Organs 2023; 47:62-76. [PMID: 36102372 DOI: 10.1111/aor.14399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/16/2022] [Accepted: 09/02/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Tympanic membrane perforation (TMP) is a common disease in otology, and few acellular techniques have been reported for repairing this condition. Decellularized extracellular matrix (ECM) scaffolds have been used in organ reconstruction. OBJECTIVE This study on tissue engineering aimed to develop a tympanic membrane (TM) scaffold prepared using detergent immersion and bone marrow mesenchymal stem cells (BMSCs) as repair materials to reconstruct the TM. RESULTS General structure was observed that the decellularized TM scaffold with BMSCs retained the original intact anatomical ECM structure, with no cell residue, as observed using scanning electron microscopy (SEM), and exhibited low immunogenicity. Therefore, we seeded the decellularized TM scaffold with BMSCs for recellularization. Histology and eosin staining, SEM and immunofluorescence in vivo showed that the recellularized TM patch had a natural ultrastructure and was suitable for the migration and proliferation of BMSCs. The auditory brainstem response (ABR) evaluated after recellularized TM patch repair was slightly higher than that of the normal TM, but the difference was not significant. CONCLUSION The synthetic ECM scaffold provides temporary physical support for the three-dimensional growth of cells during the tissue developmental stage. The scaffold stimulates cells to secrete their own ECM required for tissue regeneration. The recellularized TM patch shows potential as a natural, ultrastructure biological material for TM reconstruction.
Collapse
Affiliation(s)
- Yanqing Lu
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital, Chengdu Medical College, Chengdu, People's Republic of China
| | - Jingzhi Li
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital, Chengdu Medical College, Chengdu, People's Republic of China
| | - Nan Hou
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital, Chengdu Medical College, Chengdu, People's Republic of China
| | - Li Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital, Chengdu Medical College, Chengdu, People's Republic of China
| | - Xiaoxuan Quan
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital, Chengdu Medical College, Chengdu, People's Republic of China
| | - Ying Tang
- Department of Pathology, First Affiliated Hospital, Chengdu Medical College, Chengdu, People's Republic of China
| | - Xiaoming Luo
- Department of Biomedical Science, Chengdu Medical College, Chengdu, People's Republic of China
| | - Shi Huang
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital, Chengdu Medical College, Chengdu, People's Republic of China
| | - Ruina Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Tangdu Hospital, Chinese People's Liberation Army Air Force Military Medical University, Xi' an, People's Republic of China
| |
Collapse
|
140
|
Geevarghese R, Sajjadi SS, Hudecki A, Sajjadi S, Jalal NR, Madrakian T, Ahmadi M, Włodarczyk-Biegun MK, Ghavami S, Likus W, Siemianowicz K, Łos MJ. Biodegradable and Non-Biodegradable Biomaterials and Their Effect on Cell Differentiation. Int J Mol Sci 2022; 23:ijms232416185. [PMID: 36555829 PMCID: PMC9785373 DOI: 10.3390/ijms232416185] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Biomaterials for tissue scaffolds are key components in modern tissue engineering and regenerative medicine. Targeted reconstructive therapies require a proper choice of biomaterial and an adequate choice of cells to be seeded on it. The introduction of stem cells, and the transdifferentiation procedures, into regenerative medicine opened a new era and created new challenges for modern biomaterials. They must not only fulfill the mechanical functions of a scaffold for implanted cells and represent the expected mechanical strength of the artificial tissue, but furthermore, they should also assure their survival and, if possible, affect their desired way of differentiation. This paper aims to review how modern biomaterials, including synthetic (i.e., polylactic acid, polyurethane, polyvinyl alcohol, polyethylene terephthalate, ceramics) and natural (i.e., silk fibroin, decellularized scaffolds), both non-biodegradable and biodegradable, could influence (tissue) stem cells fate, regulate and direct their differentiation into desired target somatic cells.
Collapse
Affiliation(s)
- Rency Geevarghese
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Seyedeh Sara Sajjadi
- School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1971653313, Iran
| | - Andrzej Hudecki
- Łukasiewicz Network-Institute of Non-Ferrous Metals, 44-121 Gliwice, Poland
| | - Samad Sajjadi
- School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1971653313, Iran
| | | | - Tayyebeh Madrakian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6516738695, Iran
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6516738695, Iran
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Małgorzata K. Włodarczyk-Biegun
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Saeid Ghavami
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
- Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
| | - Wirginia Likus
- Department of Anatomy, Faculty of Health Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Krzysztof Siemianowicz
- Department of Biochemistry, Faculty of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
- Correspondence: (K.S.); (M.J.Ł.); Tel.: +48-32-237-2913 (M.J.Ł.)
| | - Marek J. Łos
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Correspondence: (K.S.); (M.J.Ł.); Tel.: +48-32-237-2913 (M.J.Ł.)
| |
Collapse
|
141
|
Jin Y, Kim H, Min S, Choi YS, Seo SJ, Jeong E, Kim SK, Lee HA, Jo SH, Park JH, Park BW, Sim WS, Kim JJ, Ban K, Kim YG, Park HJ, Cho SW. Three-dimensional heart extracellular matrix enhances chemically induced direct cardiac reprogramming. SCIENCE ADVANCES 2022; 8:eabn5768. [PMID: 36516259 PMCID: PMC9750148 DOI: 10.1126/sciadv.abn5768] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 11/12/2022] [Indexed: 06/17/2023]
Abstract
Direct cardiac reprogramming has emerged as a promising therapeutic approach for cardiac regeneration. Full chemical reprogramming with small molecules to generate cardiomyocytes may be more amenable than genetic reprogramming for clinical applications as it avoids safety concerns associated with genetic manipulations. However, challenges remain regarding low conversion efficiency and incomplete cardiomyocyte maturation. Furthermore, the therapeutic potential of chemically induced cardiomyocytes (CiCMs) has not been investigated. Here, we report that a three-dimensional microenvironment reconstituted with decellularized heart extracellular matrix can enhance chemical reprogramming and cardiac maturation of fibroblasts to cardiomyocytes. The resultant CiCMs exhibit elevated cardiac marker expression, sarcomeric organization, and improved electrophysiological features and drug responses. We investigated the therapeutic potential of CiCMs reprogrammed in three-dimensional heart extracellular matrix in a rat model of myocardial infarction. Our platform can facilitate the use of CiCMs for regenerative medicine, disease modeling, and drug screening.
Collapse
Affiliation(s)
- Yoonhee Jin
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyeok Kim
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sungjin Min
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Yi Sun Choi
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung Ju Seo
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Eunseon Jeong
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Su Kyeom Kim
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyang-Ae Lee
- Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Sung-Hyun Jo
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Jae-Hyun Park
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Bong-Woo Park
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Woo-Sup Sim
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jin-Ju Kim
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Kiwon Ban
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Hun-Jun Park
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
142
|
Extracellular Matrix-Based Approaches in Cardiac Regeneration: Challenges and Opportunities. Int J Mol Sci 2022; 23:ijms232415783. [PMID: 36555424 PMCID: PMC9779713 DOI: 10.3390/ijms232415783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Cardiac development is characterized by the active proliferation of different cardiac cell types, in particular cardiomyocytes and endothelial cells, that eventually build the beating heart. In mammals, these cells lose their regenerative potential early after birth, representing a major obstacle to our current capacity to restore the myocardial structure and function after an injury. Increasing evidence indicates that the cardiac extracellular matrix (ECM) actively regulates and orchestrates the proliferation, differentiation, and migration of cardiac cells within the heart, and that any change in either the composition of the ECM or its mechanical properties ultimately affect the behavior of these cells throughout one's life. Thus, understanding the role of ECMs' proteins and related signaling pathways on cardiac cell proliferation is essential to develop effective strategies fostering the regeneration of a damaged heart. This review provides an overview of the components of the ECM and its mechanical properties, whose function in cardiac regeneration has been elucidated, with a major focus on the strengths and weaknesses of the experimental models so far exploited to demonstrate the actual pro-regenerative capacity of the components of the ECM and to translate this knowledge into new therapies.
Collapse
|
143
|
Kairalla EC, Bressiani JC, de Almeida Bressiani AH, de Carvalho Pinto Ribela MT, Higa OZ, de Queiroz AAA. Physicochemical and biological properties of nanohydroxyapatite grafted with star-shaped poly(ε-caprolactone). JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2353-2384. [PMID: 35876732 DOI: 10.1080/09205063.2022.2104599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To overcome the disadvantages generated by the lack of interfacial bonding between hydroxyapatite nanocrystals (HAPN) and agglomeration of particles in the development of biodegradable nanocomposites a chemical grafting method was applied to modify the surface of HAPN through grafting of the three-arms star-shaped poly(ε-caprolactone) (SPCL) onto the nanoparticles. The chemical grafting of SPCL onto HAPN (SPCL-g-HAPN) has been investigated using Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy (TEM), photoelectron spectroscopy, X-ray diffraction, zeta potential (ZP) and contact angle (CA). TEM micrographs of the SPCL-g-HAPN revealed the existence of hybrid organic/inorganic (O/I) nanoscale domains. The results of albumin (HSA) and fibrinogen (HFb) adsorption indicate resistance to HFb adsorption by SPCL-g-HAPN relatively to unmodified HAPN. The ZP and CA measurement suggest a heterogeneous topology for SPCL-g-HAPN likely due to the existence of hydrophobic-hydrophilic regions on the nanocomposite surface. The enzyme degradation by cholesterol esterase and lipase indicates that the rates of hydrolysis for SPCL-g-HAPN were very slow relative to the SPCL/HAPN blends. The in vitro biological studies showed that the human osteoblast-like cells (MG-63) cells had normal morphology and they were able to attach and spread out on SPCL-g-HAPN surfaces. A higher overall cellular proliferation was observed on SPCL-g-HAPN scaffolds compared to pure HAPN or SPCL materials.
Collapse
Affiliation(s)
- Eleni Cristina Kairalla
- Centro de Biotecnologia - CEBIO, Instituto de Pesquisas Energéticas e Nucleares (IPEN), São Paulo, SP, Brazil
| | - José Carlos Bressiani
- Centro de Biotecnologia - CEBIO, Instituto de Pesquisas Energéticas e Nucleares (IPEN), São Paulo, SP, Brazil
| | | | | | - Olga Zazuco Higa
- Centro de Biotecnologia - CEBIO, Instituto de Pesquisas Energéticas e Nucleares (IPEN), São Paulo, SP, Brazil
| | | |
Collapse
|
144
|
Perspectives et voies de recherche dans les allotransplantations composites vasculaires. BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2022. [DOI: 10.1016/j.banm.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
145
|
Cardiac fibroblasts and mechanosensation in heart development, health and disease. Nat Rev Cardiol 2022; 20:309-324. [PMID: 36376437 DOI: 10.1038/s41569-022-00799-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
Abstract
The term 'mechanosensation' describes the capacity of cells to translate mechanical stimuli into the coordinated regulation of intracellular signals, cellular function, gene expression and epigenetic programming. This capacity is related not only to the sensitivity of the cells to tissue motion, but also to the decryption of tissue geometric arrangement and mechanical properties. The cardiac stroma, composed of fibroblasts, has been historically considered a mechanically passive component of the heart. However, the latest research suggests that the mechanical functions of these cells are an active and necessary component of the developmental biology programme of the heart that is involved in myocardial growth and homeostasis, and a crucial determinant of cardiac repair and disease. In this Review, we discuss the general concept of cell mechanosensation and force generation as potent regulators in heart development and pathology, and describe the integration of mechanical and biohumoral pathways predisposing the heart to fibrosis and failure. Next, we address the use of 3D culture systems to integrate tissue mechanics to mimic cardiac remodelling. Finally, we highlight the potential of mechanotherapeutic strategies, including pharmacological treatment and device-mediated left ventricular unloading, to reverse remodelling in the failing heart.
Collapse
|
146
|
McInnes AD, Moser MAJ, Chen X. Preparation and Use of Decellularized Extracellular Matrix for Tissue Engineering. J Funct Biomater 2022; 13:jfb13040240. [PMID: 36412881 PMCID: PMC9680265 DOI: 10.3390/jfb13040240] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/22/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
The multidisciplinary fields of tissue engineering and regenerative medicine have the potential to revolutionize the practise of medicine through the abilities to repair, regenerate, or replace tissues and organs with functional engineered constructs. To this end, tissue engineering combines scaffolding materials with cells and biologically active molecules into constructs with the appropriate structures and properties for tissue/organ regeneration, where scaffolding materials and biomolecules are the keys to mimic the native extracellular matrix (ECM). For this, one emerging way is to decellularize the native ECM into the materials suitable for, directly or in combination with other materials, creating functional constructs. Over the past decade, decellularized ECM (or dECM) has greatly facilitated the advance of tissue engineering and regenerative medicine, while being challenged in many ways. This article reviews the recent development of dECM for tissue engineering and regenerative medicine, with a focus on the preparation of dECM along with its influence on cell culture, the modification of dECM for use as a scaffolding material, and the novel techniques and emerging trends in processing dECM into functional constructs. We highlight the success of dECM and constructs in the in vitro, in vivo, and clinical applications and further identify the key issues and challenges involved, along with a discussion of future research directions.
Collapse
Affiliation(s)
- Adam D. McInnes
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Correspondence: ; Tel.: +1-306-966-5435
| | - Michael A. J. Moser
- Department of Surgery, Health Sciences Building, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
147
|
Gierek M, Łabuś W, Kitala D, Lorek A, Ochała-Gierek G, Zagórska KM, Waniczek D, Szyluk K, Niemiec P. Human Acellular Dermal Matrix in Reconstructive Surgery-A Review. Biomedicines 2022; 10:2870. [PMID: 36359387 PMCID: PMC9687949 DOI: 10.3390/biomedicines10112870] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/05/2022] [Accepted: 11/08/2022] [Indexed: 07/30/2023] Open
Abstract
Reconstructive surgery often confronts large tissue defects. This creates a need to look for materials that are immunogenic but offer the possibility of tissue filling. ADM-acellular dermal matrix-is a biological collagen matrix without immunogenicity, which is more commonly used in surgical treatment. Reconstructive surgery is still searching for various biocompatible materials that can be widely used in surgery. The available materials have their advantages and disadvantages. This paper is a literature review on the use of human acellular dermal matrix (ADM) in reconstructive surgery (surgical oncology, plastic and reconstructive surgery, and gynecologic reconstructive surgery). ADM appears to be a material of increasing use in various fields of surgery, and thus, further research in this area is required.
Collapse
Affiliation(s)
- Marcin Gierek
- Dr Stanislaw Sakiel Burn Treatment Centre in Siemianowice Slaskie, 41-100 Siemianowice Slaskie, Poland
| | - Wojciech Łabuś
- Dr Stanislaw Sakiel Burn Treatment Centre in Siemianowice Slaskie, 41-100 Siemianowice Slaskie, Poland
| | - Diana Kitala
- Dr Stanislaw Sakiel Burn Treatment Centre in Siemianowice Slaskie, 41-100 Siemianowice Slaskie, Poland
| | - Andrzej Lorek
- Department of Surgical Oncology, University Medical Center, Silesian Medical University, ul. Ceglana 35, 40-514 Katowice, Poland
| | - Gabriela Ochała-Gierek
- Dermatology Department, City Hospital in Sosnowiec, ul. Zegadłowicza 3, 41-200 Sosnowiec, Poland
| | - Karolina Mikuś Zagórska
- Dr Stanislaw Sakiel Burn Treatment Centre in Siemianowice Slaskie, 41-100 Siemianowice Slaskie, Poland
| | - Dariusz Waniczek
- Department of Surgical Oncology, University Medical Center, Silesian Medical University, ul. Ceglana 35, 40-514 Katowice, Poland
| | - Karol Szyluk
- Department of Physiotherapy, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
- Department of Orthopaedic and Trauma Surgery, District Hospital of Orthopaedics and Trauma Surgery, 41-940 Piekary Śląskie, Poland
| | - Paweł Niemiec
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
| |
Collapse
|
148
|
Grilli F, Pitton M, Altomare L, Farè S. Decellularized fennel and dill leaves as possible 3D channel network in GelMA for the development of an in vitro adipose tissue model. Front Bioeng Biotechnol 2022; 10:984805. [DOI: 10.3389/fbioe.2022.984805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
The development of 3D scaffold-based models would represent a great step forward in cancer research, offering the possibility of predicting the potential in vivo response to targeted anticancer or anti-angiogenic therapies. As regards, 3D in vitro models require proper materials, which faithfully recapitulated extracellular matrix (ECM) properties, adequate cell lines, and an efficient vascular network. The aim of this work is to investigate the possible realization of an in vitro 3D scaffold-based model of adipose tissue, by incorporating decellularized 3D plant structures within the scaffold. In particular, in order to obtain an adipose matrix capable of mimicking the composition of the adipose tissue, methacrylated gelatin (GelMA), UV photo-crosslinkable, was selected. Decellularized fennel, wild fennel and, dill leaves have been incorporated into the GelMA hydrogel before crosslinking, to mimic a 3D channel network. All leaves showed a loss of pigmentation after the decellularization with channel dimensions ranging from 100 to 500 µm up to 3 μm, comparable with those of human microcirculation (5–10 µm). The photo-crosslinking process was not affected by the embedded plant structures in GelMA hydrogels. In fact, the weight variation test, performed on hydrogels with or without decellularized leaves showed a weight loss in the first 96 h, followed by a stability plateau up to 5 weeks. No cytotoxic effects were detected comparing the three prepared GelMA/D-leaf structures; moreover, the ability of the samples to stimulate differentiation of 3T3-L1 preadipocytes in mature adipocytes was investigated, and cells were able to grow and proliferate in the structure, colonizing the entire microenvironment and starting to differentiate. The developed GelMA hydrogels mimicked adipose tissue together with the incorporated plant structures seem to be an adequate solution to ensure an efficient vascular system for a 3D in vitro model. The obtained results showed the potentiality of the innovative proposed approach to mimic the tumoral microenvironment in 3D scaffold-based models.
Collapse
|
149
|
Barbulescu GI, Bojin FM, Ordodi VL, Goje ID, Barbulescu AS, Paunescu V. Decellularized Extracellular Matrix Scaffolds for Cardiovascular Tissue Engineering: Current Techniques and Challenges. Int J Mol Sci 2022; 23:13040. [PMID: 36361824 PMCID: PMC9658138 DOI: 10.3390/ijms232113040] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 08/13/2023] Open
Abstract
Cardiovascular diseases are the leading cause of global mortality. Over the past two decades, researchers have tried to provide novel solutions for end-stage heart failure to address cardiac transplantation hurdles such as donor organ shortage, chronic rejection, and life-long immunosuppression. Cardiac decellularized extracellular matrix (dECM) has been widely explored as a promising approach in tissue-regenerative medicine because of its remarkable similarity to the original tissue. Optimized decellularization protocols combining physical, chemical, and enzymatic agents have been developed to obtain the perfect balance between cell removal, ECM composition, and function maintenance. However, proper assessment of decellularized tissue composition is still needed before clinical translation. Recellularizing the acellular scaffold with organ-specific cells and evaluating the extent of cardiomyocyte repopulation is also challenging. This review aims to discuss the existing literature on decellularized cardiac scaffolds, especially on the advantages and methods of preparation, pointing out areas for improvement. Finally, an overview of the state of research regarding the application of cardiac dECM and future challenges in bioengineering a human heart suitable for transplantation is provided.
Collapse
Affiliation(s)
- Greta Ionela Barbulescu
- Immuno-Physiology and Biotechnologies Center (CIFBIOTEH), Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, No 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Department of Clinical Practical Skills, “Victor Babes” University of Medicine and Pharmacy, No 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Florina Maria Bojin
- Immuno-Physiology and Biotechnologies Center (CIFBIOTEH), Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, No 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, No 156 Liviu Rebreanu, 300723 Timisoara, Romania
| | - Valentin Laurentiu Ordodi
- Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, No 156 Liviu Rebreanu, 300723 Timisoara, Romania
- Faculty of Industrial Chemistry and Environmental Engineering, “Politehnica” University Timisoara, No 2 Victoriei Square, 300006 Timisoara, Romania
| | - Iacob Daniel Goje
- Department of Medical Semiology I, “Victor Babes” University of Medicine and Pharmacy, No 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Advanced Cardiology and Hemostaseology Research Center, “Victor Babes” University of Medicine and Pharmacy, No 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Andreea Severina Barbulescu
- Center for Advanced Research in Gastroenterology and Hepatology, Department of Internal Medicine II, Division of Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Virgil Paunescu
- Immuno-Physiology and Biotechnologies Center (CIFBIOTEH), Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, No 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, No 156 Liviu Rebreanu, 300723 Timisoara, Romania
| |
Collapse
|
150
|
Sultanpuram NR, Ahmed U, Peters JT, Zhang T, Wang AZ. TISSUE ENGINEERED CANCER METASTASES AS CANCER VACCINE TO IMPROVE CANCER IMMUNOTHERAPY. Acta Biomater 2022; 153:299-307. [PMID: 36174938 DOI: 10.1016/j.actbio.2022.09.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022]
Abstract
Radiotherapy is often used to improve cancer immunotherapy outcomes. While there are both pre-clinical and clinical data supporting this approach, there are also significant challenges. One key challenge is that not all patients have tumors that can be easily treated with radiotherapy due to potential normal tissue toxicity and prior treatment. In addition, it is difficult to control the tumor microenvironment to promote the immune response after radiosurgery. To overcome these challenges, we hypothesize that we can engineer cancer metastasis and utilize irradiated engineered tumor cells as a personalized cancer vaccine to improve cancer immunotherapy. Herein, we report the development of engineered lung metastasis using decellularized rat lung tissue. Using the B16F10 melanoma tumor model, we showed that radiotherapy-treated engineered metastases are highly effective in improving cancer immunotherapy responses and more effective than in vivo metastasis. Our work has demonstrated the potential of applying tissue engineering to cancer immunotherapy. STATEMENT OF SIGNIFICANCE: Combination of radiation and immunotherapy are an effective way to treat metastasis. Despite their success, long term response still remains low. Tumor microenvironment evading the immune response, normal tissue toxicity to radiation and inaccessibility to radiosurgery are some of the limitations. To overcome these challenges, in this paper we present with data supporting the use of high dose radiation treated ex vivo engineered B16F10 metastasis model using decellularized lung scaffolds. These engineered metastases closely mimic the in vivo tumors and when given into tumor bearing mice along with check point inhibitors are highly effective in improving the cancer immunotherapy response.
Collapse
Affiliation(s)
- Nikhila Reddy Sultanpuram
- Department of Radiation Oncology, UNC School of Medicine, Chapel Hill, NC; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Umer Ahmed
- Department of Radiation Oncology, UNC School of Medicine, Chapel Hill, NC
| | - Jonathan Thomas Peters
- Department of Radiation Oncology, UNC School of Medicine, Chapel Hill, NC; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Tian Zhang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Andrew Z Wang
- Department of Radiation Oncology, UNC School of Medicine, Chapel Hill, NC; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX.
| |
Collapse
|