101
|
Wu Y, Zhao W, Ou J. Stable, superfast and self-healing fluid coating with active corrosion resistance. Adv Colloid Interface Sci 2021; 295:102494. [PMID: 34343903 DOI: 10.1016/j.cis.2021.102494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Fluid material can recover from damage rapidly with no demand of external triggering in contrast with the traditional self-healing material which presents low healing efficiency and demands external triggering, such as heat, light, moisture, electricity, etc. However, due to its low viscosity, fluid material is easy to flow away from the surface and thus it is difficult to form a stable coating on the surface to provide practical corrosion resistance to the substrate. Herein, a stable and superfast self-healing coating on steel substrate has been obtained by incorporating carbon nanotube (CNT) into the fluid matrix of epoxy resin (EP) or silicone oil (OIL). To further achieve the active corrosion resistance, 1H, 1H, 2H, 2H- perfluorooctyltriethoxysilane (PTES) which can react with the water inside the coating is added. The coating possesses superfast (tens of seconds) self-healing properties against millimeter-scale scratch repeatedly and excellent corrosion resistance in the aqueous solution of HCl (1 M) and NaOH (1 M). In-situ self-healing and electrochemical behavior in scanning vibrating electrode technique (SVET) measurement indicate the fluid coating possesses infinite self-healing capacity theoretically. Due to its excellent durability and infinite self-healing capacity with short responding time, the optimized fluid coating can be a smart corrosion barrier coating for metals.
Collapse
|
102
|
Preparation and Mechanical Properties of Microcapsule-Based Self-Healing Cementitious Composites. MATERIALS 2021; 14:ma14174866. [PMID: 34500957 PMCID: PMC8432664 DOI: 10.3390/ma14174866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/03/2022]
Abstract
Self-healing concrete designs can protect against deterioration and improve durability. However, there is no unified conclusion regarding the effective preparation and mechanical properties of self-healing concrete. In this paper, microcapsules are used in cement-based materials, the reasonable dosage of microcapsules is determined, and the self-healing performance of the microcapsule self-healing system under different curing agents is explored. The microcapsules and curing agent are shown to enhance the flexural and compressive strength of mortar specimens at relatively low contents. The optimal microcapsule content in terms of compressive strength is 1–3%. When the content of the microcapsule reaches 7%, the strength of the specimen decreases by approximately 30%. Sodium fluorosilicate is better-suited to the microcapsule self-healing cement-based system than the other two fluorosilicates, potassium fluorosilicate and magnesium, which have similarly poor healing performance as curing agents. Healing time also appears to significantly influence the microcapsule self-healing system; mortar specimens that healed for 28 days are significantly higher than those that healed for 7 days. This work may provide a valuable reference for the design and preparation of self-healing cementitious composite structures.
Collapse
|
103
|
Dynamic Oxime-Urethane Bonds, a Versatile Unit of High Performance Self-healing Polymers for Diverse Applications. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2625-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
104
|
|
105
|
Preparation of room-temperature self-healing elastomers with high strength based on multiple dynamic bonds. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110614] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
106
|
Rathod HJ, Ouisse T, Radovic M, Srivastava A. Room temperature crack-healing in an atomically layered ternary carbide. SCIENCE ADVANCES 2021; 7:7/33/eabg2549. [PMID: 34380615 PMCID: PMC8357239 DOI: 10.1126/sciadv.abg2549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Ceramic materials provide outstanding chemical and structural stability at high temperatures and in hostile environments but are susceptible to catastrophic fracture that severely limits their applicability. Traditional approaches to partially overcome this limitation rely on activating toughening mechanisms during crack growth to postpone fracture. Here, we demonstrate a more potent toughening mechanism that involves an intriguing possibility of healing the cracks as they form, even at room temperature, in an atomically layered ternary carbide. Crystals of this class of ceramic materials readily fracture along weakly bonded crystallographic planes. However, the onset of an abstruse mode of deformation, referred to as kinking in these materials, induces large crystallographic rotations and plastic deformation that physically heal the cracks. This implies that the toughness of numerous other layered ceramic materials, whose broader applications have been limited by their susceptibility to catastrophic fracture, can also be enhanced by microstructural engineering to promote kinking and crack-healing.
Collapse
Affiliation(s)
- Hemant J Rathod
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Thierry Ouisse
- Université Grenoble Alpes, CNRS, Grenoble INP, LMGP, F-38000 Grenoble, France
| | - Miladin Radovic
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Ankit Srivastava
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
107
|
Shi C, Zou Z, Lei Z, Zhu P, Nie G, Zhang W, Xiao J. Stretchable, Rehealable, Recyclable, and Reconfigurable Integrated Strain Sensor for Joint Motion and Respiration Monitoring. RESEARCH 2021; 2021:9846036. [PMID: 34396138 PMCID: PMC8347367 DOI: 10.34133/2021/9846036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/16/2021] [Indexed: 11/16/2022]
Abstract
Cutting-edge technologies of stretchable, skin-mountable, and wearable electronics have attracted tremendous attention recently due to their very wide applications and promising performances. One direction of particular interest is to investigate novel properties in stretchable electronics by exploring multifunctional materials. Here, we report an integrated strain sensing system that is highly stretchable, rehealable, fully recyclable, and reconfigurable. This system consists of dynamic covalent thermoset polyimine as the moldable substrate and encapsulation, eutectic liquid metal alloy as the strain sensing unit and interconnects, and off-the-shelf chip components for measuring and magnifying functions. The device can be attached on different parts of the human body for accurately monitoring joint motion and respiration. Such a strain sensing system provides a reliable, economical, and ecofriendly solution to wearable technologies, with wide applications in health care, prosthetics, robotics, and biomedical devices.
Collapse
Affiliation(s)
- Chuanqian Shi
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA.,School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Zhanan Zou
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Pengcheng Zhu
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA.,School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Guohua Nie
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Jianliang Xiao
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
108
|
Hu X, Zeng T, Husic CC, Robb MJ. Mechanically Triggered Release of Functionally Diverse Molecular Payloads from Masked 2-Furylcarbinol Derivatives. ACS CENTRAL SCIENCE 2021; 7:1216-1224. [PMID: 34345671 PMCID: PMC8323246 DOI: 10.1021/acscentsci.1c00460] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 05/27/2023]
Abstract
Polymers that release functional small molecules in response to mechanical force are appealing targets for drug delivery, sensing, catalysis, and many other applications. Mechanically sensitive molecules called mechanophores are uniquely suited to enable molecular release with excellent selectivity and control, but mechanophore designs capable of releasing cargo with diverse chemical functionality are limited. Here, we describe a general and highly modular mechanophore platform based on masked 2-furylcarbinol derivatives that spontaneously decompose under mild conditions upon liberation via a mechanically triggered reaction, resulting in the release of a covalently installed molecular payload. We identify key structure-property relationships for the reactivity of 2-furylcarbinol derivatives that enable the mechanically triggered release of functionally diverse molecular cargo with release kinetics being tunable over several orders of magnitude. In particular, the incorporation of an electron-donating phenoxy group on the furan ring in combination with an α-methyl substituent dramatically lowers the activation barrier for fragmentation, providing a highly active substrate for molecular release. Moreover, we find that phenoxy substitution enhances the thermal stability of the mechanophore without adversely affecting its mechanochemical reactivity. The generality and efficacy of this molecular design platform are demonstrated using ultrasound-induced mechanical force to trigger the efficient release of a broad scope of cargo molecules, including those bearing alcohol, phenol, alkylamine, arylamine, carboxylic acid, and sulfonic acid functional groups.
Collapse
Affiliation(s)
- Xiaoran Hu
- Division of Chemistry and Chemical
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Tian Zeng
- Division of Chemistry and Chemical
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Corey C. Husic
- Division of Chemistry and Chemical
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Maxwell J. Robb
- Division of Chemistry and Chemical
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
109
|
Wang DP, Zhao ZH, Li CH. Universal Self-Healing Poly(dimethylsiloxane) Polymer Crosslinked Predominantly by Physical Entanglements. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31129-31139. [PMID: 34156814 DOI: 10.1021/acsami.1c06521] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Harsh conditions are inevitable for long-term use of self-healing polymers. However, the majority of reported self-healing materials cannot remain stable under harsh conditions due to the presence of vulnerable dynamic crosslinking sites. Herein, a universal self-healing poly(dimethylsiloxane) (PDMS) polymer is reported. In our design, the PDMS polymer chains are crosslinked predominantly through physical entanglements. Owing to the invulnerable nature of the entanglement junctions and high mobility of polymer chains, the as-synthesized polymer exhibits autonomous self-healing capabilities not only under ambient conditions but also in a variety of harsh environments, including aqueous solutions, organic solvents, and extreme conditions (strong acid/alkali, redox agents, freezing temperature). Moreover, this polymer can be easily integrated with a eutectic gallium-indium (EGaIn) alloy to achieve layer-by-layer self-healing electronic skin sensors, which realize the combination of excellent electrical conductivity, long-term sensing stability, and universal self-healing capability.
Collapse
Affiliation(s)
- Da-Peng Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Zi-Han Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Cheng-Hui Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
110
|
Tamesue S, Saito Y, Toita R. Salinity durable self-healing hydrogels as functional biomimetic systems based on the intercalation of polymer ions into mica. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
111
|
Gomez EF, Wanasinghe SV, Flynn AE, Dodo OJ, Sparks JL, Baldwin LA, Tabor CE, Durstock MF, Konkolewicz D, Thrasher CJ. 3D-Printed Self-Healing Elastomers for Modular Soft Robotics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28870-28877. [PMID: 34124888 DOI: 10.1021/acsami.1c06419] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Advances in materials, designs, and controls are propelling the field of soft robotics at an incredible rate; however, current methods for prototyping soft robots remain cumbersome and struggle to incorporate desirable geometric complexity. Herein, a vat photopolymerizable self-healing elastomer system capable of extreme elongations up to 1000% is presented. The material is formed from a combination of thiol/acrylate mixed chain/step-growth polymerizations and uses a combination of physical processes and dynamic-bond exchange via thioethers to achieve full self-healing capacity over multiple damage/healing cycles. These elastomers can be three dimensional (3D) printed with modular designs capable of healing together to form highly complex and large functional soft robots. Additionally, these materials show reprogrammable resting shapes and compatibility with self-healing liquid metal electronics. Using these capabilities, subcomponents with multiple internal channel systems were printed, healed together, and combined with functional liquid metals to form a high-wattage pneumatic switch and a humanoid-scale soft robotic gripper. The combination of 3D printing and self-healing elastomeric materials allows for facile production of support-free parts with extreme complexity, resulting in a paradigm shift for the construction of modular soft robotics.
Collapse
Affiliation(s)
- Eliot F Gomez
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, United States
- UES Inc., Dayton, Ohio 45432, United States
| | - Shiwanka V Wanasinghe
- Department of Chemistry and Biochemistry, Miami University, 651 E High Street, Oxford, Ohio 45056, United States
| | - Alex E Flynn
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, United States
| | - Obed J Dodo
- Department of Chemistry and Biochemistry, Miami University, 651 E High Street, Oxford, Ohio 45056, United States
| | - Jessica L Sparks
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, 650 E High Street, Oxford, Ohio 45056, United States
| | - Luke A Baldwin
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, United States
| | - Christopher E Tabor
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, United States
| | - Michael F Durstock
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E High Street, Oxford, Ohio 45056, United States
| | - Carl J Thrasher
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, United States
- UES Inc., Dayton, Ohio 45432, United States
| |
Collapse
|
112
|
Affiliation(s)
- Panpan Li
- National Engineering Research Center for Colloidal Materials School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 P. R. China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry Shandong University Ministry of Education Jinan Shandong 250100 P. R. China
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 P. R. China
- Key Laboratory of Colloid and Interface Chemistry Shandong University Ministry of Education Jinan Shandong 250100 P. R. China
| |
Collapse
|
113
|
Rapid synchronized fabrication of vascularized thermosets and composites. Nat Commun 2021; 12:2836. [PMID: 33990579 PMCID: PMC8121863 DOI: 10.1038/s41467-021-23054-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Bioinspired vascular networks transport heat and mass in hydrogels, microfluidic devices, self-healing and self-cooling structures, filters, and flow batteries. Lengthy, multistep fabrication processes involving solvents, external heat, and vacuum hinder large-scale application of vascular networks in structural materials. Here, we report the rapid (seconds to minutes), scalable, and synchronized fabrication of vascular thermosets and fiber-reinforced composites under ambient conditions. The exothermic frontal polymerization (FP) of a liquid or gelled resin facilitates coordinated depolymerization of an embedded sacrificial template to create host structures with high-fidelity interconnected microchannels. The chemical energy released during matrix polymerization eliminates the need for a sustained external heat source and greatly reduces external energy consumption for processing. Programming the rate of depolymerization of the sacrificial thermoplastic to match the kinetics of FP has the potential to significantly expedite the fabrication of vascular structures with extended lifetimes, microreactors, and imaging phantoms for understanding capillary flow in biological systems. Bioinspired vascular networks transport heat and mass in multifunctional materials but lengthy multistep fabrication processes hinder large-scale application of structural vascular materials. Here, the authors report rapid, scalable, and synchronized fabrication of vascular thermosets and fiberreinforced composites under ambient conditions.
Collapse
|
114
|
Tan YJ, Susanto GJ, Anwar Ali HP, Tee BCK. Progress and Roadmap for Intelligent Self-Healing Materials in Autonomous Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002800. [PMID: 33346389 DOI: 10.1002/adma.202002800] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/05/2020] [Indexed: 06/12/2023]
Abstract
Robots are increasingly assisting humans in performing various tasks. Like special agents with elite skills, they can venture to distant locations and adverse environments, such as the deep sea and outer space. Micro/nanobots can also act as intrabody agents for healthcare applications. Self-healing materials that can autonomously perform repair functions are useful to address the unpredictability of the environment and the increasing drive toward the autonomous operation. Having self-healable robotic materials can potentially reduce costs, electronic wastes, and improve a robot endowed with such materials longevity. This review aims to serve as a roadmap driven by past advances and inspire future cross-disciplinary research in robotic materials and electronics. By first charting the history of self-healing materials, new avenues are provided to classify the various self-healing materials proposed over several decades. The materials and strategies for self-healing in robotics and stretchable electronics are also reviewed and discussed. It is believed that this article encourages further innovation in this exciting and emerging branch in robotics interfacing with material science and electronics.
Collapse
Affiliation(s)
- Yu Jun Tan
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
- Institute of Innovation in Health Technology (iHealthtech), National University of Singapore, Singapore, 117599, Singapore
| | - Glenys Jocelin Susanto
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Hashina Parveen Anwar Ali
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Benjamin C K Tee
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
- Institute of Innovation in Health Technology (iHealthtech), National University of Singapore, Singapore, 117599, Singapore
- Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- N.1 Institute of Health, National University of Singapore, Singapore
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, Singapore, 138634, Singapore
| |
Collapse
|
115
|
Abstract
Human-designed infrastructures and networks relying on centralized or hierarchical control are susceptible to single-point catastrophic failure when disrupted. By contrast, most complex biological systems employ distributed control and can be more robust to perturbations. In field experiments with Eciton burchellii army ants, we show that scaffold structures, self-assembled by living ants, emerge in response to disrupted traffic on inclines, facilitating traffic flow and stemming losses of foragers and prey. Informed by our observations, we present a theoretical model based on proportional control and negative feedback, which may be relevant to many distributed systems in which group-level properties can be modified through individual error sensing and correction. The mechanism is simple, and ants only require information about their individual state. An inherent strength of evolved collective systems is their ability to rapidly adapt to dynamic environmental conditions, offering resilience in the face of disruption. This is thought to arise when individual sensory inputs are filtered through local interactions, producing an adaptive response at the group level. To understand how simple rules encoded at the individual level can lead to the emergence of robust group-level (or distributed) control, we examined structures we call “scaffolds,” self-assembled by Eciton burchellii army ants on inclined surfaces that aid travel during foraging and migration. We conducted field experiments with wild E. burchellii colonies, manipulating the slope over which ants traversed, to examine the formation of scaffolds and their effects on foraging traffic. Our results show that scaffolds regularly form on inclined surfaces and that they reduce losses of foragers and prey, by reducing slipping and/or falling of ants, thus facilitating traffic flow. We describe the relative effects of environmental geometry and traffic on their growth and present a theoretical model to examine how the individual behaviors underlying scaffold formation drive group-level effects. Our model describes scaffold growth as a control response at the collective level that can emerge from individual error correction, requiring no complex communication among ants. We show that this model captures the dynamics observed in our experiments and is able to predict the growth—and final size—of scaffolds, and we show how the analytical solution allows for estimation of these dynamics.
Collapse
|
116
|
Raimondo M, Calabrese E, Binder WH, Michael P, Rana S, Guadagno L. Tunneling Atomic Force Microscopy Analysis of Supramolecular Self-Responsive Nanocomposites. Polymers (Basel) 2021; 13:1401. [PMID: 33926010 PMCID: PMC8123594 DOI: 10.3390/polym13091401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/10/2021] [Accepted: 04/22/2021] [Indexed: 11/26/2022] Open
Abstract
A big step forward for composite application in the sector of structural materials is given by the use of Multi-Wall Carbon Nanotubes (MWCNTs) functionalized with hydrogen bonding moieties, such as barbiturate and thymine, to activate self-healing mechanisms and integrate additional functionalities. These materials with multiple healing properties at the same damaged site, imparted by hydrogen bonds, will also have the potential to improve material reliability, extend the service life, reduce replacement costs, and improve product safety. This revolutionary approach is obtained by integrating the non-covalent interactions coupled with the conventional covalent approach used to cross-link the polymer. The objective of this work is to characterize rubber-toughened supramolecular self-healing epoxy formulations based on unfunctionalized and functionalized MWCNTs using Tunneling Atomic Force Microscopy (TUNA). This advanced technique clearly shows the effect produced by the hydrogen bonding moieties acting as reversible healing elements by their simultaneous donor and acceptor character, and covalently linked to MWCNTs to originate self-healing nanocomposites. In particular, TUNA proved to be very effective for the morphology study of both the unfunctionalized and functionalized carbon nanotube-based conductive networks, thus providing useful insights aimed at understanding the influence of the intrinsic nature of the nanocharge on the final properties of the multifunctional composites.
Collapse
Affiliation(s)
- Marialuigia Raimondo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (E.C.); (L.G.)
| | - Elisa Calabrese
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (E.C.); (L.G.)
| | - Wolfgang H. Binder
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany; (W.H.B.); (P.M.)
| | - Philipp Michael
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany; (W.H.B.); (P.M.)
| | - Sravendra Rana
- Department of Chemistry, University of Petroleum and Energy Studies (UPES), Dehradun 248007, India;
| | - Liberata Guadagno
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (E.C.); (L.G.)
| |
Collapse
|
117
|
Liu Y, Zheng J, Zhang X, Du Y, Yu G, Li K, Jia Y, Zhang Y. Bioinspired modified graphene oxide/polyurethane composites with rapid self-healing performance and excellent mechanical properties. RSC Adv 2021; 11:14665-14677. [PMID: 35423966 PMCID: PMC8698205 DOI: 10.1039/d1ra00944c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/02/2021] [Indexed: 11/28/2022] Open
Abstract
Self-healing efficiency and mechanical strength are always a pair of mechanical contradictions of a polymer. Herein, a series of novel mussel-inspired modified graphene oxide/polyurethane composites were successfully fabricated via rational molecular design and introducing hyperbranched polymer-modified graphene oxide. The composites exhibit outstanding self-healing performances with a self-healing efficiency of 87.9%. Especially, their self-healing properties possess exceptional water-insensitivity, which presents a high self-healing efficiency of 92.5% under 60 °C water for 2 h and 74.6% under 25 °C water for 6 h. Furthermore, the tensile strength of the composites increased by 107.7% with a high strain of 2170%. In addition, the composites show a remarkable recovery capability of 76.3% and 83.7% under tensile and compression loading, respectively, after 20 cycles. This strategy shows prominent application potential in high-performance solid propellants, protective coating, electronic skin, soft sensors and other water-insensitive devices. We successfully modified graphene oxide with amino-terminated hyperbranched polyamide(MGO), and obtained novel mussel-inspired MGO/polyurethane composites with outstanding self-healing and mechanical performances via rational molecular design.![]()
Collapse
Affiliation(s)
- Yahao Liu
- Shijiazhuang Campus, Army Engineering University Shijiazhuang 050003 China
| | - Jian Zheng
- Shijiazhuang Campus, Army Engineering University Shijiazhuang 050003 China
| | - Xiao Zhang
- Engineering University of PAP Xi'an 710086 China
| | - Yongqiang Du
- Shijiazhuang Campus, Army Engineering University Shijiazhuang 050003 China
| | - Guibo Yu
- Shijiazhuang Campus, Army Engineering University Shijiazhuang 050003 China
| | - Ke Li
- College of Naval Architecture and Ocean Engineering, Naval University of Engineering Wuhan 430033 China
| | - Yunfei Jia
- Shijiazhuang Campus, Army Engineering University Shijiazhuang 050003 China
| | - Yu Zhang
- Shijiazhuang Campus, Army Engineering University Shijiazhuang 050003 China
| |
Collapse
|
118
|
Mohamadhoseini M, Mohamadnia Z. Supramolecular self-healing materials via host-guest strategy between cyclodextrin and specific types of guest molecules. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213711] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
119
|
Peng T, Huang J, Gong Z, Ding J, Chen Y. Multiple cross‐linked networks enhanced
ENR
‐based composite with excellent self‐healing properties. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tao Peng
- School of Mechanical and Automotive Engineering South China University of Technology Guangzhou China
| | - Jiarong Huang
- School of Mechanical and Automotive Engineering South China University of Technology Guangzhou China
| | - Zhou Gong
- School of Mechanical and Automotive Engineering South China University of Technology Guangzhou China
| | - Jianping Ding
- College of Material Science and Engineering South China University of Technology Guangzhou China
| | - Yukun Chen
- College of Material Science and Engineering South China University of Technology Guangzhou China
| |
Collapse
|
120
|
Mussel-inspired and aromatic disulfide-mediated polyurea-urethane with rapid self-healing performance and water-resistance. J Colloid Interface Sci 2021; 593:105-115. [PMID: 33744521 DOI: 10.1016/j.jcis.2021.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 11/21/2022]
Abstract
Although lots of methods have been developed for self-healing materials, it remains a formidable challenge to achieve a thermosetting material with water-insensitive and self-healing properties at room temperature. Nature always provides intelligent strategies for developing advanced materials with superior properties. Herein, a novel self-healable polyurea-urethane was rationally designed by combining mussel adhesive protein-mimetic structure and dynamic aromatic disulfide bonds. It achieves high self-healing efficiency of 98.4% at room temperature for only 6 h and 90% at 60℃ for only 30 min without any external stimuli. Impressively, this self-healing capability possesses exceptional water-resistance, which presents high self-healing efficiency of 98.1% for 2 h and 82.1% for 6 h in 60℃ and 25℃ water, respectively. Besides, the designed polyurea-urethane exhibits excellent mechanical properties such as high elongation at break of 2400%, notch-insensitive stretching elongation of 1500% and notable recovery capability. This strategy shows promising application potential in solid propellants, protective coating, electronic skin, soft sensors and other water-resistant devices.
Collapse
|
121
|
Ruan S, Wei S, Gong W, Li Z, Gu J, Shen C. Strengthening, toughening, and self‐healing for carbon fiber/epoxy composites based on
PPESK
electrospun coaxial nanofibers. J Appl Polym Sci 2021. [DOI: 10.1002/app.50063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Shilun Ruan
- Department of Engineering Mechanics Dalian University of Technology Dalian Liaoning China
- State Key Laboratory of Structural Analysis for Industrial Equipment Dalian University of Technology Dalian Liaoning China
- Zhengzhou College of Dalian University of Technology Zhengzhou Henan China
| | - Shuya Wei
- Department of Engineering Mechanics Dalian University of Technology Dalian Liaoning China
| | - Wenzheng Gong
- School of Materials Science and Engineering Dalian University of Technology Dalian Liaoning China
| | - Zheng Li
- Department of Engineering Mechanics Dalian University of Technology Dalian Liaoning China
| | - Junfeng Gu
- Department of Engineering Mechanics Dalian University of Technology Dalian Liaoning China
| | - Changyu Shen
- Department of Engineering Mechanics Dalian University of Technology Dalian Liaoning China
- State Key Laboratory of Structural Analysis for Industrial Equipment Dalian University of Technology Dalian Liaoning China
| |
Collapse
|
122
|
He J, Song F, Li X, Chen L, Gong X, Tu W. A novel kind of room temperature self-healing poly(urethane-urea) with robust mechanical strength based on aromatic disulfide. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02433-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractAn innovative poly(urethane-urea) elastomer, which exhibited excellent stretchability, thermal stability and autonomous self-healing abilities, was synthesized from the commercially available poly(propylene glycol) (PPG), isophorone diisocyanate (IPDI), 2,4 / 2,6-toluene diisocyanate (80: 20, w / w) (TDI-80) and bis (2-aminophenyl) disulfide (DSDA). This aromatic disulfide containing poly(urethane-urea) (ss-PUs) achieved both rapid room temperature self-healing abilities and robust mechanical strength (the ultimate tensile strength was up to 4.20 ± 0.10 MPa and elongation at break was up to 954 ± 35.6%), through facile metathesis of the aromatic disulfides which embedded in hard segments. After the ss-PUs was cut into two-halves and reconnected, the mechanical properties could recover to ~ 90% of those of the original samples within 12 h at room temperature without extra self-healing agents or any change of environmental conditions.
Collapse
|
123
|
Scerrato D, Bersani AM, Giorgio I. Bio-Inspired Design of a Porous Resorbable Scaffold for Bone Reconstruction: A Preliminary Study. Biomimetics (Basel) 2021; 6:18. [PMID: 33802227 PMCID: PMC8006156 DOI: 10.3390/biomimetics6010018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
The study and imitation of the biological and mechanical systems present in nature and living beings always have been sources of inspiration for improving existent technologies and establishing new ones. Pursuing this line of thought, we consider an artificial graft typical in the bone reconstruction surgery with the same microstructure of the bone living tissue and examine the interaction between these two phases, namely bone and the graft material. Specifically, a visco-poroelastic second gradient model is adopted for the bone-graft composite system to describe it at a macroscopic level of observation. The second gradient formulation is employed to consider possibly size effects and as a macroscopic source of interstitial fluid flow, which is usually regarded as a key factor in bone remodeling. With the help of the proposed formulation and via a simple example, we show that the model can be used as a graft design tool. As a matter of fact, an optimization of the characteristics of the implant can be carried out by numerical investigations. In this paper, we observe that the size of the graft considerably influences the interaction between bone tissue and artificial bio-resorbable material and the possibility that the bone tissue might substitute more or less partially the foreign graft for better bone healing.
Collapse
Affiliation(s)
- Daria Scerrato
- Dipartimento di Scienze di Base ed Applicate per l’Ingegneria (SBAI), University of Rome La Sapienza, 00161 Roma, Italy;
- International Research Center for the Mathematics and Mechanics of Complex Systems (M&MoCS), University of L’Aquila, 67100 L’Aquila, Italy;
| | - Alberto Maria Bersani
- International Research Center for the Mathematics and Mechanics of Complex Systems (M&MoCS), University of L’Aquila, 67100 L’Aquila, Italy;
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMA), University of Rome La Sapienza, 00184 Roma, Italy
| | - Ivan Giorgio
- International Research Center for the Mathematics and Mechanics of Complex Systems (M&MoCS), University of L’Aquila, 67100 L’Aquila, Italy;
- Dipartimento di Ingegneria Civile, Edile-Architettura e Ambientale (DICEAA), University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
124
|
Malekkhouyan R, Neisiany RE, Khorasani SN, Das O, Berto F, Ramakrishna S. The influence of size and healing content on the performance of extrinsic self‐healing coatings. J Appl Polym Sci 2021. [DOI: 10.1002/app.49964] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Roya Malekkhouyan
- Department of Chemical Engineering Isfahan University of Technology Isfahan Iran
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering Hakim Sabzevari University Sabzevar Iran
| | | | - Oisik Das
- Department of Engineering Sciences and Mathematics Luleå University of Technology Luleå Sweden
| | - Filippo Berto
- Department of Mechanical and Industrial Engineering Norwegian University of Science and Technology NTNU Trondheim Norway
| | - Seeram Ramakrishna
- Department of Mechanical Engineering National University of Singapore Singapore Singapore
| |
Collapse
|
125
|
Preparation of mechanically robust and autonomous self-healable elastomer based on multiple dynamic interactions. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
126
|
Aguirresarobe RH, Nevejans S, Reck B, Irusta L, Sardon H, Asua JM, Ballard N. Healable and self-healing polyurethanes using dynamic chemistry. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101362] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
127
|
Mishnaevsky L. Sustainable End-of-Life Management of Wind Turbine Blades: Overview of Current and Coming Solutions. MATERIALS 2021; 14:ma14051124. [PMID: 33673684 PMCID: PMC7957806 DOI: 10.3390/ma14051124] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022]
Abstract
Various scenarios of end-of-life management of wind turbine blades are reviewed. “Reactive” strategies, designed to deal with already available, ageing turbines, installed in the 2000s, are discussed, among them, maintenance and repair, reuse, refurbishment and recycling. The main results and challenges of “pro-active strategies”, designed to ensure recyclability of new generations of wind turbines, are discussed. Among the main directions, the wind turbine blades with thermoplastic and recyclable thermoset composite matrices, as well as wood, bamboo and natural fiber-based composites were reviewed. It is argued that repair and reuse of wind turbine blades, and extension of the blade life has currently a number of advantages over other approaches. While new recyclable materials have been tested in laboratories, or in some cases on small or medium blades, there are remaining technological challenges for their utilization in large wind turbine blades.
Collapse
Affiliation(s)
- Leon Mishnaevsky
- Department of Wind Energy, Technical University of Denmark, 4000 Roskilde, Denmark
| |
Collapse
|
128
|
Orellana J, Moreno-Villoslada I, Bose RK, Picchioni F, Flores ME, Araya-Hermosilla R. Self-Healing Polymer Nanocomposite Materials by Joule Effect. Polymers (Basel) 2021; 13:649. [PMID: 33671610 PMCID: PMC7926402 DOI: 10.3390/polym13040649] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 12/29/2022] Open
Abstract
Nowadays, the self-healing approach in materials science mainly relies on functionalized polymers used as matrices in nanocomposites. Through different physicochemical pathways and stimuli, these materials can undergo self-repairing mechanisms that represent a great advantage to prolonging materials service-life, thus avoiding early disposal. Particularly, the use of the Joule effect as an external stimulus for self-healing in conductive nanocomposites is under-reported in the literature. However, it is of particular importance because it incorporates nanofillers with tunable features thus producing multifunctional materials. The aim of this review is the comprehensive analysis of conductive polymer nanocomposites presenting reversible dynamic bonds and their energetical activation to perform self-healing through the Joule effect.
Collapse
Affiliation(s)
- Jaime Orellana
- Magíster en Química con Mención en Tecnología de los Materiales, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile;
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, P.O. Box 8940577, San Joaquín, Santiago 8940000, Chile
| | - Ignacio Moreno-Villoslada
- Laboratorio de Polímeros, Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Ranjita K. Bose
- Department of Chemical Product Engineering, ENTEG, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands; (R.K.B.); (F.P.)
| | - Francesco Picchioni
- Department of Chemical Product Engineering, ENTEG, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands; (R.K.B.); (F.P.)
| | - Mario E. Flores
- Laboratorio de Polímeros, Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Rodrigo Araya-Hermosilla
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, P.O. Box 8940577, San Joaquín, Santiago 8940000, Chile
| |
Collapse
|
129
|
Pittala RK, Ben BS, Ben BA. Self‐healing performance assessment of epoxy resin and amine hardener encapsulated polymethyl methacrylate microcapsules reinforced epoxy composite. J Appl Polym Sci 2021. [DOI: 10.1002/app.50550] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Raj Kumar Pittala
- Department of Mechanical Engineering National Institute of Technology Warangal Telangana India
| | - B. Satish Ben
- Department of Mechanical Engineering National Institute of Technology Warangal Telangana India
| | - B. Avinash Ben
- Department of Mechanical Engineering Avanthi Institute of Engineering & Technology Visakhapatnam Andhra Pradesh India
| |
Collapse
|
130
|
Wu H, Liu X, Sheng D, Zhou Y, Xu S, Xie H, Tian X, Sun Y, Shi B, Yang Y. High performance and near body temperature induced self-healing thermoplastic polyurethane based on dynamic disulfide and hydrogen bonds. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123261] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
131
|
Zhang H, Yang S, Yang Z, Wang D, Han J, Li C, Zhu C, Xu J, Zhao N. An Extremely Stretchable and Self-Healable Supramolecular Polymer Network. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4499-4507. [PMID: 33433191 DOI: 10.1021/acsami.0c19560] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The construction of a single polymer network with extreme stretchability, relatively high mechanical strength, and fast and facile autonomous room-temperature self-healing capability still remains a challenge. Herein, supramolecular polymer networks are fabricated by synergistically incorporating metal-ligand and hydrogen bonds in poly(propylene glycol) (PPG). The representative specimen, PPG-Im-MDA-1.5-0.25-Cu, shows a combination of notable mechanical properties involving an extreme stretching ratio of 346 ± 14× and a Young's modulus of 2.10 ± 0.14 MPa, which are superior to the previously reported extremely stretchable polymeric materials. Notably, the destroyed specimen can fully recover mechanical performances within 1 h. The tunability of mechanical properties and self-healing capability has been actualized by merely tailoring the content of a chain extender. The application of the as-prepared supramolecular PPG network in constructing a flexible and self-healable conductor has been demonstrated. This strategy provides some insights for preparing extremely stretchable and self-healable polymeric materials.
Collapse
Affiliation(s)
- Huan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shijia Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhusheng Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Juanjuan Han
- Center for Physicochemical Analysis and Measurement, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Cuihua Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Caizhen Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jian Xu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ning Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
132
|
Simonin L, Falco G, Pensec S, Dalmas F, Chenal JM, Ganachaud F, Marcellan A, Chazeau L, Bouteiller L. Macromolecular Additives to Turn a Thermoplastic Elastomer into a Self-Healing Material. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02352] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Léo Simonin
- Equipe Chimie des Polymères, Sorbonne Université, CNRS, IPCM, F-75005 Paris, France
| | - Guillaume Falco
- Univ Lyon, INSA-Lyon, CNRS UMR 5510, MATEIS, F-69621 Villeurbanne, France
| | - Sandrine Pensec
- Equipe Chimie des Polymères, Sorbonne Université, CNRS, IPCM, F-75005 Paris, France
| | - Florent Dalmas
- Univ Lyon, INSA-Lyon, CNRS UMR 5510, MATEIS, F-69621 Villeurbanne, France
| | - Jean-Marc Chenal
- Univ Lyon, INSA-Lyon, CNRS UMR 5510, MATEIS, F-69621 Villeurbanne, France
| | | | - Alba Marcellan
- Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, CNRS, Sorbonne Université, 75005 Paris, France
- Institut Universitaire de France (IUF), Paris, France
| | - Laurent Chazeau
- Univ Lyon, INSA-Lyon, CNRS UMR 5510, MATEIS, F-69621 Villeurbanne, France
| | - Laurent Bouteiller
- Equipe Chimie des Polymères, Sorbonne Université, CNRS, IPCM, F-75005 Paris, France
| |
Collapse
|
133
|
Mehta V, Rath SN. 3D printed microfluidic devices: a review focused on four fundamental manufacturing approaches and implications on the field of healthcare. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00112-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
134
|
Song K, Ye W, Gao X, Fang H, Zhang Y, Zhang Q, Li X, Yang S, Wei H, Ding Y. Synergy between dynamic covalent boronic ester and boron-nitrogen coordination: strategy for self-healing polyurethane elastomers at room temperature with unprecedented mechanical properties. MATERIALS HORIZONS 2021; 8:216-223. [PMID: 34821300 DOI: 10.1039/d0mh01142h] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Achieving mechanical robustness and highly efficient self-healing simultaneously at room temperature is always a formidable challenge for polymeric materials. Herein, a series of novel supramolecular polyurethane elastomers (SPUEs) are developed by incorporating dynamic covalent boronic ester and boron-nitrogen (B-N) coordination. The SPUEs demonstrate the highest tensile toughness (∼182.2 MJ m-3) to date for room-temperature self-healable polymers, as well as an excellent ultimate tensile strength (∼10.5 MPa) and ultra-high fracture energy (∼72 100 J m-2), respectively, owing to a synergetic quadruple dynamic mechanism. It is revealed that the B-N coordination not only facilitates the formation and dissociation of boronic ester at room temperature but also dramatically enhances the mechanical properties by the intermolecular coordinated chain crosslinking and intramolecular coordinated chain folding. Meanwhile, the B-N coordination and urethane hydrogen interaction also serve as sacrificial bonds, which rupture during stretching to dissipate energy and recover after release, leading to superior notch insensitiveness and recoverability. The SPUEs restore their mechanical robustness after self-healing at room temperature and the self-healing efficiency can be dramatically accelerated by surface wetting.
Collapse
Affiliation(s)
- Kai Song
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Calvino C. Polymer-Based Mechanochromic Composite Material Using Encapsulated Systems. Macromol Rapid Commun 2020; 42:e2000549. [PMID: 33270318 DOI: 10.1002/marc.202000549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/10/2020] [Indexed: 01/09/2023]
Abstract
The development of mechanochromic or self-reporting polymers that can indicate damage or fatigue of materials with an optical signal has become of paramount interest to ensure the reliability of the materials and prevent catastrophic failure. This technology can potentially find usefulness for various applications, including in situ monitoring of mechanical events and structural health monitoring systems. An emerging and versatile approach to achieve mechanochromic properties relies on the encapsulation of dye solutions that can be released and activated (chemically or physically) when the walls of the capsules are mechanically damaged. While the mechanochromic effect can be achieved with different types of dyes and operating principles, this framework can also be designed with encapsulating-containers of different shapes and shell materials, such as microcapsules, hollow glass fibers, vascular networks, and micelles, making this concept applicable to a broad range of polymer matrices. An overview of the different encapsulation approaches that have been employed to prepare mechanochromic polymers is given, with a focus on the containers used for this purpose. A brief description of the containers' preparation is provided, and their associated chromic operating principles and progress in their designs are reviewed.
Collapse
Affiliation(s)
- Céline Calvino
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S. Ellis Ave., Chicago, IL, 60637, USA
| |
Collapse
|
136
|
A review of smart electrospun fibers toward textiles. COMPOSITES COMMUNICATIONS 2020; 22:100506. [PMCID: PMC7497400 DOI: 10.1016/j.coco.2020.100506] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 05/24/2023]
Abstract
Electrospinning as a versatile technology has attracted a large amount of attention in the past few decades due to the facile way to produce micro- and nano-scale fibers featuring flexibility, large specific surface area and high porosity. Stimuli-responsive polymers are a class of smart materials that are capable of sensing surround environment and interacting with them. Therefore, the combination of electrospinning and smart materials could have a great deal of benefits over the development of smart fibers. In this review, it offers a comprehensive understanding of smart electrospun fibers toward textile applications. Firstly, the definition of smart fibers and the differences between interactive fibers and passive interactive fibers are briefly introduced. Then some interactive fibers made from temperature-, pH-, light-, electric field/electricity-, magnetic field-, multi-responsive polymers, as well as some polymers featuring piezoelectric and triboelectric effect which are suitable flexible electrics, are emphasized with their applications in the form of electrospun fibers. Afterwards, some passive and hybrid smart electrospun fibers are introduced. Finally, associated challenges and perspectives are summarized and discussed. Understanding of passive smart electrospun fibers and interactive smart electrospun fibers. The recent progress in flexible electronics from electrospun fibers. The recent progress in stimuli-responsive polymers applied in interactive smart electrospun fibers.
Collapse
|
137
|
Facile immobilization of graphene nanosheets onto PBO fibers via MOF-mediated coagulation strategy: Multifunctional interface with self-healing and ultraviolet-resistance performance. J Colloid Interface Sci 2020; 587:661-671. [PMID: 33239214 DOI: 10.1016/j.jcis.2020.11.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022]
Abstract
The surface of poly (p-phenylene benzobisoxazole) (PBO) fibers with self-healing and ultraviolet (UV)-resistance performance play the key role in prolonging their service lifespan. Although great advances have been made in the single aspect of above two properties, integration of self-healing and anti-UV performance into the surface of PBO fiber is still a challenge. In this study, the coagulation strategy mediated by metal-organic framework (MOF) is proposed to construct the multifunctional surface of PBO fibers. The spindle-like iron (III)-based MOF (MIL-88B-NH2) nanocrystals are firstly immobilized onto the surface of PBO-COOH through hydrothermal reaction, then serving as the medium layer to further immobilize sufficient graphene oxide (GO) nanosheets. Benefitting from the favorable near-infrared (NIR, 808 nm) photothermal conversion performance of GO nanolayers, the monofilament composite-PBO@Fe-MIL-88B-NH2-GO-TPU (thermoplastic polyurethane) exhibited a stable and high self-healing efficiency (approximately 80%) within five cycle times. Meanwhile, the cooperative adsorption and shielding weaken effects of MOF-GO nanolayers enabled PBO fibers with excellent anti-UV properties that are superior to much reported literatures after 96 h aging time and eventually increased by 75% compared with untreated PBO fiber. In view of the varieties and multifunctionalities of MOFs and carbon nanomaterials, MOF-mediated coagulation strategy would provide guidance for preparing multifunctional composite materials.
Collapse
|
138
|
Yang Y, Kamon Y, Lynd NA, Hashidzume A. Self-Healing Thermoplastic Elastomers Formed from Triblock Copolymers with Dense 1,2,3-Triazole Blocks. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yanqiong Yang
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yuri Kamon
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Nathaniel A. Lynd
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712-1589, United States
| | - Akihito Hashidzume
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
139
|
Osada T, Watabe A, Yamamoto J, Brouwer JC, Kwakernaak C, Ozaki S, van der Zwaag S, Sloof WG. Full strength and toughness recovery after repeated cracking and healing in bone-like high temperature ceramics. Sci Rep 2020; 10:18990. [PMID: 33149157 PMCID: PMC7643164 DOI: 10.1038/s41598-020-75552-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/13/2020] [Indexed: 11/09/2022] Open
Abstract
Bones of humans and animals combine two unique features, namely: they are brittle yet have a very high fracture toughness linked to the tortuosity of the crack path and they have the ability to repeatedly heal local fissures such that full recovery of overall mechanical properties is obtained even if the local bone structure is irreversibly changed by the healing process. Here it is demonstrated that Ti2AlC MAX phase metallo-ceramics also having a bone-like hierarchical microstructure and also failing along zig-zag fracture surfaces similarly demonstrate repeated full strength and toughness recovery at room temperature, even though the (high temperature) healing reaction involves the local formation of dense and brittle alumina within the crack. Full recovery of the fracture toughness depends on the healed zone thickness and process zone size formed in the alumina reaction product. A 3-dimensional finite element method (FEM) analysis of the data obtained from a newly designed wedge splitting test allowed full extraction of the local fracture properties of the healed cracks.
Collapse
Affiliation(s)
- Toshio Osada
- Research Center for Structural Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan.
| | - Aiko Watabe
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama, 240-8501, Japan
| | - Joji Yamamoto
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama, 240-8501, Japan
| | - Johannes C Brouwer
- Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - Cees Kwakernaak
- Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - Shingo Ozaki
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama, 240-8501, Japan
| | - Sybrand van der Zwaag
- Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft, The Netherlands
| | - Willem G Sloof
- Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands
| |
Collapse
|
140
|
Yang Y, Dang Z, Li Q, He J. Self-Healing of Electrical Damage in Polymers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002131. [PMID: 33173739 PMCID: PMC7610274 DOI: 10.1002/advs.202002131] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/17/2020] [Indexed: 05/13/2023]
Abstract
Polymers are widely used as dielectric components and electrical insulations in modern electronic devices and power systems in the industrial sector, transportation, and large appliances, among others, where electrical damage of the materials is one of the major factors threatening the reliability and service lifetime. Self-healing dielectric polymers, an emerging category of materials capable of recovering dielectric and insulating properties after electrical damage, are of promise to address this issue. This paper aims at summarizing the recent progress in the design and synthesis of self-healing dielectric polymers. The current understanding to the process of electrical degradation and damage in dielectric polymers is first introduced and the critical requirements in the self-healing of electrical damage are proposed. Then the feasibility of using self-healing strategies designed for repairing mechanical damage in the healing of electrical damage is evaluated, based on which the challenges and bottleneck issues are pointed out. The emerging self-healing methods specifically designed for healing electrical damage are highlighted and some useful mechanisms for developing novel self-healing dielectric polymers are proposed. It is concluded by providing a brief outlook and some potential directions in the future development toward practical applications in electronics and the electric power industry.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Power SystemDepartment of Electrical EngineeringTsinghua UniversityBeijing100084China
- Present address:
Simpson Querrey InstituteNorthwestern UniversityEvanstonIL60208USA
| | - Zhi‐Min Dang
- State Key Laboratory of Power SystemDepartment of Electrical EngineeringTsinghua UniversityBeijing100084China
| | - Qi Li
- State Key Laboratory of Power SystemDepartment of Electrical EngineeringTsinghua UniversityBeijing100084China
| | - Jinliang He
- State Key Laboratory of Power SystemDepartment of Electrical EngineeringTsinghua UniversityBeijing100084China
| |
Collapse
|
141
|
Shi C, Zou Z, Lei Z, Zhu P, Zhang W, Xiao J. Heterogeneous integration of rigid, soft, and liquid materials for self-healable, recyclable, and reconfigurable wearable electronics. SCIENCE ADVANCES 2020; 6:6/45/eabd0202. [PMID: 33158869 PMCID: PMC7673720 DOI: 10.1126/sciadv.abd0202] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/22/2020] [Indexed: 05/03/2023]
Abstract
Wearable electronics can be integrated with the human body for monitoring physical activities and health conditions, for human-computer interfaces, and for virtual/augmented reality. We here report a multifunctional wearable electronic system that combines advances in materials, chemistry, and mechanics to enable superior stretchability, self-healability, recyclability, and reconfigurability. This electronic system heterogeneously integrates rigid, soft, and liquid materials through a low-cost fabrication method. The properties reported in this wearable electronic system can find applications in many areas, including health care, robotics, and prosthetics, and can benefit the well-being, economy, and sustainability of our society.
Collapse
Affiliation(s)
- Chuanqian Shi
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
- Department of Mechanical Engineering, University of Colorado, Boulder, Boulder, CO 80309, USA
| | - Zhanan Zou
- Department of Mechanical Engineering, University of Colorado, Boulder, Boulder, CO 80309, USA
| | - Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Pengcheng Zhu
- Department of Mechanical Engineering, University of Colorado, Boulder, Boulder, CO 80309, USA
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Jianliang Xiao
- Department of Mechanical Engineering, University of Colorado, Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
142
|
Inkjet printed self-healable strain sensor based on graphene and magnetic iron oxide nano-composite on engineered polyurethane substrate. Sci Rep 2020; 10:18234. [PMID: 33106513 PMCID: PMC7589529 DOI: 10.1038/s41598-020-75175-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/13/2020] [Indexed: 01/09/2023] Open
Abstract
In recent years, self-healing property has getting tremendous attention in the future wearable electronic. This paper proposes a novel cut-able and highly stretchable strain sensor utilizing a self-healing function from magnetic force of magnetic iron oxide and graphene nano-composite on an engineered self-healable polyurethane substrate through commercialized inkjet printer DMP-3000. Inducing the magnetic property, magnetic iron oxide is applied to connect between graphene flacks in the nano-composite. To find the best nano-composite, the optimum graphene and magnetic iron oxide blending ratio is 1:1. The proposed sensor shows a high mechanical fracture recovery, sensitivity towards strain, and excellent self-healing property. The proposed devices maintain their performance over 10,000 times bending/relaxing cycles, and 94% of their function are recovered even after cutting them. The device also demonstrates stretchability up to 54.5% and a stretching factor is decreased down to 32.5% after cutting them. The gauge factor of the device is 271.4 at 35%, which means its sensitivity is good. Hence, these results may open a new opportunity towards the design and fabrication of future self-healing wearable strain sensors and their applied electronic devices.
Collapse
|
143
|
Liu Y, Liu X, Liu P, Chen X, Yu DG. Electrospun Multiple-Chamber Nanostructure and Its Potential Self-Healing Applications. Polymers (Basel) 2020; 12:polym12102413. [PMID: 33092138 PMCID: PMC7588901 DOI: 10.3390/polym12102413] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 12/19/2022] Open
Abstract
To address the life span of materials in the process of daily use, new types of structural nanofibers, fabricated by multifluid electrospinning to encapsulate both epoxy resin and amine curing agent, were embedded into an epoxy matrix to provide it with self-healing ability. The nanofibers, which have a polyacrylonitrile sheath holding two separate cores, had an average diameter of 300 ± 140 nm with a uniform size distribution. The prepared fibers had a linear morphology with a clear three-chamber inner structure, as verified by scanning electron microscope and transmission electron microscope images. The two core sections were composed of epoxy and amine curing agents, respectively, as demonstrated under the synergistic characterization of Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry. The TGA results disclosed that the core-shell nanofibers contained 9.06% triethylenetetramine and 20.71% cured epoxy. In the electrochemical corrosion experiment, self-healing coatings exhibited an effective anti-corrosion effect, unlike the composite without nanofibers. This complex nanostructure was proven to be an effective nanoreactor, which is useful to encapsulate reactive fluids. This engineering process by multiple-fluid electrospinning is the first time to prove that this special multiple-chamber structure has great potential in the field of self-healing.
Collapse
|
144
|
Low ZWK, Li Z, Owh C, Chee PL, Ye E, Dan K, Chan SY, Young DJ, Loh XJ. Recent innovations in artificial skin. Biomater Sci 2020; 8:776-797. [PMID: 31820749 DOI: 10.1039/c9bm01445d] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The skin is a "smart", multifunctional organ that is protective, self-healing and capable of sensing and many forms of artificial skins have been developed with properties and functionalities approximating those of natural skin. Starting from specific commercial products for the treatment of burns, progress in two fields of research has since allowed these remarkable materials to be viable skin replacements for a wide range of dermatological conditions. This review maps out the development of bioengineered skin replacements and synthetic skin substitutes, including electronic skins. The specific behaviors of these skins are highlighted, and the performances of both types of artificial skins are evaluated against this. Moving beyond mere replication, highly advanced artificial skin materials are also identified as potential augmented skins that can be used as flexible electronics for health-care monitoring and other applications.
Collapse
Affiliation(s)
- Zhi Wei Kenny Low
- Institute of Materials Research and Engineering, A*STAR, 2Fusionopolis Way, Innovis, #08-03, Singapore 138634.
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Li S, Zhou X, Dong Y, Li J. Flexible Self-Repairing Materials for Wearable Sensing Applications: Elastomers and Hydrogels. Macromol Rapid Commun 2020; 41:e2000444. [PMID: 32996221 DOI: 10.1002/marc.202000444] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/06/2020] [Indexed: 12/14/2022]
Abstract
Flexible pressure and strain sensors have great potential for applications in wearable and implantable devices, soft robots, and artificial skin. The introduction of self-healing performance has made a positive contribution to the lifetime and stability of flexible sensors. At present, many self-healing flexible sensors with high sensitivity have been developed to detect the signal of organism activity. The sensitivity, reliability, and stability of self-healing flexible sensors depend on the conductive network and mechanical properties of flexible materials. This review focuses on the latest research progress of self-healing flexible sensors. First, various repair mechanisms of self-healing flexible materials are reviewed because these mechanisms contribute to the development of self-healing flexible materials. Then, self-healing elastomer flexible sensor and self-healing hydrogel flexible sensor are introduced and discussed respectively. The research status and problems to be solved of these two types of flexible sensors are discussed in detail. Finally, this rapidly developing and promising field of self-healing flexible sensors and devices is prospected.
Collapse
Affiliation(s)
- Shaonan Li
- School of Chemistry and life sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xing Zhou
- School of Chemistry and life sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yanmao Dong
- School of Chemistry and life sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jihang Li
- School of Chemistry and life sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
146
|
Yan J, Tuhin MO, Sadler JD, Smith SD, Pasquinelli MA, Spontak RJ. Network topology and stability of homologous multiblock copolymer physical gels. J Chem Phys 2020; 153:124904. [PMID: 33003715 DOI: 10.1063/5.0028136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The mechanical properties of physical gels generated by selectively swelling a homologous series of linear multiblock copolymers are investigated by quasistatic uniaxial tensile tests. We use the slip-tube network model to extract the contributions arising from network crosslinks and chain entanglements. The composition dependence of these contributions is established and considered in terms of simulations that identify the probabilities associated with chain conformations. Dynamic rheology provides additional insight into the characteristics and thermal stability of the molecular networks.
Collapse
Affiliation(s)
- Jiaqi Yan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Mohammad O Tuhin
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - J David Sadler
- Corporate Research and Development, The Procter & Gamble Company, Cincinnati, Ohio 45224, USA
| | - Steven D Smith
- Corporate Research and Development, The Procter & Gamble Company, Cincinnati, Ohio 45224, USA
| | - Melissa A Pasquinelli
- Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Richard J Spontak
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
147
|
Li P, Zhong Y, Wang X, Hao J. Enzyme-Regulated Healable Polymeric Hydrogels. ACS CENTRAL SCIENCE 2020; 6:1507-1522. [PMID: 32999926 PMCID: PMC7517121 DOI: 10.1021/acscentsci.0c00768] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Indexed: 05/11/2023]
Abstract
The enzyme-regulated healable polymeric hydrogels are a kind of emerging soft material capable of repairing the structural defects and recovering the hydrogel properties, wherein their fabrication, self-healing, or degradation is mediated by enzymatic reactions. Despite achievements that have been made in controllable cross-linking and de-cross-linking of hydrogels by utilizing enzyme-catalyzed reactions in the past few years, this substrate-specific strategy for regulating healable polymeric hydrogels remains in its infancy, because both the intelligence and practicality of current man-made enzyme-regulated healable materials are far below the levels of living organisms. A systematic summary of current achievements and a reasonable prospect at this point can play positive roles for the future development in this field. This Outlook focuses on the emerging and rapidly developing research area of bioinspired enzyme-regulated self-healing polymeric hydrogel systems. The enzymatic fabrication and degradation of healable polymeric hydrogels, as well as the enzymatically regulated self-healing of polymeric hydrogels, are reviewed. The functions and applications of the enzyme-regulated healable polymeric hydrogels are discussed.
Collapse
Affiliation(s)
- Panpan Li
- National
Engineering Research Center for Colloidal Materials, School of Chemistry
and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yuanbo Zhong
- National
Engineering Research Center for Colloidal Materials, School of Chemistry
and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xu Wang
- National
Engineering Research Center for Colloidal Materials, School of Chemistry
and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jingcheng Hao
- Key
Laboratory of Colloid and Interface Chemistry and Key Laboratory of
Special Aggregated Materials of the Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
148
|
Qu Q, Wang H, He J, Qin T, Da Y, Tian X. Analysis of the microphase structure and performance of self-healing polyurethanes containing dynamic disulfide bonds. SOFT MATTER 2020; 16:9128-9139. [PMID: 32926046 DOI: 10.1039/d0sm01072c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-healable polyurethanes can be used in various fields for extended service life and reduced maintenance costs. It is generally believed that the shape memory effect is helpful for achieving a high healing efficiency. The morphological features were focused on in this study as microphase separation is one of the main factors affecting various performances of polyurethanes, including their shape memory behavior and mechanical properties. Microphase separation can be regulated by changing the content and types of the hard segments. With this in mind, polyurethanes from polycaprolactone diol, hexamethylene diisocyanate, and different chain extenders were synthesized, characterized, and designed as promising self-healing polymers. All the polyurethane specimens were equipped with a similar content of hard segments but diverse types, such as aliphatic, aromatic, and disulfide-bonded. Differential scanning calorimetry, thermogravimetric analysis, X-ray diffractometry, infrared spectroscopy, and atomic force microscopy were used to describe the microstructures of the polyurethanes, including the crystalline regions. The relationship between the microphase separation structures and material properties was focused on in this examination. Various properties, including the thermal stability, mechanical behavior, hydrophobicity, and self-healing efficiency showed significant differences due to the change in the hard segments' structure and multiphase distribution. The aliphatic disulfide stimulated the conformation of a proper microphase separation structure (the large heterogeneous structure at physical length scales as well as a more sufficient combination of soft and hard phases), which helped to improve the healing effect as much as possible by effective wound closure and the exchange reactions of disulfide bonds.
Collapse
Affiliation(s)
- Qiqi Qu
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China. and University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hua Wang
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China. and Hefei Institute of Technology Innovation, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Jing He
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China. and University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tengfei Qin
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China. and University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yunsheng Da
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China. and University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xingyou Tian
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
149
|
Polypeptide-based self-healing hydrogels: Design and biomedical applications. Acta Biomater 2020; 113:84-100. [PMID: 32634482 DOI: 10.1016/j.actbio.2020.07.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/20/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022]
Abstract
Self-healing hydrogels can heal themselves on the damaged sites, which opens up a fascinating way for enhancing lifetimes of materials. Polypeptide/poly(amino acid) is a class of polymers in which natural amino acid monomers or derivatives are linked by amide bonds with a stable and similar secondary structure as natural proteins (α-helix or β-fold). They have the advantages of nontoxicity, biodegradability, and low immunogenicity as well as easy modification. All these properties make polypeptides extremely suitable for the preparation of self-healing hydrogels for biomedical applications. In this review, we mainly focus on the progress in the fabrication strategies of polypeptide-based self-healing hydrogels and their biomedical applications in the recent 5 years. Various crosslinking methods for the preparation of polypeptide-based self-healing hydrogels are first introduced, including host-guest interactions, hydrogen bonding, electrostatic interactions, supramolecular self-assembly of β-sheets, and reversible covalent bonds of imine and hydrazone as well as molecular multi-interactions. Some representative biomedical applications of these self-healing hydrogels such as delivery system, tissue engineering, 3D-bioprinting, antibacterial and wound healing as well as bioadhesion and hemostasis are also summarized. Current challenges and perspectives in future for these "smart" hydrogels are proposed at the end . STATEMENT OF SIGNIFICANCE: Polypeptides with the advantages of nontoxicity, biodegradability, hydrophilicity and low immunogenicity, are extremely suitable for the preparation of self-healing hydrogels in biomedical applications. Recently, the researches of polypeptide-based self-healing hydrogel have drawn the great attentions for scientists and engineers. A review to summarize the recent progress in design and biomedical applications of these polypeptide-based self-healing hydrogels is highly needed. In this review, we mainly focus on the progress in fabrication strategies of polypeptide-based self-healing hydrogels and biomedical applications in recent five years and aim to draw the increased attention to the importance of these "smart" hydrogels, facilitating the advances in biomedical applications. We believe this work would draw interest from readers of Acta Biomaterialia.
Collapse
|
150
|
Osada T, Hara T, Mitome M, Ozaki S, Abe T, Kamoda K, Ohmura T. Self-healing by design: universal kinetic model of strength recovery in self-healing ceramics. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2020; 21:593-608. [PMID: 32939183 PMCID: PMC7476540 DOI: 10.1080/14686996.2020.1796468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
We propose a new theoretical kinetic model of strength recovery by oxidation-induced self-healing of surface cracks in composites containing a healing agent (HA). The kinetics is a key parameter in the design of structural components that can self-heal the damage done in service. Based on three-dimensional (3D) observations of crack-gap filling, two crack-gap filling models, i.e., a bridging model and a tip-to-mouth filling model, are incorporated in the proposed kinetic model. These crack-gap filling models account for the microstructural features of the fracture surfaces, crack geometry, and oxidation kinetics of the healing-agent. Hence, the minimum and maximum remaining flaw sizes in the healed crack gaps are estimated for various healing temperatures, times, and oxygen partial pressure conditions. Further, the nonlinear elastic fracture mechanics suitable for small-sized remaining flaws, together with a statistical analysis of the original Weibull-type strength distribution, enables the prediction of upper and lower strength limits of the healed composites. Three sintered alumina matrix composites containing silicon carbide (SiC)-type HAs with various volume fractions and shapes, together with monolithic SiC ceramics, are considered. The strength of the healed-composite predicted by our model agrees well with the experimental values. This theoretical approach can be applied to HAs other than SiC and enables the design of self-healing ceramic components for various applications.
Collapse
Affiliation(s)
- Toshio Osada
- Research Center for Structural Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Toru Hara
- Research Center for Structural Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Masanori Mitome
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Shingo Ozaki
- Faculty of Engineering, Yokohama National University, Yokohama, Japan
| | - Taichi Abe
- Research Center for Structural Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Kiichi Kamoda
- Research Center for Structural Materials, National Institute for Materials Science, Tsukuba, Japan
- Faculty of Engineering, Yokohama National University, Yokohama, Japan
| | - Takahito Ohmura
- Research Center for Structural Materials, National Institute for Materials Science, Tsukuba, Japan
| |
Collapse
|