101
|
Schmitt P, Rosa RD, Destoumieux-Garzón D. An intimate link between antimicrobial peptide sequence diversity and binding to essential components of bacterial membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:958-70. [PMID: 26498397 DOI: 10.1016/j.bbamem.2015.10.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 12/22/2022]
Abstract
Antimicrobial peptides and proteins (AMPs) are widespread in the living kingdom. They are key effectors of defense reactions and mediators of competitions between organisms. They are often cationic and amphiphilic, which favors their interactions with the anionic membranes of microorganisms. Several AMP families do not directly alter membrane integrity but rather target conserved components of the bacterial membranes in a process that provides them with potent and specific antimicrobial activities. Thus, lipopolysaccharides (LPS), lipoteichoic acids (LTA) and the peptidoglycan precursor Lipid II are targeted by a broad series of AMPs. Studying the functional diversity of immune effectors tells us about the essential residues involved in AMP mechanism of action. Marine invertebrates have been found to produce a remarkable diversity of AMPs. Molluscan defensins and crustacean anti-LPS factors (ALF) are diverse in terms of amino acid sequence and show contrasted phenotypes in terms of antimicrobial activity. Their activity is directed essentially against Gram-positive or Gram-negative bacteria due to their specific interactions with Lipid II or Lipid A, respectively. Through those interesting examples, we discuss here how sequence diversity generated throughout evolution informs us on residues required for essential molecular interaction at the bacterial membranes and subsequent antibacterial activity. Through the analysis of molecular variants having lost antibacterial activity or shaped novel functions, we also discuss the molecular bases of functional divergence in AMPs. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.
Collapse
Affiliation(s)
- Paulina Schmitt
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, 2373223 Valparaíso, Chile
| | - Rafael D Rosa
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Delphine Destoumieux-Garzón
- CNRS, Ifremer, UPVD, Université de Montpellier. Interactions Hôtes-Pathogènes-Environnements (IHPE), UMR5244, Place Eugène Bataillon, 34090 Montpellier cedex, France.
| |
Collapse
|
102
|
Collet JM, Blows MW, McGuigan K. Transcriptome-wide effects of sexual selection on the fate of new mutations. Evolution 2015; 69:2905-16. [DOI: 10.1111/evo.12778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/03/2015] [Accepted: 09/08/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Julie M. Collet
- School of Biological Sciences; The University of Queensland; Queensland 4072 Australia
| | - Mark W. Blows
- School of Biological Sciences; The University of Queensland; Queensland 4072 Australia
| | - Katrina McGuigan
- School of Biological Sciences; The University of Queensland; Queensland 4072 Australia
| |
Collapse
|
103
|
Brieuc MSO, Ono K, Drinan DP, Naish KA. Integration of Random Forest with population-based outlier analyses provides insight on the genomic basis and evolution of run timing in Chinook salmon (Oncorhynchus tshawytscha). Mol Ecol 2015; 24:2729-46. [PMID: 25913096 DOI: 10.1111/mec.13211] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 04/15/2015] [Accepted: 04/21/2015] [Indexed: 01/11/2023]
Abstract
Anadromous Chinook salmon populations vary in the period of river entry at the initiation of adult freshwater migration, facilitating optimal arrival at natal spawning. Run timing is a polygenic trait that shows evidence of rapid parallel evolution in some lineages, signifying a key role for this phenotype in the ecological divergence between populations. Studying the genetic basis of local adaptation in quantitative traits is often impractical in wild populations. Therefore, we used a novel approach, Random Forest, to detect markers linked to run timing across 14 populations from contrasting environments in the Columbia River and Puget Sound, USA. The approach permits detection of loci of small effect on the phenotype. Divergence between populations at these loci was then examined using both principle component analysis and FST outlier analyses, to determine whether shared genetic changes resulted in similar phenotypes across different lineages. Sequencing of 9107 RAD markers in 414 individuals identified 33 predictor loci explaining 79.2% of trait variance. Discriminant analysis of principal components of the predictors revealed both shared and unique evolutionary pathways in the trait across different lineages, characterized by minor allele frequency changes. However, genome mapping of predictor loci also identified positional overlap with two genomic outlier regions, consistent with selection on loci of large effect. Therefore, the results suggest selective sweeps on few loci and minor changes in loci that were detected by this study. Use of a polygenic framework has provided initial insight into how divergence in a trait has occurred in the wild.
Collapse
Affiliation(s)
- Marine S O Brieuc
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98195-5020, USA
| | - Kotaro Ono
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98195-5020, USA
| | - Daniel P Drinan
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98195-5020, USA
| | - Kerry A Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98195-5020, USA
| |
Collapse
|
104
|
Panja AS, Bandopadhyay B, Maiti S. Protein Thermostability Is Owing to Their Preferences to Non-Polar Smaller Volume Amino Acids, Variations in Residual Physico-Chemical Properties and More Salt-Bridges. PLoS One 2015; 10:e0131495. [PMID: 26177372 PMCID: PMC4503463 DOI: 10.1371/journal.pone.0131495] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/01/2015] [Indexed: 01/08/2023] Open
Abstract
Introduction Protein thermostability is an important field for its evolutionary perspective of mesophilic versus thermophilic relationship and for its industrial/ therapeutic applications. Methods Presently, a total 400 (200 thermophilic and 200 mesophilic homologue) proteins were studied utilizing several software/databases to evaluate their amino acid preferences. Randomly selected 50 homologous proteins with available PDB-structure of each group were explored for the understanding of the protein charges, isoelectric-points, hydrophilicity, hydrophobicity, tyrosine phosphorylation and salt-bridge occurrences. These 100 proteins were further probed to generate Ramachandran plot/data for the gross secondary structure prediction in and comparison between the thermophilic and mesophilic proteins. Results Present results strongly suggest that nonpolar smaller volume amino acids Ala (χ2 = 238.54, p<0.001) and Gly (χ2 = 73.35, p<0.001) are highly and Val moderately (χ2 = 144.43, p<0.001) occurring in the 85% of thermophilic proteins. Phospho-regulated Tyr and redox-sensitive Cys are also moderately distributed (χ2~20.0, p<0.01) in a larger number of thermophilic proteins. A consistent lower distribution of thermophilicity and discretely higher distribution of hydrophobicity is noticed in a large number of thermophilic versus their mesophilic protein homolog. The mean differences of isoelectric points and charges are found to be significantly less (7.11 vs. 6.39, p<0.05 and 1 vs. -0.6, p<0.01, respectively) in thermophilic proteins compared to their mesophilic counterpart. The possible sites for Tyr phosphorylation are noticed to be 25% higher (p<0.05) in thermophilic proteins. The 60% thermophiles are found with higher number of salt bridges in this study. The average percentage of salt-bridge of thermophiles is found to be higher by 20% than their mesophilic homologue. The GLU-HIS and GLU-LYS salt-bridge dyads are calculated to be significantly higher (p<0.05 and p<0.001, respectively) in thermophilic and GLU-ARG is higher in the mesophilic proteins. The Ramachandran plot/ data suggest a higher abundance of the helix, left-handed helix, sheet, nonplanar peptide and lower occurrence of cis peptide, loop/ turn and outlier in thermophiles. Pearson’s correlation result suggests that the isoelectric points of mesophilic and thermophilic proteins are positively correlated (r = 0.93 and 0.84, respectively; p<0.001) to their corresponding charges. And their hydrophilicity is negatively associated with the corresponding hydrophobicity (r = -0.493, p<0.001 and r = -0.324, p<0.05) suggesting their reciprocal evolvement. Conclusions Present results for the first time with this large amount of datasets and multiple contributing factors suggest the greater occurrence of hydrophobicity, salt-bridges and smaller volume nonpolar residues (Gly, Ala and Val) and lesser occurrence of bulky polar residues in the thermophilic proteins. A more stoichiometric relationship amongst these factors minimized the hindrance due to side chain burial and increased compactness and secondary structural stability in thermophilic proteins.
Collapse
Affiliation(s)
- Anindya Sundar Panja
- Post Graduate Department of Biotechnology, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Bidyut Bandopadhyay
- Post Graduate Department of Biotechnology, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Smarajit Maiti
- Post Graduate Department of Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, 721102, West Bengal, India
- * E-mail:
| |
Collapse
|
105
|
Skinner MK. Environmental Epigenetics and a Unified Theory of the Molecular Aspects of Evolution: A Neo-Lamarckian Concept that Facilitates Neo-Darwinian Evolution. Genome Biol Evol 2015; 7:1296-302. [PMID: 25917417 PMCID: PMC4453068 DOI: 10.1093/gbe/evv073] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Environment has a critical role in the natural selection process for Darwinian evolution. The primary molecular component currently considered for neo-Darwinian evolution involves genetic alterations and random mutations that generate the phenotypic variation required for natural selection to act. The vast majority of environmental factors cannot directly alter DNA sequence. Epigenetic mechanisms directly regulate genetic processes and can be dramatically altered by environmental factors. Therefore, environmental epigenetics provides a molecular mechanism to directly alter phenotypic variation generationally. Lamarck proposed in 1802 the concept that environment can directly alter phenotype in a heritable manner. Environmental epigenetics and epigenetic transgenerational inheritance provide molecular mechanisms for this process. Therefore, environment can on a molecular level influence the phenotypic variation directly. The ability of environmental epigenetics to alter phenotypic and genotypic variation directly can significantly impact natural selection. Neo-Lamarckian concept can facilitate neo-Darwinian evolution. A unified theory of evolution is presented to describe the integration of environmental epigenetic and genetic aspects of evolution.
Collapse
Affiliation(s)
- Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University
| |
Collapse
|
106
|
Dlugosch KM, Anderson SR, Braasch J, Cang FA, Gillette HD. The devil is in the details: genetic variation in introduced populations and its contributions to invasion. Mol Ecol 2015; 24:2095-111. [PMID: 25846825 DOI: 10.1111/mec.13183] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 12/14/2022]
Abstract
The influence of genetic variation on invasion success has captivated researchers since the start of the field of invasion genetics 50 years ago. We review the history of work on this question and conclude that genetic variation-as surveyed with molecular markers-appears to shape invasion rarely. Instead, there is a significant disconnect between marker assays and ecologically relevant genetic variation in introductions. We argue that the potential for adaptation to facilitate invasion will be shaped by the details of genotypes affecting phenotypes, and we highlight three areas in which we see opportunities to make powerful new insights. (i) The genetic architecture of adaptive variation. Traits shaped by large-effect alleles may be strongly impacted by founder events yet more likely to respond to selection when genetic drift is strong. Large-effect loci may be especially relevant for traits involved in biotic interactions. (ii) Cryptic genetic variation exposed during invasion. Introductions have strong potential to uncover masked variation due to alterations in genetic and ecological environments. (iii) Genetic interactions during admixture of multiple source populations. As divergence among sources increases, positive followed by increasingly negative effects of admixture should be expected. Although generally hypothesized to be beneficial during invasion, admixture is most often reported among sources of intermediate divergence, supporting the possibility that incompatibilities among divergent source populations might be limiting their introgression. Finally, we note that these details of invasion genetics can be coupled with comparative demographic analyses to link genetic changes to the evolution of invasiveness itself.
Collapse
Affiliation(s)
- Katrina M Dlugosch
- Department of Ecology & Evolutionary Biology, University of Arizona, PO Box 210088, Tucson, AZ, 85721, USA
| | | | | | | | | |
Collapse
|
107
|
Abstract
The genome size of an organism varies from species to species. The C-value paradox enigma is a very complex puzzle with regards to vast diversity in genome sizes in eukaryotes. Here we reported the detailed genomic information of 172 fungal species among different fungal genomes and found that fungal genomes are very diverse in nature. In fungi, the diversity of genomes varies from 8.97 Mb to 177.57 Mb. The average genome sizes of Ascomycota and Basidiomycota fungi are 36.91 and 46.48 Mb respectively. But higher genome size is observed in Oomycota (74.85 Mb) species, a lineage of fungus-like eukaryotic microorganisms. The average coding genes of Oomycota species are almost doubled than that of Acomycota and Basidiomycota fungus.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
108
|
Luisi P, Alvarez-Ponce D, Pybus M, Fares MA, Bertranpetit J, Laayouni H. Recent positive selection has acted on genes encoding proteins with more interactions within the whole human interactome. Genome Biol Evol 2015; 7:1141-54. [PMID: 25840415 PMCID: PMC4419801 DOI: 10.1093/gbe/evv055] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genes vary in their likelihood to undergo adaptive evolution. The genomic factors that determine adaptability, however, remain poorly understood. Genes function in the context of molecular networks, with some occupying more important positions than others and thus being likely to be under stronger selective pressures. However, how positive selection distributes across the different parts of molecular networks is still not fully understood. Here, we inferred positive selection using comparative genomics and population genetics approaches through the comparison of 10 mammalian and 270 human genomes, respectively. In agreement with previous results, we found that genes with lower network centralities are more likely to evolve under positive selection (as inferred from divergence data). Surprisingly, polymorphism data yield results in the opposite direction than divergence data: Genes with higher centralities are more likely to have been targeted by recent positive selection during recent human evolution. Our results indicate that the relationship between centrality and the impact of adaptive evolution highly depends on the mode of positive selection and/or the evolutionary time-scale.
Collapse
Affiliation(s)
- Pierre Luisi
- Institute of Evolutionary Biology, Universitat Pompeu Fabra-CSIC, CEXS-UPF-PRBB, Barcelona, Catalonia, Spain
| | - David Alvarez-Ponce
- Integrative Systems Biology Group, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Politécnica de Valencia (UPV), Spain Biology Department, University of Nevada, Reno Institute of Evolutionary Biology, Universitat Pompeu Fabra-CSIC, CEXS-UPF-PRBB, Barcelona, Catalonia, Spain
| | - Marc Pybus
- Institute of Evolutionary Biology, Universitat Pompeu Fabra-CSIC, CEXS-UPF-PRBB, Barcelona, Catalonia, Spain
| | - Mario A Fares
- Integrative Systems Biology Group, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Politécnica de Valencia (UPV), Spain Smurfit Institute of Genetics, University of Dublin, Trinity College, Ireland
| | - Jaume Bertranpetit
- Institute of Evolutionary Biology, Universitat Pompeu Fabra-CSIC, CEXS-UPF-PRBB, Barcelona, Catalonia, Spain
| | - Hafid Laayouni
- Institute of Evolutionary Biology, Universitat Pompeu Fabra-CSIC, CEXS-UPF-PRBB, Barcelona, Catalonia, Spain Departament de Genètica i de Microbiologia, Grup de Biologia Evolutiva (GBE), Universitat Autonòma de Barcelona, Bellaterra, Spain
| |
Collapse
|
109
|
Pardo-Diaz C, Salazar C, Jiggins CD. Towards the identification of the loci of adaptive evolution. Methods Ecol Evol 2015; 6:445-464. [PMID: 25937885 PMCID: PMC4409029 DOI: 10.1111/2041-210x.12324] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/28/2014] [Indexed: 12/17/2022]
Abstract
1. Establishing the genetic and molecular basis underlying adaptive traits is one of the major goals of evolutionary geneticists in order to understand the connection between genotype and phenotype and elucidate the mechanisms of evolutionary change. Despite considerable effort to address this question, there remain relatively few systems in which the genes shaping adaptations have been identified. 2. Here, we review the experimental tools that have been applied to document the molecular basis underlying evolution in several natural systems, in order to highlight their benefits, limitations and suitability. In most cases, a combination of DNA, RNA and functional methodologies with field experiments will be needed to uncover the genes and mechanisms shaping adaptation in nature.
Collapse
Affiliation(s)
- Carolina Pardo-Diaz
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del RosarioCarrera 24 No 63C-69, Bogotá 111221, Colombia
| | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del RosarioCarrera 24 No 63C-69, Bogotá 111221, Colombia
| | - Chris D Jiggins
- Department of Zoology, University of CambridgeDowning Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
110
|
Coselected genes determine adaptive variation in herbivore resistance throughout the native range of Arabidopsis thaliana. Proc Natl Acad Sci U S A 2015; 112:4032-7. [PMID: 25775585 DOI: 10.1073/pnas.1421416112] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The "mustard oil bomb" is a major defense mechanism in the Brassicaceae, which includes crops such as canola and the model plant Arabidopsis thaliana. These plants produce and store blends of amino acid-derived secondary metabolites called glucosinolates. Upon tissue rupture by natural enemies, the myrosinase enzyme hydrolyses glucosinolates, releasing defense molecules. Brassicaceae display extensive variation in the mixture of glucosinolates that they produce. To investigate the genetics underlying natural variation in glucosinolate profiles, we conducted a large genome-wide association study of 22 methionine-derived glucosinolates using A. thaliana accessions from across Europe. We found that 36% of among accession variation in overall glucosinolate profile was explained by genetic differentiation at only three known loci from the glucosinolate pathway. Glucosinolate-related SNPs were up to 490-fold enriched in the extreme tail of the genome-wide [Formula: see text] scan, indicating strong selection on loci controlling this pathway. Glucosinolate profiles displayed a striking longitudinal gradient with alkenyl and hydroxyalkenyl glucosinolates enriched in the West. We detected a significant contribution of glucosinolate loci toward general herbivore resistance and lifetime fitness in common garden experiments conducted in France, where accessions are enriched in hydroxyalkenyls. In addition to demonstrating the adaptive value of glucosinolate profile variation, we also detected long-distance linkage disequilibrium at two underlying loci, GS-OH and GS-ELONG. Locally cooccurring alleles at these loci display epistatic effects on herbivore resistance and fitness in ecologically realistic conditions. Together, our results suggest that natural selection has favored a locally adaptive configuration of physically unlinked loci in Western Europe.
Collapse
|
111
|
Differential regulation of antagonistic pleiotropy in synthetic and natural populations suggests its role in adaptation. G3-GENES GENOMES GENETICS 2015; 5:699-709. [PMID: 25711830 PMCID: PMC4426359 DOI: 10.1534/g3.115.017020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Antagonistic pleiotropy (AP), the ability of a gene to show opposing effects in different phenotypes, has been identified in various life history traits and complex disorders, indicating its fundamental role in balancing fitness over the course of evolution. It is intuitive that natural selection might maintain AP to allow organisms phenotypic flexibility in different environments. However, despite several attempts, little evidence exists for its role in adaptation. We performed a meta-analysis in yeast to identify the genetic basis of AP in bi-parental segregants, natural isolates, and a laboratory strain genome-wide deletion collection, by comparing growth in favorable and stress conditions. We found that whereas AP was abundant in the synthetic populations, it was absent in the natural isolates. This finding indicated resolution of trade-offs, i.e., mitigation of trade-offs over evolutionary history, probably through accumulation of compensatory mutations. In the deletion collection, organizational genes showed AP, suggesting ancient resolutions of trade-offs in the basic cellular pathways. We find abundant AP in the segregants, greater than estimated in the deletion collection or observed in previous studies, with IRA2, a negative regulator of the Ras/PKA signaling pathway, showing trade-offs across diverse environments. Additionally, IRA2 and several other Ras/PKA pathway genes showed balancing selection in isolates of S. cerevisiae and S. paradoxus, indicating that multiple alleles maintain AP in this pathway in natural populations. We propose that during AP resolution, retaining the ability to vary signaling pathways such as Ras/PKA, may provide organisms with phenotypic flexibility. However, with increasing organismal complexity AP resolution may become difficult. A partial resolution of AP could manifest as complex human diseases, and the inability to resolve AP may play a role in speciation. Our findings suggest that testing a universal phenomenon like AP across multiple experimental systems may elucidate mechanisms underlying its regulation and evolution.
Collapse
|
112
|
Kristensen TN, Hoffmann AA, Pertoldi C, Stronen AV. What can livestock breeders learn from conservation genetics and vice versa? Front Genet 2015; 6:38. [PMID: 25713584 PMCID: PMC4322732 DOI: 10.3389/fgene.2015.00038] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/26/2015] [Indexed: 11/17/2022] Open
Abstract
The management of livestock breeds and threatened natural population share common challenges, including small effective population sizes, high risk of inbreeding, and the potential benefits and costs associated with mixing disparate gene pools. Here, we consider what has been learnt about these issues, the ways in which the knowledge gained from one area might be applied to the other, and the potential of genomics to provide new insights. Although there are key differences stemming from the importance of artificial versus natural selection and the decreased level of environmental heterogeneity experienced by many livestock populations, we suspect that information from genetic rescue in natural populations could be usefully applied to livestock. This includes an increased emphasis on maintaining substantial population sizes at the expense of genetic uniqueness in ensuring future adaptability, and on emphasizing the way that environmental changes can influence the relative fitness of deleterious alleles and genotypes in small populations. We also suspect that information gained from cross-breeding and the maintenance of unique breeds will be increasingly important for the preservation of genetic variation in small natural populations. In particular, selected genes identified in domestic populations provide genetic markers for exploring adaptive evolution in threatened natural populations. Genomic technologies in the two disciplines will be important in the future in realizing genetic gains in livestock and maximizing adaptive capacity in wildlife, and particularly in understanding how parts of the genome may respond differently when exposed to population processes and selection.
Collapse
Affiliation(s)
- Torsten N. Kristensen
- Section of Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Ary A. Hoffmann
- Department of Zoology and Department of Genetics, Bio21 Institute, The University of MelbourneMelbourne, VIC, Australia
| | - Cino Pertoldi
- Section of Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
- Aalborg ZooAalborg, Denmark
| | - Astrid V. Stronen
- Section of Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| |
Collapse
|
113
|
Fishman L, Beardsley PM, Stathos A, Williams CF, Hill JP. The genetic architecture of traits associated with the evolution of self-pollination in Mimulus. THE NEW PHYTOLOGIST 2015; 205:907-917. [PMID: 25306861 DOI: 10.1111/nph.13091] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/26/2014] [Indexed: 06/04/2023]
Abstract
Quantitative trait locus (QTL) mapping is a first step toward understanding the genetic basis of adaptive evolution and may also reveal reproductive incompatibilities unique to hybrids. In plants, the shift from outcrossing to self-pollination is common, providing the opportunity for comparisons of QTL architecture among parallel evolutionary transitions. We used QTL mapping in hybrids between the bee-pollinated monkeyflower Mimulus lewisii and the closely related selfer Mimulus parishii to determine the genetic basis of divergence in floral traits and flowering time associated with mating-system evolution, and to characterize hybrid anther sterility. We found a moderately polygenic and highly directional basis for floral size evolution, suggesting adaptation from standing variation or in pursuit of a moving optimum, whereas only a few major loci accounted for substantial flowering-time divergence. Cytonuclear incompatibilities caused hybrid anther sterility, confounding estimation of reproductive organ QTLs. The genetic architecture of floral traits associated with selfing in M. parishii was primarily polygenic, as in other QTL studies of this transition, but in contrast to the previously characterized oligogenic basis of a pollinator shift in close relatives. Hybrid anther sterility appeared parallel at the molecular level to previously characterized incompatibilities, but also raised new questions about cytonuclear co-evolution in plants.
Collapse
Affiliation(s)
- Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | | | | | | | | |
Collapse
|
114
|
Seebacher F, Ducret V, Little AG, Adriaenssens B. Generalist-specialist trade-off during thermal acclimation. ROYAL SOCIETY OPEN SCIENCE 2015; 2:140251. [PMID: 26064581 PMCID: PMC4448783 DOI: 10.1098/rsos.140251] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/22/2014] [Indexed: 05/31/2023]
Abstract
The shape of performance curves and their plasticity define how individuals and populations respond to environmental variability. In theory, maximum performance decreases with an increase in performance breadth. However, reversible acclimation may counteract this generalist-specialist trade-off, because performance optima track environmental conditions so that there is no benefit of generalist phenotypes. We tested this hypothesis by acclimating individual mosquitofish (Gambusia holbrooki) to cool and warm temperatures consecutively and measuring performance curves of swimming performance after each acclimation treatment. Individuals from the same population differed significantly in performance maxima, performance breadth and the capacity for acclimation. As predicted, acclimation resulted in a shift of the temperature at which maximal performance occurred. Within acclimation treatments, there was a significant generalist-specialist trade-off in responses to acute temperature change. Surprisingly, however, there was also a trade-off across acclimation treatments, and animals with greater capacity for cold acclimation had lower performance maxima under warm conditions. Hence, cold acclimation may be viewed as a generalist strategy that extends performance breadth at the colder seasons, but comes at the cost of reduced performance at the warmer time of year. Acclimation therefore does not counteract a generalist-specialist trade-off and, at least in mosquitofish, the trade-off seems to be a system property that persists despite phenotypic plasticity.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Biological Sciences, University of Sydney, New South Wales 2006, Australia
| | - Varlérie Ducret
- Department of Ecology and Evolution, UNIL Sorge, Le Biophore, Université de Lausanne, 1015 Lausanne, Switzerland
| | - Alexander G. Little
- School of Biological Sciences, University of Sydney, New South Wales 2006, Australia
| | - Bart Adriaenssens
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
115
|
Topological features of rugged fitness landscapes in sequence space. Trends Genet 2015; 31:24-33. [DOI: 10.1016/j.tig.2014.09.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 12/22/2022]
|
116
|
Abstract
Empirical evidence for diminishing fitness returns of beneficial mutations supports Fisher's geometric model. We show that a similar pattern emerges through the phenomenon of regression to the mean and that few studies correct for it. Although biases are often small, regression to the mean has overemphasized diminishing returns and will hamper cross-study comparisons unless corrected for.
Collapse
|
117
|
McCandlish DM, Stoltzfus A. Modeling evolution using the probability of fixation: history and implications. QUARTERLY REVIEW OF BIOLOGY 2014; 89:225-52. [PMID: 25195318 DOI: 10.1086/677571] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Many models of evolution calculate the rate of evolution by multiplying the rate at which new mutations originate within a population by a probability of fixation. Here we review the historical origins, contemporary applications, and evolutionary implications of these "origin-fixation" models, which are widely used in evolutionary genetics, molecular evolution, and phylogenetics. Origin-fixation models were first introduced in 1969, in association with an emerging view of "molecular" evolution. Early origin-fixation models were used to calculate an instantaneous rate of evolution across a large number of independently evolving loci; in the 1980s and 1990s, a second wave of origin-fixation models emerged to address a sequence of fixation events at a single locus. Although origin fixation models have been applied to a broad array of problems in contemporary evolutionary research, their rise in popularity has not been accompanied by an increased appreciation of their restrictive assumptions or their distinctive implications. We argue that origin-fixation models constitute a coherent theory of mutation-limited evolution that contrasts sharply with theories of evolution that rely on the presence of standing genetic variation. A major unsolved question in evolutionary biology is the degree to which these models provide an accurate approximation of evolution in natural populations.
Collapse
|
118
|
Wang M, Huang X, Li R, Xu H, Jin L, He Y. Detecting recent positive selection with high accuracy and reliability by conditional coalescent tree. Mol Biol Evol 2014; 31:3068-80. [PMID: 25135945 DOI: 10.1093/molbev/msu244] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Studies of natural selection, followed by functional validation, are shedding light on understanding of genetic mechanisms underlying human evolution and adaptation. Classic methods for detecting selection, such as the integrated haplotype score (iHS) and Fay and Wu's H statistic, are useful for candidate gene searching underlying positive selection. These methods, however, have limited capability to localize causal variants in selection target regions. In this study, we developed a novel method based on conditional coalescent tree to detect recent positive selection by counting unbalanced mutations on coalescent gene genealogies. Extensive simulation studies revealed that our method is more robust than many other approaches against biases due to various demographic effects, including population bottleneck, expansion, or stratification, while not sacrificing its power. Furthermore, our method demonstrated its superiority in localizing causal variants from massive linked genetic variants. The rate of successful localization was about 20-40% higher than that of other state-of-the-art methods on simulated data sets. On empirical data, validated functional causal variants of four well-known positive selected genes were all successfully localized by our method, such as ADH1B, MCM6, APOL1, and HBB. Finally, the computational efficiency of this new method was much higher than that of iHS implementations, that is, 24-66 times faster than the REHH package, and more than 10,000 times faster than the original iHS implementation. These magnitudes make our method suitable for applying on large sequencing data sets. Software can be downloaded from https://github.com/wavefancy/scct.
Collapse
Affiliation(s)
- Minxian Wang
- Department of Computational Regulatory Genomics, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xin Huang
- Department of Computational Regulatory Genomics, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - Ran Li
- Department of Computational Regulatory Genomics, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - Hongyang Xu
- Department of Computational Regulatory Genomics, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - Li Jin
- Department of Computational Regulatory Genomics, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yungang He
- Department of Computational Regulatory Genomics, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
119
|
Computational prediction of vaccine strains for human influenza A (H3N2) viruses. J Virol 2014; 88:12123-32. [PMID: 25122778 DOI: 10.1128/jvi.01861-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human influenza A viruses are rapidly evolving pathogens that cause substantial morbidity and mortality in seasonal epidemics around the globe. To ensure continued protection, the strains used for the production of the seasonal influenza vaccine have to be regularly updated, which involves data collection and analysis by numerous experts worldwide. Computer-guided analysis is becoming increasingly important in this problem due to the vast amounts of generated data. We here describe a computational method for selecting a suitable strain for production of the human influenza A virus vaccine. It interprets available antigenic and genomic sequence data based on measures of antigenic novelty and rate of propagation of the viral strains throughout the population. For viral isolates sampled between 2002 and 2007, we used this method to predict the antigenic evolution of the H3N2 viruses in retrospective testing scenarios. When seasons were scored as true or false predictions, our method returned six true positives, three false negatives, eight true negatives, and one false positive, or 78% accuracy overall. In comparison to the recommendations by the WHO, we identified the correct antigenic variant once at the same time and twice one season ahead. Even though it cannot be ruled out that practical reasons such as lack of a sufficiently well-growing candidate strain may in some cases have prevented recommendation of the best-matching strain by the WHO, our computational decision procedure allows quantitative interpretation of the growing amounts of data and may help to match the vaccine better to predominating strains in seasonal influenza epidemics. Importance: Human influenza A viruses continuously change antigenically to circumvent the immune protection evoked by vaccination or previously circulating viral strains. To maintain vaccine protection and thereby reduce the mortality and morbidity caused by infections, regular updates of the vaccine strains are required. We have developed a data-driven framework for vaccine strain prediction which facilitates the computational analysis of genetic and antigenic data and does not rely on explicit evolutionary models. Our computational decision procedure generated good matches of the vaccine strain to the circulating predominant strain for most seasons and could be used to support the expert-guided prediction made by the WHO; it thus may allow an increase in vaccine efficacy.
Collapse
|
120
|
Vincenzi S. Extinction risk and eco-evolutionary dynamics in a variable environment with increasing frequency of extreme events. J R Soc Interface 2014; 11:20140441. [PMID: 24920116 PMCID: PMC4208378 DOI: 10.1098/rsif.2014.0441] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 05/21/2014] [Indexed: 11/12/2022] Open
Abstract
One of the most dramatic consequences of climate change will be the intensification and increased frequency of extreme events. I used numerical simulations to understand and predict the consequences of directional trend (i.e. mean state) and increased variability of a climate variable (e.g. temperature), increased probability of occurrence of point extreme events (e.g. floods), selection pressure and effect size of mutations on a quantitative trait determining individual fitness, as well as the their effects on the population and genetic dynamics of a population of moderate size. The interaction among climate trend, variability and probability of point extremes had a minor effect on risk of extinction, time to extinction and distribution of the trait after accounting for their independent effects. The survival chances of a population strongly and linearly decreased with increasing strength of selection, as well as with increasing climate trend and variability. Mutation amplitude had no effects on extinction risk, time to extinction or genetic adaptation to the new climate. Climate trend and strength of selection largely determined the shift of the mean phenotype in the population. The extinction or persistence of the populations in an 'extinction window' of 10 years was well predicted by a simple model including mean population size and mean genetic variance over a 10-year time frame preceding the 'extinction window', although genetic variance had a smaller role than population size in predicting contemporary risk of extinction.
Collapse
Affiliation(s)
- Simone Vincenzi
- Center for Stock Assessment Research and Department of Applied Mathematics and Statistics, University of California, Santa Cruz, CA 95064, USA Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Via Ponzio 34/5, Milan 20133, Italy
| |
Collapse
|
121
|
Chen J, Tsuda Y, Stocks M, Källman T, Xu N, Kärkkäinen K, Huotari T, Semerikov VL, Vendramin GG, Lascoux M. Clinal variation at phenology-related genes in spruce: parallel evolution in FTL2 and Gigantea? Genetics 2014; 197:1025-38. [PMID: 24814465 PMCID: PMC4096357 DOI: 10.1534/genetics.114.163063] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/07/2014] [Indexed: 12/20/2022] Open
Abstract
Parallel clines in different species, or in different geographical regions of the same species, are an important source of information on the genetic basis of local adaptation. We recently detected latitudinal clines in SNPs frequencies and gene expression of candidate genes for growth cessation in Scandinavian populations of Norway spruce (Picea abies). Here we test whether the same clines are also present in Siberian spruce (P. obovata), a close relative of Norway spruce with a different Quaternary history. We sequenced nine candidate genes and 27 control loci and genotyped 14 SSR loci in six populations of P. obovata located along the Yenisei river from latitude 56°N to latitude 67°N. In contrast to Scandinavian Norway spruce that both departs from the standard neutral model (SNM) and shows a clear population structure, Siberian spruce populations along the Yenisei do not depart from the SNM and are genetically unstructured. Nonetheless, as in Norway spruce, growth cessation is significantly clinal. Polymorphisms in photoperiodic (FTL2) and circadian clock (Gigantea, GI, PRR3) genes also show significant clinal variation and/or evidence of local selection. In GI, one of the variants is the same as in Norway spruce. Finally, a strong cline in gene expression is observed for FTL2, but not for GI. These results, together with recent physiological studies, confirm the key role played by FTL2 and circadian clock genes in the control of growth cessation in spruce species and suggest the presence of parallel adaptation in these two species.
Collapse
Affiliation(s)
- Jun Chen
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
| | - Yoshiaki Tsuda
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
| | - Michael Stocks
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
| | - Thomas Källman
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
| | - Nannan Xu
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
| | | | - Tea Huotari
- Finnish Forest Research Institute, 900014, Finland
| | - Vladimir L Semerikov
- Institute of Plant and Animal Ecology, Urals Division of the Russian Academy of Sciences, 620144 Ekaterinburg, Russia
| | - Giovanni G Vendramin
- Consiglio Nazionale delle Ricerche, Institute of Biosciences and Bioresources, 50019 Sesto Fiorentino, Firenze, Italy
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, 75236 Uppsala, Sweden
| |
Collapse
|
122
|
Shen D, Bo W, Xu F, Wu R. Genetic diversity and population structure of the Tibetan poplar (Populus szechuanica var. tibetica) along an altitude gradient. BMC Genet 2014; 15 Suppl 1:S11. [PMID: 25079034 PMCID: PMC4118629 DOI: 10.1186/1471-2156-15-s1-s11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background The Tibetan poplar (Populus szechuanica var. tibetica Schneid), which is distributed at altitudes of 2,000-4,500 m above sea level, is an ecologically important species of the Qinghai-Tibet Plateau and adjacent areas. However, the genetic adaptations responsible for its ability to cope with the harsh environment remain unknown. Results In this study, a total of 24 expressed sequence tag microsatellite (EST-SSR) markers were used to evaluate the genetic diversity and population structure of Tibetan poplars along an altitude gradient. The 172 individuals were of genotypes from low-, medium- and high-altitude populations, and 126 alleles were identified. The expected heterozygosity (HE) value ranged from 0.475 to 0.488 with the highest value found in low-altitude populations and the lowest in high-altitude populations. Genetic variation was low among populations, indicating a limited influence of altitude on microsatellite variation. Low genetic differentiation and high levels of gene flow were detected both between and within the populations along the altitude gradient. An analysis of molecular variance (AMOVA) showed that 6.38% of the total molecular variance was attributed to diversity between populations, while 93.62% variance was associated with differences within populations. There was no clear correlation between genetic variation and altitude, and a Mantel test between genetic distance and altitude resulted in a coefficient of association of r = 0.001, indicating virtually no correlation. Conclusion Microsatellite genotyping results showing genetic diversity and low differentiation suggest that extensive gene flow may have counteracted local adaptations imposed by differences in altitude. The genetic analyses carried out in this study provide new insight for conservation and optimization of future arboriculture.
Collapse
|
123
|
Perrier C, Normandeau É, Dionne M, Richard A, Bernatchez L. Alternative reproductive tactics increase effective population size and decrease inbreeding in wild Atlantic salmon. Evol Appl 2014; 7:1094-106. [PMID: 25553070 PMCID: PMC4231598 DOI: 10.1111/eva.12172] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/06/2014] [Indexed: 01/07/2023] Open
Abstract
While nonanadromous males (stream-resident and/or mature male parr) contribute to reproduction in anadromous salmonids, little is known about their impacts on key population genetic parameters. Here, we evaluated the contribution of Atlantic salmon mature male parr to the effective number of breeders (Nb) using both demographic (variance in reproductive success) and genetic (linkage disequilibrium) methods, the number of alleles, and the relatedness among breeders. We used a recently published pedigree reconstruction of a wild anadromous Atlantic salmon population in which 2548 fry born in 2010 were assigned parentage to 144 anadromous female and 101 anadromous females that returned to the river to spawn in 2009 and to 462 mature male parr. Demographic and genetic methods revealed that mature male parr increased population Nb by 1.79 and 1.85 times, respectively. Moreover, mature male parr boosted the number of alleles found among progenies. Finally, mature male parr were in average less related to anadromous females than were anadromous males, likely because of asynchronous sexual maturation between mature male parr and anadromous fish of a given cohort. By increasing Nb and allelic richness, and by decreasing inbreeding, the reproductive contribution of mature male parr has important evolutionary and conservation implications for declining Atlantic salmon populations.
Collapse
Affiliation(s)
- Charles Perrier
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval Québec, Canada
| | - Éric Normandeau
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval Québec, Canada
| | - Mélanie Dionne
- Direction de la faune aquatique, Ministère du Développement durable, de l'Environnement, de la Faune et des Parcs du Québec Québec, Canada
| | - Antoine Richard
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval Québec, Canada
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval Québec, Canada
| |
Collapse
|
124
|
Abstract
The rates and properties of new mutations affecting fitness have implications for a number of outstanding questions in evolutionary biology. Obtaining estimates of mutation rates and effects has historically been challenging, and little theory has been available for predicting the distribution of fitness effects (DFE); however, there have been recent advances on both fronts. Extreme-value theory predicts the DFE of beneficial mutations in well-adapted populations, while phenotypic fitness landscape models make predictions for the DFE of all mutations as a function of the initial level of adaptation and the strength of stabilizing selection on traits underlying fitness. Direct experimental evidence confirms predictions on the DFE of beneficial mutations and favors distributions that are roughly exponential but bounded on the right. A growing number of studies infer the DFE using genomic patterns of polymorphism and divergence, recovering a wide range of DFE. Future work should be aimed at identifying factors driving the observed variation in the DFE. We emphasize the need for further theory explicitly incorporating the effects of partial pleiotropy and heterogeneity in the environment on the expected DFE.
Collapse
Affiliation(s)
- Thomas Bataillon
- Bioinformatics Research Center, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
125
|
Origins and genetic diversity among Atlantic salmon recolonizing upstream areas of a large South European river following restoration of connectivity and stocking. CONSERV GENET 2014. [DOI: 10.1007/s10592-014-0602-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
126
|
Guio L, Barrón MG, González J. The transposable element Bari-Jheh mediates oxidative stress response in Drosophila. Mol Ecol 2014; 23:2020-30. [PMID: 24629106 DOI: 10.1111/mec.12711] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/27/2014] [Accepted: 02/28/2014] [Indexed: 02/01/2023]
Abstract
Elucidating the fitness effects of natural genetic variants is one of the current major challenges in evolutionary biology. Understanding the interplay between genotype, phenotype and environment is necessary to make accurate predictions of important biological outcomes such as stress resistance or yield in economically important plants and animals, and disease in humans. Based on population frequency patterns and footprints of selection at the DNA level, the transposable element Bari-Jheh, inserted in the intergenic region of Juvenile Hormone Epoxy Hydrolase (Jheh) genes, was previously identified as putatively adaptive. However, the adaptive effect of this mutation remained elusive. In this work, we integrate information on transcription factor binding sites, available ChIP-Seq data, gene expression analyses and phenotypic assays to identify the functional and the mechanistic underpinnings of Bari-Jheh. We show that Bari-Jheh adds extra antioxidant response elements upstream of Jheh1 and Jheh2 genes. Accordingly, we find that Bari-Jheh is associated with upregulation of Jheh1 and Jheh2 and with resistance to oxidative stress induced by two different compounds relevant for natural D. melanogaster populations. We further show that TEs other than Bari-Jheh might be playing a role in the D. melanogaster response to oxidative stress. Overall our results contribute to the understanding of resistance to oxidative stress in natural populations and highlight the role of transposable elements in environmental adaptation. The replicability of fitness effects on different genetic backgrounds also suggests that epistatic interactions do not seem to dominate the genetic architecture of oxidative stress resistance.
Collapse
Affiliation(s)
- Lain Guio
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barcelona, 37-49, 08003, Barcelona, Spain
| | | | | |
Collapse
|
127
|
Mobegi VA, Duffy CW, Amambua-Ngwa A, Loua KM, Laman E, Nwakanma DC, MacInnis B, Aspeling-Jones H, Murray L, Clark TG, Kwiatkowski DP, Conway DJ. Genome-wide analysis of selection on the malaria parasite Plasmodium falciparum in West African populations of differing infection endemicity. Mol Biol Evol 2014; 31:1490-9. [PMID: 24644299 PMCID: PMC4032133 DOI: 10.1093/molbev/msu106] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Locally varying selection on pathogens may be due to differences in drug pressure, host immunity, transmission opportunities between hosts, or the intensity of between-genotype competition within hosts. Highly recombining populations of the human malaria parasite Plasmodium falciparum throughout West Africa are closely related, as gene flow is relatively unrestricted in this endemic region, but markedly varying ecology and transmission intensity should cause distinct local selective pressures. Genome-wide analysis of sequence variation was undertaken on a sample of 100 P. falciparum clinical isolates from a highly endemic region of the Republic of Guinea where transmission occurs for most of each year and compared with data from 52 clinical isolates from a previously sampled population from The Gambia, where there is relatively limited seasonal malaria transmission. Paired-end short-read sequences were mapped against the 3D7 P. falciparum reference genome sequence, and data on 136,144 single nucleotide polymorphisms (SNPs) were obtained. Within-population analyses identifying loci showing evidence of recent positive directional selection and balancing selection confirm that antimalarial drugs and host immunity have been major selective agents. Many of the signatures of recent directional selection reflected by standardized integrated haplotype scores were population specific, including differences at drug resistance loci due to historically different antimalarial use between the countries. In contrast, both populations showed a similar set of loci likely to be under balancing selection as indicated by very high Tajima’s D values, including a significant overrepresentation of genes expressed at the merozoite stage that invades erythrocytes and several previously validated targets of acquired immunity. Between-population FST analysis identified exceptional differentiation of allele frequencies at a small number of loci, most markedly for five SNPs covering a 15-kb region within and flanking the gdv1 gene that regulates the early stages of gametocyte development, which is likely related to the extreme differences in mosquito vector abundance and seasonality that determine the transmission opportunities for the sexual stage of the parasite.
Collapse
Affiliation(s)
- Victor A Mobegi
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, United KingdomMedical Research Council Unit, Fajara, Banjul, The Gambia
| | - Craig W Duffy
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Kovana M Loua
- National Institute of Public Health, Conakry, Republic of Guinea
| | - Eugene Laman
- National Institute of Public Health, Conakry, Republic of Guinea
| | | | - Bronwyn MacInnis
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Harvey Aspeling-Jones
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Lee Murray
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Taane G Clark
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Dominic P Kwiatkowski
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United KingdomWellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - David J Conway
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, United KingdomMedical Research Council Unit, Fajara, Banjul, The Gambia
| |
Collapse
|
128
|
Gladieux P, Ropars J, Badouin H, Branca A, Aguileta G, Vienne DM, Rodríguez de la Vega RC, Branco S, Giraud T. Fungal evolutionary genomics provides insight into the mechanisms of adaptive divergence in eukaryotes. Mol Ecol 2014; 23:753-73. [DOI: 10.1111/mec.12631] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/04/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Pierre Gladieux
- Ecologie, Systématique et Evolution UMR8079 University of Paris‐Sud Orsay 91405 France
- Ecologie, Systématique et Evolution CNRS UMR8079 Orsay 91405 France
- Department of Plant and Microbial Biology University of California Berkeley CA 94720‐3102 USA
| | - Jeanne Ropars
- Ecologie, Systématique et Evolution UMR8079 University of Paris‐Sud Orsay 91405 France
- Ecologie, Systématique et Evolution CNRS UMR8079 Orsay 91405 France
| | - Hélène Badouin
- Ecologie, Systématique et Evolution UMR8079 University of Paris‐Sud Orsay 91405 France
- Ecologie, Systématique et Evolution CNRS UMR8079 Orsay 91405 France
| | - Antoine Branca
- Ecologie, Systématique et Evolution UMR8079 University of Paris‐Sud Orsay 91405 France
- Ecologie, Systématique et Evolution CNRS UMR8079 Orsay 91405 France
| | - Gabriela Aguileta
- Center for Genomic Regulation (CRG) Dr, Aiguader 88 Barcelona 08003 Spain
- Universitat Pompeu Fabra (UPF) Barcelona 08003 Spain
| | - Damien M. Vienne
- Center for Genomic Regulation (CRG) Dr, Aiguader 88 Barcelona 08003 Spain
- Universitat Pompeu Fabra (UPF) Barcelona 08003 Spain
- Laboratoire de Biométrie et Biologie Evolutive Université Lyon 1 CNRS UMR5558 Villeurbanne 69622 France
| | - Ricardo C. Rodríguez de la Vega
- Ecologie, Systématique et Evolution UMR8079 University of Paris‐Sud Orsay 91405 France
- Ecologie, Systématique et Evolution CNRS UMR8079 Orsay 91405 France
| | - Sara Branco
- Department of Plant and Microbial Biology University of California Berkeley CA 94720‐3102 USA
| | - Tatiana Giraud
- Ecologie, Systématique et Evolution UMR8079 University of Paris‐Sud Orsay 91405 France
- Ecologie, Systématique et Evolution CNRS UMR8079 Orsay 91405 France
| |
Collapse
|
129
|
Merilä J, Hendry AP. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol Appl 2014; 7:1-14. [PMID: 24454544 PMCID: PMC3894893 DOI: 10.1111/eva.12137] [Citation(s) in RCA: 695] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 11/08/2013] [Indexed: 12/14/2022] Open
Abstract
Many studies have recorded phenotypic changes in natural populations and attributed them to climate change. However, controversy and uncertainty has arisen around three levels of inference in such studies. First, it has proven difficult to conclusively distinguish whether phenotypic changes are genetically based or the result of phenotypic plasticity. Second, whether or not the change is adaptive is usually assumed rather than tested. Third, inferences that climate change is the specific causal agent have rarely involved the testing – and exclusion – of other potential drivers. We here review the various ways in which the above inferences have been attempted, and evaluate the strength of support that each approach can provide. This methodological assessment sets the stage for 11 accompanying review articles that attempt comprehensive syntheses of what is currently known – and not known – about responses to climate change in a variety of taxa and in theory. Summarizing and relying on the results of these reviews, we arrive at the conclusion that evidence for genetic adaptation to climate change has been found in some systems, but is still relatively scarce. Most importantly, it is clear that more studies are needed – and these must employ better inferential methods – before general conclusions can be drawn. Overall, we hope that the present paper and special issue provide inspiration for future research and guidelines on best practices for its execution.
Collapse
Affiliation(s)
- Juha Merilä
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki Helsinki, Finland
| | - Andrew P Hendry
- Redpath Museum & Department of Biology, McGill University Montreal, QC, Canada
| |
Collapse
|
130
|
Abstract
It is increasingly important to improve our understanding of the genetic basis of local adaptation because of its relevance to climate change, crop and animal production, and conservation of genetic resources. Phenotypic patterns that are generated by spatially varying selection have long been observed, and both genetic mapping and field experiments provided initial insights into the genetic architecture of adaptive traits. Genomic tools are now allowing genome-wide studies, and recent theoretical advances can help to design research strategies that combine genomics and field experiments to examine the genetics of local adaptation. These advances are also allowing research in non-model species, the adaptation patterns of which may differ from those of traditional model species.
Collapse
|
131
|
Genetic mapping of adaptation reveals fitness tradeoffs in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2013; 110:21077-82. [PMID: 24324156 DOI: 10.1073/pnas.1316773110] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Organisms inhabiting different environments are often locally adapted, and yet despite a considerable body of theory, the genetic basis of local adaptation is poorly understood. Unanswered questions include the number and effect sizes of adaptive loci, whether locally favored loci reduce fitness elsewhere (i.e., fitness tradeoffs), and whether a lack of genetic variation limits adaptation. To address these questions, we mapped quantitative trait loci (QTL) for total fitness in 398 recombinant inbred lines derived from a cross between locally adapted populations of the highly selfing plant Arabidopsis thaliana from Sweden and Italy and grown for 3 consecutive years at the parental sites (>40,000 plants monitored). We show that local adaptation is controlled by relatively few genomic regions of small to modest effect. A third of the 15 fitness QTL we detected showed evidence of tradeoffs, which contrasts with the minimal evidence for fitness tradeoffs found in previous studies. This difference may reflect the power of our multiyear study to distinguish conditionally neutral QTL from those that reflect fitness tradeoffs. In Sweden, but not in Italy, the local genotype underlying fitness QTL was often maladaptive, suggesting that adaptation there is constrained by a lack of adaptive genetic variation, attributable perhaps to genetic bottlenecks during postglacial colonization of Scandinavia or to recent changes in selection regime caused by climate change. Our results suggest that adaptation to markedly different environments can be achieved through changes in relatively few genomic regions, that fitness tradeoffs are common, and that lack of genetic variation can limit adaptation.
Collapse
|
132
|
Integrating phylogenetics, phylogeography and population genetics through genomes and evolutionary theory. Mol Phylogenet Evol 2013; 69:1172-85. [DOI: 10.1016/j.ympev.2013.06.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/06/2013] [Accepted: 06/12/2013] [Indexed: 11/22/2022]
|
133
|
Wray GA. Genomics and the Evolution of Phenotypic Traits. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2013. [DOI: 10.1146/annurev-ecolsys-110512-135828] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evolutionary genetics has entered an unprecedented era of discovery, catalyzed in large part by the development of technologies that provide information about genome sequence and function. An important benefit is the ability to move beyond a handful of model organisms in lab settings to identify the genetic basis for evolutionarily interesting traits in many organisms in natural settings. Other benefits are the abilities to identify causal mutations and validate their phenotypic consequences more readily and in many more species. Genomic technologies have reinvigorated interest in some of the most fundamental and persistent questions in evolutionary genetics, revealed previously unsuspected evolutionary phenomena, and opened the door to a wide range of new questions.
Collapse
Affiliation(s)
- Gregory A. Wray
- Department of Biology and Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina 27701
| |
Collapse
|
134
|
Perrier C, Bourret V, Kent MP, Bernatchez L. Parallel and nonparallel genome-wide divergence among replicate population pairs of freshwater and anadromous Atlantic salmon. Mol Ecol 2013; 22:5577-93. [DOI: 10.1111/mec.12500] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Charles Perrier
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec City Québec Canada G1V 0A6
| | - Vincent Bourret
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec City Québec Canada G1V 0A6
| | - Matthew P. Kent
- Department of Animal and Aquaculture Sciences; Centre for Integrative Genetics (CIGENE); Norwegian University of Life Sciences; PO Box 5003 Aas 1432 Norway
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec City Québec Canada G1V 0A6
| |
Collapse
|
135
|
Key questions in the genetics and genomics of eco-evolutionary dynamics. Heredity (Edinb) 2013; 111:456-66. [PMID: 23963343 DOI: 10.1038/hdy.2013.75] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 05/07/2013] [Accepted: 05/28/2013] [Indexed: 11/09/2022] Open
Abstract
Increasing acceptance that evolution can be 'rapid' (or 'contemporary') has generated growing interest in the consequences for ecology. The genetics and genomics of these 'eco-evolutionary dynamics' will be--to a large extent--the genetics and genomics of organismal phenotypes. In the hope of stimulating research in this area, I review empirical data from natural populations and draw the following conclusions. (1) Considerable additive genetic variance is present for most traits in most populations. (2) Trait correlations do not consistently oppose selection. (3) Adaptive differences between populations often involve dominance and epistasis. (4) Most adaptation is the result of genes of small-to-modest effect, although (5) some genes certainly have larger effects than the others. (6) Adaptation by independent lineages to similar environments is mostly driven by different alleles/genes. (7) Adaptation to new environments is mostly driven by standing genetic variation, although new mutations can be important in some instances. (8) Adaptation is driven by both structural and regulatory genetic variation, with recent studies emphasizing the latter. (9) The ecological effects of organisms, considered as extended phenotypes, are often heritable. Overall, the study of eco-evolutionary dynamics will benefit from perspectives and approaches that emphasize standing genetic variation in many genes of small-to-modest effect acting across multiple traits and that analyze overall adaptation or 'fitness'. In addition, increasing attention should be paid to dominance, epistasis and regulatory variation.
Collapse
|
136
|
Brachi B, Villoutreix R, Faure N, Hautekèete N, Piquot Y, Pauwels M, Roby D, Cuguen J, Bergelson J, Roux F. Investigation of the geographical scale of adaptive phenological variation and its underlying genetics in Arabidopsis thaliana. Mol Ecol 2013; 22:4222-4240. [DOI: 10.1111/mec.12396] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 02/02/2023]
Affiliation(s)
- Benjamin Brachi
- Laboratoire Génétique et Evolution des Populations Végétales; UMR CNRS 8198; Université des Sciences et Technologies de Lille - Lille 1; F-59655 Villeneuve d'Ascq Cedex France
- Department of Ecology and Evolution; University of Chicago; Chicago IL 60637 USA
| | - Romain Villoutreix
- Laboratoire Génétique et Evolution des Populations Végétales; UMR CNRS 8198; Université des Sciences et Technologies de Lille - Lille 1; F-59655 Villeneuve d'Ascq Cedex France
| | - Nathalie Faure
- Laboratoire Génétique et Evolution des Populations Végétales; UMR CNRS 8198; Université des Sciences et Technologies de Lille - Lille 1; F-59655 Villeneuve d'Ascq Cedex France
| | - Nina Hautekèete
- Laboratoire Génétique et Evolution des Populations Végétales; UMR CNRS 8198; Université des Sciences et Technologies de Lille - Lille 1; F-59655 Villeneuve d'Ascq Cedex France
| | - Yves Piquot
- Laboratoire Génétique et Evolution des Populations Végétales; UMR CNRS 8198; Université des Sciences et Technologies de Lille - Lille 1; F-59655 Villeneuve d'Ascq Cedex France
| | - Maxime Pauwels
- Laboratoire Génétique et Evolution des Populations Végétales; UMR CNRS 8198; Université des Sciences et Technologies de Lille - Lille 1; F-59655 Villeneuve d'Ascq Cedex France
| | - Dominique Roby
- INRA; Laboratoire des Interactions Plantes-Microorganismes (LIPM); UMR441; F-31326 Castanet-Tolosan France
- CNRS; Laboratoire des Interactions Plantes-Microorganismes (LIPM); UMR2594; F-31326 Castanet-Tolosan France
| | - Joël Cuguen
- Laboratoire Génétique et Evolution des Populations Végétales; UMR CNRS 8198; Université des Sciences et Technologies de Lille - Lille 1; F-59655 Villeneuve d'Ascq Cedex France
| | - Joy Bergelson
- Department of Ecology and Evolution; University of Chicago; Chicago IL 60637 USA
| | - Fabrice Roux
- Laboratoire Génétique et Evolution des Populations Végétales; UMR CNRS 8198; Université des Sciences et Technologies de Lille - Lille 1; F-59655 Villeneuve d'Ascq Cedex France
| |
Collapse
|
137
|
Alberto FJ, Aitken SN, Alía R, González-Martínez SC, Hänninen H, Kremer A, Lefèvre F, Lenormand T, Yeaman S, Whetten R, Savolainen O. Potential for evolutionary responses to climate change - evidence from tree populations. GLOBAL CHANGE BIOLOGY 2013; 19:1645-61. [PMID: 23505261 PMCID: PMC3664019 DOI: 10.1111/gcb.12181] [Citation(s) in RCA: 404] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/01/2013] [Accepted: 02/03/2013] [Indexed: 05/18/2023]
Abstract
Evolutionary responses are required for tree populations to be able to track climate change. Results of 250 years of common garden experiments show that most forest trees have evolved local adaptation, as evidenced by the adaptive differentiation of populations in quantitative traits, reflecting environmental conditions of population origins. On the basis of the patterns of quantitative variation for 19 adaptation-related traits studied in 59 tree species (mostly temperate and boreal species from the Northern hemisphere), we found that genetic differentiation between populations and clinal variation along environmental gradients were very common (respectively, 90% and 78% of cases). Thus, responding to climate change will likely require that the quantitative traits of populations again match their environments. We examine what kind of information is needed for evaluating the potential to respond, and what information is already available. We review the genetic models related to selection responses, and what is known currently about the genetic basis of the traits. We address special problems to be found at the range margins, and highlight the need for more modeling to understand specific issues at southern and northern margins. We need new common garden experiments for less known species. For extensively studied species, new experiments are needed outside the current ranges. Improving genomic information will allow better prediction of responses. Competitive and other interactions within species and interactions between species deserve more consideration. Despite the long generation times, the strong background in quantitative genetics and growing genomic resources make forest trees useful species for climate change research. The greatest adaptive response is expected when populations are large, have high genetic variability, selection is strong, and there is ecological opportunity for establishment of better adapted genotypes.
Collapse
Affiliation(s)
- Florian J Alberto
- Department of Biology and Biocenter Oulu, University of OuluFIN-90014, Oulu, Finland
- UMR1202 Biodiversité Gènes et Communautés, INRAF-33610, Cestas, France
- UMR1202 Biodiversité Gènes et Communautés, Université de BordeauxF-33410, Talence, France
| | - Sally N Aitken
- Department of Forest and Conservation Sciences and Centre for Forest Conservation Genetics, University of British ColumbiaVancouver, BC V6T 1Z4, Canada
| | - Ricardo Alía
- Department of Forest Ecology and Genetics, INIA - Forest Research CentreE-28040, Madrid, Spain
| | | | - Heikki Hänninen
- Department of Biosciences, University of HelsinkiFIN-00014, Helsinki, Finland
| | - Antoine Kremer
- UMR1202 Biodiversité Gènes et Communautés, INRAF-33610, Cestas, France
- UMR1202 Biodiversité Gènes et Communautés, Université de BordeauxF-33410, Talence, France
| | - François Lefèvre
- URFM, UR629 Ecologie des Forêts Méditerranéennes, INRAF-84914, Avignon, France
| | - Thomas Lenormand
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, Université de MontpellierUMR 5175, F-34293, Montpellier, France
| | - Sam Yeaman
- Department of Forest and Conservation Sciences and Centre for Forest Conservation Genetics, University of British ColumbiaVancouver, BC V6T 1Z4, Canada
- Institute of Biology, Université de NeuchâtelCH-2000, Neuchâtel, Switzerland
| | - Ross Whetten
- Department of Forestry & Environmental Resources, NC State UniversityRaleigh, NC, 27695-8008, USA
| | - Outi Savolainen
- Department of Biology and Biocenter Oulu, University of OuluFIN-90014, Oulu, Finland
| |
Collapse
|
138
|
The evolution of quantitative traits in complex environments. Heredity (Edinb) 2013; 112:4-12. [PMID: 23612691 DOI: 10.1038/hdy.2013.33] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 02/12/2013] [Accepted: 03/14/2013] [Indexed: 02/01/2023] Open
Abstract
Species inhabit complex environments and respond to selection imposed by numerous abiotic and biotic conditions that vary in both space and time. Environmental heterogeneity strongly influences trait evolution and patterns of adaptive population differentiation. For example, heterogeneity can favor local adaptation, or can promote the evolution of plastic genotypes that alter their phenotypes based on the conditions they encounter. Different abiotic and biotic agents of selection can act synergistically to either accelerate or constrain trait evolution. The environmental context has profound effects on quantitative genetic parameters. For instance, heritabilities measured in controlled conditions often exceed those measured in the field; thus, laboratory experiments could overestimate the potential for a population to respond to selection. Nevertheless, most studies of the genetic basis of ecologically relevant traits are conducted in simplified laboratory environments, which do not reflect the complexity of nature. Here, we advocate for manipulative field experiments in the native ranges of plant species that differ in mating system, life-history strategy and growth form. Field studies are vital to evaluate the roles of disparate agents of selection, to elucidate the targets of selection and to develop a nuanced perspective on the evolution of quantitative traits. Quantitative genetics field studies will also shed light on the potential for natural populations to adapt to novel climates in highly fragmented landscapes. Drawing from our experience with the ecological model system Boechera (Brassicaceae), we discuss advancements possible through dedicated field studies, highlight future research directions and examine the challenges associated with field studies.
Collapse
|
139
|
Cutter AD, Jovelin R, Dey A. Molecular hyperdiversity and evolution in very large populations. Mol Ecol 2013; 22:2074-95. [PMID: 23506466 PMCID: PMC4065115 DOI: 10.1111/mec.12281] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/24/2013] [Accepted: 01/29/2013] [Indexed: 02/06/2023]
Abstract
The genomic density of sequence polymorphisms critically affects the sensitivity of inferences about ongoing sequence evolution, function and demographic history. Most animal and plant genomes have relatively low densities of polymorphisms, but some species are hyperdiverse with neutral nucleotide heterozygosity exceeding 5%. Eukaryotes with extremely large populations, mimicking bacterial and viral populations, present novel opportunities for studying molecular evolution in sexually reproducing taxa with complex development. In particular, hyperdiverse species can help answer controversial questions about the evolution of genome complexity, the limits of natural selection, modes of adaptation and subtleties of the mutation process. However, such systems have some inherent complications and here we identify topics in need of theoretical developments. Close relatives of the model organisms Caenorhabditis elegans and Drosophila melanogaster provide known examples of hyperdiverse eukaryotes, encouraging functional dissection of resulting molecular evolutionary patterns. We recommend how best to exploit hyperdiverse populations for analysis, for example, in quantifying the impact of noncrossover recombination in genomes and for determining the identity and micro-evolutionary selective pressures on noncoding regulatory elements.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
140
|
Abstract
Flowers exhibit amazing morphological diversity in many traits, including their size. In addition to interspecific flower size differences, many species maintain significant variation in flower size within and among populations. Flower size variation can contribute to reproductive isolation of species and thus has clear evolutionary consequences. In this review we integrate information on flower size variation from both evolutionary and developmental biology perspectives. We examine the role of flower size in the context of mating system evolution. In addition, we describe what is currently known about the genetic basis of flower size based on quantitative trait locus (QTL) mapping in several different plant species and molecular genetic studies in model plants, primarily Arabidopsis thaliana. Work in Arabidopsis suggests that many independent pathways regulate floral organ growth via effects on cell proliferation and/or cell expansion.
Collapse
Affiliation(s)
- Beth A Krizek
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| | | |
Collapse
|
141
|
Filteau M, Pavey SA, St-Cyr J, Bernatchez L. Gene coexpression networks reveal key drivers of phenotypic divergence in lake whitefish. Mol Biol Evol 2013; 30:1384-96. [PMID: 23519315 DOI: 10.1093/molbev/mst053] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A functional understanding of processes involved in adaptive divergence is one of the awaiting opportunities afforded by high-throughput transcriptomic technologies. Functional analysis of coexpressed genes has succeeded in the biomedical field in identifying key drivers of disease pathways. However, in ecology and evolutionary biology, functional interpretation of transcriptomic data is still limited. Here, we used Weighted Gene Co-Expression Network Analysis (WGCNA) to identify modules of coexpressed genes in muscle and brain tissue of a lake whitefish backcross progeny. Modules were connected to gradients of known adaptive traits involved in the ecological speciation process between benthic and limnetic ecotypes. Key drivers, that is, hub genes of functional modules related to reproduction, growth, and behavior were identified, and module preservation was assessed in natural populations. Using this approach, we identified modules of coexpressed genes involved in phenotypic divergence and their key drivers, and further identified a module part specifically rewired in the backcross progeny. Functional analysis of transcriptomic data can significantly contribute to the understanding of the mechanisms underlying ecological speciation. Our findings point to bone morphogenetic protein and calcium signaling as common pathways involved in coordinated evolution of trophic behavior, trophic morphology (gill rakers), and reproduction. Results also point to pathways implicating hemoglobins and constitutive stress response (HSP70) governing growth in lake whitefish.
Collapse
Affiliation(s)
- Marie Filteau
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
142
|
Ghiselli F, Milani L, Guerra D, Chang PL, Breton S, Nuzhdin SV, Passamonti M. Structure, transcription, and variability of metazoan mitochondrial genome: perspectives from an unusual mitochondrial inheritance system. Genome Biol Evol 2013; 5:1535-54. [PMID: 23882128 PMCID: PMC3762199 DOI: 10.1093/gbe/evt112] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2013] [Indexed: 12/13/2022] Open
Abstract
Despite its functional conservation, the mitochondrial genome (mtDNA) presents strikingly different features among eukaryotes, such as size, rearrangements, and amount of intergenic regions. Nonadaptive processes such as random genetic drift and mutation rate play a fundamental role in shaping mtDNA: the mitochondrial bottleneck and the number of germ line replications are critical factors, and different patterns of germ line differentiation could be responsible for the mtDNA diversity observed in eukaryotes. Among metazoan, bivalve mollusc mtDNAs show unusual features, like hypervariable gene arrangements, high mutation rates, large amount of intergenic regions, and, in some species, an unique inheritance system, the doubly uniparental inheritance (DUI). The DUI system offers the possibility to study the evolutionary dynamics of mtDNAs that, despite being in the same organism, experience different genetic drift and selective pressures. We used the DUI species Ruditapes philippinarum to study intergenic mtDNA functions, mitochondrial transcription, and polymorphism in gonads. We observed: 1) the presence of conserved functional elements and novel open reading frames (ORFs) that could explain the evolutionary persistence of intergenic regions and may be involved in DUI-specific features; 2) that mtDNA transcription is lineage-specific and independent from the nuclear background; and 3) that male-transmitted and female-transmitted mtDNAs have a similar amount of polymorphism but of different kinds, due to different population size and selection efficiency. Our results are consistent with the hypotheses that mtDNA evolution is strongly dependent on the dynamics of germ line formation, and that the establishment of a male-transmitted mtDNA lineage can increase male fitness through selection on sperm function.
Collapse
Affiliation(s)
- Fabrizio Ghiselli
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali (BiGeA), Università di Bologna, Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|