101
|
Deng H, Gao Y, Trappetti V, Hertig D, Karatkevich D, Losmanova T, Urzi C, Ge H, Geest GA, Bruggmann R, Djonov V, Nuoffer JM, Vermathen P, Zamboni N, Riether C, Ochsenbein A, Peng RW, Kocher GJ, Schmid RA, Dorn P, Marti TM. Targeting lactate dehydrogenase B-dependent mitochondrial metabolism affects tumor initiating cells and inhibits tumorigenesis of non-small cell lung cancer by inducing mtDNA damage. Cell Mol Life Sci 2022; 79:445. [PMID: 35877003 PMCID: PMC9314287 DOI: 10.1007/s00018-022-04453-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 02/08/2023]
Abstract
Once considered a waste product of anaerobic cellular metabolism, lactate has been identified as a critical regulator of tumorigenesis, maintenance, and progression. The putative primary function of lactate dehydrogenase B (LDHB) is to catalyze the conversion of lactate to pyruvate; however, its role in regulating metabolism during tumorigenesis is largely unknown. To determine whether LDHB plays a pivotal role in tumorigenesis, we performed 2D and 3D in vitro experiments, utilized a conventional xenograft tumor model, and developed a novel genetically engineered mouse model (GEMM) of non-small cell lung cancer (NSCLC), in which we combined an LDHB deletion allele with an inducible model of lung adenocarcinoma driven by the concomitant loss of p53 (also known as Trp53) and expression of oncogenic KRAS (G12D) (KP). Here, we show that epithelial-like, tumor-initiating NSCLC cells feature oxidative phosphorylation (OXPHOS) phenotype that is regulated by LDHB-mediated lactate metabolism. We show that silencing of LDHB induces persistent mitochondrial DNA damage, decreases mitochondrial respiratory complex activity and OXPHOS, resulting in reduced levels of mitochondria-dependent metabolites, e.g., TCA intermediates, amino acids, and nucleotides. Inhibition of LDHB dramatically reduced the survival of tumor-initiating cells and sphere formation in vitro, which can be partially restored by nucleotide supplementation. In addition, LDHB silencing reduced tumor initiation and growth of xenograft tumors. Furthermore, we report for the first time that homozygous deletion of LDHB significantly reduced lung tumorigenesis upon the concomitant loss of Tp53 and expression of oncogenic KRAS without considerably affecting the animal's health status, thereby identifying LDHB as a potential target for NSCLC therapy. In conclusion, our study shows for the first time that LDHB is essential for the maintenance of mitochondrial metabolism, especially nucleotide metabolism, demonstrating that LDHB is crucial for the survival and proliferation of NSCLC tumor-initiating cells and tumorigenesis.
Collapse
Affiliation(s)
- Haibin Deng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Yanyun Gao
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Damian Hertig
- Department of Neuroradiology, University of Bern, Bern, Switzerland
- Institute of Clinical Chemistry, University Hospital Bern, Bern, Switzerland
| | - Darya Karatkevich
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Christian Urzi
- Department of Neuroradiology, University of Bern, Bern, Switzerland
- Institute of Clinical Chemistry, University Hospital Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Huixiang Ge
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Gerrit Adriaan Geest
- Interfaculty Bioinformatics Unit, Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Remy Bruggmann
- Interfaculty Bioinformatics Unit, Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | | | - Jean-Marc Nuoffer
- Department of Neuroradiology, University of Bern, Bern, Switzerland
- Department of Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital of Bern, Bern, Switzerland
| | - Peter Vermathen
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Nicola Zamboni
- Institute for Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Carsten Riether
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Adrian Ochsenbein
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Ren-Wang Peng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Gregor Jan Kocher
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Ralph Alexander Schmid
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
| | - Thomas Michael Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
102
|
Li LJ, Li CH, Chang PMH, Lai TC, Yong CY, Feng SW, Hsiao M, Chang WM, Huang CYF. Dehydroepiandrosterone (DHEA) Sensitizes Irinotecan to Suppress Head and Neck Cancer Stem-Like Cells by Downregulation of WNT Signaling. Front Oncol 2022; 12:775541. [PMID: 35912234 PMCID: PMC9328800 DOI: 10.3389/fonc.2022.775541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Current treatment options for head and neck squamous cell carcinoma (HNSCC) are limited, especially for cases with cancer stem cell-induced chemoresistance and recurrence. The WNT signaling pathway contributes to maintenance of stemness via translocation of β-catenin into the nucleus, and represents a promising druggable target in HNSCC. Dehydroepiandrosterone (DHEA), a steroid hormone, has potential as an anticancer drug. However, the potential anticancer mechanisms of DHEA including inhibition of stemness, and its therapeutic applications in HNSCC remain unclear. Methods Firstly, SRB assay and sphere formation assay were used to examine cellular viability and cancer stem cell-like phenotype, respectively. The expressions of stemness related factors were measured by RT-qPCR and western blotting. The luciferase reporter assay was applied to evaluate transcriptional potential of stemness related pathways. The alternations of WNT signaling pathway were measured by nuclear translocation of β-catenin, RT-qPCR and western blotting. Furthermore, to investigate the effect of drugs in vivo, both HNSCC orthotopic and subcutaneous xenograft mouse models were applied. Results We found that DHEA reduced HNSCC cell viability, suppressed sphere formation, and inhibited the expression of cancer-stemness markers, such as BMI-1 and Nestin. Moreover, DHEA repressed the transcriptional activity of stemness-related pathways. In the WNT pathway, DHEA reduced the nuclear translocation of the active form of β-catenin and reduced the protein expression of the downstream targets, CCND1 and CD44. Furthermore, when combined with the chemotherapeutic drug, irinotecan (IRN), DHEA enhanced the sensitivity of HNSCC cells to IRN as revealed by reduced cell viability, sphere formation, expression of stemness markers, and activation of the WNT pathway. Additionally, this combination reduced in vivo tumor growth in both orthotopic and subcutaneous xenograft mouse models. Conclusion These findings indicate that DHEA has anti-stemness potential in HNSCC and serves as a promising anticancer agent. The combination of DHEA and IRN may provide a potential therapeutic strategy for patients with advanced HNSCC.
Collapse
Affiliation(s)
- Li-Jie Li
- Ph.D. Program in School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Peter Mu-Hsin Chang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsung-Ching Lai
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chen-Yin Yong
- Division of Oral and Maxillofacial Surgery, Department of Dentistry Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Wei Feng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Prosthodontics, Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Min Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- *Correspondence: Chi-Ying F. Huang, ; Wei-Min Chang,
| | - Chi-Ying F. Huang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- *Correspondence: Chi-Ying F. Huang, ; Wei-Min Chang,
| |
Collapse
|
103
|
Nguyen KA, Keith MJ, Keysar SB, Hall SC, Bimali A, Jimeno A, Wang XJ, Young CD. Epidermal growth factor receptor signaling in precancerous keratinocytes promotes neighboring head and neck cancer squamous cell carcinoma cancer stem cell-like properties and phosphoinositide 3-kinase inhibitor insensitivity. Mol Carcinog 2022; 61:664-676. [PMID: 35417043 PMCID: PMC9233118 DOI: 10.1002/mc.23409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/07/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is commonly associated with tobacco and alcohol consumption that induce a "precancerous field," with phosphoinositide 3-kinase (PI3K) signaling being a common driver. However, the preclinical effectiveness of PI3K inhibitors has not necessarily translated to remarkable benefit in HNSCC patients. Thus, we sought to determine how precancerous keratinocytes influence HNSCC proliferation, cancer stem cell (CSC) maintenance, and response to PI3K inhibitors. We used the NOK keratinocyte cell line as a model of preneoplastic keratinocytes because it harbors two frequent genetic events in HNSCC, CDKN2A promoter methylation and TP53 mutation, but does not form tumors. NOK cell coculture or NOK cell-conditioned media promoted HNSCC proliferation, PI3K inhibitor resistance, and CSC phenotypes. SOMAscan-targeted proteomics determined the relative levels of >1300 analytes in the media conditioned by NOK cells and HNSCC cells ± PI3K inhibitor. These results demonstrated that NOK cells release abundant levels of ligands that activate epidermal growth factor receptor (EGFR) and fibroblast growth factor receptor (FGFR), two receptor tyrosine kinases with oncogenic activity. Inhibition of EGFR, but not FGFR, blunted PI3K inhibitor resistance and CSC phenotypes induced by NOK cells. Our results demonstrate that precancerous keratinocytes can directly support neighboring HNSCC by activating EGFR. Importantly, PI3K inhibitor sensitivity was not necessarily a cancer cell-intrinsic property, and the tumor microenvironment impacts therapeutic response and supports CSCs. Additionally, combined inhibition of EGFR with PI3K inhibitor diminished EGFR activation induced by PI3K inhibitor and potently inhibited cancer cell proliferation and CSC maintenance.
Collapse
Affiliation(s)
- Khoa A. Nguyen
- Department of Pathology, University of Colorado Anschutz Medical Campus. Aurora, CO
| | - Madison J. Keith
- Department of Pathology, University of Colorado Anschutz Medical Campus. Aurora, CO
| | - Stephen B. Keysar
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Spencer C. Hall
- Department of Pathology, University of Colorado Anschutz Medical Campus. Aurora, CO
| | - Anamol Bimali
- Department of Pathology, University of Colorado Anschutz Medical Campus. Aurora, CO
| | - Antonio Jimeno
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus. Aurora, CO
- Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, Colorado
| | - Christian D. Young
- Department of Pathology, University of Colorado Anschutz Medical Campus. Aurora, CO
| |
Collapse
|
104
|
Stella GM, Scialò F, Bortolotto C, Agustoni F, Sanci V, Saddi J, Casali L, Corsico AG, Bianco A. Pragmatic Expectancy on Microbiota and Non-Small Cell Lung Cancer: A Narrative Review. Cancers (Basel) 2022; 14:cancers14133131. [PMID: 35804901 PMCID: PMC9264919 DOI: 10.3390/cancers14133131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
It is well known that lung cancer relies on a number of genes aberrantly expressed because of somatic lesions. Indeed, the lungs, based on their anatomical features, are organs at a high risk of development of extremely heterogeneous tumors due to the exposure to several environmental toxic agents. In this context, the microbiome identifies the whole assemblage of microorganisms present in the lungs, as well as in distant organs, together with their structural elements and metabolites, which actively interact with normal and transformed cells. A relevant amount of data suggest that the microbiota plays a role not only in cancer disease predisposition and risk but also in its initiation and progression, with an impact on patients’ prognosis. Here, we discuss the mechanistic insights of the complex interaction between lung cancer and microbiota as a relevant component of the microenvironment, mainly focusing on novel diagnostic and therapeutic objectives.
Collapse
Affiliation(s)
- Giulia Maria Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (V.S.); (A.G.C.)
- Unit of Respiratory Diseases IRCCS Policlinico San Matteo Foundation, Department of Medical Sciences and Infective Diseases, 27100 Pavia, Italy
- Correspondence:
| | - Filippo Scialò
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (F.S.); (A.B.)
- Ceinge Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Chandra Bortolotto
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia Medical School, 27100 Pavia, Italy;
- Unit of Radiology, Department of Intensive Medicine, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Francesco Agustoni
- Unit of Oncology, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| | - Vincenzo Sanci
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (V.S.); (A.G.C.)
- Unit of Respiratory Diseases IRCCS Policlinico San Matteo Foundation, Department of Medical Sciences and Infective Diseases, 27100 Pavia, Italy
| | - Jessica Saddi
- Radiation Therapy IRCCS Unit, Department of Medical Sciences and Infective Diseases, Policlinico San Matteo Foundation, 27100 Pavia, Italy;
- University of Milano-Bicocca, 20900 Monza, Italy
| | - Lucio Casali
- Honorary Consultant Student Support and Services, University of Pavia, 27100 Pavia, Italy;
| | - Angelo Guido Corsico
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (V.S.); (A.G.C.)
- Unit of Respiratory Diseases IRCCS Policlinico San Matteo Foundation, Department of Medical Sciences and Infective Diseases, 27100 Pavia, Italy
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (F.S.); (A.B.)
| |
Collapse
|
105
|
Chen X, Yang M, Yin J, Li P, Zeng S, Zheng G, He Z, Liu H, Wang Q, Zhang F, Chen D. Tumor-associated macrophages promote epithelial-mesenchymal transition and the cancer stem cell properties in triple-negative breast cancer through CCL2/AKT/β-catenin signaling. Cell Commun Signal 2022; 20:92. [PMID: 35715860 PMCID: PMC9205034 DOI: 10.1186/s12964-022-00888-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/23/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer with poor prognosis and limited treatment. As a major component of the tumor microenvironment, tumor-associated macrophages (TAMs) play an important role in facilitating the aggressive behavior of TNBC. This study aimed to explore the novel mechanism of TAMs in the regulation of epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) properties in TNBC. METHODS Expression of the M2-like macrophage marker CD163 was evaluated by immunohistochemistry in human breast cancer tissues. The phenotype of M2 macrophages polarized from Tohoku-Hospital-Pediatrics-1 (THP1) cells was verified by flow cytometry. Transwell assays, wound healing assays, western blotting, flow cytometry, ELISA, quantitative polymerase chain reaction (qPCR), luciferase reporter gene assays, and immunofluorescence assays were conducted to investigate the mechanism by which TAMs regulate EMT and CSC properties in BT549 and HCC1937 cells. RESULTS Clinically, we observed a high infiltration of M2-like tumor-associated macrophages in TNBC tissues and confirmed that TAMs were associated with unfavorable prognosis in TNBC patients. Moreover, we found that conditioned medium from M2 macrophages (M2-CM) markedly promoted EMT and CSC properties in BT549 and HCC1937 cells. Mechanistically, we demonstrated that chemokine (C-C motif) ligand 2 (CCL2) secretion by TAMs activated Akt signaling, which in turn increased the expression and nuclear localization of β-catenin. Furthermore, β-catenin knockdown reversed TAM-induced EMT and CSC properties. CONCLUSIONS This study provides a novel mechanism by which TAMs promote EMT and enhance CSC properties in TNBC via activation of CCL2/AKT/β-catenin signaling, which may offer new strategies for the diagnosis and treatment of TNBC. Video Abstract.
Collapse
Affiliation(s)
- Xiangzhou Chen
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, Guangdong, China
| | - Mingqiang Yang
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, Guangdong, China
| | - Jiang Yin
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, Guangdong, China
| | - Pan Li
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, Guangdong, China
| | - Shanshan Zeng
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, Guangdong, China
| | - Guopei Zheng
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, Guangdong, China
| | - Zhimin He
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, Guangdong, China
| | - Hao Liu
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, Guangdong, China
| | - Qian Wang
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, Guangdong, China.
| | - Fan Zhang
- Department of Pharmacy, Renmin Hospital of Wuhan University, No.99 Zhangzhidong Road, Wuhan, 430000, Hubei, China.
| | - Danyang Chen
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, Guangdong, China.
| |
Collapse
|
106
|
Rodríguez F, Caruana P, De la Fuente N, Español P, Gámez M, Balart J, Llurba E, Rovira R, Ruiz R, Martín-Lorente C, Corchero JL, Céspedes MV. Nano-Based Approved Pharmaceuticals for Cancer Treatment: Present and Future Challenges. Biomolecules 2022; 12:biom12060784. [PMID: 35740909 PMCID: PMC9221343 DOI: 10.3390/biom12060784] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is one of the main causes of death worldwide. To date, and despite the advances in conventional treatment options, therapy in cancer is still far from optimal due to the non-specific systemic biodistribution of antitumor agents. The inadequate drug concentrations at the tumor site led to an increased incidence of multiple drug resistance and the appearance of many severe undesirable side effects. Nanotechnology, through the development of nanoscale-based pharmaceuticals, has emerged to provide new and innovative drugs to overcome these limitations. In this review, we provide an overview of the approved nanomedicine for cancer treatment and the rationale behind their designs and applications. We also highlight the new approaches that are currently under investigation and the perspectives and challenges for nanopharmaceuticals, focusing on the tumor microenvironment and tumor disseminate cells as the most attractive and effective strategies for cancer treatments.
Collapse
Affiliation(s)
- Francisco Rodríguez
- Grup d’Oncologia Ginecològica i Peritoneal, Institut d’Investigacions Biomédiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (F.R.); (P.C.); (R.R.)
| | - Pablo Caruana
- Grup d’Oncologia Ginecològica i Peritoneal, Institut d’Investigacions Biomédiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (F.R.); (P.C.); (R.R.)
| | - Noa De la Fuente
- Servicio de Cirugía General y del Aparato Digestivo, Hospital HM Rosaleda, 15701 Santiago de Compostela, Spain;
| | - Pía Español
- Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain; (P.E.); (E.L.); (R.R.)
| | - María Gámez
- Department of Pharmacy, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Josep Balart
- Department of Radiation Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Elisa Llurba
- Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain; (P.E.); (E.L.); (R.R.)
| | - Ramón Rovira
- Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain; (P.E.); (E.L.); (R.R.)
| | - Raúl Ruiz
- Grup d’Oncologia Ginecològica i Peritoneal, Institut d’Investigacions Biomédiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (F.R.); (P.C.); (R.R.)
| | - Cristina Martín-Lorente
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina and CIBER-BBN, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Correspondence: (J.L.C.); (M.V.C.); Tel.: +34-93-5812148 (J.L.C.); +34-93-400000 (ext. 1427) (M.V.C.)
| | - María Virtudes Céspedes
- Grup d’Oncologia Ginecològica i Peritoneal, Institut d’Investigacions Biomédiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (F.R.); (P.C.); (R.R.)
- Correspondence: (J.L.C.); (M.V.C.); Tel.: +34-93-5812148 (J.L.C.); +34-93-400000 (ext. 1427) (M.V.C.)
| |
Collapse
|
107
|
Yao J, Liu Y, Yang J, Li M, Li S, Zhang B, Yang R, Zhang Y, Cui X, Feng C. Single-Cell Sequencing Reveals that DBI is the Key Gene and Potential Therapeutic Target in Quiescent Bladder Cancer Stem Cells. Front Genet 2022; 13:904536. [PMID: 35769986 PMCID: PMC9235029 DOI: 10.3389/fgene.2022.904536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Drug resistance and recurrence often develop during the treatment of muscle-invasive bladder cancer (MIBC). The existence of cancer stem cells (CSCs) in MIBC makes the formulation of effective treatment strategies extremely challenging. We aimed to use single-cell RNA sequencing approaches to identify CSCs and evaluate their molecular characteristics and to discover possible therapeutic measures. Methods: GEO data sets GSE130001 and GSE146137 were used to construct an expression matrix. After cells were identified by type, malignant epithelial cells inferred by InferCNV were extracted for stemness evaluation. The subset of cells with the highest stemness was subjected to weighted gene coexpression network analysis (WGCNA) and pseudotime analysis to identify key genes. In addition, we predicted drug sensitivity relationships for key genes in CTD and predicted the correlation between drugs and survival through siGDC. Results: We found that there were some CSCs in MIBC samples. The CSC population was heterogeneous during tumor development and was divided into quiescent and proliferating CSCs. We identified DBI as the key gene in quiescent CSCs. Analysis of a TCGA data set showed that higher DBI expression indicated higher histological grade. In addition, we predicted that acetaminophen can reduce DBI expression, thereby reducing the stemness of CSCs. Thus, we identified a potential new use of acetaminophen. Conclusion: We systematically explored CSCs in tumors and determined that DBI may be a key gene and potential therapeutic target in quiescent CSCs. In addition, we confirmed that acetaminophen may be a candidate drug targeting CSCs, improving our understanding of CSC-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Jiaxi Yao
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yue Liu
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jitao Yang
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mengling Li
- Department of Clinical Epidemiology and Center of Evidence-Based Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Simin Li
- Department of Clinical Epidemiology and Center of Evidence-Based Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Clinical Epidemiology and Center of Evidence-Based Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Rui Yang
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuchong Zhang
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaoyu Cui
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Shenyang, China
- *Correspondence: Xiaoyu Cui, ; ChunQing Feng,
| | - ChunQing Feng
- Department of Urology Surgery, The Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
- *Correspondence: Xiaoyu Cui, ; ChunQing Feng,
| |
Collapse
|
108
|
Vipparthi K, Hari K, Chakraborty P, Ghosh S, Patel AK, Ghosh A, Biswas NK, Sharan R, Arun P, Jolly MK, Singh S. Emergence of hybrid states of stem-like cancer cells correlates with poor prognosis in oral cancer. iScience 2022; 25:104317. [PMID: 35602941 PMCID: PMC9114525 DOI: 10.1016/j.isci.2022.104317] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/14/2022] [Accepted: 04/22/2022] [Indexed: 12/26/2022] Open
Abstract
Cancer cell state transitions emerged as powerful mechanisms responsible for drug tolerance and overall poor prognosis; however, evidences were largely missing in oral cancer. Here, by multiplexing phenotypic markers of stem-like cancer cells (SLCCs); CD44, CD24 and aldehyde dehydrogenase (ALDH), we characterized diversity among multiple oral tumor tissues and cell lines. Two distinct patterns of spontaneous transitions with stochastic bidirectional interconversions on ‘ALDH-axis’, and unidirectional non-interconvertible transitions on ‘CD24-axis’ were observed. Interestingly, plastic ‘ALDH-axis’ was harnessed by cells to adapt to a Cisplatin tolerant state. Furthermore, phenotype-specific RNA sequencing suggested the possible maintenance of intermediate hybrid cell states maintaining stemness within the differentiating subpopulations. Importantly, survival analysis with subpopulation-specific gene sets strongly suggested that cell-state transitions may drive non-genetic heterogeneity, resulting in poor prognosis. Therefore, we have described the phenotypic-composition of heterogeneous subpopulations critical for global tumor behavior in oral cancer; which may provide prerequisite knowledge for treatment strategies. Demonstrated population trajectory driven non-genetic heterogeneity in oral cancer Created transition maps for subpopulations using discrete time Markov chain model Demonstrated maintenance of stemness in cells undergoing differentiation Uniquely expressed genes of these subpopulations associated with disease prognosis
Collapse
Affiliation(s)
- Kavya Vipparthi
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Kishore Hari
- Centre for BioSystems Science and Engineering, India Institute of Science, Bengaluru, Karnataka 560012, India
| | - Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, India Institute of Science, Bengaluru, Karnataka 560012, India
| | - Subhashis Ghosh
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Ankit Kumar Patel
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Arnab Ghosh
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Nidhan Kumar Biswas
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Rajeev Sharan
- Head and Neck Surgery, Tata Medical Center, Kolkata, West Bengal 700160, India
| | - Pattatheyil Arun
- Head and Neck Surgery, Tata Medical Center, Kolkata, West Bengal 700160, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, India Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sandeep Singh
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| |
Collapse
|
109
|
Zhang Y, Wang Y, Zhao G, Tanner EJ, Adli M, Matei D. FOXK2 promotes ovarian cancer stemness by regulating the unfolded protein response pathway. J Clin Invest 2022; 132:e151591. [PMID: 35349489 PMCID: PMC9106354 DOI: 10.1172/jci151591] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Understanding the regulatory programs enabling cancer stem cells (CSCs) to self-renew and drive tumorigenicity could identify new treatments. Through comparative chromatin-state and gene expression analyses in ovarian CSCs versus non-CSCs, we identified FOXK2 as a highly expressed stemness-specific transcription factor in ovarian cancer. Its genetic depletion diminished stemness features and reduced tumor initiation capacity. Our mechanistic studies highlight that FOXK2 directly regulated IRE1α (encoded by ERN1) expression, a key sensor for the unfolded protein response (UPR). Chromatin immunoprecipitation and sequencing revealed that FOXK2 bound to an intronic regulatory element of ERN1. Blocking FOXK2 from binding to this enhancer by using a catalytically inactive CRISPR/Cas9 (dCas9) diminished IRE1α transcription. At the molecular level, FOXK2-driven upregulation of IRE1α led to alternative XBP1 splicing and activation of stemness pathways, while genetic or pharmacological blockade of this sensor of the UPR inhibited ovarian CSCs. Collectively, these data establish what we believe is a new function for FOXK2 as a key transcriptional regulator of CSCs and a mediator of the UPR, providing insight into potentially targetable new pathways in CSCs.
Collapse
Affiliation(s)
- Yaqi Zhang
- Department of Obstetrics and Gynecology
- Driskill Graduate Training Program in Life Sciences, and
| | - Yinu Wang
- Department of Obstetrics and Gynecology
| | - Guangyuan Zhao
- Department of Obstetrics and Gynecology
- Driskill Graduate Training Program in Life Sciences, and
| | - Edward J. Tanner
- Department of Obstetrics and Gynecology
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mazhar Adli
- Department of Obstetrics and Gynecology
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniela Matei
- Department of Obstetrics and Gynecology
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
110
|
Banerjee A, Cai S, Xie G, Li N, Bai X, Lavudi K, Wang K, Zhang X, Zhang J, Patnaik S, Backes FJ, Bennett C, Wang QE. A Novel Estrogen Receptor β Agonist Diminishes Ovarian Cancer Stem Cells via Suppressing the Epithelial-to-Mesenchymal Transition. Cancers (Basel) 2022; 14:2311. [PMID: 35565440 PMCID: PMC9105687 DOI: 10.3390/cancers14092311] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/05/2023] Open
Abstract
Epithelial ovarian cancer is the most lethal malignancy of the female reproductive tract. A healthy ovary expresses both Estrogen Receptor α (ERα) and β (ERβ). Given that ERα is generally considered to promote cell survival and proliferation, thereby, enhancing tumor growth, while ERβ shows a protective effect against the development and progression of tumors, the activation of ERβ by its agonists could be therapeutically beneficial for ovarian cancer. Here, we demonstrate that the activation of ERβ using a newly developed ERβ agonist, OSU-ERb-12, can impede ovarian cancer cell expansion and tumor growth in an ERα-independent manner. More interestingly, we found that OSU-ERb-12 also reduces the cancer stem cell (CSC) population in ovarian cancer by compromising non-CSC-to-CSC conversion. Mechanistically, we revealed that OSU-ERb-12 decreased the expression of Snail, a master regulator of the epithelial-to-mesenchymal transition (EMT), which is associated with de novo CSC generation. Given that ERα can mediate EMT and facilitate maintenance of the CSC subpopulation and that OSU-ERb-12 can block the transactivity of ERα, we conclude that OSU-ERb-12 reduces the CSC subpopulation by inhibiting EMT in an ERα-dependent manner. Taken together, our data indicate that the ERβ agonist OSU-ERb-12 could be used to hinder tumor progression and limit the CSC subpopulation with the potential to prevent tumor relapse and metastasis in patients with ovarian cancer.
Collapse
Affiliation(s)
- Ananya Banerjee
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; (A.B.); (S.C.); (N.L.); (X.B.); (K.L.); (J.Z.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA;
| | - Shurui Cai
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; (A.B.); (S.C.); (N.L.); (X.B.); (K.L.); (J.Z.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA;
| | - Guozhen Xie
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA;
| | - Na Li
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; (A.B.); (S.C.); (N.L.); (X.B.); (K.L.); (J.Z.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA;
| | - Xuetao Bai
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; (A.B.); (S.C.); (N.L.); (X.B.); (K.L.); (J.Z.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA;
| | - Kousalya Lavudi
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; (A.B.); (S.C.); (N.L.); (X.B.); (K.L.); (J.Z.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA;
| | - Kevin Wang
- Columbus Academy, Gahanna, OH 43230, USA;
| | - Xiaoli Zhang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Junran Zhang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; (A.B.); (S.C.); (N.L.); (X.B.); (K.L.); (J.Z.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA;
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India;
| | - Floor J. Backes
- Division of Gynecologic Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Chad Bennett
- Drug Development Institute, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA;
| | - Qi-En Wang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; (A.B.); (S.C.); (N.L.); (X.B.); (K.L.); (J.Z.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
111
|
Bronte G, Procopio AD, Graciotti L. The application of cancer stem cell model in malignant mesothelioma. Crit Rev Oncol Hematol 2022; 174:103698. [PMID: 35525390 DOI: 10.1016/j.critrevonc.2022.103698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 12/22/2022] Open
Abstract
The high mortality rate of malignant pleural mesothelioma led to study the mechanisms for chemoresistance. The cancer stem cell (CSC) model has been proposed to explain chemoresistance. CSCs are characterized by self-renewal capacity, that is detected through tumor-initiating cell assays. As in other malignancies, many studies sought to identify surface markers to isolate CSCs from malignant mesothelioma. Other studies characterized malignant mesothelioma CSCs for the expression of specific genes involved in stemness and the expression of proteins involved in chemoresistance. However, the main methods to characterize isolated CSCs include sphere formation, invasiveness, tumor-initiating capacity and expression of specific surface markers. The better knowledge of malignant mesothelioma CSCs allowed exploring new potential targets to develop specific treatments.
Collapse
Affiliation(s)
- Giuseppe Bronte
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy.
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (INRCA-IRCCS), Ancona, Italy
| | - Laura Graciotti
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
112
|
Chen CH, Liu Y, Eskandari A, Ghimire J, Lin LC, Fang Z, Wimley WC, Ulmschneider JP, Suntharalingam K, Hu CJ, Ulmschneider MB. Integrated Design of a Membrane-Lytic Peptide-Based Intravenous Nanotherapeutic Suppresses Triple-Negative Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105506. [PMID: 35246961 PMCID: PMC9069370 DOI: 10.1002/advs.202105506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/12/2022] [Indexed: 05/30/2023]
Abstract
Membrane-lytic peptides offer broad synthetic flexibilities and design potential to the arsenal of anticancer therapeutics, which can be limited by cytotoxicity to noncancerous cells and induction of drug resistance via stress-induced mutagenesis. Despite continued research efforts on membrane-perforating peptides for antimicrobial applications, success in anticancer peptide therapeutics remains elusive given the muted distinction between cancerous and normal cell membranes and the challenge of peptide degradation and neutralization upon intravenous delivery. Using triple-negative breast cancer as a model, the authors report the development of a new class of anticancer peptides. Through function-conserving mutations, the authors achieved cancer cell selective membrane perforation, with leads exhibiting a 200-fold selectivity over non-cancerogenic cells and superior cytotoxicity over doxorubicin against breast cancer tumorspheres. Upon continuous exposure to the anticancer peptides at growth-arresting concentrations, cancer cells do not exhibit resistance phenotype, frequently observed under chemotherapeutic treatment. The authors further demonstrate efficient encapsulation of the anticancer peptides in 20 nm polymeric nanocarriers, which possess high tolerability and lead to effective tumor growth inhibition in a mouse model of MDA-MB-231 triple-negative breast cancer. This work demonstrates a multidisciplinary approach for enabling translationally relevant membrane-lytic peptides in oncology, opening up a vast chemical repertoire to the arms race against cancer.
Collapse
Affiliation(s)
- Charles H. Chen
- Department of ChemistryKing's College LondonLondonSE1 1DBUK
- Synthetic Biology GroupResearch Laboratory of ElectronicsMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Yu‐Han Liu
- Institute of Biomedical SciencesAcademia SinicaTaipei115Taiwan
| | | | - Jenisha Ghimire
- Department of Biochemistry and Molecular BiologyTulane UniversityNew OrleansLA70112USA
| | | | - Zih‐Syun Fang
- Institute of Biomedical SciencesAcademia SinicaTaipei115Taiwan
| | - William C. Wimley
- Department of Biochemistry and Molecular BiologyTulane UniversityNew OrleansLA70112USA
| | - Jakob P. Ulmschneider
- Department of PhysicsInstitute of Natural SciencesShanghai Jiao Tong UniversityShanghai200240China
| | | | | | | |
Collapse
|
113
|
Wang Y, Zhao J, Park HJ, Zhou D. Effect of dedifferentiation on noise propagation in cellular hierarchy. Phys Rev E 2022; 105:054409. [PMID: 35706189 DOI: 10.1103/physreve.105.054409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Many fast renewing tissues have a hierarchical structure. Tissue-specific stem cells are at the root of this cellular hierarchy, which give rive to a whole range of specialized cells via cellular differentiation. However, increasing evidence shows that the hierarchical structure can be broken due to cellular dedifferentiation in which cells at differentiated stages can revert to the stem cell stage. Dedifferentiation has significant impacts on many aspects of hierarchical tissues. Here we investigate the effect of dedifferentiation on noise propagation by developing a stochastic model composed of different cell types. The moment equations are derived, via which we systematically investigate how the noise in the cell number is changed by dedifferentiation. Our results suggest that dedifferentiation have different effects on the noises in the numbers of stem cells and nonstem cells. Specifically, the noise in the number of stem cells is significantly reduced by increasing dedifferentiation probability. Due to the dual effect of dedifferentiation on nonstem cells, however, more complex changes could happen to the noise in the number of nonstem cells by increasing dedifferentiation probability. Furthermore, it is found that even though dedifferentiation could turn part of the noise propagation process into a noise-amplifying step, it is very unlikely to turn the entire process into a noise-amplifying cascade.
Collapse
Affiliation(s)
- Yuman Wang
- School of Mathematical Sciences, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jintong Zhao
- School of Mathematical Sciences, Xiamen University, Xiamen 361005, People's Republic of China
| | - Hye Jin Park
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea
- Department of Physics, Inha University, Incheon 22212, Republic of Korea
| | - Da Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
114
|
Reduced miR-371b-5p expression drives tumor progression via CSDE1/RAC1 regulation in triple-negative breast cancer. Oncogene 2022; 41:3151-3161. [PMID: 35490208 PMCID: PMC9135623 DOI: 10.1038/s41388-022-02326-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer; however, specific prognostic biomarkers have not yet been developed. In this study, we identified dysregulated microRNAs (miRNAs) in TNBC by profiling miRNA and mRNA expression. In patients with TNBC, miR-371b-5p expression was reduced, and miR-371b-5p overexpression significantly mitigated TNBC cell growth, migration, and invasion. In addition, we found that expression of cold shock domain-containing protein E1 (CSDE1), a direct target gene of miR-371b-5p, was upregulated in TNBC cells, and inhibition of CSDE1 expression alleviated TNBC cell growth by regulating RAC1 transcription. Mechanistically, CSDE1, phosphorylated C-terminal domain (p-CTD) of RNA polymerase II (RNAPII), and CDK7 form a complex, and downregulation of CSDE1 leads to weak interaction between RNAPII p-CTD and CDK7, resulting in a decrease in RNAPII p-CTD expression to reduce RAC1 transcript levels in CSDE1-deficient TNBC cells. Our data demonstrate that miR-371b-5p is a tumor-suppressive miRNA that regulates the CSDE1/Rac1 axis and could be a potential prognostic biomarker for TNBC.
Collapse
|
115
|
Feng B, Wu J, Shen B, Jiang F, Feng J. Cancer-associated fibroblasts and resistance to anticancer therapies: status, mechanisms, and countermeasures. Cancer Cell Int 2022; 22:166. [PMID: 35488263 PMCID: PMC9052457 DOI: 10.1186/s12935-022-02599-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are critical components of the tumor microenvironment (TME) with diverse functions such as extracellular matrix (ECM) remodeling, modulation of metabolism and angiogenesis, and crosstalk with both cancer cells and infiltrating immune cells by production of growth factors, cytokines, and chemokines. Within the TME milieu, CAFs exhibit morphological and functional transitions with relatively specific markers and hold tremendous potential to facilitate tumorigenesis, development, and resistance towards multiple therapeutic strategies including chemotherapy, radiotherapy, targeted therapy, anti-angiogenesis therapy, immunotherapy, and endocrine therapy. Accordingly, CAFs themselves and the downstream effectors and/or signaling pathways are potential targets for optimizing the sensitivity of anti-cancer therapies. This review aims to provide a detailed landscape of the role that CAFs play in conferring therapeutic resistance in different cancers and the underlying mechanisms. The translational and therapeutic perspectives of CAFs in the individualized treatment of malignant tumors are also discussed.
Collapse
Affiliation(s)
- Bing Feng
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China
| | - Jianzhong Wu
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China
| | - Bo Shen
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China
| | - Feng Jiang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China.
| | - Jifeng Feng
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China.
| |
Collapse
|
116
|
Liu Q, Sun W, Zhang H. Roles and new Insights of Macrophages in the Tumor Microenvironment of Thyroid Cancer. Front Pharmacol 2022; 13:875384. [PMID: 35479325 PMCID: PMC9035491 DOI: 10.3389/fphar.2022.875384] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/21/2022] [Indexed: 12/17/2022] Open
Abstract
Although most thyroid cancers have a good and predictable prognosis, the anaplastic, medullary, and refractory thyroid cancers still prone to recurrence and metastasis, resulting in poor prognosis. Although a number of newly developed targeted therapies have begun to be indicated for the above types of thyroid cancer in recent years, their ability to improve overall survival remain hindered by low efficacy. As the largest component of immune cells in tumor microenvironment, tumor-associated macrophages play a key role in the invasion and metastasis of thyroid cancer. There is much evidence that the immune system, tumor microenvironment and cancer stem cell interactions may revolutionize traditional therapeutic directions. Tumor-associated macrophages have been extensively studied in a variety of tumors, however, research on the relationship between thyroid cancer and macrophages is still insufficient. In this review, we summarize the functions of tumor-associated macrophages in different types of thyroid cancer, their cytokines or chemokines effect on thyroid cancer and the mechanisms that promote tumor proliferation and migration. In addition, we discuss the mechanisms by which tumor-associated macrophages maintain the stemness of thyroid cancer and potential strategies for targeting tumor-associated macrophages to treat thyroid cancer.
Collapse
Affiliation(s)
| | | | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
117
|
Nicoś M, Krawczyk P. Genetic Clonality as the Hallmark Driving Evolution of Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:1813. [PMID: 35406585 PMCID: PMC8998004 DOI: 10.3390/cancers14071813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022] Open
Abstract
Data indicate that many driver alterations from the primary tumor of non-small cell lung cancer (NSCLC) are predominantly shared across all metastases; however, disseminating cells may also acquire a new genetic landscape across their journey. By comparing the constituent subclonal mutations between pairs of primary and metastatic samples, it is possible to derive the ancestral relationships between tumor clones, rather than between tumor samples. Current treatment strategies mostly rely on the theory that metastases are genetically similar to the primary lesions from which they arise. However, intratumor heterogeneity (ITH) affects accurate diagnosis and treatment decisions and it is considered the main hallmark of anticancer therapy failure. Understanding the genetic changes that drive the metastatic process is critical for improving the treatment strategies of this deadly condition. Application of next generation sequencing (NGS) techniques has already created knowledge about tumorigenesis and cancer evolution; however, further NGS implementation may also allow to reconstruct phylogenetic clonal lineages and clonal expansion. In this review, we discuss how the clonality of genetic alterations influence the seeding of primary and metastatic lesions of NSCLC. We highlight that wide genetic analyses may reveal the phylogenetic trajectories of NSCLC evolution, and may pave the way to better management of follow-up and treatment.
Collapse
Affiliation(s)
- Marcin Nicoś
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-954 Lublin, Poland;
| | | |
Collapse
|
118
|
FTO in cancer: functions, molecular mechanisms, and therapeutic implications. Trends Cancer 2022; 8:598-614. [PMID: 35346615 DOI: 10.1016/j.trecan.2022.02.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/06/2022] [Accepted: 02/28/2022] [Indexed: 12/18/2022]
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification in mRNA that affects RNA processing, stability, and translation. Discovered as the first RNA m6A demethylase, the fat mass and obesity-associated protein (FTO) is frequently dysregulated and plays important roles in various types of cancers. Targeting FTO holds promising therapeutic significance via suppressing tumor growth, potentiating immunotherapy, and attenuating drug resistance. Here, we review recent advances in our understanding of the functions and underlying molecular mechanisms of FTO in tumor development, cancer stem cell (CSC) self-renewal, microenvironment regulation, immunity, and metabolism and discuss the therapeutic potential of targeting FTO for cancer treatment.
Collapse
|
119
|
Tsunedomi R, Yoshimura K, Kimura Y, Nishiyama M, Fujiwara N, Matsukuma S, Kanekiyo S, Matsui H, Shindo Y, Watanabe Y, Tokumitsu Y, Yoshida S, Iida M, Suzuki N, Takeda S, Ioka T, Hazama S, Nagano H. Elevated expression of RAB3B plays important roles in chemoresistance and metastatic potential of hepatoma cells. BMC Cancer 2022; 22:260. [PMID: 35277124 PMCID: PMC8917729 DOI: 10.1186/s12885-022-09370-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/04/2022] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Cancer stem cells (CSCs) are thought to play important roles in carcinogenesis, recurrence, metastasis, and therapy-resistance. We have successfully induced cancer stem-like sphere cells (CSLCs) which possess enhanced chemoresistance and metastatic potential. To enable the development of targeted therapy against CSLCs, we identified a gene responsible for this phenotype in CSLC.
Methods
Human hepatoma cell line SK-HEP-1 was used for CSLC induction with a unique sphere inducing medium, and HuH-7 cells were used as non-sphere forming cells in the same condition. RNA-sequencing was performed followed by validation with quantitative RT-PCR and western blotting. Knockdown experiments were done by using CRISPR-Cas9 genome-editing, and the rescue experiments were performed using the expressing plasmid vector. Chemoresistance and liver metastasis of the cells, was studied following the splenic injection of cells to severely immune deficient mice and evaluated using the MTS assay. Quantification of exosomes in the medium was done using ELISA.
Results
RAB3B was identified as an up-regulated gene in both CSLCs and prognostically poor hepatocellular carcinoma (HCC) by RNA-sequencing. RAB3B-KD cells showed altered CSLC phenotypes such as sphere formation, chemoresistance, and metastatic potentials, and those were rescued by RAB3B complementation. Increased exosome secretion was observed in CSLCs, and it was not observed in the RAB3B-KD cells. In addition, the RAB3B expression correlated with the expression of ABCG2, APOE, LEPR, LXN, and TSPAN13.
Conclusion
The up regulation of RAB3B may play an important role in the chemoresistance and metastatic potential of CSLCs.
Collapse
|
120
|
Park JW, Seo MJ, Cho KS, Kook MC, Jeong JM, Roh SG, Cho SY, Cheon JH, Kim HK. Smad4 and p53 synergize in suppressing autochthonous intestinal cancer. Cancer Med 2022; 11:1925-1936. [PMID: 35274815 PMCID: PMC9089223 DOI: 10.1002/cam4.4533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/25/2022] Open
Abstract
Background Smad4 and p53 mutations are the most common mutations in human colorectal cancers (CRCs). We evaluated whether and how they are synergistic in intestinal carcinogenesis using novel autochthonous mouse models. Method To recapitulate human CRCs, we generated Villin‐Cre;Smad4F/F;Trp53F/F mice. We then compared the intestinal phenotype of Villin‐Cre;Smad4F/F;Trp53F/F mice (n = 40) with Villin‐Cre;Smad4F/F (n = 30) and Villin‐Cre;Trp53F/F mice (n = 45). Results Twenty‐week‐old Villin‐Cre;Smad4F/F;Trp53F/F mice displayed spontaneous highly proliferative intestinal tumors, and 85% of mice developed adenocarcinomas. p21 was downregulated in the intestinal mucosa in Villin‐Cre;Smad4F/F;Trp53F/F mice than in Villin‐Cre;Smad4F/F and Villin‐Cre;Trp53F/F mice. Villin‐Cre;Smad4F/F;Trp53F/F mice displayed multistep intestinal tumorigenesis and Wnt activation. Long‐term CWP232291 (small‐molecule Wnt inhibitor) treatment of Villin‐Cre;Smad4F/F;Trp53F/F mice suppressed intestinal tumorigenesis and progression. CWP232291 treatment downregulated cancer stem cell (CSC) tumor markers including CD133, Lgr‐5, and Sca‐1. CWP232291 treatment reduced the CSC frequency. Small‐molecule Wnt inhibitors reduced intestinal CSC populations and inhibited their growth, along with Bcl‐XL downregulation. Furthermore, BH3I‐1, a Bcl‐XL antagonist, increasingly inhibited intestinal CSCs than bulk tumor cells. Conclusion Smad4 loss and p53 loss are synergistic in autochthonous intestinal carcinogenesis, by downregulating p21 and activating Wnt/β‐catenin pathway.
Collapse
Affiliation(s)
- Jun Won Park
- National Cancer Center, Goyang, Republic of Korea.,Department of Biomedical Convergence, Kangwon National University, Kangwon, Republic of Korea
| | - Min-Jung Seo
- National Cancer Center, Goyang, Republic of Korea
| | - Kye Soo Cho
- National Cancer Center, Goyang, Republic of Korea.,Department of Infectious Disease & Immunobiology, Yonsei University College of Medical Science, Seoul, Republic of Korea
| | | | | | - Seul-Gi Roh
- National Cancer Center, Goyang, Republic of Korea.,Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | | | - Jae Hee Cheon
- Department of Infectious Disease & Immunobiology, Yonsei University College of Medical Science, Seoul, Republic of Korea
| | | |
Collapse
|
121
|
Glycosphingolipids in human embryonic stem cells and breast cancer stem cells, and potential cancer therapy strategies based on their structures and functions. Glycoconj J 2022; 39:177-195. [PMID: 35267131 DOI: 10.1007/s10719-021-10032-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/27/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022]
Abstract
Expression profiles of glycosphingolipids (GSLs) in human embryonic stem cell (hESC) lines and their differentiated embryoid body (EB) outgrowth cells, consisting of three germ layers, were surveyed systematically. Several globo- and lacto-series GSLs were identified in undifferentiated hESCs and during differentiation of hESCs to EB outgrowth cells, and core structure switching of these GSLs to gangliosides was observed. Such switching was attributable to altered expression of key glycosyltransferases (GTs) in GSL biosynthetic pathways, reflecting the unique stage-specific transitions and mechanisms characteristic of the differentiation process. Lineage-specific differentiation of hESCs was associated with further GSL alterations. During differentiation of undifferentiated hESCs to neural progenitor cells, core structure switching from globo- and lacto-series to primarily gangliosides (particularly GD3) was again observed. During differentiation to endodermal cells, alterations of GSL profiles were distinct from those in differentiation to EB outgrowth or neural progenitor cells, with high expression of Gb4Cer and low expression of stage-specific embryonic antigen (SSEA)-3, -4, or GD3 in endodermal cells. Again, such profile changes resulted from alterations of key GTs in GSL biosynthetic pathways. Novel glycan structures identified on hESCs and their differentiated counterparts presumably play functional roles in hESCs and related cancer or cancer stem cells, and will be useful as surface biomarkers. We also examined GSL expression profiles in breast cancer stem cells (CSCs), using a model of epithelial-mesenchymal transition (EMT)-induced human breast CSCs. We found that GD2 and GD3, together with their common upstream GTs, GD3 synthase (GD3S) and GD2/GM2 synthase, maintained stem cell phenotype in breast CSCs. Subsequent studies showed that GD3 was associated with epidermal growth factor receptor (EGFR), and activated EGFR signaling in breast CSCs and breast cancer cell lines. GD3S knockdown enhanced cytotoxicity of gefitinib (an EGFR kinase inhibitor) in resistant MDA-MB468 cells, both in vitro and in vivo. Our findings indicate that GD3S contributes to gefitinib resistance in EGFR-positive breast cancer cells, and is a potentially useful therapeutic target in drug-resistant breast cancers.
Collapse
|
122
|
Paul R, Dorsey JF, Fan Y. Cell plasticity, senescence, and quiescence in cancer stem cells: Biological and therapeutic implications. Pharmacol Ther 2022; 231:107985. [PMID: 34480963 PMCID: PMC8844041 DOI: 10.1016/j.pharmthera.2021.107985] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 01/10/2023]
Abstract
Cancer stem cells (CSCs) are a distinct population of cells within tumors with capabilities of self-renewal and tumorigenicity. CSCs play a pivotal role in cancer progression, metastasis, and relapse and tumor resistance to cytotoxic therapy. Emerging scientific evidence indicates that CSCs adopt several mechanisms, driven by cellular plasticity, senescence and quiescence, to maintain their self-renewal capability and to resist tumor microenvironmental stress and treatments. These pose major hindrances for CSC-targeting anti-cancer therapies: cell plasticity maintains stemness in CSCs and renders tumor cells to acquire stem-like phenotypes, contributing to tumor heterogeneity and CSC generation; cellular senescence induces genetic reprogramming and stemness activation, leading to CSC-mediated tumor progression and metastasis; cell quienscence facilitates CSC to overcome their intrinsic vulnerabilities and therapeutic stress, inducing tumor relapse and therapy resistance. These mechanisms are subjected to spatiotemporal regulation by hypoxia, CSC niche, and extracellular matrix in the tumor microenvironment. Here we integrate the recent advances and current knowledge to elucidate the mechanisms involved in the regulation of plasticity, senescence and quiescence of CSCs and the potential therapeutic implications for the future.
Collapse
Affiliation(s)
- Ritama Paul
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Jay F. Dorsey
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
123
|
Xu Y, Liao W, Luo Q, Yang D, Pan M. Histone Acetylation Regulator-Mediated Acetylation Patterns Define Tumor Malignant Pathways and Tumor Microenvironment in Hepatocellular Carcinoma. Front Immunol 2022; 13:761046. [PMID: 35145517 PMCID: PMC8821108 DOI: 10.3389/fimmu.2022.761046] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022] Open
Abstract
Background Histone acetylation modification is one of the most common epigenetic methods used to regulate chromatin structure, DNA repair, and gene expression. Existing research has focused on the importance of histone acetylation in regulating tumorigenicity, tumor progression, and tumor microenvironment (TME) but has not explored the potential roles and interactions of histone acetylation regulators in TME cell infiltration, drug sensitivity, and immunotherapy. Methods The mRNA expression and genetic alterations of 36 histone acetylation regulators were analyzed in 1599 hepatocellular carcinoma (HCC) samples. The unsupervised clustering method was used to identify the histone acetylation patterns. Then, based on their differentially expressed genes (DEGs), an HAscore model was constructed to quantify the histone acetylation patterns and related subtypes of individual samples. Lastly, the relationship between HAscore and transcription background, tumor clinical features, characteristics of TME, drug response, and efficacy of immunotherapy were analyzed. Results We identified three histone acetylation patterns characterized by high, medium, and low HAscore. Patients with HCC in the high HAscore group experienced worse overall survival time, and the cancer-related malignant pathways were more active in the high HAscore group, comparing to the low HAscore group. The high HAscore group was characterized by an immunosuppressive subtype because of the high infiltration of immunosuppressive cells, such as regulatory T cells and myeloid-derived suppressor cells. Following validation, the HAscore was highly correlated with the sensitivity of anti-tumor drugs; 116 therapeutic agents were found to be associated with it. The HAscore was also correlated with the therapeutic efficacy of the PD-L1 and PD-1 blockade, and the response ratio was significantly higher in the low HAscore group. Conclusion To the best of our knowledge, our study is the first to provide a comprehensive analysis of 36 histone acetylation regulators in HCC. We found close correlations between histone acetylation patterns and tumor malignant pathways and TME. We also analyzed the therapeutic value of the HAscore in targeted therapy and immunotherapy. This work highlights the interactions and potential clinical utility of histone acetylation regulators in treatment of HCC and improving patient outcomes.
Collapse
Affiliation(s)
- Yuyan Xu
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Liao
- The Unit of Hepatobiliary Surgery, The General Surgery Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiong Luo
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of General Surgery, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang, China
| | - Dinghua Yang
- The Unit of Hepatobiliary Surgery, The General Surgery Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Dinghua Yang, ; Mingxin Pan,
| | - Mingxin Pan
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Dinghua Yang, ; Mingxin Pan,
| |
Collapse
|
124
|
Park JW, Kim Y, Lee SB, Oh CW, Lee EJ, Ko JY, Park JH. Autophagy inhibits cancer stemness in triple-negative breast cancer via miR-181a-mediated regulation of ATG5 and/or ATG2B. Mol Oncol 2022; 16:1857-1875. [PMID: 35029026 PMCID: PMC9067148 DOI: 10.1002/1878-0261.13180] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/11/2022] [Indexed: 11/19/2022] Open
Abstract
Autophagy has a dual role in the maintenance of cancer stem cells (CSCs), but the precise relationship between autophagy and cancer stemness requires further investigation. In this study, it was found that luminal and triple‐negative breast cancers require distinct therapeutic approaches because of their different amounts of autophagy flux. We identified that autophagy flux was inhibited in triple‐negative breast cancer (TNBC) CSCs. Moreover, miRNA‐181a (miR‐181a) expression is upregulated in both TNBC CSCs and patient tissues. Autophagy‐related 5 (ATG5) and autophagy‐related 2B (ATG2B) participate in the early formation of autophagosomes and were revealed as targets of miR‐181a. Inhibition of miR‐181a expression led to attenuation of TNBC stemness and an increase in autophagy flux. Furthermore, treatment with curcumin led to attenuation of cancer stemness in TNBC CSCs; the expression of ATG5 and ATG2B was enhanced and there was an increase of autophagy flux. These results indicated that ATG5 and ATG2B are involved in the suppression of cancer stemness in TNBC. In summary, autophagy inhibits cancer stemness through the miR‐181a‐regulated mechanism in TNBC. Promoting tumor‐suppressive autophagy using curcumin may be a potential method for the treatment of TNBC.
Collapse
Affiliation(s)
- Jee Won Park
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Yesol Kim
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Soo-Been Lee
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Chae Won Oh
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Eun Ji Lee
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Je Yeong Ko
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jong Hoon Park
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| |
Collapse
|
125
|
Yang Y, Meng WJ, Wang ZQ. Cancer Stem Cells and the Tumor Microenvironment in Gastric Cancer. Front Oncol 2022; 11:803974. [PMID: 35047411 PMCID: PMC8761735 DOI: 10.3389/fonc.2021.803974] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/08/2021] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) remains one of the leading causes of cancer-related death worldwide. Cancer stem cells (CSCs) might be responsible for tumor initiation, relapse, metastasis and treatment resistance of GC. The tumor microenvironment (TME) comprises tumor cells, immune cells, stromal cells and other extracellular components, which plays a pivotal role in tumor progression and therapy resistance. The properties of CSCs are regulated by cells and extracellular matrix components of the TME in some unique manners. This review will summarize current literature regarding the effects of CSCs and TME on the progression and therapy resistance of GC, while emphasizing the potential for developing successful anti-tumor therapy based on targeting the TME and CSCs.
Collapse
Affiliation(s)
| | - Wen-Jian Meng
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | | |
Collapse
|
126
|
Passeri G, Northcote-Smith J, Suntharalingam K. Delivery of an immunogenic cell death-inducing copper complex to cancer stem cells using polymeric nanoparticles. RSC Adv 2022; 12:5290-5299. [PMID: 35425564 PMCID: PMC8981415 DOI: 10.1039/d1ra08788f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/28/2022] [Indexed: 01/04/2023] Open
Abstract
The major cause for cancer related deaths worldwide is tumour relapse and metastasis, both of which have been heavily linked to the existence of cancer stem cells (CSCs). CSCs are able to escape current treatment regimens, reform tumours, and promote their spread to secondary sites. Recently, our research group reported the first metal-based agent 1 (a copper(ii) compound ligated by a bidentate 4,7-diphenyl-1,10-phenanthroline and a tridentate Schiff base ligand) to potently kill CSCs via cytotoxic and immunogenic mechanisms. Here we show that encapsulation of 1 by polymeric nanoparticles at the appropriate feed (10%, 1 NP10) enhances CSC uptake and improves potency towards bulk cancer cells and CSCs (grown in monolayer and three-dimensional cultures). The nanoparticle formulation triggers a similar cellular response to the payload, which bodes well for further translation. Specifically, the nanoparticle formulation elevates intracellular reactive oxygen species levels, induces ER stress, and evokes damage-associated molecular patterns consistent with immunogenic cell death. To the best of our knowledge, this is the first study to demonstrate that polymeric nanoparticles can be used to effectively deliver immunogenic metal complexes into CSCs. In this study we deliver an immunogenic cell death-inducing copper(ii) complex, comprising of 4,7-diphenyl-1,10-phenanthroline and a Schiff base ligand, to breast cancer stem cells.![]()
Collapse
Affiliation(s)
- Ginevra Passeri
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | | | | |
Collapse
|
127
|
Choudhari S, Masne S, Bhandare P, Dhumal S. Molecular profiling of oral squamous cell carcinoma associated with oral submucous fibrosis. J Cancer Res Ther 2022; 18:55-65. [PMID: 35381762 DOI: 10.4103/jcrt.jcrt_508_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
128
|
Yabo YA, Niclou SP, Golebiewska A. Cancer cell heterogeneity and plasticity: A paradigm shift in glioblastoma. Neuro Oncol 2021; 24:669-682. [PMID: 34932099 PMCID: PMC9071273 DOI: 10.1093/neuonc/noab269] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Phenotypic plasticity has emerged as a major contributor to intra-tumoral heterogeneity and treatment resistance in cancer. Increasing evidence shows that glioblastoma (GBM) cells display prominent intrinsic plasticity and reversibly adapt to dynamic microenvironmental conditions. Limited genetic evolution at recurrence further suggests that resistance mechanisms also largely operate at the phenotypic level. Here we review recent literature underpinning the role of GBM plasticity in creating gradients of heterogeneous cells including those that carry cancer stem cell (CSC) properties. A historical perspective from the hierarchical to the nonhierarchical concept of CSCs towards the recent appreciation of GBM plasticity is provided. Cellular states interact dynamically with each other and with the surrounding brain to shape a flexible tumor ecosystem, which enables swift adaptation to external pressure including treatment. We present the key components regulating intra-tumoral phenotypic heterogeneity and the equilibrium of phenotypic states, including genetic, epigenetic, and microenvironmental factors. We further discuss plasticity in the context of intrinsic tumor resistance, where a variable balance between preexisting resistant cells and adaptive persisters leads to reversible adaptation upon treatment. Innovative efforts targeting regulators of plasticity and mechanisms of state transitions towards treatment-resistant states are needed to restrict the adaptive capacities of GBM.
Collapse
Affiliation(s)
- Yahaya A Yabo
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Anna Golebiewska
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
129
|
Kwantwi LB, Wang S, Sheng Y, Wu Q. Multifaceted roles of CCL20 (C-C motif chemokine ligand 20): mechanisms and communication networks in breast cancer progression. Bioengineered 2021; 12:6923-6934. [PMID: 34569432 PMCID: PMC8806797 DOI: 10.1080/21655979.2021.1974765] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging studies have demonstrated notable roles of CCL20 in breast cancer progression. Based on these findings, CCL20 has become a potential therapeutic target for cancer immunotherapy. Accordingly, studies utilizing monoclonal antibodies to target CCL20 are currently being experimented. However, the existence of cytokine network in the tumor microenvironment collectively regulates tumor progression. Hence, a deeper understanding of the role of CCL20 and the underlying signaling pathways regulating the functions of CCL20 may provide a novel strategy for therapeutic interventions. This review provides the current knowledge on how CCL20 interacts with breast cancer cells to influence tumor progression via immunosuppression, angiogenesis, epithelial to mesenchymal transition, migration/invasion and chemoresistance. As a possible candidate biomarker, we also reviewed signal pathways and other factors in the tumor microenvironment regulating the tumor-promoting functions of CCL20.These new insights may be useful to design new potent and selective CCL20 inhibitors against breast cancer in the future.
Collapse
Affiliation(s)
- Louis Boafo Kwantwi
- Department of Pathology, School of Basic Medical Science, Anhui Medical University, Hefei, PR China
| | - Shujing Wang
- Department of Pathology, School of Basic Medical Science, Anhui Medical University, Hefei, PR China
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, PR China
| | - Youjing Sheng
- Department of Pathology, School of Basic Medical Science, Anhui Medical University, Hefei, PR China
| | - Qiang Wu
- Department of Pathology, School of Basic Medical Science, Anhui Medical University, Hefei, PR China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| |
Collapse
|
130
|
Schagdarsurengin U, Luo C, Slanina H, Sheridan D, Füssel S, Böğürcü-Seidel N, Gattenloehner S, Baretton GB, Hofbauer LC, Wagenlehner F, Dansranjav T. Tracing TET1 expression in prostate cancer: discovery of malignant cells with a distinct oncogenic signature. Clin Epigenetics 2021; 13:211. [PMID: 34844636 PMCID: PMC8630881 DOI: 10.1186/s13148-021-01201-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background Ten–eleven translocation methylcytosine dioxygenase 1 (TET1) is involved in DNA demethylation and transcriptional regulation, plays a key role in the maintenance of stem cell pluripotency, and is dysregulated in malignant cells. The identification of cancer stem cells (CSCs) driving tumor growth and metastasis is the primary objective of biomarker discovery in aggressive prostate cancer (PCa). In this context, we analyzed TET1 expression in PCa.
Methods A large-scale immunohistochemical analysis of TET1 was performed in normal prostate (NOR) and PCa using conventional slides (50 PCa specimens) and tissue microarrays (669 NOR and 1371 PCa tissue cores from 371 PCa specimens). Western blotting, RT-qPCR, and 450 K methylation array analyses were performed on PCa cell lines. Genome-wide correlation, gene regulatory network, and functional genomics studies were performed using publicly available data sources and bioinformatics tools. Results In NOR, TET1 was exclusively expressed in normal cytokeratin 903 (CK903)–positive basal cells. In PCa, TET1 was frequently detected in alpha-methylacyl-CoA racemase (AMACR)–positive tumor cell clusters and was detectable at all tumor stages and Gleason scores. Pearson’s correlation analyses of PCa revealed 626 TET1-coactivated genes (r > 0.5) primarily encoding chromatin remodeling and mitotic factors. Moreover, signaling pathways regulating antiviral processes (62 zinc finger, ZNF, antiviral proteins) and the pluripotency of stem cells were activated. A significant proportion of detected genes exhibited TET1-correlated promoter hypomethylation. There were 161 genes encoding transcription factors (TFs), of which 133 were ZNF-TFs with promoter binding sites in TET1 and in the vast majority of TET1-coactivated genes. Conclusions TET1-expressing cells are an integral part of PCa and may represent CSCs with oncogenic potential. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01201-7.
Collapse
Affiliation(s)
- U Schagdarsurengin
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Giessen, Germany.,Working Group Epigenetics of Urogenital System, Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Giessen, Germany
| | - C Luo
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Giessen, Germany
| | - H Slanina
- Institute of Medical Virology, Justus-Liebig-University Giessen, Giessen, Germany
| | - D Sheridan
- Institute of Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - S Füssel
- Department of Urology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - N Böğürcü-Seidel
- Institute of Neuropathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - S Gattenloehner
- Institute of Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - G B Baretton
- Institute of Pathology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - L C Hofbauer
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III and University Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - F Wagenlehner
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Giessen, Germany
| | - T Dansranjav
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
131
|
Kwak MH, Yang SM, Yun SK, Kim S, Choi MG, Park JM. Identification and validation of LGR5-binding peptide for molecular imaging of gastric cancer. Biochem Biophys Res Commun 2021; 580:93-99. [PMID: 34628260 DOI: 10.1016/j.bbrc.2021.09.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022]
Abstract
Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) is a stem cell marker in gastric cancer. In this study, we aimed to produce the LGR5-targeting peptide probe for the use of molecular imaging for gastric cancer. We used phage display libraries to produce a LGR5-specific peptide probe. This peptide was validated for targeting gastric cancer with in vitro and in vivo studies. This peptide was tagged with fluorescein isothiocyanate (FITC) and cyanine 5.5 (Cy5.5). We used two normal and three gastric cancer cell lines. Immunocytochemistry (ICC) and fluorescence-activated cell sorting (FACS) analysis were used to validate the target specificity of the peptide. After three rounds of bio-panning, we found a novel 7-mer peptides, IPQILSI (IPQ∗). FITC-conjugated IPQ∗ showed 2 to 10 times higher fluorescence in gastric cancer cells vs. control cells in ICC. This discrimination was consistently observed using Cy5.5-conjugated IPQ∗ in ICC. FACS analysis showed right shift of peak point in gastric cancers compared to the control cells. In the peritoneal metastasis animal model, we could find Cy5.5-conjugated IPQ∗ accumulated specifically to gastric tumors. In conclusion, IPQ∗ peptide showed a specific probe for gastric cancer diagnosis. This probe can be applied to theragnosis for gastric cancer diagnosis including peritoneal metastasis.
Collapse
Affiliation(s)
- Moon Hwa Kwak
- Catholic Photomedicine Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Department of Medical Life Sciences, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung Mok Yang
- Catholic Photomedicine Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seul Ki Yun
- Catholic Photomedicine Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Department of Medical Life Sciences, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sol Kim
- Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Myung-Gyu Choi
- Catholic Photomedicine Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jae Myung Park
- Catholic Photomedicine Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
132
|
Dadgar T, Ebrahimi N, Gholipour AR, Akbari M, Khani L, Ahmadi A, Hamblin MR. Targeting the metabolism of cancer stem cells by energy disruptor molecules. Crit Rev Oncol Hematol 2021; 169:103545. [PMID: 34838705 DOI: 10.1016/j.critrevonc.2021.103545] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/17/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) have been identified in various tumor types. CSCs are believed to contribute to tumor metastasis and resistance to conventional therapy. So targeting these cells could be an effective strategy to eliminate tumors and a promising new type of cancer treatment. Alterations in metabolism play an essential role in CSC biology and their resistance to treatment. The metabolic properties pathways in CSCs are different from normal cells, and to some extent, are different from regular tumor cells. Interestingly, CSCs can use other nutrients for their metabolism and growth. The different metabolism causes increased sensitivity of CSCs to agents that disrupt cellular homeostasis. Compounds that interfere with the central metabolic pathways are known as energy disruptors and can reduce CSC survival. This review highlights the differences between regular cancer cells and CSC metabolism and discusses the action mechanisms of energy disruptors at the cellular and molecular levels.
Collapse
Affiliation(s)
- Tahere Dadgar
- Department of Biology, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Nasim Ebrahimi
- Division of Genetics, Department of Cell and Molecular & Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Amir Reza Gholipour
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Maryam Akbari
- Department of Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Khani
- Department of Immunology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Amirhossein Ahmadi
- Department of Biological Science and Technology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, 75169, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
133
|
Guo J, Zheng J, Zhang H, Tong J. RNA m6A methylation regulators in ovarian cancer. Cancer Cell Int 2021; 21:609. [PMID: 34794452 PMCID: PMC8600856 DOI: 10.1186/s12935-021-02318-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant RNA modification of mammalian mRNAs and plays a vital role in many diseases, especially tumours. In recent years, m6A has become the topic of intense discussion in epigenetics. M6A modification is dynamically regulated by methyltransferases, demethylases and RNA-binding proteins. Ovarian cancer (OC) is a common but highly fatal malignancy in female. Increasing evidence shows that changes in m6A levels and the dysregulation of m6A regulators are associated with the occurrence, development or prognosis of OC. In this review, the latest studies on m6A and its regulators in OC have been summarized, and we focus on the key role of m6A modification in the development and progression of OC. Additionally, we also discuss the potential use of m6A modification and its regulators in the diagnosis and treatment of OC.
Collapse
Affiliation(s)
- Jialu Guo
- Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang Province, People's Republic of China.,Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), 310008, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jianfeng Zheng
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), 310008, Hangzhou, Zhejiang Province, People's Republic of China.,Department of Obstetrics and Gynecology, Affiliated Hangzhou Hospital, Nanjing Medical University, 310008, Hangzhou, Zhejiang Province, People's Republic of China
| | - Huizhi Zhang
- Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jinyi Tong
- Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang Province, People's Republic of China. .,Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), 310008, Hangzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
134
|
Li YJ, Liao LL, Liu P, Tang P, Wang H, Peng QH. Sijunzi Decoction Inhibits Stemness by Suppressing β-Catenin Transcriptional Activity in Gastric Cancer Cells. Chin J Integr Med 2021; 28:702-710. [PMID: 34751940 DOI: 10.1007/s11655-021-3314-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate a previously uncharacterized function of Sijunzi Decoction (SJZD) in inhibition of gastric cancer stem cells (GCSCs). METHODS MKN74 and MKN45, two CD44 positive gastric cancer cell lines with stem cell properties were used. The cells were divided into 2 groups. Treatment group was treated with SJZD (1-5 mg/mL) for indicated time (48 h-14 days). The control group was treated with equal volume of phosphate buffered saline. Cell Counting Assay Kit-8 were used to measure cell viability. Spheroid colony formation and GCSCs marker expression were performed to determine GCSCs stemness. Cell fractionation and chromatin immunoprecipitation assays were used to assess the distribution and DNA-binding activity of β-catenin after SJZD treatment, respectively. RESULTS SJZD treatment repressed cell growth and induced apoptosis in MKN74 and MKN45 cell lines (P<0.05). Moreover, SJZD dramatically inhibited formation of spheroid colony and expression of GCSC markers in GC cells (P<0.05). Mechanistically, SJZD reduced nuclear accumulation and DNA binding activity of β-catenin (P<0.05), the key regulator for maintaining CSC stemness. CONCLUSION SJZD inhibits GCSCs by attenuating the transcriptional activity of β-catenin.
Collapse
Affiliation(s)
- Yue-Jun Li
- Department of Oncology, the Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, 412000, Hunan Province, China
- Department of Oncology, the First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou, 412000, Hunan Province, China
| | - Lin-Li Liao
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Pei Liu
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ping Tang
- Department of Oncology, the Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, 412000, Hunan Province, China
- Department of Oncology, the First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou, 412000, Hunan Province, China
| | - Hong Wang
- Department of Oncology, the Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, 412000, Hunan Province, China
- Department of Oncology, the First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou, 412000, Hunan Province, China
| | - Qing-Hua Peng
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
135
|
Palamaris K, Felekouras E, Sakellariou S. Epithelial to Mesenchymal Transition: Key Regulator of Pancreatic Ductal Adenocarcinoma Progression and Chemoresistance. Cancers (Basel) 2021; 13:cancers13215532. [PMID: 34771695 PMCID: PMC8582651 DOI: 10.3390/cancers13215532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma’s (PDAC) dismal prognosis is associated with its aggressive biological behavior and resistance to chemotherapy. Epithelial to mesenchymal transition (EMT) has been recognized as a key driver of PDAC progression and development of drug resistance. EMT is a transient and reversible process leading to transdifferentiation of epithelial cells into a more mesenchymal phenotype. It is regulated by multiple signaling pathways that control the activity of a transcription factors network. Activation of EMT in pre-invasive stages of PDAC has been accused for early dissemination. Furthermore, it contributes to the development of intratumoral heterogeneity and drug resistance. This review summarizes the available data regarding signaling networks regulating EMT and describes the integral role of EMT in different aspects of PDAC pathogenesis. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies, characterized by aggressive biological behavior and a lack of response to currently available chemotherapy. Emerging evidence has identified epithelial to mesenchymal transition (EMT) as a key driver of PDAC progression and a central regulator in the development of drug resistance. EMT is a reversible transdifferentiation process controlled by complex interactions between multiple signaling pathways such as TGFb, Wnt, and Notch, which converge to a network of specific transcription factors. Activation of EMT transcriptional reprogramming converts cancer cells of epithelial differentiation into a more mesenchymal phenotypic state. EMT occurrence in pre-invasive pancreatic lesions has been implicated in early PDAC dissemination. Moreover, cancer cell phenotypic plasticity driven by EMT contributes to intratumoral heterogeneity and drug tolerance and is mechanistically associated with the emergence of cells exhibiting cancer stem cells (CSCs) phenotype. In this review we summarize the available data on the signaling cascades regulating EMT and the molecular isnteractions between pancreatic cancer and stromal cells that activate them. In addition, we provide a link between EMT, tumor progression, and chemoresistance in PDAC.
Collapse
Affiliation(s)
- Kostas Palamaris
- 1ST Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Evangelos Felekouras
- 1ST Department of Surgery, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stratigoula Sakellariou
- 1ST Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Correspondence:
| |
Collapse
|
136
|
Wang Z. Mechanisms of the synergistic lung tumorigenic effect of arsenic and benzo(a)pyrene combined- exposure. Semin Cancer Biol 2021; 76:156-162. [PMID: 33971262 PMCID: PMC9000133 DOI: 10.1016/j.semcancer.2021.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/01/2021] [Indexed: 12/20/2022]
Abstract
Humans are often exposed to mixtures of environmental pollutants especially environmental chemical carcinogens, representing a significant environmental health issue. However, our understanding on the carcinogenic effects and mechanisms of environmental carcinogen mixture exposures is limited and mostly relies on the findings from studying individual chemical carcinogens. Both arsenic and benzo(a)pyrene (BaP) are among the most common environmental carcinogens causing lung cancer and other types of cancer in humans. Millions of people are exposed to arsenic via consuming arsenic-contaminated drinking water and even more people are exposed to BaP via cigarette smoking and consuming BaP-contaminated food. Thus arsenic and BaP combined-exposure in humans is common. Previous epidemiology studies indicated that arsenic-exposed people who were cigarette smokers had significantly higher lung cancer risk than those who were non-smokers. Since BaP is one of the major carcinogens in cigarette smoke, it has been speculated that arsenic and BaP combined-exposure may play important roles in the increased lung cancer risk observed in arsenic-exposed cigarette smokers. In this review, we summarize important findings and inconsistencies about the co-carcinogenic effects and underlying mechanisms of arsenic and BaP combined-exposure and propose new areas for future studies. A clear understanding on the mechanism of co-carcinogenic effects of arsenic and BaP combined exposure may identify novel targets to more efficiently treat and prevent lung cancer resulting from arsenic and BaP combined-exposure.
Collapse
Affiliation(s)
- Zhishan Wang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44109, USA.
| |
Collapse
|
137
|
Chu X, Wang J. Deciphering the molecular mechanism of the cancer formation by chromosome structural dynamics. PLoS Comput Biol 2021; 17:e1009596. [PMID: 34752443 PMCID: PMC8631624 DOI: 10.1371/journal.pcbi.1009596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/30/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer reflects the dysregulation of the underlying gene network, which is strongly related to the 3D genome organization. Numerous efforts have been spent on experimental characterizations of the structural alterations in cancer genomes. However, there is still a lack of genomic structural-level understanding of the temporal dynamics for cancer initiation and progression. Here, we use a landscape-switching model to investigate the chromosome structural transition during the cancerization and reversion processes. We find that the chromosome undergoes a non-monotonic structural shape-changing pathway with initial expansion followed by compaction during both of these processes. Furthermore, our analysis reveals that the chromosome with a more expanding structure than those at both the normal and cancer cell during cancerization exhibits a sparse contact pattern, which shows significant structural similarity to the one at the embryonic stem cell in many aspects, including the trend of contact probability declining with the genomic distance, the global structural shape geometry and the spatial distribution of loci on the chromosome. In light of the intimate structure-function relationship at the chromosomal level, we further describe the cell state transition processes by the chromosome structural changes, suggesting an elevated cell stemness during the formation of the cancer cells. We show that cell cancerization and reversion are highly irreversible processes in terms of the chromosome structural transition pathways, spatial repositioning of chromosomal loci and hysteresis loop of contact evolution analysis. Our model draws a molecular-scale picture of cell cancerization from the chromosome structural perspective. The process contains initial reprogramming towards the stem cell followed by the differentiation towards the cancer cell, accompanied by an initial increase and subsequent decrease of the cell stemness.
Collapse
Affiliation(s)
- Xiakun Chu
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York, United States of America
| | - Jin Wang
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York, United States of America
- Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, New York, United States of America
| |
Collapse
|
138
|
Chen X, Fan Y, Sun J, Zhang Z, Xin Y, Li K, Tang K, Du P, Liu Y, Wang G, Yang M, Tan Y. Nanoparticle-mediated specific elimination of soft cancer stem cells by targeting low cell stiffness. Acta Biomater 2021; 135:493-505. [PMID: 34492369 DOI: 10.1016/j.actbio.2021.08.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022]
Abstract
As the driving force of tumor progression, cancer stem cells (CSCs) hold much lower cellular stiffness than bulk tumor cells across many cancer types. However, it remains unclear whether low cell stiffness can be harnessed in nanoparticle-based therapeutics for CSC targeting. We report that breast CSCs exhibit much lower stiffness but considerably higher uptake of nitrogen-doped graphene quantum dots (N-GQDs) than bulk tumor cells. Softening/stiffening cells enhances/suppresses nanoparticle uptake through activating/inhibiting clathrin- and caveolae-mediated endocytosis, suggesting that low cell stiffness mediates the elevated uptake in soft CSCs that may lead to the specific elimination. Further, soft CSCs enhance drug release, cellular retention, and nuclear accumulation of drug-loaded N-GQDs by reducing intracellular pH and exocytosis. Remarkably, drug-loaded N-GQDs specifically eliminate soft CSCs both in vitro and in vivo, inhibit tumor but not animal growth, and reduce the tumorigenicity of xenograft cells. Our findings unveil a new mechanism by which low cellular stiffness can be harnessed in nanoparticle-based strategies for specific CSC elimination, opening a new paradigm of cancer mechanomedicine. STATEMENT OF SIGNIFICANCE: Low cell stiffness is associated with high malignancy of tumor cells and thus serves as a mechanical hallmark of CSCs. However, it remains unclear whether cellular stiffness can be exploited for specific targeting of soft CSCs. This work reports that soft CSCs exhibit high N-GQD uptake compared to stiff tumor cells, which is regulated by cellular stiffness. Further, soft CSCs have enhanced drug release, cellular retention, and nuclear accumulation of drug-loaded N-GQDs, which enable the specific elimination of malignant CSCs both in vitro and in vivo with minimal side effect. In summary, our study demonstrates that CSC's low stiffness can be harnessed as a mechanical target for specific eradication, which provides a new paradigm of cancer mechanomedicine.
Collapse
Affiliation(s)
- Xi Chen
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518053, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Yadi Fan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Jinghua Sun
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Zhipeng Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518053, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518053, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Kai Tang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518053, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Pengyu Du
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518053, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 518053, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518053, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| |
Collapse
|
139
|
Abstract
Annexin A3 (ANXA3), an annexin family member, contains 36 kDa and 33 kDa isoforms. Similar to other annexin members, ANXA3 plays an important role in the development of human diseases. Recent studies have reported that abnormal ANXA3 expression is closely associated with the development, progression, metastasis, drug resistance and prognosis of several malignant tumours, such as breast cancer, lung cancer and hepatocellular carcinoma. ANXA3 exerts its role by regulating cell proliferation, migration and apoptosis via the phosphatidylinositol-3 kinase/Akt, nuclear factor-κB (NF-κB), c-JUN N-terminal kinase, extracellular signal-regulated kinase and hypoxia-inducible factor-1 signalling pathways. ANXA3 may act as a novel target for the early diagnosis and treatment of tumours. The present review summarises the recent progress in the role of ANXA3 and its regulatory pathways in tumours.
Collapse
Affiliation(s)
- Chao Liu
- Clinical Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Nannan Li
- Clinical Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Guijian Liu
- Clinical Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Xue Feng
- Clinical Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| |
Collapse
|
140
|
Okada M, Suzuki S, Togashi K, Sugai A, Yamamoto M, Kitanaka C. Targeting Folate Metabolism Is Selectively Cytotoxic to Glioma Stem Cells and Effectively Cooperates with Differentiation Therapy to Eliminate Tumor-Initiating Cells in Glioma Xenografts. Int J Mol Sci 2021; 22:ijms222111633. [PMID: 34769063 PMCID: PMC8583947 DOI: 10.3390/ijms222111633] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/29/2022] Open
Abstract
Glioblastoma (GBM) is one of the deadliest of all human cancers. Developing therapies targeting GBM cancer stem cells or glioma stem cells (GSCs), which are deemed responsible for the malignancy of GBM due to their therapy resistance and tumor-initiating capacity, is considered key to improving the dismal prognosis of GBM patients. In this study, we found that folate antagonists, such as methotrexate (MTX) and pemetrexed, are selectively cytotoxic to GSCs, but not to their differentiated counterparts, normal fibroblasts, or neural stem cells in vitro, and that the high sensitivity of GCSs to anti-folates may be due to the increased expression of RFC-1/SLC19A1, the reduced folate carrier that transports MTX into cells, in GSCs. Of note, in an in vivo serial transplantation model, MTX alone failed to exhibit anti-GSC effects but promoted the anti-GSC effects of CEP1347, an inducer of GSC differentiation. This suggests that folate metabolism, which plays an essential role specifically in GSCs, is a promising target of anti-GSC therapy, and that the combination of cytotoxic and differentiation therapies may be a novel and promising approach to effectively eliminate cancer stem cells.
Collapse
Affiliation(s)
- Masashi Okada
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan; (S.S.); (K.T.); (A.S.); (M.Y.)
- Correspondence: (M.O.); (C.K.); Tel.: +81-23-628-5214 (M.O.)
| | - Shuhei Suzuki
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan; (S.S.); (K.T.); (A.S.); (M.Y.)
- Department of Clinical Oncology, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Keita Togashi
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan; (S.S.); (K.T.); (A.S.); (M.Y.)
- Department of Ophthalmology and Visual Sciences, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Asuka Sugai
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan; (S.S.); (K.T.); (A.S.); (M.Y.)
| | - Masahiro Yamamoto
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan; (S.S.); (K.T.); (A.S.); (M.Y.)
| | - Chifumi Kitanaka
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan; (S.S.); (K.T.); (A.S.); (M.Y.)
- Research Institute for Promotion of Medical Sciences, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
- Correspondence: (M.O.); (C.K.); Tel.: +81-23-628-5214 (M.O.)
| |
Collapse
|
141
|
de Carvalho PA, Bonatelli M, Cordeiro MD, Coelho RF, Reis S, Srougi M, Nahas WC, Pinheiro C, Leite KRM. MCT1 expression is independently related to shorter cancer-specific survival in clear cell renal cell carcinoma. Carcinogenesis 2021; 42:1420-1427. [PMID: 34668521 DOI: 10.1093/carcin/bgab100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 11/15/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) has been considered a metabolic disease, with loss of von Hippel-Lindau (VHL) gene and consequent overexpression of hypoxia-inducible factor 1 alpha (HIF-1α), which is central for tumor development and progression. Among other effects, HIF-1α is involved in the metabolic reprogramming of cancer cells towards the Warburg effect involved in tumor cell proliferation, migration and survival. In this context, several proteins are expressed by cancer cells, including glucose and lactate transporters as well as different pH regulators. Among them, monocarboxylate transporters (MCTs) can be highlighted. Our aim is to comprehensively analyze the immunoexpression of MCT1, MCT2, MCT4, CD147, CD44, HIF-1α, GLUT1 and CAIX in ccRCC surgical specimens correlating with classical prognostic factors and survival of patients with long follow up. Surgical specimens from 207 patients with ccRCC who underwent radical or partial nephrectomy were used to build a tissue microarray. Immunostaining was categorized into absent/weak or moderate/strong and related to all classic ccRCC prognostic parameters. Kaplan-Meier curves were generated to assess overall and cancer-specific survival, and multivariate analysis was performed to identify independent prognostic factors of survival. Multivariate analysis showed that MCT1 together with tumor size and TNM staging, were independently related to cancer-specific survival. MCT1, CD147, CD44 and GLUT1 expression were significantly associated with poor prognostic factors. We show that MCT1 is an independent prognostic factor for cancer-specific survival in ccRCC justifying the use of new target therapies already being tested in clinical trials.
Collapse
Affiliation(s)
- Paulo Afonso de Carvalho
- Faculdade de Medicina da Universidade de Sao Paulo, Laboratory of Medical Investigation (LIM55)-Urology Department, Sao Paulo, Brazil
- Instituto do Câncer do Estado de Sao Paulo (ICESP), Sao Paulo, Brazil
| | - Murilo Bonatelli
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Sao Paulo, Brazil
| | | | | | - Sabrina Reis
- Faculdade de Medicina da Universidade de Sao Paulo, Laboratory of Medical Investigation (LIM55)-Urology Department, Sao Paulo, Brazil
| | - Miguel Srougi
- Faculdade de Medicina da Universidade de Sao Paulo, Laboratory of Medical Investigation (LIM55)-Urology Department, Sao Paulo, Brazil
- Instituto do Câncer do Estado de Sao Paulo (ICESP), Sao Paulo, Brazil
| | - Willian Carlos Nahas
- Faculdade de Medicina da Universidade de Sao Paulo, Laboratory of Medical Investigation (LIM55)-Urology Department, Sao Paulo, Brazil
- Instituto do Câncer do Estado de Sao Paulo (ICESP), Sao Paulo, Brazil
| | - Celine Pinheiro
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Sao Paulo, Brazil
- Barretos School of Health Sciences Dr. Paulo Prata-FACISB, Barretos, Sao Paulo, Brazil
| | - Katia Ramos Moreira Leite
- Faculdade de Medicina da Universidade de Sao Paulo, Laboratory of Medical Investigation (LIM55)-Urology Department, Sao Paulo, Brazil
| |
Collapse
|
142
|
Autophagy in Tumor Immunity and Viral-Based Immunotherapeutic Approaches in Cancer. Cells 2021; 10:cells10102672. [PMID: 34685652 PMCID: PMC8534833 DOI: 10.3390/cells10102672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 01/09/2023] Open
Abstract
Autophagy is a fundamental catabolic process essential for the maintenance of cellular and tissue homeostasis, as well as directly contributing to the control of invading pathogens. Unsurprisingly, this process becomes critical in supporting cellular dysregulation that occurs in cancer, particularly the tumor microenvironments and their immune cell infiltration, ultimately playing a role in responses to cancer therapies. Therefore, understanding "cancer autophagy" could help turn this cellular waste-management service into a powerful ally for specific therapeutics. For instance, numerous regulatory mechanisms of the autophagic machinery can contribute to the anti-tumor properties of oncolytic viruses (OVs), which comprise a diverse class of replication-competent viruses with potential as cancer immunotherapeutics. In that context, autophagy can either: promote OV anti-tumor effects by enhancing infectivity and replication, mediating oncolysis, and inducing autophagic and immunogenic cell death; or reduce OV cytotoxicity by providing survival cues to tumor cells. These properties make the catabolic process of autophagy an attractive target for therapeutic combinations looking to enhance the efficacy of OVs. In this article, we review the complicated role of autophagy in cancer initiation and development, its effect on modulating OVs and immunity, and we discuss recent progress and opportunities/challenges in targeting autophagy to enhance oncolytic viral immunotherapy.
Collapse
|
143
|
Purification of Colon Carcinoma Cells from Primary Colon Tumor Using a Filtration Method via Porous Polymeric Filters. Polymers (Basel) 2021; 13:polym13193411. [PMID: 34641226 PMCID: PMC8513025 DOI: 10.3390/polym13193411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/26/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022] Open
Abstract
Cancer stem cells (CSCs) or cancer-initiating cells (CICs) are key factors for tumor generation and metastasis. We investigated a filtration method to enhance CSCs (CICs) from colon carcinoma HT-29 cells and primary colon carcinoma cells derived from patient colon tumors using poly(lactide-co-glycolic acid)/silk screen (PLGA/SK) filters. The colon carcinoma cell solutions were permeated via porous filters to obtain a permeation solution. Then, the cell cultivation media were permeated via the filters to obtain the recovered solution, where the colon carcinoma cells that adhered to the filters were washed off into the recovered solution. Subsequently, the filters were incubated in the culture media to obtain the migrated cells via the filters. Colon carcinoma HT-29 cells with high tumorigenicity, which might be CSCs (CICs), were enhanced in the cells in the recovered solution and in the migrated cells based on the CSC (CIC) marker expression, colony-forming unit assay, and carcinoembryonic antigen (CEA) production. Although primary colon carcinoma cells isolated from colon tumor tissues contained fibroblast-like cells, the primary colon carcinoma cells were purified from fibroblast-like cells by filtration through PLGA/SK filters, indicating that the filtration method is effective in purifying primary colon carcinoma cells.
Collapse
|
144
|
Biological functions and clinical significance of long noncoding RNAs in bladder cancer. Cell Death Discov 2021; 7:278. [PMID: 34611133 PMCID: PMC8492632 DOI: 10.1038/s41420-021-00665-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/02/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BCa) is one of the 10 most common cancers with high morbidity and mortality worldwide. Long noncoding RNAs (lncRNAs), a large class of noncoding RNA transcripts, consist of more than 200 nucleotides and play a significant role in the regulation of molecular interactions and cellular pathways during the occurrence and development of various cancers. In recent years, with the rapid advancement of high-throughput gene sequencing technology, several differentially expressed lncRNAs have been discovered in BCa, and their functions have been proven to have an impact on BCa development, such as cell growth and proliferation, metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, and drug-resistance. Furthermore, evidence suggests that lncRNAs are significantly associated with BCa patients' clinicopathological characteristics, especially tumor grade, TNM stage, and clinical progression stage. In addition, lncRNAs have the potential to more accurately predict BCa patient prognosis, suggesting their potential as diagnostic and prognostic biomarkers for BCa patients in the future. In this review, we briefly summarize and discuss recent research progress on BCa-associated lncRNAs, while focusing on their biological functions and mechanisms, clinical significance, and targeted therapy in BCa oncogenesis and malignant progression.
Collapse
|
145
|
Cao J, Bhatnagar S, Wang J, Qi X, Prabha S, Panyam J. Cancer stem cells and strategies for targeted drug delivery. Drug Deliv Transl Res 2021; 11:1779-1805. [PMID: 33095384 PMCID: PMC8062588 DOI: 10.1007/s13346-020-00863-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) are a small proportion of cancer cells with high tumorigenic activity, self-renewal ability, and multilineage differentiation potential. Standard anti-tumor therapies including conventional chemotherapy, radiation therapy, and molecularly targeted therapies are not effective against CSCs, and often lead to enrichment of CSCs that can result in tumor relapse. Therefore, it is hypothesized that targeting CSCs is key to increasing the efficacy of cancer therapies. In this review, CSC properties including CSC markers, their role in tumor growth, invasiveness, metastasis, and drug resistance, as well as CSC microenvironment are discussed. Further, CSC-targeted strategies including the use of targeted drug delivery systems are examined.
Collapse
Affiliation(s)
- Jin Cao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Shubhmita Bhatnagar
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA
| | - Jiawei Wang
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA
| | - Xueyong Qi
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Swayam Prabha
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- Cancer Research & Molecular Biology and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jayanth Panyam
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
- School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
146
|
Meesuwan S, Ketpun D, Piyaviriyakul P, Rattanapinyopituk K, Theewasutrakul P, Sailasuta A. Immunohistochemical and molecular profiling of CD 117, Oct-4, and Sox-2 in canine cutaneous mast cell tumor of the crossbred dogs in Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand. Vet World 2021; 14:2646-2654. [PMID: 34903921 PMCID: PMC8654761 DOI: 10.14202/vetworld.2021.2646-2654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIM CD 117 (c-KIT) internal tandem duplication (ITD), octamer-binding transcription factor 4 (Oct-4), and sex-determining region Y-box 2 (Sox-2) may govern the oncogenicity and aggressiveness of canine cutaneous mast cell tumor (MCT) in the crossbred dogs. Thus, a comprehension of this matter may help us establishing a novel platform to treat the disease in those dogs. However, evidence has lacked so far. Thus, this study aimed to survey CD 117 ITD, Oct-4, and Sox-2 expressions and their relations to the 2-tier grading in a group of Thai crossbreed dogs. The study was done using polymerase chain reaction (PCR), Reverse transcription PCR (RT-PCR), and immunohistochemistry. MATERIALS AND METHODS Thirty-three MCT specimens graded by the 2-tier histopathology grading were collected from the crossbred and purebred dogs. CD 117 ITD was detected by conventional PCR and immunohistochemistry. While, Oct-4 and Sox-2 expression levels were determined at the protein and mRNA levels by immunohistochemistry and RT-PCR, respectively. The expression magnitude of each parameter was then related to the grades and breeds. RESULTS About 60.61% of specimens were low grade, while 39.39% were high grade. CD 117 ITD was not detected in all specimens. A significant increase of Oct-4 expression was found in the high-grade, crossbred dogs. Meanwhile, Sox-2 expressions were increased both in the purebred and crossbred dogs with high-grade MCT. CONCLUSION The study finding has indicated that the level of Sox-2 expression may be a useful tumorigenic and prognostic biomarker because it correlates to the 2-tier grades but not dog breeds.
Collapse
Affiliation(s)
- Sirilak Meesuwan
- Veterinary Pathobiology Program, Graduate School, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330 Thailand
- Companion Animal Cancer Research Unit, CAC-RU, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Dettachai Ketpun
- Companion Animal Cancer Research Unit, CAC-RU, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Veterinary Pathology and Diagnosis Centre, Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
- One Health Research Centre, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Prapruddee Piyaviriyakul
- Companion Animal Cancer Research Unit, CAC-RU, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Physiology, Biochemistry Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kasem Rattanapinyopituk
- Companion Animal Cancer Research Unit, CAC-RU, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pattharakrit Theewasutrakul
- Companion Animal Cancer Research Unit, CAC-RU, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Oncology Clinic, Small Animal Teaching Hospital, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Achariya Sailasuta
- Companion Animal Cancer Research Unit, CAC-RU, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
147
|
Alsadi N, Mallet JF, Matar C. miRNA-200b Signature in the Prevention of Skin Cancer Stem Cells by Polyphenol-enriched Blueberry Preparation. J Cancer Prev 2021; 26:162-173. [PMID: 34703819 PMCID: PMC8511576 DOI: 10.15430/jcp.2021.26.3.162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 12/24/2022] Open
Abstract
Exposure of the skin to solar UV radiation leads to inflammation, DNA damage, and dysregulation of cellular signaling pathways, which may cause skin cancer. Photochemoprevention with natural products is an effective strategy for the control of cutaneous neoplasia. Polyphenols have been proven to help prevent skin cancer and to inhibit the growth of cancer stem cells (CSCs) through epigenetic mechanisms, including modulation of microRNAs expression. Thus, the current study aimed to assess the effect of polyphenol enriched blueberry preparation (PEBP) or non-fermented blueberry juice (NBJ) on expression of miRNAs and target proteins associated with different clinicopathological characteristics of skin cancer such as stemness, motility, and invasiveness. We observed that PEBP significantly inhibited the proliferation of skin CSCs derived from different melanoma cell lines, HS 294T and B16F10. Moreover, PEBP was able to reduce the formation of melanophores. We also showed that the expression of the CD133+ stem cell marker in B16F10 and HS294T cell lines was significantly decreased after treating the cells with PEBP in comparison to the NBJ and control groups. Importantly, tumor suppressors' miR-200s, involved in the regulation of the epithelial-to-mesenchymal transition and metastasis, were strikingly upregulated. In addition, we have shown that a protein target of the tumor suppressor miR200b, ZEB1, was also significantly modulated. Thus, the results demonstrates that PEBP possesses potent anticancer and anti-metastatic potentials and may represent a novel chemopreventative agent against skin cancer.
Collapse
Affiliation(s)
- Nawal Alsadi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Canada
| | - Jean-François Mallet
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Canada
| | - Chantal Matar
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Canada.,Department of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| |
Collapse
|
148
|
Allavena P, Digifico E, Belgiovine C. Macrophages and cancer stem cells: a malevolent alliance. Mol Med 2021; 27:121. [PMID: 34583655 PMCID: PMC8480058 DOI: 10.1186/s10020-021-00383-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022] Open
Abstract
Myeloid cells infiltrating tumors are gaining ever growing attention in the last years because their pro-tumor and immunosuppressive functions are relevant for disease progression and therapeutic responses. The functional ambiguity of tumor-associated macrophages (TAMs), mostly promoting tumor evolution, is a challenging hurdle. This is even more evident in the case of cancer stem cells (CSCs); as active participants in the specialized environment of the cancer stem cell niche, TAMs initiate a reciprocal conversation with CSCs. TAMs contribute to protect CSCs from the hostile environment (exogenous insults, toxic compounds, attacks from the immune cells), and produce several biologically active mediators that modulate crucial developmental pathways that sustain cancer cell stemness. In this review, we have focused our attention on the interaction between TAMs and CSCs; we describe how TAMs impact on CSC biology and, in turn, how CSCs exploit the tissue trophic activity of macrophages to survive and progress. Since CSCs are responsible for therapy resistance and tumor recurrence, they are important therapeutic targets. In view of the recent success in oncology obtained by stimulating the immune system, we discuss some macrophage-targeted therapeutic strategies that may also affect the CSCs and interrupt their malevolent alliance.
Collapse
Affiliation(s)
- Paola Allavena
- Humanitas Clinical and Research Center -IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy.
| | - Elisabeth Digifico
- Humanitas Clinical and Research Center -IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy
| | - Cristina Belgiovine
- Humanitas Clinical and Research Center -IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy
| |
Collapse
|
149
|
Zschoche M, Skosyrski S, Babst N, Ranjbar M, Rommel F, Kurz M, Tura A, Joachim SC, Kociok N, Kakkassery V. Islet Co-Expression of CD133 and ABCB5 in Human Retinoblastoma Specimens. Klin Monbl Augenheilkd 2021. [PMID: 34571550 DOI: 10.1055/a-1525-2588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The role of CD133 und ABCB5 is discussed in treatment resistance in several types of cancer. The objective of this study was to evaluate whether CD133+/ABCB5+ colocalization differs in untreated, in beam radiation treated, and in chemotherapy treated retinoblastoma specimens. Additionally, CD133, ABCB5, sphingosine kinase 1, and sphingosine kinase 2 gene expression was analyzed in WERI-RB1 (WERI RB1) and etoposide-resistant WERI RB1 subclones (WERI ETOR). METHODS Active human untreated retinoblastoma specimens (n = 12), active human retinoblastoma specimens pretreated with beam radiation before enucleation (n = 8), and active human retinoblastoma specimens pretreated with chemotherapy before enucleation (n = 7) were investigated for localization and expression of CD133 and ABCB5 by immunohistochemistry. Only specimens with IIRC D, but not E, were included in this study. Furthermore, WERI RB1 and WERI ETOR cell lines were analyzed for CD133, ABCB5, sphingosine kinase 1, and sphingosine kinase 2 by the real-time polymerase chain reaction (RT-PCR). RESULTS Immunohistochemical analysis revealed the same amount of CD133+/ABCB5+ colocalization islets in untreated and treated human retinoblastoma specimens. Quantitative RT-PCR analysis showed a statistically significant upregulation of CD133 in WERI ETOR (p = 0.002). No ABCB5 expression was detected in WERI RB1 and WERI ETOR. On the other hand, SPHK1 (p = 0.0027) and SPHK2 (p = 0.017) showed significant downregulation in WERI ETOR compared to WERI RB1. CONCLUSIONS CD133+/ABCB5+ co-localization islets were noted in untreated and treated human retinoblastoma specimens. Therefore, we assume that CD133+/ABCB5+ islets might play a role in retinoblastoma genesis, but not in retinoblastoma treatment resistance.
Collapse
Affiliation(s)
- Marco Zschoche
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
| | - Sergej Skosyrski
- Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Neele Babst
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
| | - Mahdy Ranjbar
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
| | - Felix Rommel
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
| | - Maximilian Kurz
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
| | - Aysegül Tura
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Norbert Kociok
- Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | | |
Collapse
|
150
|
Pérez-Moreno P, Riquelme I, Brebi P, Roa JC. Role of lncRNAs in the Development of an Aggressive Phenotype in Gallbladder Cancer. J Clin Med 2021; 10:jcm10184206. [PMID: 34575316 PMCID: PMC8468232 DOI: 10.3390/jcm10184206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs are sequences longer than 200 nucleotides that are involved in different normal and abnormal biological processes exerting their effect on proliferation and differentiation, among other cell features. Functionally, lncRNAs can regulate gene expression within the cells by acting at transcriptional, post-transcriptional, translational, or post-translational levels. However, in pathological conditions such as cancer, the expression of these molecules is deregulated, becoming elements that can help in the acquisition of tumoral characteristics in the cells that trigger carcinogenesis and cancer progression. Specifically, in gallbladder cancer (GBC), recent publications have shown that lncRNAs participate in the acquisition of an aggressive phenotype in cancer cells, allowing them to acquire increased malignant capacities such as chemotherapy resistance or metastasis, inducing a worse survival in these patients. Furthermore, lncRNAs are useful as prognostic and diagnostic biomarkers since they have been shown to be differentially expressed in tumor tissues and serum of individuals with GBC. Therefore, this review will address different lncRNAs that could be promoting malignant phenotypic characteristics in GBC cells and lncRNAs that may be useful as markers due to their capability to predict a poor prognosis in GBC patients.
Collapse
Affiliation(s)
- Pablo Pérez-Moreno
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380000, Chile;
| | - Ismael Riquelme
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autoónoma de Chile, Temuco 4810101, Chile;
| | - Priscilla Brebi
- Laboratory of Integrative Biology (LiBi), Centro de Excelencia en Medicina Translacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de la Frontera, Temuco 4810296, Chile;
| | - Juan Carlos Roa
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380000, Chile;
- Correspondence: ; Tel.: +56-22354-1061
| |
Collapse
|