101
|
Prohászka Z, Nilsson B, Frazer-Abel A, Kirschfink M. Complement analysis 2016: Clinical indications, laboratory diagnostics and quality control. Immunobiology 2016; 221:1247-58. [PMID: 27475991 DOI: 10.1016/j.imbio.2016.06.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/10/2016] [Accepted: 06/10/2016] [Indexed: 10/21/2022]
Abstract
In recent years, complement analysis of body fluids and biopsies, going far beyond C3 and C4, has significantly enhanced our understanding of the disease process. Such expanded complement analysis allows for a more precise differential diagnosis and for critical monitoring of complement-targeted therapy. These changes are a result of the growing understanding of the involvement of complement in a diverse set of disorders. To appreciate the importance of proper complement analysis, it is important to understand the role it plays in disease. Historically, it was the absence of complement as manifested in severe infection that was noted. Since then complement has been connected to a variety of inflammatory disorders, such as autoimmune diseases and hereditary angioedema. While the role of complement in the rejection of renal grafts has been known longer, the significant impact of complement. In certain nephropathies has now led to the reclassification of some rare kidney diseases and an increased role for complement analysis in diagnosis. Even more unexpected is that complement has also been implicated in neural, ophtalmological and dermatological disorders. With this level of involvement in some varied and impactful health issues proper complement testing is clearly important; however, analysis of the complement system varies widely among laboratories. Except for a few proteins, such as C3 and C4, there are neither well-characterized standard preparations nor calibrated assays available. This is especially true for the inter-laboratory variation of tests which assess classical, alternative, or lectin pathway function. In addition, there is a need for the standardization of the measurement of complement activation products that are so critical in determining whether clinically relevant complement activation has occurred in vivo. Finally, autoantibodies to complement proteins (e.g. anti-C1q), C3 and C4 convertases (C3 and C4 nephritic factor) or to regulatory proteins (e.g. anti-C1inhibitor, anti-factor H) are important in defining autoimmune processes and diseases based on complement dysregulation. To improve the quality of complement laboratory analysis a standardization commmittee of the International Complement Society (ICS) and the International Union of Immunological Societies (IUIS) was formed to provide guidelines for modern complement analysis and standards for the development of international testing programs.
Collapse
Affiliation(s)
- Zoltán Prohászka
- 3rd Department of Internal Medicine, Research Laboratory and Füst György Complement Diagnostic Laboratory, Semmelweis University, Budapest, Hungary
| | - Bo Nilsson
- Clinical Immunology, Rudbeck Laboratory (C5), University Hospital, Uppsala, Sweden
| | | | | |
Collapse
|
102
|
Nissinen L, Farshchian M, Riihilä P, Kähäri VM. New perspectives on role of tumor microenvironment in progression of cutaneous squamous cell carcinoma. Cell Tissue Res 2016; 365:691-702. [PMID: 27411692 DOI: 10.1007/s00441-016-2457-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/16/2016] [Indexed: 12/29/2022]
Abstract
Epidermal keratinocyte-derived cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer, and its incidence is increasing worldwide. Solar UV radiation is an important risk factor for cSCC and leads to genetic and epigenetic changes both in epidermal keratinocytes and dermal cells. Tumor cells in cutaneous cSCCs typically harbor several driver gene mutations, but epidermal keratinocytes in sun-exposed normal skin also contain mutations in these same genes. Therefore, alterations in the microenvironment of premalignant lesions are evidently required for their progression to invasive and metastatic cSCC. For example, alterations in the composition of basement membrane and dermal extracellular matrix are early events in cSCC progression. The presence of microbial structures and the influx of inflammatory cells promote the secretion of proteases, which in turn regulate the availability of growth factors, cytokines, and chemokines and thus influence the growth and invasion of cSCC. Together, these observations emphasize the role of the tumor microenvironment in the progression of cSCC and identify it as a novel therapeutic target in cSCC and other malignant tumors. Graphical abstract Tumor-stroma interactions in the progression of cutaneous squamous cell carcinoma (cSCC). Epidermal layer is separated by a well-organized basement membrane (BM) from the dermal layer. UV radiation, other environmental insults, and aging target both epidermal keratinocytes and dermal fibroblasts and lead to genetic and epigenetic changes in these cells. In addition, epidermal keratinocytes in normal sun-exposed skin harbor several mutations in the cSCC driver genes. During transition to premalignant actinic keratosis (AK), the differentiation of keratinocytes is disturbed resulting in a neoplastic epithelium with hyperplastic cells. Expression of proteinases, such as matrix metalloproteinases (MMP) by neoplastic cells and activated stromal fibroblasts and macrophages is induced in AK, and collagen XV and XVIII are lost from the dermal BM. Furthermore, inflammatory cells accumulate at the site of the hyperplastic epithelium. During a later stage of cSCC progression, the number of inflammatory cells increases, and the expression of complement components and inhibitors by tumor cells is induced (CFI complement factor I, CFH complement factor H, FHL-1 Factor H-like protein 1). In addition to MMPs, activated fibroblasts also produce growth factors and promote inflammation, growth, and invasion of tumor cells.
Collapse
Affiliation(s)
- Liisa Nissinen
- The Department of Dermatology, University of Turku and Turku University Hospital, P.O.B 52, FI-20521, Turku, Finland.,MediCity Research Laboratory University of Turku, Turku, Finland
| | - Mehdi Farshchian
- The Department of Dermatology, University of Turku and Turku University Hospital, P.O.B 52, FI-20521, Turku, Finland.,MediCity Research Laboratory University of Turku, Turku, Finland
| | - Pilvi Riihilä
- The Department of Dermatology, University of Turku and Turku University Hospital, P.O.B 52, FI-20521, Turku, Finland.,MediCity Research Laboratory University of Turku, Turku, Finland
| | - Veli-Matti Kähäri
- The Department of Dermatology, University of Turku and Turku University Hospital, P.O.B 52, FI-20521, Turku, Finland. .,MediCity Research Laboratory University of Turku, Turku, Finland.
| |
Collapse
|
103
|
From orphan drugs to adopted therapies: Advancing C3-targeted intervention to the clinical stage. Immunobiology 2016; 221:1046-57. [PMID: 27353192 DOI: 10.1016/j.imbio.2016.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 01/23/2023]
Abstract
Complement dysregulation is increasingly recognized as an important pathogenic driver in a number of clinical disorders. Complement-triggered pathways intertwine with key inflammatory and tissue destructive processes that can either increase the risk of disease or exacerbate pathology in acute or chronic conditions. The launch of the first complement-targeted drugs in the clinic has undeniably stirred the field of complement therapeutic design, providing new insights into complement's contribution to disease pathogenesis and also helping to leverage a more personalized, comprehensive approach to patient management. In this regard, a rapidly expanding toolbox of complement therapeutics is being developed to address unmet clinical needs in several immune-mediated and inflammatory diseases. Elegant approaches employing both surface-directed and fluid-phase inhibitors have exploited diverse components of the complement cascade as putative points of therapeutic intervention. Targeting C3, the central hub of the system, has proven to be a promising strategy for developing biologics as well as small-molecule inhibitors with clinical potential. Complement modulation at the level of C3 has recently shown promise in preclinical primate models, opening up new avenues for therapeutic intervention in both acute and chronic indications fueled by uncontrolled C3 turnover. This review highlights recent developments in the field of complement therapeutics, focusing on C3-directed inhibitors and alternative pathway (AP) regulator-based approaches. Translational perspectives and considerations are discussed, particularly with regard to the structure-guided drug optimization and clinical advancement of a new generation of C3-targeted peptidic inhibitors.
Collapse
|
104
|
Chen ZA, Pellarin R, Fischer L, Sali A, Nilges M, Barlow PN, Rappsilber J. Structure of Complement C3(H2O) Revealed By Quantitative Cross-Linking/Mass Spectrometry And Modeling. Mol Cell Proteomics 2016; 15:2730-43. [PMID: 27250206 PMCID: PMC4974347 DOI: 10.1074/mcp.m115.056473] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Indexed: 11/30/2022] Open
Abstract
The slow but spontaneous and ubiquitous formation of C3(H2O), the hydrolytic and conformationally rearranged product of C3, initiates antibody-independent activation of the complement system that is a key first line of antimicrobial defense. The structure of C3(H2O) has not been determined. Here we subjected C3(H2O) to quantitative cross-linking/mass spectrometry (QCLMS). This revealed details of the structural differences and similarities between C3(H2O) and C3, as well as between C3(H2O) and its pivotal proteolytic cleavage product, C3b, which shares functionally similarity with C3(H2O). Considered in combination with the crystal structures of C3 and C3b, the QCMLS data suggest that C3(H2O) generation is accompanied by the migration of the thioester-containing domain of C3 from one end of the molecule to the other. This creates a stable C3b-like platform able to bind the zymogen, factor B, or the regulator, factor H. Integration of available crystallographic and QCLMS data allowed the determination of a 3D model of the C3(H2O) domain architecture. The unique arrangement of domains thus observed in C3(H2O), which retains the anaphylatoxin domain (that is excised when C3 is enzymatically activated to C3b), can be used to rationalize observed differences between C3(H2O) and C3b in terms of complement activation and regulation.
Collapse
Affiliation(s)
- Zhuo A Chen
- From the ‡Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Riccardo Pellarin
- §Unité de Bioinformatique Structurale, CNRS UMR 3528, Institut Pasteur, 75015 Paris, France; ¶Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Sciences, and California Institute for Quantitative Biomedical Sciences, University of California, San Francisco, California 94158, United States
| | - Lutz Fischer
- From the ‡Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Andrej Sali
- ¶Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Sciences, and California Institute for Quantitative Biomedical Sciences, University of California, San Francisco, California 94158, United States
| | - Michael Nilges
- §Unité de Bioinformatique Structurale, CNRS UMR 3528, Institut Pasteur, 75015 Paris, France
| | - Paul N Barlow
- ‖Schools of Chemistry and Biological Sciences, University of Edinburgh, Edinburgh EH9 3JJ, UK;
| | - Juri Rappsilber
- From the ‡Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK; **Chair of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| |
Collapse
|
105
|
Ørning P, Hoem KS, Coron AE, Skjåk-Bræk G, Mollnes TE, Brekke OL, Espevik T, Rokstad AM. Alginate microsphere compositions dictate different mechanisms of complement activation with consequences for cytokine release and leukocyte activation. J Control Release 2016; 229:58-69. [DOI: 10.1016/j.jconrel.2016.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 12/22/2022]
|
106
|
Kuipers A, Stapels DAC, Weerwind LT, Ko YP, Ruyken M, Lee JC, van Kessel KPM, Rooijakkers SHM. The Staphylococcus aureus polysaccharide capsule and Efb-dependent fibrinogen shield act in concert to protect against phagocytosis. MICROBIOLOGY-SGM 2016; 162:1185-1194. [PMID: 27112346 DOI: 10.1099/mic.0.000293] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Staphylococcus aureus has developed many mechanisms to escape from human immune responses. To resist phagocytic clearance, S. aureus expresses a polysaccharide capsule, which effectively masks the bacterial surface and surface-associated proteins, such as opsonins, from recognition by phagocytic cells. Additionally, secretion of the extracellular fibrinogen binding protein (Efb) potently blocks phagocytic uptake of the pathogen. Efb creates a fibrinogen shield surrounding the bacteria by simultaneously binding complement C3b and fibrinogen at the bacterial surface. By means of neutrophil phagocytosis assays with fluorescently labelled encapsulated serotype 5 (CP5) and serotype 8 (CP8) strains we compare the immune-modulating function of these shielding mechanisms. The data indicate that, in highly encapsulated S. aureus strains, the polysaccharide capsule is able to prevent phagocytic uptake at plasma concentrations <10 %, but loses its protective ability at higher concentrations of plasma. Interestingly, Efb shows a strong inhibitory effect on both capsule-negative and encapsulated strains at all tested plasma concentrations. Furthermore, the results suggest that both shielding mechanisms can exist simultaneously and collaborate to provide optimal protection against phagocytosis at a broad range of plasma concentrations. As opsonizing antibodies will be shielded from recognition by either mechanism, incorporating both capsular polysaccharides and Efb in future vaccines could be of great importance.
Collapse
Affiliation(s)
- Annemarie Kuipers
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Daphne A C Stapels
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Lleroy T Weerwind
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Ya-Ping Ko
- Center for Infectious and Inflammatory Disease, Institute of Bioscience and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Maartje Ruyken
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jean C Lee
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kok P M van Kessel
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Suzan H M Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
107
|
Poole AZ, Kitchen SA, Weis VM. The Role of Complement in Cnidarian-Dinoflagellate Symbiosis and Immune Challenge in the Sea Anemone Aiptasia pallida. Front Microbiol 2016; 7:519. [PMID: 27148208 PMCID: PMC4840205 DOI: 10.3389/fmicb.2016.00519] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/29/2016] [Indexed: 01/04/2023] Open
Abstract
The complement system is an innate immune pathway that in vertebrates, is responsible for initial recognition and ultimately phagocytosis and destruction of microbes. Several complement molecules including C3, Factor B, and mannose binding lectin associated serine proteases (MASP) have been characterized in invertebrates and while most studies have focused on their conserved role in defense against pathogens, little is known about their role in managing beneficial microbes. The purpose of this study was to (1) characterize complement pathway genes in the symbiotic sea anemone Aiptasia pallida, (2) investigate the evolution of complement genes in invertebrates, and (3) examine the potential dual role of complement genes Factor B and MASP in the onset and maintenance of cnidarian-dinoflagellate symbiosis and immune challenge using qPCR based studies. The results demonstrate that A. pallida has multiple Factor B genes (Ap_Bf-1, Ap_Bf-2a, and Ap_Bf-2b) and one MASP gene (Ap_MASP). Phylogenetic analysis indicates that the evolutionary history of complement genes is complex, and there have been many gene duplications or gene loss events, even within members of the same phylum. Gene expression analyses revealed a potential role for complement in both onset and maintenance of cnidarian-dinoflagellate symbiosis and immune challenge. Specifically, Ap_Bf-1 and Ap_MASP are significantly upregulated in the light at the onset of symbiosis and in response to challenge with the pathogen Serratia marcescens suggesting that they play a role in the initial recognition of both beneficial and harmful microbes. Ap_Bf-2b in contrast, was generally downregulated during the onset and maintenance of symbiosis and in response to challenge with S. marcescens. Therefore, the exact role of Ap_Bf-2b in response to microbes remains unclear, but the results suggest that the presence of microbes leads to repressed expression. Together, these results indicate functional divergence between Ap_Bf-1 and Ap_Bf-2b, and that Ap_Bf-1 and Ap_MASP may be functioning together in an ancestral hybrid of the lectin and alternative complement pathways. Overall, this study provides information on the role of the complement system in a basal metazoan and its role in host-microbe interactions.
Collapse
Affiliation(s)
- Angela Z Poole
- Department of Integrative Biology, Oregon State UniversityCorvallis, OR, USA; Department of Biology, Western Oregon UniverstiyMonmouth, OR, USA
| | - Sheila A Kitchen
- Department of Integrative Biology, Oregon State University Corvallis, OR, USA
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University Corvallis, OR, USA
| |
Collapse
|
108
|
Berends ETM, Gorham RD, Ruyken M, Soppe JA, Orhan H, Aerts PC, de Haas CJC, Gros P, Rooijakkers SHM. Molecular insights into the surface-specific arrangement of complement C5 convertase enzymes. BMC Biol 2015; 13:93. [PMID: 26552476 PMCID: PMC4638095 DOI: 10.1186/s12915-015-0203-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/21/2015] [Indexed: 01/07/2023] Open
Abstract
Background Complement is a large protein network in plasma that is crucial for human immune defenses and a major cause of aberrant inflammatory reactions. The C5 convertase is a multi-molecular protease complex that catalyses the cleavage of native C5 into its biologically important products. So far, it has been difficult to study the exact molecular arrangement of C5 convertases, because their non-catalytic subunits (C3b) are covalently linked to biological surfaces through a reactive thioester. Through development of a highly purified model system for C5 convertases, we here aim to provide insights into the surface-specific nature of these important protease complexes. Results Alternative pathway (AP) C5 convertases were generated on small streptavidin beads that were coated with purified C3b molecules. Site-specific biotinylation of C3b via the thioester allowed binding of C3b in the natural orientation on the surface. In the presence of factor B and factor D, these C3b beads could effectively convert C5. Conversion rates of surface-bound C3b were more than 100-fold higher than fluid-phase C3b, confirming the requirement of a surface. We determine that high surface densities of C3b, and its attachment via the thioester, are essential for C5 convertase formation. Combining our results with molecular modeling explains how high C3b densities may facilitate intermolecular interactions that only occur on target surfaces. Finally, we define two interfaces on C5 important for its recognition by surface-bound C5 convertases. Conclusions We establish a highly purified model that mimics the natural arrangement of C5 convertases on a surface. The developed model and molecular insights are essential to understand the molecular basis of deregulated complement activity in human disease and will facilitate future design of therapeutic interventions against these critical enzymes in inflammation. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0203-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Evelien T M Berends
- Medical Microbiology, University Medical Center Utrecht, PO G04.614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Ronald D Gorham
- Medical Microbiology, University Medical Center Utrecht, PO G04.614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Maartje Ruyken
- Medical Microbiology, University Medical Center Utrecht, PO G04.614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Jasper A Soppe
- Medical Microbiology, University Medical Center Utrecht, PO G04.614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Hatice Orhan
- Medical Microbiology, University Medical Center Utrecht, PO G04.614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Piet C Aerts
- Medical Microbiology, University Medical Center Utrecht, PO G04.614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Carla J C de Haas
- Medical Microbiology, University Medical Center Utrecht, PO G04.614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Piet Gros
- Medical Microbiology, University Medical Center Utrecht, PO G04.614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.,Department of Chemistry, Faculty of Science, Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Suzan H M Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, PO G04.614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| |
Collapse
|
109
|
Xiang J, Li X, Chen Y, Lu Y, Yu M, Chen X, Zhang W, Zeng Y, Sun L, Chen S, Sha Z. Complement factor I from flatfish half-smooth tongue (Cynoglossus semilaevis) exhibited anti-microbial activities. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:199-209. [PMID: 26148855 DOI: 10.1016/j.dci.2015.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 05/30/2015] [Accepted: 06/06/2015] [Indexed: 06/04/2023]
Abstract
Complement factor I (Cfi) is a soluble serine protease which plays a crucial role in the modulation of complement cascades. In the presence of substrate modulating cofactors (such as complement factor H, C4bp, CR1, etc), Cfi cleaves and inactivates C3b and C4b, thereby controlling the complement-mediated processes. In this study, we sequenced and characterized Cfi gene from Cynoglossus Semilaevis (designated as CsCfi) for the first time. The full-length cDNA of CsCfi was 2230 bp in length, including a 98 bp 5'-untranslated region (UTR), a 164 bp 3'-UTR and a 1968 bp open reading frame (ORF). It encoded a polypeptide of 656 amino acids, with a molecular mass of 72.28 kDa and an isoelectric point of 7.71. A signal peptide was defined at N-terminus, resulting in a 626-residue mature protein. Multiple sequence alignment revealed that Cfi proteins were well conserved with the typical modular architecture and identical active sites throughout the vertebrates, which suggested the conserved function of Cfi. Phylogenetic analysis indicated that CsCfi and the homologous Cfi sequences from teleosts clustered into a clade, separating from another clade from the cartilaginous fish and other vertebrates. Tissue expression profile analysis by quantitative real-time PCR (qRT-PCR) showed that CsCfi mRNA constitutively expressed in all tested tissues, with the predominant expression in liver and the lowest in stomach. Temporal expression levels of CsCfi after challenging with Vibrio anguillarum showed different expression patterns in intestine, spleen, skin, blood, head kidney and liver. The recombinant CsCfi (rCsCfi) protein showed broad-spectrum antimicrobial activities against the Gram-positive bacteria Staphylococcus aureus and the Gram-negative bacteria Escherichia coli, Pseudomonas aeruginosa and Shewanella putrefaciens. The research revealed that CsCfi plays an important role in C. Semilaevis immunity.
Collapse
Affiliation(s)
- Jinsong Xiang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Colleage of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; Function Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Xihong Li
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, National Lab for Ocean Science and Technology, Qingdao 266235, China
| | - Yadong Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Yang Lu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Mengjun Yu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Colleage of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Xuejie Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Colleage of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; Function Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Wenting Zhang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Colleage of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yan Zeng
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Colleage of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Luming Sun
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Colleage of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Songlin Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, National Lab for Ocean Science and Technology, Qingdao 266235, China
| | - Zhenxia Sha
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| |
Collapse
|
110
|
Thammavongsa V, Kim HK, Missiakas D, Schneewind O. Staphylococcal manipulation of host immune responses. Nat Rev Microbiol 2015; 13:529-43. [PMID: 26272408 DOI: 10.1038/nrmicro3521] [Citation(s) in RCA: 418] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Staphylococcus aureus, a bacterial commensal of the human nares and skin, is a frequent cause of soft tissue and bloodstream infections. A hallmark of staphylococcal infections is their frequent recurrence, even when treated with antibiotics and surgical intervention, which demonstrates the bacterium's ability to manipulate innate and adaptive immune responses. In this Review, we highlight how S. aureus virulence factors inhibit complement activation, block and destroy phagocytic cells and modify host B cell and T cell responses, and we discuss how these insights might be useful for the development of novel therapies against infections with antibiotic resistant strains such as methicillin-resistant S. aureus.
Collapse
Affiliation(s)
- Vilasack Thammavongsa
- 1] Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA. [2] Regeneron Pharmaceuticals, 755 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Hwan Keun Kim
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| | - Dominique Missiakas
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
111
|
Cryo-EM and the elucidation of new macromolecular structures: Random Conical Tilt revisited. Sci Rep 2015; 5:14290. [PMID: 26390853 PMCID: PMC4585738 DOI: 10.1038/srep14290] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 08/24/2015] [Indexed: 11/25/2022] Open
Abstract
Cryo-Electron Microscopy (cryo-EM) of macromolecular complexes is a fundamental structural biology technique which is expanding at a very fast pace. Key to its success in elucidating the three-dimensional structure of a macromolecular complex, especially of small and non-symmetric ones, is the ability to start from a low resolution map, which is subsequently refined with the actual images collected at the microscope. There are several methods to produce this first structure. Among them, Random Conical Tilt (RCT) plays a prominent role due to its unbiased nature (it can create an initial model based on experimental measurements). In this article, we revise the fundamental mathematical expressions supporting RCT, providing new expressions handling all key geometrical parameters without the need of intermediate operations, leading to improved automation and overall reliability, essential for the success of cryo-EM when analyzing new complexes. We show that the here proposed RCT workflow based on the new formulation performs very well in practical cases, requiring very few image pairs (as low as 13 image pairs in one of our examples) to obtain relevant 3D maps.
Collapse
|
112
|
Alcorlo M, López-Perrote A, Delgado S, Yébenes H, Subías M, Rodríguez-Gallego C, Rodríguez de Córdoba S, Llorca O. Structural insights on complement activation. FEBS J 2015; 282:3883-91. [PMID: 26250513 DOI: 10.1111/febs.13399] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/06/2015] [Accepted: 08/04/2015] [Indexed: 11/29/2022]
Abstract
The proteolytic cleavage of C3 to generate C3b is the central and most important step in the activation of complement, a major component of innate immunity. The comparison of the crystal structures of C3 and C3b illustrates large conformational changes during the transition from C3 to C3b. Exposure of a reactive thio-ester group allows C3b to bind covalently to surfaces such as pathogens or apoptotic cellular debris. The displacement of the thio-ester-containing domain (TED) exposes hidden surfaces that mediate the interaction with complement factor B to assemble the C3-convertase of the alternative pathway (AP). In addition, the displacement of the TED and its interaction with the macroglobulin 1 (MG1) domain generates an extended surface in C3b where the complement regulators factor H (FH), decay accelerating factor (DAF), membrane cofactor protein (MCP) and complement receptor 1 (CR1) can bind, mediating accelerated decay of the AP C3-convertase and proteolytic inactivation of C3b. In the last few years, evidence has accumulated revealing that the structure of C3b in solution is significantly more flexible than anticipated. We review our current knowledge on C3b structural flexibility to propose a general model where the TED can display a collection of conformations around the MG ring, as well as a few specialized positions where the TED is held in one of several fixed locations. Importantly, this conformational heterogeneity in C3b impacts complement regulation by affecting the interaction with regulators.
Collapse
Affiliation(s)
- Martín Alcorlo
- Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Andrés López-Perrote
- Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Sandra Delgado
- BioGUNE, Unidad de Biología Estructural - Ed. 800, Derio, Bizkaia, Spain
| | - Hugo Yébenes
- Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Marta Subías
- Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - César Rodríguez-Gallego
- Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Santiago Rodríguez de Córdoba
- Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas, Madrid, Spain.,Centro Investigaciones Biológicas, Ciber de Enfermedades Raras, Madrid, Spain
| | - Oscar Llorca
- Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
113
|
Skarzynski M, Niemann CU, Lee YS, Martyr S, Maric I, Salem D, Stetler-Stevenson M, Marti GE, Calvo KR, Yuan C, Valdez J, Soto S, Farooqui MZH, Herman SEM, Wiestner A. Interactions between Ibrutinib and Anti-CD20 Antibodies: Competing Effects on the Outcome of Combination Therapy. Clin Cancer Res 2015; 22:86-95. [PMID: 26283682 DOI: 10.1158/1078-0432.ccr-15-1304] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/04/2015] [Indexed: 01/13/2023]
Abstract
PURPOSE Clinical trials of ibrutinib combined with anti-CD20 monoclonal antibodies (mAb) for chronic lymphocytic leukemia (CLL) report encouraging results. Paradoxically, in preclinical studies, in vitro ibrutinib was reported to decrease CD20 expression and inhibit cellular effector mechanisms. We therefore set out to investigate effects of in vivo ibrutinib treatment that could explain this paradox. EXPERIMENTAL DESIGN Patients received single-agent ibrutinib (420 mg daily) on an investigator-initiated phase II trial. Serial blood samples were collected pretreatment and during treatment for ex vivo functional assays to examine the effects on CLL cell susceptibility to anti-CD20 mAbs. RESULTS We demonstrate that CD20 expression on ibrutinib was rapidly and persistently downregulated (median reduction 74%, day 28, P < 0.001) compared with baseline. Concomitantly, CD20 mRNA was decreased concurrent with reduced NF-κB signaling. An NF-κB binding site in the promoter of MS4A1 (encoding CD20) and downregulation of CD20 by NF-κB inhibitors support a direct transcriptional effect. Ex vivo, tumor cells from patients on ibrutinib were less susceptible to anti-CD20 mAb-mediated complement-dependent cytotoxicity than pretreatment cells (median reduction 75%, P < 0.001); however, opsonization by the complement protein C3d, which targets cells for phagocytosis, was relatively maintained. Expression of decay-accelerating factor (CD55) decreased on ibrutinib, providing a likely mechanism for the preserved C3d opsonization. In addition, ibrutinib significantly inhibited trogocytosis, a major contributor to antigen loss and tumor escape during mAb therapy. CONCLUSIONS Our data indicate that ibrutinib promotes both positive and negative interactions with anti-CD20 mAbs, suggesting that successfully harnessing maximal antitumor effects of such combinations requires further investigation.
Collapse
Affiliation(s)
- Martin Skarzynski
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Carsten U Niemann
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Yuh Shan Lee
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Sabrina Martyr
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Irina Maric
- Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland
| | - Dalia Salem
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | | | - Gerald E Marti
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Katherine R Calvo
- Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland
| | - Constance Yuan
- Flow Cytometry Unit, Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Janet Valdez
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Susan Soto
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Mohammed Z H Farooqui
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Sarah E M Herman
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
114
|
Jiang DK, Ma XP, Yu H, Cao G, Ding DL, Chen H, Huang HX, Gao YZ, Wu XP, Long XD, Zhang H, Zhang Y, Gao Y, Chen TY, Ren WH, Zhang P, Shi Z, Jiang W, Wan B, Saiyin H, Yin J, Zhou YF, Zhai Y, Lu PX, Zhang H, Gu X, Tan A, Wang JB, Zuo XB, Sun LD, Liu JO, Yi Q, Mo Z, Zhou G, Liu Y, Sun J, Shugart YY, Zheng SL, Zhang XJ, Xu J, Yu L. Genetic variants in five novel loci including CFB and CD40 predispose to chronic hepatitis B. Hepatology 2015; 62:118-128. [PMID: 25802187 DOI: 10.1002/hep.27794] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/16/2015] [Indexed: 12/15/2022]
Abstract
UNLABELLED Hepatitis B virus affects more than 2 billion people worldwide, 350 million of which have developed chronic hepatitis B (CHB). The genetic factors that confer CHB risk are still largely unknown. We sought to identify genetic variants for CHB susceptibility in the Chinese population. We undertook a genome-wide association study (GWAS) in 2,514 CHB cases and 1,130 normal controls from eastern China. We replicated 33 of the most promising signals and eight previously reported CHB risk loci through a two-stage validation totaling 6,600 CHB cases and 8,127 controls in four independent populations, of which two populations were recruited from eastern China, one from northern China and one from southern China. The joint analyses of 9,114 CHB cases and 9,257 controls revealed significant association of CHB risk with five novel loci. Four loci are located in the human leukocyte antigen (HLA) region at 6p21.3, including two nonsynonymous variants (rs12614 [R32W] in complement factor B [CFB], Pmeta =1.28 × 10(-34) ; and rs422951 [T320A] in NOTCH4, Pmeta = 5.33 × 10(-16) ); one synonymous variant (rs378352 in HLA-DOA corresponding to HLA-DOA*010101, Pmeta = 1.04 × 10(-23) ); and one noncoding variant (rs2853953 near HLA-C, Pmeta = 5.06 × 10(-20) ). Another locus is located at 20q13.1 (rs1883832 in the Kozak sequence of CD40, Pmeta = 2.95 × 10(-15) ). Additionally, we validated seven of eight previously reported CHB susceptibility loci (rs3130542 at HLA-C, rs1419881 at TCF19, rs652888 at EHMT2, rs2856718 at HLA-DQB1, rs7453920 at HLA-DQB2, rs3077 at HLA-DPA1, and rs9277535 at HLA-DPA2, which are all located in the HLA region, 9.84 × 10(-71) ≤ Pmeta ≤ 9.92 × 10(-7) ). CONCLUSION Our GWAS identified five novel susceptibility loci for CHB. These findings improve the understanding of CHB etiology and may provide new targets for prevention and treatment of this disease.
Collapse
Affiliation(s)
- De-Ke Jiang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- Center for Genetic Epidemiology, School of Life Sciences, Fudan University, Shanghai, China
- Center for Genetic Translational Medicine and Prevention, School of Public Health, Fudan University, Shanghai, China
- Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Xiao-Pin Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Hongjie Yu
- James D. Watson Institute of Genome Sciences, College of life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Dong-Lin Ding
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Haitao Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- Center for Genetic Epidemiology, School of Life Sciences, Fudan University, Shanghai, China
- Center for Genetic Translational Medicine and Prevention, School of Public Health, Fudan University, Shanghai, China
| | - Hui-Xing Huang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu-Zhen Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Xiao-Pan Wu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xi-Dai Long
- Department of Pathology, Youjiang Medical College for Nationalities, Guangxi, China
| | - Hongxing Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Youjie Zhang
- Institute of Urology and Nephrology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Yong Gao
- Institute of Urology and Nephrology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Tao-Yang Chen
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, China
| | - Wei-Hua Ren
- Luoyang Central Hospital, Affiliated to Zhengzhou University, Luoyang, China
| | - Pengyin Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- Center for Genetic Epidemiology, School of Life Sciences, Fudan University, Shanghai, China
- Center for Genetic Translational Medicine and Prevention, School of Public Health, Fudan University, Shanghai, China
| | - Zhuqing Shi
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- Center for Genetic Epidemiology, School of Life Sciences, Fudan University, Shanghai, China
- Center for Genetic Translational Medicine and Prevention, School of Public Health, Fudan University, Shanghai, China
| | - Wei Jiang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Bo Wan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Hexige Saiyin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jianhua Yin
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Yuan-Feng Zhou
- Department of Pathology, Youjiang Medical College for Nationalities, Guangxi, China
| | - Yun Zhai
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Pei-Xin Lu
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, China
| | - Hongwei Zhang
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xiaoli Gu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Aihua Tan
- Institute of Urology and Nephrology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Jin-Bing Wang
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, China
| | - Xian-Bo Zuo
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, China
- State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology, Hefei, China
| | - Liang-Dan Sun
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, China
- State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology, Hefei, China
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Qing Yi
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
- Division of Cancer Medicine, and the Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Zengnan Mo
- Institute of Urology and Nephrology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Gangqiao Zhou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ying Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jielin Sun
- Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Yin Yao Shugart
- Unit on Statistical Genomics, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - S Lilly Zheng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, NC
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL
| | - Xue-Jun Zhang
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, China
- State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology, Hefei, China
| | - Jianfeng Xu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- Center for Genetic Epidemiology, School of Life Sciences, Fudan University, Shanghai, China
- Center for Genetic Translational Medicine and Prevention, School of Public Health, Fudan University, Shanghai, China
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Institute of Biomedical Science, Fudan University, Shanghai, China
| |
Collapse
|
115
|
Liszewski MK, Atkinson JP. Complement regulator CD46: genetic variants and disease associations. Hum Genomics 2015; 9:7. [PMID: 26054645 PMCID: PMC4469999 DOI: 10.1186/s40246-015-0029-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/26/2015] [Indexed: 12/23/2022] Open
Abstract
Membrane cofactor protein (MCP; CD46) is an ubiquitously expressed complement regulatory protein that protects host cells from injury by complement. This type-I membrane glycoprotein serves as a cofactor for the serine protease factor I to mediate inactivation of C3b and C4b deposited on host cells. More than 60 disease-associated mutations in MCP have now been identified. The majority of the mutations are linked to a rare thrombotic microangiopathic-based disease, atypical hemolytic uremic syndrome (aHUS), but new putative links to systemic lupus erythematosus, glomerulonephritis, and pregnancy-related disorders among others have also been identified. This review summarizes our current knowledge of disease-associated mutations in this complement inhibitor.
Collapse
Affiliation(s)
- M Kathryn Liszewski
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, 660 South Euclid, Saint Louis, MO, 63110, USA.
| | - John P Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, 660 South Euclid, Saint Louis, MO, 63110, USA.
| |
Collapse
|
116
|
Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement System Part I - Molecular Mechanisms of Activation and Regulation. Front Immunol 2015; 6:262. [PMID: 26082779 PMCID: PMC4451739 DOI: 10.3389/fimmu.2015.00262] [Citation(s) in RCA: 1097] [Impact Index Per Article: 109.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/11/2015] [Indexed: 12/12/2022] Open
Abstract
Complement is a complex innate immune surveillance system, playing a key role in defense against pathogens and in host homeostasis. The complement system is initiated by conformational changes in recognition molecular complexes upon sensing danger signals. The subsequent cascade of enzymatic reactions is tightly regulated to assure that complement is activated only at specific locations requiring defense against pathogens, thus avoiding host tissue damage. Here, we discuss the recent advances describing the molecular and structural basis of activation and regulation of the complement pathways and their implication on physiology and pathology. This article will review the mechanisms of activation of alternative, classical, and lectin pathways, the formation of C3 and C5 convertases, the action of anaphylatoxins, and the membrane-attack-complex. We will also discuss the importance of structure-function relationships using the example of atypical hemolytic uremic syndrome. Lastly, we will discuss the development and benefits of therapies using complement inhibitors.
Collapse
Affiliation(s)
- Nicolas S Merle
- UMR_S 1138, Cordeliers Research Center, Complement and Diseases Team, INSERM , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris , Paris , France
| | - Sarah Elizabeth Church
- UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris , Paris , France ; UMR_S 1138, Cordeliers Research Center, Integrative Cancer Immunology Team, INSERM , Paris , France
| | - Veronique Fremeaux-Bacchi
- UMR_S 1138, Cordeliers Research Center, Complement and Diseases Team, INSERM , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris , Paris , France ; Service d'Immunologie Biologique, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou , Paris , France
| | - Lubka T Roumenina
- UMR_S 1138, Cordeliers Research Center, Complement and Diseases Team, INSERM , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris , Paris , France
| |
Collapse
|
117
|
Melillo D, Varriale S, Giacomelli S, Natale L, Bargelloni L, Oreste U, Pinto MR, Coscia MR. Evolution of the complement system C3 gene in Antarctic teleosts. Mol Immunol 2015; 66:299-309. [PMID: 25909494 DOI: 10.1016/j.molimm.2015.03.247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 11/29/2022]
Abstract
Notothenioidei are typical Antarctic teleosts evolved to adapt to the very low temperatures of the Antarctic seas. Aim of the present paper is to investigate sequence and structure of C3, the third component of the complement system of the notothenioid Trematomus bernacchii and Chionodraco hamatus. We determined the complete nucleotide sequence of two C3 isoforms of T. bernacchii and a single C3 isoform of C. hamatus. These sequences were aligned against other homologous teleost sequences to check for the presence of diversifying selection. Evidence for positive selection was observed in the evolutionary lineage of Antarctic teleost C3 sequences, especially in that of C. hamatus, the most recently diverged species. Adaptive selection affected numerous amino acid positions including three residues located in the anaphylatoxin domain. In an attempt to evaluate the link between sequence variants and specific structural features, we constructed molecular models of Antarctic teleost C3s, of their proteolytic fragments C3b and C3a, and of the corresponding molecules of the phylogenetically related temperate species Epinephelus coioides, using human crystallographic structures as templates. Subsequently, we compared dynamic features of these models by molecular dynamics simulations and found that the Antarctic C3s models show higher flexibility, which likely allows for more pronounced movements of both the TED domain in C3b and the carboxyl-terminal region of C3a. As such dynamic features are associated to positively selected sites, it appears that Antarctic teleost C3 molecules positively evolved toward an increased flexibility, to cope with low kinetic energy levels of the Antarctic marine environment.
Collapse
Affiliation(s)
- Daniela Melillo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli (SZN), Italy
| | - Sonia Varriale
- Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Stefano Giacomelli
- Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Lenina Natale
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli (SZN), Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padua, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Umberto Oreste
- Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Maria Rosaria Pinto
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli (SZN), Italy
| | - Maria Rosaria Coscia
- Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy.
| |
Collapse
|
118
|
Ferrín G, Rodríguez-Perálvarez M, Aguilar-Melero P, Ranchal I, Llamoza C, Linares CI, González-Rubio S, Muntané J, Briceño J, López-Cillero P, Montero-Álvarez JL, de la Mata M. Plasma protein biomarkers of hepatocellular carcinoma in HCV-infected alcoholic patients with cirrhosis. PLoS One 2015; 10:e0118527. [PMID: 25789864 PMCID: PMC4366144 DOI: 10.1371/journal.pone.0118527] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/26/2014] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and lethal cancers in the world, with limited options for treatment unless timely diagnosed. Chronic hepatitis C virus (HCV) infection and persistent heavy alcohol consumption are independent risk factors for HCC development, which may induce a specific protein expression pattern different from those caused separately. The aim of the study was to identify protein biomarkers for the detection of HCC in HCV-infected alcoholic patients with cirrhosis in order to improve survival. We compared protein expression profiles of plasma samples from 52 HCV-infected alcoholic patients with and without HCC, using 2-D DIGE coupled with MALDI-TOF/TOF mass spectrometry. The 2-D DIGE results were analyzed statistically using Decyder software, and verified by western-blot and ELISA. In plasma samples from HCV-infected alcoholic patients, we found significantly differential expression profiles of carboxypeptidase-N, ceruloplasmin (CP), complement component 4a (C4a), fibrinogen-alpha (FGA), immunoglobulin mu chain C region, serum albumin, and serum paraoxonase/arylesterase 1 (PON1). Deregulation of plasma/serum levels of the identified proteins was associated to HCV, ethanol consumption, and/or HCC progression. In the validation through ELISA, C4a serum concentration was increased in HCC patients (2.4±1 ng/mg vs 1.8±0.6 ng/mg; p = 0.029), being the only independent predictor of HCC in the multivariate analysis (OR = 2.15; p = 0.015), with an AUROC = 0.70. The combination of C4a, FGA, CP and PON1 improved slightly the predictive ability of C4a alone (AUROC 0.81). In conclusion, we identified proteins related to acute-phase response, oxidative stress, or immune response, whose differential expression in plasma may be attributed to the presence of HCC. Among them, C4a, and its combination with CP, FGA and PON1, could be considered as potentially reliable biomarkers for the detection of HCC in HCV-infected alcoholic patients.
Collapse
Affiliation(s)
- Gustavo Ferrín
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
- Biomedical Research Centre Network, Digestive and Liver Diseases (CIBERehd), Córdoba, Spain
| | - Manuel Rodríguez-Perálvarez
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
- Biomedical Research Centre Network, Digestive and Liver Diseases (CIBERehd), Córdoba, Spain
- Hepatology and Liver Transplantation Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - Patricia Aguilar-Melero
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
| | - Isidora Ranchal
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
- Biomedical Research Centre Network, Digestive and Liver Diseases (CIBERehd), Córdoba, Spain
| | - Camilo Llamoza
- Hepatology and Liver Transplantation Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - Clara I. Linares
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
| | - Sandra González-Rubio
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
| | - Jordi Muntané
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
- Biomedical Research Centre Network, Digestive and Liver Diseases (CIBERehd), Córdoba, Spain
| | - Javier Briceño
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
- Biomedical Research Centre Network, Digestive and Liver Diseases (CIBERehd), Córdoba, Spain
- Hepatology and Liver Transplantation Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - Pedro López-Cillero
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
- Biomedical Research Centre Network, Digestive and Liver Diseases (CIBERehd), Córdoba, Spain
- Hepatology and Liver Transplantation Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - José Luis Montero-Álvarez
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
- Biomedical Research Centre Network, Digestive and Liver Diseases (CIBERehd), Córdoba, Spain
- Hepatology and Liver Transplantation Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - Manuel de la Mata
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
- Biomedical Research Centre Network, Digestive and Liver Diseases (CIBERehd), Córdoba, Spain
- Hepatology and Liver Transplantation Unit, Reina Sofía University Hospital, Córdoba, Spain
| |
Collapse
|
119
|
Melis JPM, Strumane K, Ruuls SR, Beurskens FJ, Schuurman J, Parren PWHI. Complement in therapy and disease: Regulating the complement system with antibody-based therapeutics. Mol Immunol 2015; 67:117-30. [PMID: 25697848 DOI: 10.1016/j.molimm.2015.01.028] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 12/23/2022]
Abstract
Complement is recognized as a key player in a wide range of normal as well as disease-related immune, developmental and homeostatic processes. Knowledge of complement components, structures, interactions, and cross-talk with other biological systems continues to grow and this leads to novel treatments for cancer, infectious, autoimmune- or age-related diseases as well as for preventing transplantation rejection. Antibodies are superbly suited to be developed into therapeutics with appropriate complement stimulatory or inhibitory activity. Here we review the design, development and future of antibody-based drugs that enhance or dampen the complement system.
Collapse
Affiliation(s)
| | | | | | | | | | - Paul W H I Parren
- Genmab, Utrecht, The Netherlands; Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
120
|
A quantitative lateral flow assay to detect complement activation in blood. Anal Biochem 2015; 477:78-85. [PMID: 25660530 DOI: 10.1016/j.ab.2015.01.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 01/21/2023]
Abstract
Complement is a major effector arm of the innate immune system that responds rapidly to pathogens or altered self. The central protein of the system, C3, participates in an amplification loop that can lead to rapid complement deposition on a target and, if excessive, can result in host tissue damage. Currently, complement activation is routinely monitored by assessing total C3 levels, which is an indirect and relatively insensitive method. An alternative approach would be to measure downstream C3 activation products such as C3a and iC3b. However, in vitro activation can produce falsely elevated levels of these biomarkers. To circumvent this issue, a lateral flow immunoassay system was developed that measures iC3b in whole blood, plasma, and serum and avoids in vitro activation by minimizing sample handling. This assay system returns results within 15 min and specifically measures iC3b while having minimal cross-reactivity to other C3 split products. While evaluating the potential of this assay, it was observed that circulating iC3b levels can distinguish healthy individuals from those with complement activation-associated diseases. This tool is engineered to provide an improved method to assess complement activation at point of care and could facilitate studies to monitor disease progression in a variety of inflammatory conditions.
Collapse
|
121
|
Rodriguez E, Nan R, Li K, Gor J, Perkins SJ. A revised mechanism for the activation of complement C3 to C3b: a molecular explanation of a disease-associated polymorphism. J Biol Chem 2015; 290:2334-50. [PMID: 25488663 PMCID: PMC4303685 DOI: 10.1074/jbc.m114.605691] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/28/2014] [Indexed: 11/06/2022] Open
Abstract
The solution structure of complement C3b is crucial for the understanding of complement activation and regulation. C3b is generated by the removal of C3a from C3. Hydrolysis of the C3 thioester produces C3u, an analog of C3b. C3b cleavage results in C3c and C3d (thioester-containing domain; TED). To resolve functional questions in relation to C3b and C3u, analytical ultracentrifugation and x-ray and neutron scattering studies were used with C3, C3b, C3u, C3c, and C3d, using the wild-type allotype with Arg(102). In 50 mm NaCl buffer, atomistic scattering modeling showed that both C3b and C3u adopted a compact structure, similar to the C3b crystal structure in which its TED and macroglobulin 1 (MG1) domains were connected through the Arg(102)-Glu(1032) salt bridge. In physiological 137 mm NaCl, scattering modeling showed that C3b and C3u were both extended in structure, with the TED and MG1 domains now separated by up to 6 nm. The importance of the Arg(102)-Glu(1032) salt bridge was determined using surface plasmon resonance to monitor the binding of wild-type C3d(E1032) and mutant C3d(A1032) to immobilized C3c. The mutant did not bind, whereas the wild-type form did. The high conformational variability of TED in C3b in physiological buffer showed that C3b is more reactive than previously thought. Because the Arg(102)-Glu(1032) salt bridge is essential for the C3b-Factor H complex during the regulatory control of C3b, the known clinical associations of the major C3S (Arg(102)) and disease-linked C3F (Gly(102)) allotypes of C3b were experimentally explained for the first time.
Collapse
Affiliation(s)
- Elizabeth Rodriguez
- From the Department of Structural and Molecular Biology, Division of Biosciences, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Ruodan Nan
- From the Department of Structural and Molecular Biology, Division of Biosciences, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Keying Li
- From the Department of Structural and Molecular Biology, Division of Biosciences, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Jayesh Gor
- From the Department of Structural and Molecular Biology, Division of Biosciences, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Stephen J Perkins
- From the Department of Structural and Molecular Biology, Division of Biosciences, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
122
|
Swe PM, Reynolds SL, Fischer K. Parasitic scabies mites and associated bacteria joining forces against host complement defence. Parasite Immunol 2015; 36:585-93. [PMID: 25081184 DOI: 10.1111/pim.12133] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/25/2014] [Indexed: 02/06/2023]
Abstract
Scabies is a ubiquitous and contagious skin disease caused by the parasitic mite Sarcoptes scabiei Epidemiological studies have identified scabies as a causative agent for secondary skin infections caused by Staphylococcus aureus and Streptococcus pyogenes. This is an important notion, as such bacterial infections can lead to serious downstream life-threatening complications. As the complement system is the first line of host defence that confronts invading pathogens, both the mite and bacteria produce a large array of molecules that inhibit the complement cascades. It is hypothesised that scabies mite complement inhibitors may play an important role in providing a favourable micro-environment for the establishment of secondary bacterial infections. This review aims to bring together the current literature on complement inhibition by scabies mites and bacteria associated with scabies and to discuss the proposed molecular link between scabies and bacterial co-infections.
Collapse
Affiliation(s)
- P M Swe
- Biology Department, QIMR Berghofer Medical Research Institute, Infectious Diseases Program, Brisbane, Qld, Australia
| | | | | |
Collapse
|
123
|
Wang Y, Chen B, Ke Y, Wang C, Ye B. Molecular characterization and expression analysis of the complement factor I (CpFI) in the whitespotted bamboo shark (Chiloscyllium plagiosum). FISH & SHELLFISH IMMUNOLOGY 2014; 40:414-423. [PMID: 25108086 DOI: 10.1016/j.fsi.2014.07.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/11/2014] [Accepted: 07/25/2014] [Indexed: 06/03/2023]
Abstract
Complement factor I (FI) is a plasma serine proteinase that plays an essential role in the modulation of the complement cascade. In the presence of substrate modulating cofactors (Factor H, C4bp, CR1, etc), FI cleaves the activation products of C3 (i.e. C3b) and C4 (i.e. C4b) to limit complement activity. In this study, the full length cDNA of factor I (CpFI) is isolated from the liver of the whitespotted bamboo shark (Chiloscyllium plagiosum). The CpFI cDNA is 2326 bp in length, encoding a protein of 671 amino acids, which shares 72-80% identity with FI molecules of other sharks, higher than the teleosts (37-40%) and mammals (44-47%). The sequence alignment and comparative analysis indicates the FI proteins are well conserved, with the typical modular architecture and identical active sites throughout vertebrate evolution, suggesting the conserved function. However, the additional sequence present between the leader peptide (LP) and the factor I membrane attack complex (FIMAC) domain in other fishes is also found in CpFI, which consists of two kind of tandem repeats. Phylogenetic analysis suggests that CpFI belongs to the elasmobranch clade, in parallel with the higher vertebrates, to form a sister taxa to teleosts. Expression analysis revealed that CpFI is ubiquitously distributed in a variety of tissues, with the constitutive expression in liver, which might reflect the species-specific distribution patterns of FI. Together with earlier reports, the presence of FI in various sharks might suggest the existence of a well-developed complement regulation mechanism in cartilaginous fish.
Collapse
Affiliation(s)
- Ying Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Biao Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yan Ke
- National Center for Traditional Chinese Medicine, Beijing 100027, PR China
| | - Conghui Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Boping Ye
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
124
|
Berends ETM, Kuipers A, Ravesloot MM, Urbanus RT, Rooijakkers SHM. Bacteria under stress by complement and coagulation. FEMS Microbiol Rev 2014; 38:1146-71. [PMID: 25065463 DOI: 10.1111/1574-6976.12080] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/23/2014] [Accepted: 07/14/2014] [Indexed: 02/03/2023] Open
Abstract
The complement and coagulation systems are two related protein cascades in plasma that serve important roles in host defense and hemostasis, respectively. Complement activation on bacteria supports cellular immune responses and leads to direct killing of bacteria via assembly of the Membrane Attack Complex (MAC). Recent studies have indicated that the coagulation system also contributes to mammalian innate defense since coagulation factors can entrap bacteria inside clots and generate small antibacterial peptides. In this review, we will provide detailed insights into the molecular interplay between these protein cascades and bacteria. We take a closer look at how these pathways are activated on bacterial surfaces and discuss the mechanisms by which they directly cause stress to bacterial cells. The poorly understood mechanism for bacterial killing by the MAC will be reevaluated in light of recent structural insights. Finally, we highlight the strategies used by pathogenic bacteria to modulate these protein networks. Overall, these insights will contribute to a better understanding of the host defense roles of complement and coagulation against bacteria.
Collapse
Affiliation(s)
- Evelien T M Berends
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
125
|
Williams M, Baxter R. The structure and function of thioester-containing proteins in arthropods. Biophys Rev 2014; 6:261-272. [PMID: 28510031 DOI: 10.1007/s12551-014-0142-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022] Open
Abstract
Thioester-containing proteins (TEPs) form an ancient and diverse family of secreted proteins that play central roles in the innate immune response. Two families of TEPs, complement factors and α2-macroglobulins, have been known and studied in vertebrates for many years, but only in the last decade have crystal structures become available. In the same period, the presence of two additional classes of TEPs has been revealed in arthropods. In this review, we discuss the common structural features TEPs and how this knowledge can be applied to the many arthropod TEPs of unknown function. TEPs perform a wide variety of functions that are driven by different quaternary structures and protein-protein interactions between a common set of folded domains. A common theme is regulated conformational change triggered by proteolysis. Structure-function analysis of the diverse arthropod TEPs may identify not just new mechanisms in innate immunity but also interfaces between immunity, development and cell death.
Collapse
Affiliation(s)
- Marni Williams
- Department. of Chemistry, Yale University, New Haven, CT, USA
| | - Richard Baxter
- Department. of Chemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
126
|
Kim H, Meyer K, Di Bisceglie AM, Ray R. Inhibition of c3 convertase activity by hepatitis C virus as an additional lesion in the regulation of complement components. PLoS One 2014; 9:e101422. [PMID: 24983375 PMCID: PMC4077819 DOI: 10.1371/journal.pone.0101422] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/06/2014] [Indexed: 01/25/2023] Open
Abstract
We have previously reported that in vitro HCV infection of cells of hepatocyte origin attenuates complement system at multiple steps, and attenuation also occurs in chronically HCV infected liver, irrespective of the disease stage. However, none of these regulations alone completely impaired complement pathways. Modulation of the upstream proteins involved in proteolytic processing of the complement cascade prior to convertase formation is critical in promoting the function of the complement system in response to infection. Here, we examined the regulation of C2 complement expression in hepatoma cells infected in vitro with cell culture grown virus, and validated our observations using randomly selected chronically HCV infected patient liver biopsy specimens. C2 mRNA expression was significantly inhibited, and classical C3 convertase (C4b2a) decreased. In separate experiments for C3 convertase function, C3b deposition onto bacterial membrane was reduced using HCV infected patient sera as compared to uninfected control, suggesting impaired C3 convertase. Further, iC3b level, a proteolytically inactive form of C3b, was lower in HCV infected patient sera, reflecting impairment of both C3 convertase and Factor I activity. The expression level of Factor I was significantly reduced in HCV infected liver biopsy specimens, while Factor H level remained unchanged or enhanced. Together, these results suggested that inhibition of C3 convertase activity is an additional cumulative effect for attenuation of complement system adopted by HCV for weakening innate immune response.
Collapse
Affiliation(s)
- Hangeun Kim
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri, United States of America
| | - Keith Meyer
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri, United States of America
| | - Adrian M. Di Bisceglie
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology & Immunology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Ranjit Ray
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology & Immunology, Saint Louis University, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
127
|
A scabies mite serpin interferes with complement-mediated neutrophil functions and promotes staphylococcal growth. PLoS Negl Trop Dis 2014; 8:e2928. [PMID: 24945501 PMCID: PMC4063749 DOI: 10.1371/journal.pntd.0002928] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/21/2014] [Indexed: 01/30/2023] Open
Abstract
Background Scabies is a contagious skin disease caused by the parasitic mite Sarcoptes scabiei. The disease is highly prevalent worldwide and known to predispose to secondary bacterial infections, in particular by Streptococcus pyogenes and Staphylococcus aureus. Reports of scabies patients co-infected with methicillin resistant S. aureus (MRSA) pose a major concern for serious down-stream complications. We previously reported that a range of complement inhibitors secreted by the mites promoted the growth of S. pyogenes. Here, we show that a recently characterized mite serine protease inhibitor (SMSB4) inhibits the complement-mediated blood killing of S. aureus. Methodology/Principal Findings Blood killing of S. aureus was measured in whole blood bactericidal assays, counting viable bacteria recovered after treatment in fresh blood containing active complement and phagocytes, treated with recombinant SMSB4. SMSB4 inhibited the blood killing of various strains of S. aureus including methicillin-resistant and methicillin-sensitive isolates. Staphylococcal growth was promoted in a dose-dependent manner. We investigated the effect of SMSB4 on the complement-mediated neutrophil functions, namely phagocytosis, opsonization and anaphylatoxin release, by flow cytometry and in enzyme linked immuno sorbent assays (ELISA). SMSB4 reduced phagocytosis of S. aureus by neutrophils. It inhibited the deposition of C3b, C4b and properdin on the bacteria surface, but did not affect the depositions of C1q and MBL. SMSB4 also inhibited C5 cleavage as indicated by a reduced C5b-9 deposition. Conclusions/Significance We postulate that SMSB4 interferes with the activation of all three complement pathways by reducing the amount of C3 convertase formed. We conclude that SMSB4 interferes with the complement-dependent killing function of neutrophils, thereby reducing opsonization, phagocytosis and further recruitment of neutrophils to the site of infection. As a consequence secreted scabies mites complement inhibitors, such as SMSB4, provide favorable conditions for the onset of S. aureus co-infection in the scabies-infected microenvironment by suppressing the immediate host immune response. There is increasing evidence that in the tropics bacterial pyoderma and life-threatening downstream complications caused by Staphylococcus aureus and Streptococcus pyogenes are often linked with scabies infestation. The bacteria were commonly thought to find easy entry into the skin, damaged by scabies mites. However, there may be more to it. Our study aimed to identify the molecular mechanisms underlying the link between mites and bacteria. We recently characterized a molecule (SMSB4) that the mite produces for self-protection from the immediate host defense system in the skin. We show here that SMSB4 reduces the uptake of S. aureus by neutrophils, which are the killer immune cells, first to arrive at the infection site. These cells are guided by a number of complement factors. SMSB4 reduces the deposition of several complement components on the bacteria surface, thereby interrupting the essential defense cascades and inhibiting further neutrophil recruitment to the site. In summary, a mite molecule that likely originally evolved to protect the mite against the host defense plays a further role in the pathogenesis of secondary infections: when secreted into the damaged skin it promotes the onset of S. aureus infection thereby increasing the prevalence of debilitating disease associated with scabies.
Collapse
|
128
|
Rokstad AMA, Lacík I, de Vos P, Strand BL. Advances in biocompatibility and physico-chemical characterization of microspheres for cell encapsulation. Adv Drug Deliv Rev 2014; 67-68:111-30. [PMID: 23876549 DOI: 10.1016/j.addr.2013.07.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/28/2013] [Accepted: 07/12/2013] [Indexed: 02/06/2023]
Abstract
Cell encapsulation has already shown its high potential and holds the promise for future cell therapies to enter the clinics as a large scale treatment option for various types of diseases. The advancement in cell biology towards this goal has to be complemented with functional biomaterials suitable for cell encapsulation. This cannot be achieved without understanding the close correlation between cell performance and properties of microspheres. The ongoing challenges in the field of cell encapsulation require a critical view on techniques and approaches currently utilized to characterize microspheres. This review deals with both principal subjects of microspheres characterization in the cell encapsulation field: physico-chemical characterization and biocompatibility. The up-to-day knowledge is summarized and discussed with the focus to identify missing knowledge and uncertainties, and to propose the mandatory next steps in characterization of microspheres for cell encapsulation. The primary conclusion of this review is that further success in development of microspheres for cell therapies cannot be accomplished without careful selection of characterization techniques, which are employed in conjunction with biological tests.
Collapse
Affiliation(s)
- Anne Mari A Rokstad
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinasgt. 1, N-7491 Trondheim, Norway; The Central Norway Health Authority (RHA), Trondheim, Norway.
| | - Igor Lacík
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia.
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA11, 9700 RB Groningen, The Netherlands.
| | - Berit L Strand
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinasgt. 1, N-7491 Trondheim, Norway; Department of Biotechnology, NTNU, Sem Saelandsvei 6/8, N-7491 Trondheim, Norway; The Central Norway Health Authority (RHA), Trondheim, Norway.
| |
Collapse
|
129
|
Abstract
Although new activation and regulatory mechanisms are still being identified, the basic architecture of the complement system has been known for decades. Two major roles of complement are to control certain bacterial infections and to promote clearance of apoptotic cells. In addition, although inappropriate complement activation has long been proposed to cause tissue damage in human inflammatory and autoimmune diseases, whether this is indeed true has been uncertain. However, recent studies in humans, especially those using newly available biological therapeutics, have now clearly demonstrated the pathophysiologic importance of the complement system in several rare diseases. Beyond these conditions, recent genetic studies have strongly supported an injurious role for complement in a wide array of human inflammatory, degenerative, and autoimmune diseases. This review includes an overview of complement activation, regulatory, and effector mechanisms. It then focuses on new understandings gained from genetic studies, ex vivo analyses, therapeutic trials, and animal models as well as on new research opportunities.
Collapse
Affiliation(s)
- V Michael Holers
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045;
| |
Collapse
|
130
|
The giant protein Ebh is a determinant of Staphylococcus aureus cell size and complement resistance. J Bacteriol 2013; 196:971-81. [PMID: 24363342 DOI: 10.1128/jb.01366-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus USA300, the clonal type associated with epidemic community-acquired methicillin-resistant S. aureus (MRSA) infections, displays the giant protein Ebh on its surface. Mutations that disrupt the ebh reading frame increase the volume of staphylococcal cells and alter the cross wall, a membrane-enclosed peptidoglycan synthesis and assembly compartment. S. aureus ebh variants display increased sensitivity to oxacillin (methicillin) as well as susceptibility to complement-mediated killing. Mutations in ebh are associated with reduced survival of mutant staphylococci in blood and diminished virulence in mice. We propose that Ebh, following its secretion into the cross wall, contributes to the characteristic cell growth and envelope assembly pathways of S. aureus, thereby enabling complement resistance and the pathogenesis of staphylococcal infections.
Collapse
|
131
|
Ko YP, Kuipers A, Freitag CM, Jongerius I, Medina E, van Rooijen WJ, Spaan AN, van Kessel KPM, Höök M, Rooijakkers SHM. Phagocytosis escape by a Staphylococcus aureus protein that connects complement and coagulation proteins at the bacterial surface. PLoS Pathog 2013; 9:e1003816. [PMID: 24348255 PMCID: PMC3861539 DOI: 10.1371/journal.ppat.1003816] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 10/21/2013] [Indexed: 01/01/2023] Open
Abstract
Upon contact with human plasma, bacteria are rapidly recognized by the complement system that labels their surface for uptake and clearance by phagocytic cells. Staphylococcus aureus secretes the 16 kD Extracellular fibrinogen binding protein (Efb) that binds two different plasma proteins using separate domains: the Efb N-terminus binds to fibrinogen, while the C-terminus binds complement C3. In this study, we show that Efb blocks phagocytosis of S. aureus by human neutrophils. In vitro, we demonstrate that Efb blocks phagocytosis in plasma and in human whole blood. Using a mouse peritonitis model we show that Efb effectively blocks phagocytosis in vivo, either as a purified protein or when produced endogenously by S. aureus. Mutational analysis revealed that Efb requires both its fibrinogen and complement binding residues for phagocytic escape. Using confocal and transmission electron microscopy we show that Efb attracts fibrinogen to the surface of complement-labeled S. aureus generating a ‘capsule’-like shield. This thick layer of fibrinogen shields both surface-bound C3b and antibodies from recognition by phagocytic receptors. This information is critical for future vaccination attempts, since opsonizing antibodies may not function in the presence of Efb. Altogether we discover that Efb from S. aureus uniquely escapes phagocytosis by forming a bridge between a complement and coagulation protein. Staphylococcus aureus is a leading cause of severe bacterial infections in both hospital and community settings. Due to its increasing resistance to antibiotics, development of additional therapeutic strategies like vaccination is required to control this pathogen. Vaccination attempts against S. aureus have not been successful so far and an important reason may be the pathogen's elaborate repertoire of molecules that dampen the immune response. These evasion molecules not only suppress natural immunity but also hamper the current attempts to create effective vaccines. In this paper, we describe a novel mechanism by which S. aureus can prevent uptake by phagocytic immune cells. We discover that the secreted S. aureus protein Extracellular fibrinogen binding protein (Efb) generates a ‘capsule’-like shield around the bacterial surface through a dual interaction with the plasma proteins complement C3b and fibrinogen. The Efb-dependent fibrinogen shield masks important opsonic molecules like C3b and antibodies from binding to phagocyte receptors. This information is critical for future vaccination attempts, since opsonizing antibodies may not function in the presence of this anti-phagocytic shield.
Collapse
Affiliation(s)
- Ya-Ping Ko
- Center for Infectious and Inflammatory Disease, Institute of Bioscience and Technology, Texas A&M University Health Science Center, Houston, Texas, United States of America
| | - Annemarie Kuipers
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Claudia M. Freitag
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Utrecht University, Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht, The Netherlands
| | - Ilse Jongerius
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - András N. Spaan
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kok P. M. van Kessel
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Magnus Höök
- Center for Infectious and Inflammatory Disease, Institute of Bioscience and Technology, Texas A&M University Health Science Center, Houston, Texas, United States of America
| | | |
Collapse
|
132
|
Wang S, Wang R, Xu T. The evolutionary analysis on complement genes reveals that fishes C3 and C9 experience different evolutionary patterns. FISH & SHELLFISH IMMUNOLOGY 2013; 35:2040-2045. [PMID: 24184007 DOI: 10.1016/j.fsi.2013.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/14/2013] [Accepted: 10/21/2013] [Indexed: 06/02/2023]
Abstract
Complement is a humoral factor of innate immunity and plays an essential role in altering the host of the presence of potential pathogens and clearing of invading microorganisms. The third complement component (C3) not only is regarded as the crossing of the three pathways of complement activation, but also serves one of the bridges linking innate and acquired immunity. The nine complement component (C9) can combine with C5b, C6, C7 and C8 to form MAC which bounds to the surface of microorganisms to kill them. The evidence of evolution on C3 genes which have multiple functions and plays central role in innate immunity was documented in our previous study. Now we were interested in the evolution of C9 genes which were the terminal complement components. For these reasons, we want to explore the evolutionary patterns of C9 and whether C3 and C9 experience different evolutionary patterns. In our study, we used the sliding window method to separately calculate the values of ω among fishes and mammals of C3 and C9 codons. In order to detect the positive selection sites, we used the maximum likelihood (ML) method to study the evolutionary pattern on C3 and C9 genes. Positive selection sites were detected in mammalian C9 genes and no positive selection sites were detected in fishes C9 genes. However, no positive selection sites were detected in mammalian C3 genes and positive selection sites were detected in fishes C3 genes. The result indicated that C3 and C9 had different evolutionary patterns on mammals and fishes. In conclusion, different living environments lead to different evolutionary patterns on C3 and C9 in mammals and fishes. Besides, different complement components may have different evolutionary patterns on mammals and fishes.
Collapse
Affiliation(s)
- Shanchen Wang
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, PR China
| | | | | |
Collapse
|
133
|
Structural basis for the stabilization of the complement alternative pathway C3 convertase by properdin. Proc Natl Acad Sci U S A 2013; 110:13504-9. [PMID: 23901101 DOI: 10.1073/pnas.1309618110] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Complement is an essential component of innate immunity. Its activation results in the assembly of unstable protease complexes, denominated C3/C5 convertases, leading to inflammation and lysis. Regulatory proteins inactivate C3/C5 convertases on host surfaces to avoid collateral tissue damage. On pathogen surfaces, properdin stabilizes C3/C5 convertases to efficiently fight infection. How properdin performs this function is, however, unclear. Using electron microscopy we show that the N- and C-terminal ends of adjacent monomers in properdin oligomers conform a curly vertex that holds together the AP convertase, interacting with both the C345C and vWA domains of C3b and Bb, respectively. Properdin also promotes a large displacement of the TED (thioester-containing domain) and CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domains of C3b, which likely impairs C3-convertase inactivation by regulatory proteins. The combined effect of molecular cross-linking and structural reorganization increases stability of the C3 convertase and facilitates recruitment of fluid-phase C3 convertase to the cell surfaces. Our model explains how properdin mediates the assembly of stabilized C3/C5-convertase clusters, which helps to localize complement amplification to pathogen surfaces.
Collapse
|
134
|
Aldhamen YA, Seregin SS, Rastall DPW, Aylsworth CF, Pepelyayeva Y, Busuito CJ, Godbehere-Roosa S, Kim S, Amalfitano A. Endoplasmic reticulum aminopeptidase-1 functions regulate key aspects of the innate immune response. PLoS One 2013; 8:e69539. [PMID: 23894499 PMCID: PMC3722114 DOI: 10.1371/journal.pone.0069539] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/10/2013] [Indexed: 01/02/2023] Open
Abstract
Endoplasmic reticulum aminopeptidase-1 (ERAP1) is a multifunctional, ubiquitously expressed enzyme whose peptide-trimming role during antigen processing for presentation by MHC I molecules is well established, however, a role for ERAP1 in modulating global innate immune responses has not been described to date. Here we demonstrate that, relative to wild type mice, mice lacking ERAP1 exhibit exaggerated innate immune responses early during pathogen recognition, as characterized by increased activation of splenic and hepatic NK and NKT cells and enhanced production of pro-inflammatory cytokines such as IL12 and MCP1. Our data also revealed that ERAP1 is playing a critical role in NK cell development and function. We observed higher frequencies of terminally matured NK cells, as well as higher frequencies of licensed NK cells (expressing the Ly49C and Ly49I receptors) in ERAP1-KO mice, results that positively correlated with an enhanced NK activation and IFNγ production by ERAP1-KO mice challenged with pro-inflammatory stimuli. Furthermore, during pathogen recognition, ERAP1 regulates IL12 production by CD11c(+) DCs specifically, with increases in IL12 production positively correlated with an increased phagocytic activity of splenic DCs and macrophages. Collectively, our results demonstrate a previously unrecognized, more central role for the ERAP1 protein in modulating several aspects of both the development of the innate immune system, and its responses during the initial stages of pathogen recognition. Such a role may explain why ERAP1 has been implicated by GWAS in the pathogenesis of autoimmune diseases that may be precipitated by aberrant responses to pathogen encounters.
Collapse
Affiliation(s)
- Yasser A. Aldhamen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Sergey S. Seregin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - David P. W. Rastall
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Charles F. Aylsworth
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Yuliya Pepelyayeva
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Christopher J. Busuito
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Sarah Godbehere-Roosa
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Sungjin Kim
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Andrea Amalfitano
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
135
|
Nan R, Tetchner S, Rodriguez E, Pao PJ, Gor J, Lengyel I, Perkins SJ. Zinc-induced self-association of complement C3b and Factor H: implications for inflammation and age-related macular degeneration. J Biol Chem 2013; 288:19197-210. [PMID: 23661701 PMCID: PMC3696691 DOI: 10.1074/jbc.m113.476143] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 04/30/2013] [Indexed: 11/08/2022] Open
Abstract
The sub-retinal pigment epithelial deposits that are a hallmark of age-related macular degeneration contain both C3b and millimolar levels of zinc. C3 is the central protein of complement, whereas C3u is formed by the spontaneous hydrolysis of the thioester bridge in C3. During activation, C3 is cleaved to form active C3b, then C3b is inactivated by Factor I and Factor H to form the C3c and C3d fragments. The interaction of zinc with C3 was quantified using analytical ultracentrifugation and x-ray scattering. C3, C3u, and C3b associated strongly in >100 μM zinc, whereas C3c and C3d showed weak association. With zinc, C3 forms soluble oligomers, whereas C3u and C3b precipitate. We conclude that the C3, C3u, and C3b association with zinc depended on the relative positions of C3d and C3c in each protein. Computational predictions showed that putative weak zinc binding sites with different capacities exist in all five proteins, in agreement with experiments. Factor H forms large oligomers in >10 μM zinc. In contrast to C3b or Factor H alone, the solubility of the central C3b-Factor H complex was much reduced at 60 μM zinc and even more so at >100 μM zinc. The removal of the C3b-Factor H complex by zinc explains the reduced C3u/C3b inactivation rates by zinc. Zinc-induced precipitation may contribute to the initial development of sub-retinal pigment epithelial deposits in the retina as well as reducing the progression to advanced age-related macular degeneration in higher risk patients.
Collapse
Affiliation(s)
- Ruodan Nan
- From the Department of Structural and Molecular Biology,
Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| | - Stuart Tetchner
- From the Department of Structural and Molecular Biology,
Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| | - Elizabeth Rodriguez
- From the Department of Structural and Molecular Biology,
Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| | - Po-Jung Pao
- From the Department of Structural and Molecular Biology,
Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| | - Jayesh Gor
- From the Department of Structural and Molecular Biology,
Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| | - Imre Lengyel
- the Department of Ocular Biology and Therapeutics, UCL
Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, United Kingdom
| | - Stephen J. Perkins
- From the Department of Structural and Molecular Biology,
Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| |
Collapse
|
136
|
Muscular dystrophy in dysferlin-deficient mouse models. Neuromuscul Disord 2013; 23:377-87. [DOI: 10.1016/j.nmd.2013.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/09/2013] [Accepted: 02/05/2013] [Indexed: 11/17/2022]
|
137
|
Karsten CM, Köhl J. The immunoglobulin, IgG Fc receptor and complement triangle in autoimmune diseases. Immunobiology 2013; 217:1067-79. [PMID: 22964232 DOI: 10.1016/j.imbio.2012.07.015] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/18/2012] [Accepted: 07/18/2012] [Indexed: 01/19/2023]
Abstract
Immunoglobulin G (IgG)-mediated activation of complement and IgG Fc receptors (FcγRs) are important defense mechanisms of the innate immune system to ward off infections. However, the same mechanisms can drive severe and harmful inflammation, when IgG antibodies react with self-antigens in solution or tissues, as described for several autoimmune diseases including systemic lupus erythematosus, rheumatoid arthritis, and immune vasculitis. More specifically, IgG immune complexes (ICs) can activate all three pathways of the complement system resulting in the generation of C3 and C5 cleavage products that can activate a panel of different complement receptors on innate and adaptive immune cells. Importantly, complement and FcγRs are often co-expressed on inflammatory immune cells such as neutrophils, monocytes, macrophages or dendritic cells and act in concert to mediate the inflammatory response in autoimmune diseases. In this context, the cross-talk between the receptor for the anaphylatoxin C5a, i.e. C5ar1 (CD88) and FcγRs is of major importance. Recent data suggest a model of bidirectional regulation, in which CD88 acts upstream of FcγRs and sets the threshold for FcγR-dependent effector responses by regulating the ratio between activating and inhibitory FcγRs. Vice versa, FcγR ligation can either amplify or block C5aR-mediated effector functions, depending on whether IgG IC aggregate activating or inhibitory FcγRs. Further, complement and FcγRs cooperate on B cells and on follicular dendritic cells to regulate the development of autoreactive B cells, their differentiation into plasma cells and, eventually, the production of autoantibodies. Here, we will give an update on recent findings regarding this complex regulatory network between complement and FcγRs, which may also regulate the inflammatory response in allergy, cancer and infection.
Collapse
Affiliation(s)
- Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany
| | | |
Collapse
|
138
|
Ricklin D. Manipulating the mediator: modulation of the alternative complement pathway C3 convertase in health, disease and therapy. Immunobiology 2013; 217:1057-66. [PMID: 22964231 DOI: 10.1016/j.imbio.2012.07.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 07/17/2012] [Accepted: 07/17/2012] [Indexed: 10/27/2022]
Abstract
The complement network is increasingly recognized as an important triage system that is able to differentiate between healthy host cells, microbial intruders, cellular debris and immune complexes, and tailor its actions accordingly. At the center of this triage mechanism is the alternative pathway C3 convertase (C3bBb), a potent enzymatic protein complex capable of rapidly converting the inert yet abundant component C3 into powerful effector fragments (C3a and C3b), thereby amplifying the initial response on unprotected surfaces and inducing a variety of effector functions. A fascinating molecular mechanism of convertase assembly and intrinsic regulation, as well as the interplay with a panel of cell surface-bound and soluble inhibitors are essential for directing complement attack to intruders and protecting healthy host cells. While efficiently keeping immune surveillance and homeostasis on track, the reliance on an intricate cascade of interaction and conversion steps also renders the C3 convertase vulnerable to derail. On the one hand, tissue damage, accumulation of debris, or polymorphisms in complement genes may unfavorably shift the balance between activation and regulation, thereby contributing to a variety of clinical conditions. On the other hand, pathogens developed powerful evasion strategies to avoid complement attack by targeting the convertase. Finally, we increasingly challenge our bodies with foreign materials such as biomaterial implants or drug delivery vehicles that may induce adverse effects that are at least partially caused by complement activation and amplification via the alternative pathway. The involvement of the C3 convertase in a range of pathological conditions put this complex into the spotlight of complement-targeted drug discovery efforts. Fortunately, the physiological regulation and microbial evasion approaches provide a rich source of inspiration for the development of powerful treatment options. This review provides insight into the current knowledge about the molecular mechanisms that drive C3 convertase activity, reveals common and divergent strategies of convertase inhibition employed by host and pathogens, and how this inhibitory arsenal can be tapped for developing therapeutic options to treat complement-related diseases.
Collapse
Affiliation(s)
- Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia 19104, USA.
| |
Collapse
|
139
|
Lea SM, Johnson S. Putting the structure into complement. Immunobiology 2013; 217:1117-21. [PMID: 22964238 DOI: 10.1016/j.imbio.2012.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 07/13/2012] [Accepted: 07/15/2012] [Indexed: 11/25/2022]
Abstract
In a field where structure has finally begun to have a real impact, a series of new structures over the last two years have further extended our understanding of some of the critical regulatory events of the complement system. Notably, information has begun to flow from larger assemblies of components which allow insight into the often transient assemblies critical to complement regulation at the cell surface. This review will summarise the key structures determined since the last International Complement Workshop and the insights these have given us, before highlighting some questions that still require molecular frameworks to drive understanding.
Collapse
Affiliation(s)
- Susan M Lea
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK.
| | | |
Collapse
|
140
|
Salmaso S, Caliceti P. Stealth properties to improve therapeutic efficacy of drug nanocarriers. JOURNAL OF DRUG DELIVERY 2013; 2013:374252. [PMID: 23533769 PMCID: PMC3606770 DOI: 10.1155/2013/374252] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 02/06/2013] [Indexed: 12/23/2022]
Abstract
Over the last few decades, nanocarriers for drug delivery have emerged as powerful tools with unquestionable potential to improve the therapeutic efficacy of anticancer drugs. Many colloidal drug delivery systems are underdevelopment to ameliorate the site specificity of drug action and reduce the systemic side effects. By virtue of their small size they can be injected intravenously and disposed into the target tissues where they release the drug. Nanocarriers interact massively with the surrounding environment, namely, endothelium vessels as well as cells and blood proteins. Consequently, they are rapidly removed from the circulation mostly by the mononuclear phagocyte system. In order to endow nanosystems with long circulation properties, new technologies aimed at the surface modification of their physicochemical features have been developed. In particular, stealth nanocarriers can be obtained by polymeric coating. In this paper, the basic concept underlining the "stealth" properties of drug nanocarriers, the parameters influencing the polymer coating performance in terms of opsonins/macrophages interaction with the colloid surface, the most commonly used materials for the coating process and the outcomes of this peculiar procedure are thoroughly discussed.
Collapse
Affiliation(s)
- Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131 Padova, Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
141
|
Lu XJ, Chen J, Yu CH, Shi YH, He YQ, Zhang RC, Huang ZA, Lv JN, Zhang S, Xu L. LECT2 protects mice against bacterial sepsis by activating macrophages via the CD209a receptor. J Exp Med 2013; 210:5-13. [PMID: 23254286 PMCID: PMC3549712 DOI: 10.1084/jem.20121466] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 11/26/2012] [Indexed: 01/16/2023] Open
Abstract
Leukocyte cell-derived chemotaxin 2 (LECT2) is a multifunctional cytokine and reduced plasma levels were found in patients with sepsis. However, precise functions and mechanisms of LECT2 remain unclear. The aim of the present study was to determine the role of LECT2 in modulating immune responses using mouse sepsis models. We found that LECT2 treatment improved outcome in mice with bacterial sepsis. Macrophages (MΦ), but not polymorphonuclear neutrophils, mediated the beneficial effect of LECT2 on bacterial sepsis. LECT2 treatment could alter gene expression and enhance phagocytosis and bacterial killing of MΦ in vitro. CD209a was identified to specifically interact with LECT2 and mediate LECT2-induced MΦ activation. CD209a-expressing MΦ was further confirmed to mediate the effect of LECT2 on sepsis in vivo. Our data demonstrate that LECT2 improves protective immunity in bacterial sepsis, possibly as a result of enhanced MΦ functions via the CD209a receptor. The modulation of MΦ functions by LECT2 may serve as a novel potential treatment for sepsis.
Collapse
Affiliation(s)
- Xin-Jiang Lu
- Laboratory of Biochemistry and Molecular Biology, Ningbo University, Ningbo 315211, China
- Ningbo Branch of National Engineering Research Center for Beijing Biochip Technology, Ningbo 315201, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, Ningbo University, Ningbo 315211, China
- Ningbo Branch of National Engineering Research Center for Beijing Biochip Technology, Ningbo 315201, China
| | - Chao-Hui Yu
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yu-Hong Shi
- Laboratory of Biochemistry and Molecular Biology, Ningbo University, Ningbo 315211, China
- Ningbo Branch of National Engineering Research Center for Beijing Biochip Technology, Ningbo 315201, China
| | - Yu-Qing He
- Laboratory of Biochemistry and Molecular Biology, Ningbo University, Ningbo 315211, China
- Ningbo Branch of National Engineering Research Center for Beijing Biochip Technology, Ningbo 315201, China
| | - Rui-Cheng Zhang
- Laboratory of Biochemistry and Molecular Biology, Ningbo University, Ningbo 315211, China
- Ningbo Branch of National Engineering Research Center for Beijing Biochip Technology, Ningbo 315201, China
| | - Zuo-An Huang
- Laboratory of Biochemistry and Molecular Biology, Ningbo University, Ningbo 315211, China
- Ningbo Branch of National Engineering Research Center for Beijing Biochip Technology, Ningbo 315201, China
| | - Ji-Neng Lv
- Laboratory of Biochemistry and Molecular Biology, Ningbo University, Ningbo 315211, China
- Ningbo Branch of National Engineering Research Center for Beijing Biochip Technology, Ningbo 315201, China
| | - Shun Zhang
- Clinical Research Center, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Lei Xu
- Department of Gastroenterology, Ningbo No. 1 Hospital, Ningbo 315010, China
| |
Collapse
|
142
|
Vorup-Jensen T. On the roles of polyvalent binding in immune recognition: perspectives in the nanoscience of immunology and the immune response to nanomedicines. Adv Drug Deliv Rev 2012; 64:1759-81. [PMID: 22705545 DOI: 10.1016/j.addr.2012.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 12/31/2022]
Abstract
Immunology often conveys the image of large molecules, either in the soluble state or in the membrane of leukocytes, forming multiple contacts with a target for actions of the immune system. Avidity names the ability of a polyvalent molecule to form multiple connections of the same kind with ligands tethered to the same surface. Polyvalent interactions are vastly stronger than their monovalent equivalent. In the present review, the functional consequences of polyvalent interactions are explored in a perspective of recent theoretical advances in understanding the thermodynamics of such binding. From insights on the structural biology of soluble pattern recognition molecules as well as adhesion molecules in the cell membranes or in their proteolytically shed form, this review documents the prominent role of polyvalent interactions in making the immune system a formidable barrier to microbial infection as well as constituting a significant challenge to the application of nanomedicines.
Collapse
|
143
|
Nilsson B, Nilsson Ekdahl K. The tick-over theory revisited: Is C3 a contact-activated protein? Immunobiology 2012; 217:1106-10. [DOI: 10.1016/j.imbio.2012.07.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 07/15/2012] [Accepted: 07/16/2012] [Indexed: 12/16/2022]
|
144
|
Schindler MKH, Schütz MS, Mühlenkamp MC, Rooijakkers SHM, Hallström T, Zipfel PF, Autenrieth IB. Yersinia enterocolitica YadA mediates complement evasion by recruitment and inactivation of C3 products. THE JOURNAL OF IMMUNOLOGY 2012; 189:4900-8. [PMID: 23071281 DOI: 10.4049/jimmunol.1201383] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Yersinia adhesin A (YadA) is a major virulence factor of Yersinia enterocolitica. YadA mediates host cell binding and autoaggregation and protects the pathogen from killing by the complement system. Previous studies demonstrated that YadA is the most important single factor mediating serum resistance of Y. enterocolitica, presumably by binding C4b binding protein (C4BP) and factor H, which are both complement inhibitors. Factor H acts as a cofactor for factor I-mediated cleavage of C3b into the inactive form iC3b and thus prevents formation of inflammatory effector compounds and the terminal complement complex. In this study, we challenged the current direct binding model of factor H to YadA and show that Y. enterocolitica YadA recruits C3b and iC3b directly, without the need of an active complement cascade or additional serum factors. Enhanced binding of C3b does not decrease survival of YadA-expressing Yersiniae because C3b becomes readily inactivated by factor H and factor I. Binding of factor H to YadA is greatly reduced in the absence of C3. Experiments using Yersinia lacking YadA or expressing YadA with reduced trimeric stability clearly demonstrate that both the presence and full trimeric stability of YadA are essential for complement resistance. A novel mechanism of factor H binding is presented in which YadA exploits recruitment of C3b or iC3b to attract large amounts of factor H. As a consequence, formation of the terminal complement complex is limited and bacterial survival is enhanced. These findings add a new aspect of how Y. enterocolitica effectively evades the host complement system.
Collapse
Affiliation(s)
- Magnus K H Schindler
- Institute for Medical Microbiology and Hygiene, University Hospital Tübingen, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
145
|
Okroj M, Holmquist E, King BC, Blom AM. Functional analyses of complement convertases using C3 and C5-depleted sera. PLoS One 2012; 7:e47245. [PMID: 23071769 PMCID: PMC3468486 DOI: 10.1371/journal.pone.0047245] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 09/11/2012] [Indexed: 01/30/2023] Open
Abstract
C3 and C5 convertases are central stages of the complement cascade since they converge the different initiation pathways, augment complement activation by an amplification loop and lead to a common terminal pathway resulting in the formation of the membrane attack complex. Several complement inhibitors attenuate convertase formation and/or accelerate dissociation of convertase complexes. Functional assays used to study these processes are often performed using purified complement components, from which enzymatic complexes are reconstituted on the surface of erythrocytes or artificial matrices. This strategy enables identification of individual interactions between convertase components and putative regulators but carries an inherent risk of detecting non-physiological interactions that would not occur in a milieu of whole serum. Here we describe a novel, alternative method based on C3 or C5-depleted sera, which support activation of the complement cascade up to the desired stages of convertases. This approach allows fast and simple assessment of the influence of putative regulators on convertase formation and stability. As an example of practical utility of the assay, we performed studies on thioredoxin-1 in order to clarify the mechanism of its influence on complement convertases.
Collapse
Affiliation(s)
- Marcin Okroj
- Department of Laboratory Medicine, Lund University, The Wallenberg Laboratory, Malmö, Sweden
| | - Emelie Holmquist
- Department of Laboratory Medicine, Lund University, The Wallenberg Laboratory, Malmö, Sweden
| | - Ben C. King
- Department of Laboratory Medicine, Lund University, The Wallenberg Laboratory, Malmö, Sweden
| | - Anna M. Blom
- Department of Laboratory Medicine, Lund University, The Wallenberg Laboratory, Malmö, Sweden
- * E-mail:
| |
Collapse
|
146
|
Le BV, Williams M, Logarajah S, Baxter RHG. Molecular basis for genetic resistance of Anopheles gambiae to Plasmodium: structural analysis of TEP1 susceptible and resistant alleles. PLoS Pathog 2012; 8:e1002958. [PMID: 23055931 PMCID: PMC3464232 DOI: 10.1371/journal.ppat.1002958] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 08/27/2012] [Indexed: 12/15/2022] Open
Abstract
Thioester-containing protein 1 (TEP1) is a central component in the innate immune response of Anopheles gambiae to Plasmodium infection. Two classes of TEP1 alleles, TEP1*S and TEP1*R, are found in both laboratory strains and wild isolates, related by a greater or lesser susceptibility, respectively to both P. berghei and P. falciparum infection. We report the crystal structure of the full-length TEP1*S1 allele which, while similar to the previously determined structure of full-length TEP1*R1, displays flexibility in the N-terminal fragment comprising domains MG1-MG6. Amino acid differences between TEP1*R1 and TEP1*S1 are localized to the TED-MG8 domain interface that protects the thioester bond from hydrolysis and structural changes are apparent at this interface. As a consequence cleaved TEP1*S1 (TEP1*S1cut) is significantly more susceptible to hydrolysis of its intramolecular thioester bond than TEP1*R1cut. TEP1*S1cut is stabilized in solution by the heterodimeric LRIM1/APL1C complex, which preserves the thioester bond within TEP1*S1cut. These results suggest a mechanism by which selective pressure on the TEP1 gene results in functional variation that may influence the vector competence of A. gambiae towards Plasmodium infection. Anopheles mosquitoes transmit malaria, the world's most devastating parasitic disease, of which Anopheles gambiae is the principal vector for malaria in Sub-Saharan Africa. Different populations of mosquitoes vary widely in how readily they become infected with malaria parasites, while some strains do not transmit malaria at all. The mosquitoes' innate immune system is a significant factor that may influence the level of malaria infection; in particular the thioester-containing protein 1 (TEP1) targets malaria parasites for destruction during their initial invasion of the body cavity. The TEP1 gene varies significantly across mosquito populations with two major classes of alleles, TEP1*S and TEP1*R. We report the three-dimensional molecular structure of the TEP1*S1 protein and compare it to the previously determined TEP1*R1 structure. Differences between the structures are localized around the active site and thioester bond, and correlate with a difference in stability of this bond within the two proteins and their interaction with a heterodimer of two other immune genes, LRIM1 and APL1C. These results shed light on the mechanism of mosquitoes' natural immunity to malaria infection.
Collapse
Affiliation(s)
| | | | | | - Richard H. G. Baxter
- Department of Chemistry and Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
147
|
Liepkalns JS, Cadwell CM, Stowell SR, Hod EA, Spitalnik SL, Zimring JC. Resistance of a subset of red blood cells to clearance by antibodies in a mouse model of incompatible transfusion. Transfusion 2012; 53:1319-27. [PMID: 23033973 DOI: 10.1111/j.1537-2995.2012.03910.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/10/2012] [Accepted: 08/15/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND Alloimmunization to antigens on transfused red blood cells (RBCs) represents a major barrier to chronic transfusion. In extreme cases of multiple alloimmunization, clinicians may be faced with the decision of transfusing incompatible RBCs or risking death from lack of transfusion. The disastrous results of hemolytic transfusion reactions are well understood, and major pathways of clearance have been described. However, well described but poorly understood is the survival of a subset of incompatible donor RBCs during hemolysis, despite antibody binding. STUDY DESIGN AND METHODS We utilize a tractable murine model of incompatible transfusion in which RBCs from transgenic donor mice expressing human glycophorin A (hGPA) are transfused into recipients passively immunized with anti-hGPA. RESULTS As in humans, the majority of RBCs are cleared but a subset of incompatible donor RBCs persist in circulation, despite being bound by antibodies. Data contained herein reject the hypothesis that lack of clearance is due to insufficient antibody or overwhelming of phagocytic machinery; rather, we establish that surviving RBCs represent a distinct population resistant to clearance. CONCLUSIONS These studies demonstrate that surviving RBCs during incompatible transfusion can represent a population that is resistant to clearance.
Collapse
Affiliation(s)
- Justine S Liepkalns
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | | | | | | | | | | |
Collapse
|
148
|
Autoantibody stabilization of the classical pathway C3 convertase leading to C3 deficiency and Neisserial sepsis: C4 nephritic factor revisited. Clin Immunol 2012; 145:241-50. [PMID: 23117396 DOI: 10.1016/j.clim.2012.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 09/14/2012] [Indexed: 11/24/2022]
Abstract
C3 deficiency is a rare disorder that leads to recurrent pyogenic infections. Here we describe a previously healthy 18 y/o Caucasian male with severe meningococcal disease. Total hemolytic activity was zero secondary to an undetectable C3. The C3 gene was normal by sequencing. Mixing the patient's serum with normal human serum led to C3 consumption. An IgG autoantibody in the patient's serum was identified that stabilized the classical pathway C3 and C5 convertases, thus preventing decay of these enzyme complexes. This autoantibody is an example of a C4 nephritic factor, with an additional feature of stabilizing the C5 convertase. Previous patients with C4 nephritic factor had membranoproliferative glomerulonephritis. Two years after presentation, this patient's C3 remains undetectable with no evidence of renal disease. We revisit the role of autoantibodies to classical pathway convertases in disease, review the literature on C4-NeF and comment on its detection in the clinical laboratory.
Collapse
|
149
|
Incorporation of host complement regulatory proteins into Newcastle disease virus enhances complement evasion. J Virol 2012; 86:12708-16. [PMID: 22973037 DOI: 10.1128/jvi.00886-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Newcastle disease virus (NDV), an avian paramyxovirus, is inherently tumor selective and is currently being considered as a clinical oncolytic virus and vaccine vector. In this study, we analyzed the effect of complement on the neutralization of NDV purified from embryonated chicken eggs, a common source for virus production. Fresh normal human serum (NHS) neutralized NDV by multiple pathways of complement activation, independent of neutralizing antibodies. Neutralization was associated with C3 deposition and the activation of C2, C3, C4, and C5 components. Interestingly, NDV grown in mammalian cell lines was resistant to complement neutralization by NHS. To confirm whether the incorporation of regulators of complement activity (RCA) into the viral envelope afforded complement resistance, we grew NDV in CHO cells stably transfected with CD46 or HeLa cells, which strongly express CD46 and CD55. NDV grown in RCA-expressing cells was resistant to complement by incorporating CD46 and CD55 on virions. Mammalian CD46 and CD55 molecules on virions exhibited homologous restriction, since chicken sera devoid of neutralizing antibodies to NDV were able to effectively neutralize these virions. The incorporation of chicken RCA into NDV produced in embryonated eggs similarly provided species specificity toward chicken sera.
Collapse
|
150
|
Paredes-Sabja D, Cofre-Araneda G, Brito-Silva C, Pizarro-Guajardo M, Sarker MR. Clostridium difficile spore-macrophage interactions: spore survival. PLoS One 2012; 7:e43635. [PMID: 22952726 PMCID: PMC3428350 DOI: 10.1371/journal.pone.0043635] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 07/24/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Clostridium difficile is the main cause of nosocomial infections including antibiotic associated diarrhea, pseudomembranous colitis and toxic megacolon. During the course of Clostridium difficile infections (CDI), C. difficile undergoes sporulation and releases spores to the colonic environment. The elevated relapse rates of CDI suggest that C. difficile spores has a mechanism(s) to efficiently persist in the host colonic environment. METHODOLOGY/PRINCIPAL FINDINGS In this work, we provide evidence that C. difficile spores are well suited to survive the host's innate immune system. Electron microscopy results show that C. difficile spores are recognized by discrete patchy regions on the surface of macrophage Raw 264.7 cells, and phagocytosis was actin polymerization dependent. Fluorescence microscopy results show that >80% of Raw 264.7 cells had at least one C. difficile spore adhered, and that ∼60% of C. difficile spores were phagocytosed by Raw 264.7 cells. Strikingly, presence of complement decreased Raw 264.7 cells' ability to phagocytose C. difficile spores. Due to the ability of C. difficile spores to remain dormant inside Raw 264.7 cells, they were able to survive up to 72 h of macrophage infection. Interestingly, transmission electron micrographs showed interactions between the surface proteins of C. difficile spores and the phagosome membrane of Raw 264.7 cells. In addition, infection of Raw 264.7 cells with C. difficile spores for 48 h produced significant Raw 264.7 cell death as demonstrated by trypan blue assay, and nuclei staining by ethidium homodimer-1. CONCLUSIONS/SIGNIFICANCE These results demonstrate that despite efficient recognition and phagocytosis of C. difficile spores by Raw 264.7 cells, spores remain dormant and are able to survive and produce cytotoxic effects on Raw 264.7 cells.
Collapse
Affiliation(s)
- Daniel Paredes-Sabja
- Laboratorio de Mecanismos de Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile.
| | | | | | | | | |
Collapse
|