101
|
Ledormand P, Desmasures N, Midoux C, Rué O, Dalmasso M. Investigation of the Phageome and Prophages in French Cider, a Fermented Beverage. Microorganisms 2022; 10:1203. [PMID: 35744720 PMCID: PMC9230842 DOI: 10.3390/microorganisms10061203] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
Phageomes are known to play a key role in the functioning of their associated microbial communities. The phageomes of fermented foods have not been studied thoroughly in fermented foods yet, and even less in fermented beverages. Two approaches were employed to investigate the presence of phages in cider, a fermented beverage made from apple, during a fermentation process of two cider tanks, one from an industrial producer and one from a hand-crafted producer. The phageome (free lytic phages) was explored in cider samples with several methodological developments for total phage DNA extraction, along with single phage isolation. Concentration methods, such as tangential flow filtration, flocculation and classical phage concentration methods, were employed and tested to extract free phage particles from cider. This part of the work revealed a very low occurrence of free lytic phage particles in cider. In parallel, a prophage investigation during the fermentation process was also performed using a metagenomic approach on the total bacterial genomic DNA. Prophages in bacterial metagenomes in the two cider tanks seemed also to occur in low abundance, as a total of 1174 putative prophages were identified in the two tanks overtime, and only two complete prophages were revealed. Prophage occurrence was greater at the industrial producer than at the hand-crafted producer, and different dynamics of prophage trends were also observed during fermentation. This is the first report dealing with the investigation of the phageome and of prophages throughout a fermentation process of a fermented beverage.
Collapse
Affiliation(s)
- Pierre Ledormand
- Normandie Univ., UNICAEN, UNIROUEN, ABTE, 14000 Caen, France; (P.L.); (N.D.)
| | - Nathalie Desmasures
- Normandie Univ., UNICAEN, UNIROUEN, ABTE, 14000 Caen, France; (P.L.); (N.D.)
| | - Cédric Midoux
- INRAE, MaIAGE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (C.M.); (O.R.)
- INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Université Paris-Saclay, 78350 Jouy-en-Josas, France
- INRAE, PROSE, Université Paris-Saclay, 92761 Antony, France
| | - Olivier Rué
- INRAE, MaIAGE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (C.M.); (O.R.)
- INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Marion Dalmasso
- Normandie Univ., UNICAEN, UNIROUEN, ABTE, 14000 Caen, France; (P.L.); (N.D.)
| |
Collapse
|
102
|
Abril AG, Carrera M, Notario V, Sánchez-Pérez Á, Villa TG. The Use of Bacteriophages in Biotechnology and Recent Insights into Proteomics. Antibiotics (Basel) 2022; 11:653. [PMID: 35625297 PMCID: PMC9137636 DOI: 10.3390/antibiotics11050653] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
Phages have certain features, such as their ability to form protein-protein interactions, that make them good candidates for use in a variety of beneficial applications, such as in human or animal health, industry, food science, food safety, and agriculture. It is essential to identify and characterize the proteins produced by particular phages in order to use these viruses in a variety of functional processes, such as bacterial detection, as vehicles for drug delivery, in vaccine development, and to combat multidrug resistant bacterial infections. Furthermore, phages can also play a major role in the design of a variety of cheap and stable sensors as well as in diagnostic assays that can either specifically identify specific compounds or detect bacteria. This article reviews recently developed phage-based techniques, such as the use of recombinant tempered phages, phage display and phage amplification-based detection. It also encompasses the application of phages as capture elements, biosensors and bioreceptors, with a special emphasis on novel bacteriophage-based mass spectrometry (MS) applications.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain;
- Department of Food Technology, Spanish National Research Council (CSIC), Marine Research Institute (IIM), 36208 Vigo, Spain;
| | - Mónica Carrera
- Department of Food Technology, Spanish National Research Council (CSIC), Marine Research Institute (IIM), 36208 Vigo, Spain;
| | - Vicente Notario
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA;
| | - Ángeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia;
| | - Tomás G. Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain;
| |
Collapse
|
103
|
Roles of the gut virome and mycobiome in faecal microbiota transplantation. Lancet Gastroenterol Hepatol 2022; 7:472-484. [DOI: 10.1016/s2468-1253(21)00303-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 12/16/2022]
|
104
|
Azulay G, Pasechnek A, Stadnyuk O, Ran-Sapir S, Fleisacher AM, Borovok I, Sigal N, Herskovits AA. A dual-function phage regulator controls the response of cohabiting phage elements via regulation of the bacterial SOS response. Cell Rep 2022; 39:110723. [PMID: 35443160 PMCID: PMC9043618 DOI: 10.1016/j.celrep.2022.110723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 02/09/2022] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
Listeria monocytogenes strain 10403S harbors two phage elements in its chromosome; one produces infective virions and the other tailocins. It was previously demonstrated that induction of the two elements is coordinated, as they are regulated by the same anti-repressor. In this study, we identified AriS as another phage regulator that controls the two elements, bearing the capacity to inhibit their lytic induction under SOS conditions. AriS is a two-domain protein that possesses two distinct activities, one regulating the genes of its encoding phage and the other downregulating the bacterial SOS response. While the first activity associates with the AriS N-terminal AntA/AntB domain, the second associates with its C-terminal ANT/KilAC domain. The ANT/KilAC domain is conserved in many AriS-like proteins of listerial and non-listerial prophages, suggesting that temperate phages acquired such dual-function regulators to align their response with the other phage elements that cohabit the genome. Listeria monocytogenes strain 10403S harbors two phage elements in its chromosome The lytic response of the phage elements is synchronized under SOS conditions AriS, a dual-function phage regulator, fine-tunes the elements’ response under SOS Aris regulates both its encoding phage and the bacterial SOS response
Collapse
Affiliation(s)
- Gil Azulay
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Anna Pasechnek
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Olga Stadnyuk
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Shai Ran-Sapir
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Ana Mejia Fleisacher
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Ilya Borovok
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Nadejda Sigal
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Anat A Herskovits
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.
| |
Collapse
|
105
|
Nawel Z, Rima O, Amira B. An overview on Vibrio temperate phages: Integration mechanisms, pathogenicity, and lysogeny regulation. Microb Pathog 2022; 165:105490. [DOI: 10.1016/j.micpath.2022.105490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022]
|
106
|
Wang H, Li J, Wu G, Zhang F, Yin J, He Y. The effect of intrinsic factors and mechanisms in shaping human gut microbiota. MEDICINE IN MICROECOLOGY 2022. [DOI: 10.1016/j.medmic.2022.100054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
107
|
Zheng H, Liu B, Xu Y, Zhang Z, Man H, Liu J, Chen F. An Inducible Microbacterium Prophage vB_MoxS-R1 Represents a Novel Lineage of Siphovirus. Viruses 2022; 14:v14040731. [PMID: 35458461 PMCID: PMC9030533 DOI: 10.3390/v14040731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Abstract
Lytic and lysogenic infections are the main strategies used by viruses to interact with microbial hosts. The genetic information of prophages provides insights into the nature of phages and their potential influences on hosts. Here, the siphovirus vB_MoxS-R1 was induced from a Microbacterium strain isolated from an estuarine Synechococcus culture. vB_MoxS-R1 has a high replication capability, with an estimated burst size of 2000 virions per cell. vB_MoxS-R1 represents a novel phage genus-based genomic analysis. Six transcriptional regulator (TR) genes were predicted in the vB_MoxS-R1 genome. Four of these TR genes are involved in stress responses, virulence and amino acid transportation in bacteria, suggesting that they may play roles in regulating the host cell metabolism in response to external environmental changes. A glycerophosphodiester phosphodiesterase gene related to phosphorus acquisition was also identified in the vB_MoxS-R1 genome. The presence of six TR genes and the phosphorus-acquisition gene suggests that prophage vB_MoxS-R1 has the potential to influence survival and adaptation of its host during lysogeny. Possession of four endonuclease genes in the prophage genome suggests that vB_MoxS-R1 is likely involved in DNA recombination or gene conversion and further influences host evolution.
Collapse
Affiliation(s)
- Hongrui Zheng
- Institute of Marine Science and Technology, Shandong University, Qingdao 266000, China; (H.Z.); (B.L.); (Z.Z.); (H.M.)
| | - Binbin Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266000, China; (H.Z.); (B.L.); (Z.Z.); (H.M.)
| | - Yongle Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266000, China; (H.Z.); (B.L.); (Z.Z.); (H.M.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361000, China
- Correspondence: (Y.X.); (J.L.)
| | - Zefeng Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266000, China; (H.Z.); (B.L.); (Z.Z.); (H.M.)
| | - Hongcong Man
- Institute of Marine Science and Technology, Shandong University, Qingdao 266000, China; (H.Z.); (B.L.); (Z.Z.); (H.M.)
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266000, China; (H.Z.); (B.L.); (Z.Z.); (H.M.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao 266237, China
- Correspondence: (Y.X.); (J.L.)
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA;
| |
Collapse
|
108
|
Abstract
Temperate phages (prophages) are ubiquitous in nature and persist as dormant components of host cells (lysogenic stage) before activating and lysing the host (lytic stage). Actively replicating prophages contribute to central community processes, such as enabling bacterial virulence, manipulating biogeochemical cycling, and driving microbial community diversification. Recent advances in sequencing technology have allowed for the identification and characterization of diverse phages, yet no approaches currently exist for identifying if a prophage has activated. Here, we present PropagAtE (Prophage Activity Estimator), an automated software tool for estimating if a prophage is in the lytic or lysogenic stage of infection. PropagAtE uses statistical analyses of prophage-to-host read coverage ratios to decipher actively replicating prophages, irrespective of whether prophages were induced or spontaneously activated. We demonstrate that PropagAtE is fast, accurate, and sensitive, regardless of sequencing depth. Application of PropagAtE to prophages from 348 complex metagenomes from human gut, murine gut, and soil environments identified distinct spatial and temporal prophage activation signatures, with the highest proportion of active prophages in murine gut samples. In infants treated with antibiotics or infants without treatment, we identified active prophage populations correlated with specific treatment groups. Within time series samples from the human gut, 11 prophage populations, some encoding the sulfur metabolism gene cysH or a rhuM-like virulence factor, were consistently present over time but not active. Overall, PropagAtE will facilitate accurate representations of viruses in microbiomes by associating prophages with their active roles in shaping microbial communities in nature. IMPORTANCE Viruses that infect bacteria are key components of microbiomes and ecosystems. They can kill and manipulate microorganisms, drive planetary-scale processes and biogeochemical cycling, and influence the structures of entire food networks. Prophages are viruses that can exist in a dormant state within the genome of their host (lysogenic stage) before activating in order to replicate and kill the host (lytic stage). Recent advances have allowed for the identification of diverse viruses in nature, but no approaches exist for characterizing prophages and their stages of infection (prophage activity). We develop and benchmark an automated approach, PropagAtE, to identify the stages of infection of prophages from genomic data. We provide evidence that active prophages vary in identity and abundance across multiple environments and scales. Our approach will enable accurate and unbiased analyses of viruses in microbiomes and ecosystems.
Collapse
|
109
|
Hungaro HM, Vidigal PMP, do Nascimento EC, Gomes da Costa Oliveira F, Gontijo MTP, Lopez MES. Genomic Characterisation of UFJF_PfDIW6: A Novel Lytic Pseudomonas fluorescens-Phage with Potential for Biocontrol in the Dairy Industry. Viruses 2022; 14:v14030629. [PMID: 35337036 PMCID: PMC8951688 DOI: 10.3390/v14030629] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, we have presented the genomic characterisation of UFJF_PfDIW6, a novel lytic Pseudomonas fluorescens-phage with potential for biocontrol in the dairy industry. This phage showed a short linear double-stranded DNA genome (~42 kb) with a GC content of 58.3% and more than 50% of the genes encoding proteins with unknown functions. Nevertheless, UFJF_PfDIW6’s genome was organised into five functional modules: DNA packaging, structural proteins, DNA metabolism, lysogenic, and host lysis. Comparative genome analysis revealed that the UFJF_PfDIW6’s genome is distinct from other viral genomes available at NCBI databases, displaying maximum coverages of 5% among all alignments. Curiously, this phage showed higher sequence coverages (38–49%) when aligned with uncharacterised prophages integrated into Pseudomonas genomes. Phages compared in this study share conserved locally collinear blocks comprising genes of the modules’ DNA packing and structural proteins but were primarily differentiated by the composition of the DNA metabolism and lysogeny modules. Strategies for taxonomy assignment showed that UFJF_PfDIW6 was clustered into an unclassified genus in the Podoviridae clade. Therefore, our findings indicate that this phage could represent a novel genus belonging to the Podoviridae family.
Collapse
Affiliation(s)
- Humberto Moreira Hungaro
- Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora 36036-900, MG, Brazil; (E.C.d.N.); (F.G.d.C.O.)
- Correspondence: (H.M.H.); (M.E.S.L.); Tel.: +55-32-2102-3804 (H.M.H.); +57-310-469-02-04 (M.E.S.L.)
| | - Pedro Marcus Pereira Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Campus da UFV, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil;
| | - Edilane Cristina do Nascimento
- Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora 36036-900, MG, Brazil; (E.C.d.N.); (F.G.d.C.O.)
| | - Felipe Gomes da Costa Oliveira
- Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora 36036-900, MG, Brazil; (E.C.d.N.); (F.G.d.C.O.)
| | - Marco Túlio Pardini Gontijo
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-872, SP, Brazil;
| | - Maryoris Elisa Soto Lopez
- Departamento de Engenharia de Alimentos, Universidade de Córdoba (UNICORDOBA), Córdoba 230002, Colombia
- Correspondence: (H.M.H.); (M.E.S.L.); Tel.: +55-32-2102-3804 (H.M.H.); +57-310-469-02-04 (M.E.S.L.)
| |
Collapse
|
110
|
Abstract
Increasing antimicrobial resistance and medical device-related infections have led to a renewed interest in phage therapy as an alternative or adjunct to conventional antimicrobials. Expanded access and compassionate use cases have risen exponentially but have varied widely in approach, methodology, and clinical situations in which phage therapy might be considered. Large gaps in knowledge contribute to heterogeneity in approach and lack of consensus in many important clinical areas. The Antibacterial Resistance Leadership Group (ARLG) has convened a panel of experts in phage therapy, clinical microbiology, infectious diseases, and pharmacology, who worked with regulatory experts and a funding agency to identify questions based on a clinical framework and divided them into three themes: potential clinical situations in which phage therapy might be considered, laboratory testing, and pharmacokinetic considerations. Suggestions are provided as answers to a series of questions intended to inform clinicians considering experimental phage therapy for patients in their clinical practices.
Collapse
|
111
|
Tanoeiro L, Oleastro M, Nunes A, Marques AT, Duarte SV, Gomes JP, Matos APA, Vítor JMB, Vale FF. Cryptic Prophages Contribution for Campylobacter jejuni and Campylobacter coli Introgression. Microorganisms 2022; 10:microorganisms10030516. [PMID: 35336092 PMCID: PMC8955182 DOI: 10.3390/microorganisms10030516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/23/2022] Open
Abstract
Campylobacter coli and C. jejuni, the causing agents of campylobacteriosis, are described to be undergoing introgression events, i.e., the transference of genetic material between different species, with some isolates sharing almost a quarter of its genome. The participation of phages in introgression events and consequent impact on host ecology and evolution remain elusive. Three distinct prophages, named C. jejuni integrated elements 1, 2, and 4 (CJIE1, CJIE2, and CJIE4), are described in C. jejuni. Here, we identified two unreported prophages, Campylobacter coli integrated elements 1 and 2 (CCIE1 and CCIE2 prophages), which are C. coli homologues of CJIE1 and CJIE2, respectively. No induction was achieved for both prophages. Conversely, induction assays on CJIE1 and CJIE2 point towards the inducibility of these prophages. CCIE2-, CJIE1-, and CJIE4-like prophages were identified in a Campylobacter spp. population of 840 genomes, and phylogenetic analysis revealed clustering in three major groups: CJIE1-CCIE1, CJIE2-CCIE2, and CJIE4, clearly segregating prophages from C. jejuni and C. coli, but not from human- and nonhuman-derived isolates, corroborating the flowing between animals and humans in the agricultural context. Punctual bacteriophage host-jumps were observed in the context of C. jejuni and C. coli, and although random chance cannot be fully discarded, these observations seem to implicate prophages in evolutionary introgression events that are modulating the hybridization of C. jejuni and C. coli species.
Collapse
Affiliation(s)
- Luís Tanoeiro
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (L.T.); (A.T.M.); (J.M.B.V.)
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1600-609 Lisboa, Portugal;
| | - Alexandra Nunes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1600-609 Lisboa, Portugal; (A.N.); (J.P.G.)
| | - Andreia T. Marques
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (L.T.); (A.T.M.); (J.M.B.V.)
| | - Sílvia Vaz Duarte
- Innovation and Technology Unit, Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, 1600-609 Lisboa, Portugal;
| | - João Paulo Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1600-609 Lisboa, Portugal; (A.N.); (J.P.G.)
| | - António Pedro Alves Matos
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Cooperativa de Ensino Superior Egas Moniz, Quinta da Granja, 2829-511 Caparica, Portugal;
| | - Jorge M. B. Vítor
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (L.T.); (A.T.M.); (J.M.B.V.)
| | - Filipa F. Vale
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (L.T.); (A.T.M.); (J.M.B.V.)
- Correspondence: or
| |
Collapse
|
112
|
Klein S, Morath B, Weitz D, Schweizer PA, Sähr A, Heeg K, Boutin S, Nurjadi D. Comparative Genomic Reveals Clonal Heterogeneity in Persistent Staphylococcus aureus Infection. Front Cell Infect Microbiol 2022; 12:817841. [PMID: 35265532 PMCID: PMC8900520 DOI: 10.3389/fcimb.2022.817841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Persistent infections caused by Staphylococcus aureus remain a clinical challenge. Adaptational mechanisms of the pathogen influencing infection persistence, treatment success, and clinical outcome in these types of infections by S. aureus have not been fully elucidated so far. We applied a whole-genome sequencing approach on fifteen isolates retrieved from a persistent S. aureus infection to determine their genetic relatedness, virulome, and resistome. The analysis of the genomic data indicates that all isolates shared a common clonal origin but displayed a heterogenous composition of virulence factors and antimicrobial resistance. This heterogeneity was reflected by different mutations in the rpoB gene that were related to the phenotypic antimicrobial resistance towards rifampicin and different minimal inhibitory concentrations of oxacillin. In addition, one group of isolates had acquired the genes encoding for staphylokinase (sak) and staphylococcal complement inhibitor (scn), leading to the truncation of the hemolysin b (hlb) gene. These features are characteristic for temperate phages of S. aureus that carry genes of the immune evasion cluster and confer triple conversion by integration into the hlb gene. Modulation of immune evasion mechanisms was demonstrated by significant differences in biofilm formation capacity, while invasion and intracellular survival in neutrophils were not uniformly altered by the presence of the immune evasion cluster. Virulence factors carried by temperate phages of S. aureus may contribute to the course of infection at different stages and affect immune evasion and pathogen persistence. In conclusion, the application of comparative genomic demonstrated clonal heterogeneity in persistent S. aureus infection.
Collapse
Affiliation(s)
- Sabrina Klein
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
- *Correspondence: Sabrina Klein,
| | - Benedict Morath
- Hospital Pharmacy, Heidelberg University Hospital, Heidelberg, Germany
- Cooperation Unit Clinical Pharmacy, Heidelberg University, Heidelberg, Germany
| | - Daniel Weitz
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Aline Sähr
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Heeg
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Dennis Nurjadi
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
113
|
Duan Y, Young R, Schnabl B. Bacteriophages and their potential for treatment of gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2022; 19:135-144. [PMID: 34782783 PMCID: PMC8966578 DOI: 10.1038/s41575-021-00536-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 02/08/2023]
Abstract
Although bacteriophages have been overshadowed as therapeutic agents by antibiotics for decades, the emergence of multidrug-resistant bacteria and a better understanding of the role of the gut microbiota in human health and disease have brought them back into focus. In this Perspective, we briefly introduce basic phage biology and summarize recent discoveries about phages in relation to their role in the gut microbiota and gastrointestinal diseases, such as inflammatory bowel disease and chronic liver disease. In addition, we review preclinical studies and clinical trials of phage therapy for enteric disease and explore current challenges and potential future directions.
Collapse
Affiliation(s)
- Yi Duan
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Ry Young
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Center for Phage Technology, Texas A&M AgriLife Research and Texas A&M University, College Station, TX, USA
- Center for Innovative Phage Applications and Therapeutics, University of California San Diego, La Jolla, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
- Center for Innovative Phage Applications and Therapeutics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
114
|
Happel AU, Kullin BR, Gamieldien H, Jaspan HB, Varsani A, Martin D, Passmore JAS, Froissart R. In Silico Characterisation of Putative Prophages in Lactobacillaceae Used in Probiotics for Vaginal Health. Microorganisms 2022; 10:214. [PMID: 35208669 PMCID: PMC8879116 DOI: 10.3390/microorganisms10020214] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 01/27/2023] Open
Abstract
While live biotherapeutics offer a promising approach to optimizing vaginal microbiota, the presence of functional prophages within introduced Lactobacillaceae strains could impact their safety and efficacy. We evaluated the presence of prophages in 895 publicly available Lactobacillaceae genomes using Phaster, Phigaro, Phispy, Prophet and Virsorter. Prophages were identified according to stringent (detected by ≥4 methods) or lenient criteria (detected by ≥2 methods), both with >80% reciprocal sequence overlap. The stringent approach identified 448 prophages within 359 genomes, with 40.1% genomes harbouring at least one prophage, while the lenient approach identified 1671 prophages within 83.7% of the genomes. To confirm our in silico estimates in vitro, we tested for inducible prophages in 57 vaginally-derived and commercial Lactobacillaceae isolates and found inducible prophages in 61.4% of the isolates. We characterised the in silico predicted prophages based on weighted gene repertoire relatedness and found that most belonged to the Siphoviridae or Myoviridae families. ResFam and eggNOG identified four potential antimicrobial resistance genes within the predicted prophages. Our results suggest that while Lactobacillaceae prophages seldomly carry clinically concerning genes and thus unlikely a pose a direct risk to human vaginal microbiomes, their high prevalence warrants the characterisation of Lactobacillaceae prophages in live biotherapeutics.
Collapse
Affiliation(s)
- Anna-Ursula Happel
- Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Cape Town 7925, South Africa; (A.-U.H.); (B.R.K.); (H.G.); (H.B.J.); (J.-A.S.P.)
| | - Brian R. Kullin
- Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Cape Town 7925, South Africa; (A.-U.H.); (B.R.K.); (H.G.); (H.B.J.); (J.-A.S.P.)
| | - Hoyam Gamieldien
- Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Cape Town 7925, South Africa; (A.-U.H.); (B.R.K.); (H.G.); (H.B.J.); (J.-A.S.P.)
| | - Heather B. Jaspan
- Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Cape Town 7925, South Africa; (A.-U.H.); (B.R.K.); (H.G.); (H.B.J.); (J.-A.S.P.)
- Seattle Children’s Research Institute, 307 Westlake Ave. N, Seattle, WA 98109, USA
- Department of Pediatrics and Global Health, University of Washington, 1410 NE Campus Parkway NE, Seattle, WA 98195, USA
| | - Arvind Varsani
- The Biodesign Center of Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave., Tempe, AZ 85281, USA;
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Cape Town 7925, South Africa
| | - Darren Martin
- Division of Computational Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Cape Town 7925, South Africa;
| | - Jo-Ann S. Passmore
- Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Cape Town 7925, South Africa; (A.-U.H.); (B.R.K.); (H.G.); (H.B.J.); (J.-A.S.P.)
- NRF-DST CAPRISA Centre of Excellence in HIV Prevention, 719 Umbilo Road, Congella, Durban 4013, South Africa
- National Health Laboratory Service, Cape Town 7925, South Africa
| | - Rémy Froissart
- CNRS, IRD, Université Montpellier, UMR 5290, MIVEGEC, 34394 Montpellier, France
| |
Collapse
|
115
|
Farooq T, Hussain MD, Shakeel MT, Tariqjaveed M, Aslam MN, Naqvi SAH, Amjad R, Tang Y, She X, He Z. Deploying Viruses against Phytobacteria: Potential Use of Phage Cocktails as a Multifaceted Approach to Combat Resistant Bacterial Plant Pathogens. Viruses 2022; 14:171. [PMID: 35215763 PMCID: PMC8879233 DOI: 10.3390/v14020171] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 02/05/2023] Open
Abstract
Plants in nature are under the persistent intimidation of severe microbial diseases, threatening a sustainable food production system. Plant-bacterial pathogens are a major concern in the contemporary era, resulting in reduced plant growth and productivity. Plant antibiotics and chemical-based bactericides have been extensively used to evade plant bacterial diseases. To counteract this pressure, bacteria have evolved an array of resistance mechanisms, including innate and adaptive immune systems. The emergence of resistant bacteria and detrimental consequences of antimicrobial compounds on the environment and human health, accentuates the development of an alternative disease evacuation strategy. The phage cocktail therapy is a multidimensional approach effectively employed for the biocontrol of diverse resistant bacterial infections without affecting the fauna and flora. Phages engage a diverse set of counter defense strategies to undermine wide-ranging anti-phage defense mechanisms of bacterial pathogens. Microbial ecology, evolution, and dynamics of the interactions between phage and plant-bacterial pathogens lead to the engineering of robust phage cocktail therapeutics for the mitigation of devastating phytobacterial diseases. In this review, we highlight the concrete and fundamental determinants in the development and application of phage cocktails and their underlying mechanism, combating resistant plant-bacterial pathogens. Additionally, we provide recent advances in the use of phage cocktail therapy against phytobacteria for the biocontrol of devastating plant diseases.
Collapse
Affiliation(s)
- Tahir Farooq
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (T.F.); (Y.T.)
| | - Muhammad Dilshad Hussain
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing 100193, China;
| | - Muhammad Taimoor Shakeel
- Department of Plant Pathology, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (M.T.S.); (M.N.A.)
| | - Muhammad Tariqjaveed
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Muhammad Naveed Aslam
- Department of Plant Pathology, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (M.T.S.); (M.N.A.)
| | - Syed Atif Hasan Naqvi
- Department of Plant Pathology, Faculty of Agriculture Science and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Rizwa Amjad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan;
| | - Yafei Tang
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (T.F.); (Y.T.)
| | - Xiaoman She
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (T.F.); (Y.T.)
| | - Zifu He
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (T.F.); (Y.T.)
| |
Collapse
|
116
|
Fan X, Liu Z, Wan Z, Zou H, Ji M, Sun K, Gao R, Li Z, Li W. Prophage Gene Rv2650c Enhances Intracellular Survival of Mycobacterium smegmatis. Front Microbiol 2022; 12:819837. [PMID: 35111145 PMCID: PMC8801708 DOI: 10.3389/fmicb.2021.819837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/29/2021] [Indexed: 11/30/2022] Open
Abstract
Background Induced by the pathogen Mycobacterium tuberculosis, tuberculosis remains one of the most dangerous infectious diseases in the world. As a special virus, prophage is domesticated by its host and are major contributors to virulence factors for bacterial pathogenicity. The function of prophages and their genes in M. tuberculosis is still unknown. Methods Rv2650c is a prophage gene in M. tuberculosis genome. We constructed recombinant Mycobacterium smegmatis (M. smegmatis) to observe bacteria morphology and analyze the resistance to various adverse environments. Recombinant and control strains were used to infect macrophages, respectively. Furthermore, we performed ELISA experiments of infected macrophages. Results Rv2650c affected the spread of colonies of M. smegmatis and enhanced the resistance of M. smegmatis to macrophages and various stress agents such as acid, oxidative stress, and surfactant. ELISA experiments revealed that the Rv2650c can inhibit the expression of inflammatory factors TNF-α, IL-10, IL-1β, and IL-6. Conclusion This study demonstrates that the prophage gene Rv2650c can inhibit the spread of colonies and the expression of inflammatory factors and promote intracellular survival of M. smegmatis. These results build the foundation for the discovery of virulence factors of M. tuberculosis, and provide novel insights into the function of the prophage in Mycobacterium.
Collapse
Affiliation(s)
- Xiangyu Fan
- Country College of Biological Science and Technology, University of Jinan, Jinan, China
- *Correspondence: Xiangyu Fan,
| | - Zichen Liu
- Country College of Biological Science and Technology, University of Jinan, Jinan, China
| | - Zhibin Wan
- School of Life Sciences, Neijiang Normal University, Neijiang, China
| | - Hanlu Zou
- School of Life Sciences, Neijiang Normal University, Neijiang, China
| | - Mengzhi Ji
- Country College of Biological Science and Technology, University of Jinan, Jinan, China
| | - Kaili Sun
- Country College of Biological Science and Technology, University of Jinan, Jinan, China
| | - Rongfeng Gao
- Country College of Biological Science and Technology, University of Jinan, Jinan, China
| | - Zhongfang Li
- College of Food and Bioengineering, Hezhou University, Hezhou, China
- Guangxi Key Laboratory of Health Care Food Science and Technology, Hezhou University, Hezhou, China
- Zhongfang Li,
| | - Wu Li
- School of Life Sciences, Neijiang Normal University, Neijiang, China
- Wu Li,
| |
Collapse
|
117
|
Pattenden T, Eagles C, Wahl LM. Host life-history traits influence the distribution of prophages and the genes they carry. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200465. [PMID: 34839698 PMCID: PMC8628077 DOI: 10.1098/rstb.2020.0465] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/06/2021] [Indexed: 01/19/2023] Open
Abstract
Bacterial strains with a short minimal doubling time-'fast-growing' hosts-are more likely to contain prophages than their slow-growing counterparts. Pathogenic bacterial species are likewise more likely to carry prophages. We develop a bioinformatics pipeline to examine the distribution of prophages in fast- and slow-growing lysogens, and pathogenic and non-pathogenic lysogens, analysing both prophage length and gene content for each class. By fitting these results to a mathematical model of the evolutionary forces acting on prophages, we predict whether the observed differences can be attributed to different rates of lysogeny among the host classes, or other evolutionary pressures. We also test for significant differences in gene content among prophages, identifying genes that are preferentially lost or maintained in each class. We find that fast-growing hosts and pathogens have a greater fraction of full-length prophages, and our analysis predicts that induction rates are significantly reduced in slow-growing hosts and non-pathogenic hosts. Consistent with previous results, we find that several proteins involved in the packaging of new phage particles and lysis are preferentially lost in cryptic prophages. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.
Collapse
Affiliation(s)
- Tyler Pattenden
- School of Management, Economics and Mathematics, King’s University College, Western University, London, Ontario, Canada N6A 2M3
| | - Christine Eagles
- Faculty of Mathematics, University of Waterloo, Waterloo, Ontario, Canada N6A 3K7
| | - Lindi M. Wahl
- School of Mathematical and Statistical Sciences, Western University, London, Ontario, Canada N2L 3G1
| |
Collapse
|
118
|
Kato I, Zhang J, Sun J. Bacterial-Viral Interactions in Human Orodigestive and Female Genital Tract Cancers: A Summary of Epidemiologic and Laboratory Evidence. Cancers (Basel) 2022; 14:425. [PMID: 35053587 PMCID: PMC8773491 DOI: 10.3390/cancers14020425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Infectious agents, including viruses, bacteria, fungi, and parasites, have been linked to pathogenesis of human cancers, whereas viruses and bacteria account for more than 99% of infection associated cancers. The human microbiome consists of not only bacteria, but also viruses and fungi. The microbiome co-residing in specific anatomic niches may modulate oncologic potentials of infectious agents in carcinogenesis. In this review, we focused on interactions between viruses and bacteria for cancers arising from the orodigestive tract and the female genital tract. We examined the interactions of these two different biological entities in the context of human carcinogenesis in the following three fashions: (1) direct interactions, (2) indirect interactions, and (3) no interaction between the two groups, but both acting on the same host carcinogenic pathways, yielding synergistic or additive effects in human cancers, e.g., head and neck cancer, liver cancer, colon cancer, gastric cancer, and cervical cancer. We discuss the progress in the current literature and summarize the mechanisms of host-viral-bacterial interactions in various human cancers. Our goal was to evaluate existing evidence and identify gaps in the knowledge for future directions in infection and cancer.
Collapse
Affiliation(s)
- Ikuko Kato
- Department of Oncology and Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jilei Zhang
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jun Sun
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
- UIC Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
119
|
Vyas P, Harish. Anti-CRISPR proteins as a therapeutic agent against drug-resistant bacteria. Microbiol Res 2022; 257:126963. [PMID: 35033831 DOI: 10.1016/j.micres.2022.126963] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 02/08/2023]
Abstract
The continuous deployment of various antibiotics to treat multiple serious bacterial infections leads to multidrug resistance among the bacterial population. It has failed the standard treatment strategies through different antibacterial agents and serves as a significant threat to public health worldwide at devastating levels. The discovery of anti-CRISPR proteins catches the interest of researchers around the world as a promising therapeutic agent against drug-resistant bacteria. Anti-CRISPR proteins are known to inhibit bacterial CRISPR-Cas defense systems in multiple possible ways. The CRISPR-Cas nucleoprotein assembly provides adaptive immunity in bacteria against diverse categories of phage infections. Parallelly, phages also try to break the CRISPR-Cas barrier by producing anti-CRISPR proteins, leading to growth inhibition and bacterial lysis. This review begins with a brief description of the bacterial CRISPR-Cas system, followed by a detailed portrayal of anti-CRISPR proteins, including their discovery and evolution, mechanism of action, regulation of expression, and potential applications in the healthcare sector as an alternative therapeutic strategy to combat severe bacterial infections.
Collapse
Affiliation(s)
- Pallavi Vyas
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313 001, Rajasthan, India
| | - Harish
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313 001, Rajasthan, India.
| |
Collapse
|
120
|
Zuppi M, Hendrickson HL, O’Sullivan JM, Vatanen T. Phages in the Gut Ecosystem. Front Cell Infect Microbiol 2022; 11:822562. [PMID: 35059329 PMCID: PMC8764184 DOI: 10.3389/fcimb.2021.822562] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022] Open
Abstract
Phages, short for bacteriophages, are viruses that specifically infect bacteria and are the most abundant biological entities on earth found in every explored environment, from the deep sea to the Sahara Desert. Phages are abundant within the human biome and are gaining increasing recognition as potential modulators of the gut ecosystem. For example, they have been connected to gastrointestinal diseases and the treatment efficacy of Fecal Microbiota Transplant. The ability of phages to modulate the human gut microbiome has been attributed to the predation of bacteria or the promotion of bacterial survival by the transfer of genes that enhance bacterial fitness upon infection. In addition, phages have been shown to interact with the human immune system with variable outcomes. Despite the increasing evidence supporting the importance of phages in the gut ecosystem, the extent of their influence on the shape of the gut ecosystem is yet to be fully understood. Here, we discuss evidence for phage modulation of the gut microbiome, postulating that phages are pivotal contributors to the gut ecosystem dynamics. We therefore propose novel research questions to further elucidate the role(s) that they have within the human ecosystem and its impact on our health and well-being.
Collapse
Affiliation(s)
- Michele Zuppi
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Heather L. Hendrickson
- The School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Justin M. O’Sullivan
- The Liggins Institute, University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, United Kingdom
| | - Tommi Vatanen
- The Liggins Institute, University of Auckland, Auckland, New Zealand
- The Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
121
|
Nepal R, Houtak G, Wormald PJ, Psaltis AJ, Vreugde S. Prophage: a crucial catalyst in infectious disease modulation. THE LANCET MICROBE 2022; 3:e162-e163. [DOI: 10.1016/s2666-5247(21)00354-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 12/28/2022] Open
|
122
|
Lawrence D, Campbell DE, Schriefer LA, Rodgers R, Walker FC, Turkin M, Droit L, Parkes M, Handley SA, Baldridge MT. Single-cell genomics for resolution of conserved bacterial genes and mobile genetic elements of the human intestinal microbiota using flow cytometry. Gut Microbes 2022; 14:2029673. [PMID: 35130125 PMCID: PMC8824198 DOI: 10.1080/19490976.2022.2029673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/03/2021] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
As our understanding of the importance of the human microbiota in health and disease grows, so does our need to carefully resolve and delineate its genomic content. 16S rRNA gene-based analyses yield important insights into taxonomic composition, and metagenomics-based approaches reveal the functional potential of microbial communities. However, these methods generally fail to directly link genetic features, including bacterial genes and mobile genetic elements, to each other and to their source bacterial genomes. Further, they are inadequate to capture the microdiversity present within a genus, species, or strain of bacteria within these complex communities. Here, we present a method utilizing fluorescence-activated cell sorting for isolation of single bacterial cells, amplifying their genomes, screening them by 16S rRNA gene analysis, and selecting cells for genomic sequencing. We apply this method to both a cultured laboratory strain of Escherichia coli and human stool samples. Our analyses reveal the capacity of this method to provide nearly complete coverage of bacterial genomes when applied to isolates and partial genomes of bacterial species recovered from complex communities. Additionally, this method permits exploration and comparison of conserved and variable genomic features between individual cells. We generate assemblies of novel genomes within the Ruminococcaceae family and the Holdemanella genus by combining several 16S rRNA gene-matched single cells, and report novel prophages and conjugative transposons for both Bifidobacterium and Ruminococcaceae. Thus, we demonstrate an approach for flow cytometric separation and sequencing of single bacterial cells from the human microbiota, which yields a variety of critical insights into both the functional potential of individual microbes and the variation among those microbes. This method definitively links a variety of conserved and mobile genomic features, and can be extended to further resolve diverse elements present in the human microbiota.
Collapse
Affiliation(s)
- Dylan Lawrence
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Danielle E. Campbell
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lawrence A. Schriefer
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel Rodgers
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Forrest C. Walker
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marissa Turkin
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lindsay Droit
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Miles Parkes
- Division of Gastroenterology Addenbrooke’s Hospital and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Scott A. Handley
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan T. Baldridge
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
123
|
Qin QL, Wang ZB, Cha QQ, Liu SS, Ren XB, Fu HH, Sun ML, Zhao DL, McMinn A, Chen Y, Chen XL, Zhang YZ, Li PY. Biogeography of culturable marine bacteria from both poles reveals that 'everything is not everywhere' at the genomic level. Environ Microbiol 2021; 24:98-109. [PMID: 34913576 DOI: 10.1111/1462-2920.15870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/06/2021] [Indexed: 01/27/2023]
Abstract
Based on 16S rRNA gene analyses, the same bacterial operational taxonomic units (OTUs) are common to both the Arctic and Antarctic oceans, supporting the concept 'everything is everywhere'. However, whether the same OTUs from both poles have identical genomes, i.e. whether 'everything is still everywhere' at the genomic level has not yet been examined systematically. Here, we isolated, sequenced and compared the genomes of 45 culturable marine bacteria belonging to three genera of Salinibacterium, Psychrobacter and Pseudoalteromonas from both polar oceans. The bacterial strains with identical 16S rRNA genes were common to both poles in every genus, and four identical genomes were detected in the genus Salinibacterium from the Arctic region. However, no identical genomes were observed from opposite poles in this study. Our data, therefore, suggest that 'everything is not everywhere' at the genomic level. The divergence time between bacteria is hypothesized to exert a strong impact on the bacterial biogeography at the genomic level. The geographical isolation between poles was observed for recently diverged, highly similar genomes, but not for moderately similar genomes. This study thus improves our understanding of the factors affecting the genomic-level biogeography of marine microorganisms isolated from distant locations.
Collapse
Affiliation(s)
- Qi-Long Qin
- State Key Laboratory of Microbial Technology, School of Environmental Science and Engineering, Shandong University, Qingdao, China.,College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Zhi-Bin Wang
- State Key Laboratory of Microbial Technology, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Qian-Qian Cha
- State Key Laboratory of Microbial Technology, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Sha-Sha Liu
- State Key Laboratory of Microbial Technology, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Xue-Bing Ren
- State Key Laboratory of Microbial Technology, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Hui-Hui Fu
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Mei-Ling Sun
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Dian-Li Zhao
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Andrew McMinn
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.,Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
| | - Yin Chen
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.,School of Life Sciences, University of Warwick, Coventry, UK
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| |
Collapse
|
124
|
Hatoum-Aslan A. The phages of staphylococci: critical catalysts in health and disease. Trends Microbiol 2021; 29:1117-1129. [PMID: 34030968 PMCID: PMC8578144 DOI: 10.1016/j.tim.2021.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 01/21/2023]
Abstract
The phages that infect Staphylococcus species are dominant residents of the skin microbiome that play critical roles in health and disease. While temperate phages, which can integrate into the host genome, have the potential to promote staphylococcal pathogenesis, the strictly lytic variety are powerful antimicrobials that are being exploited for therapeutic applications. This article reviews recent insights into the diversity of staphylococcal phages and newly described mechanisms by which they influence host pathogenicity. The latest efforts to harness these viruses to eradicate staphylococcal infections are also highlighted. Decades of research has focused on the temperate phages of Staphylococcus aureus as model systems, thus underscoring the need to broaden basic research efforts to include diverse phages that infect other clinically relevant Staphylococcus species.
Collapse
Affiliation(s)
- Asma Hatoum-Aslan
- University of Illinois at Urbana-Champaign, Department of Microbiology, Urbana, IL, 61801, USA.
| |
Collapse
|
125
|
Rogovski P, Cadamuro RD, da Silva R, de Souza EB, Bonatto C, Viancelli A, Michelon W, Elmahdy EM, Treichel H, Rodríguez-Lázaro D, Fongaro G. Uses of Bacteriophages as Bacterial Control Tools and Environmental Safety Indicators. Front Microbiol 2021; 12:793135. [PMID: 34917066 PMCID: PMC8670004 DOI: 10.3389/fmicb.2021.793135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/11/2021] [Indexed: 11/19/2022] Open
Abstract
Bacteriophages are bacterial-specific viruses and the most abundant biological form on Earth. Each bacterial species possesses one or multiple bacteriophages and the specificity of infection makes them a promising alternative for bacterial control and environmental safety, as a biotechnological tool against pathogenic bacteria, including those resistant to antibiotics. This application can be either directly into foods and food-related environments as biocontrol agents of biofilm formation. In addition, bacteriophages are used for microbial source-tracking and as fecal indicators. The present review will focus on the uses of bacteriophages like bacterial control tools, environmental safety indicators as well as on their contribution to bacterial control in human, animal, and environmental health.
Collapse
Affiliation(s)
- Paula Rogovski
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Rafael Dorighello Cadamuro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Raphael da Silva
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Estêvão Brasiliense de Souza
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Charline Bonatto
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul (UFFS), Erechim, Brazil
| | | | | | - Elmahdy M. Elmahdy
- Laboratory of Environmental Virology, Environmental Research Division, Department of Water Pollution Research, National Research Centre, Giza, Egypt
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul (UFFS), Erechim, Brazil
| | - David Rodríguez-Lázaro
- Division of Microbiology, Department of Biotechnology and Food Science, Universidad de Burgos, Burgos, Spain
- Centre for Emerging Pathogens and Global Health, Universidad de Burgos, Burgos, Spain
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
126
|
Prophage integration into CRISPR loci enables evasion of antiviral immunity in Streptococcus pyogenes. Nat Microbiol 2021; 6:1516-1525. [PMID: 34819640 DOI: 10.1038/s41564-021-00996-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 10/15/2021] [Indexed: 12/26/2022]
Abstract
CRISPR loci are composed of short DNA repeats separated by sequences, known as spacers, that match the genomes of invaders such as phages and plasmids. Spacers are transcribed and processed to generate RNA guides used by CRISPR-associated nucleases to recognize and destroy the complementary nucleic acids of invaders. To counteract this defence, phages can produce small proteins that inhibit these nucleases, termed anti-CRISPRs (Acrs). Here we demonstrate that the ΦAP1.1 temperate phage utilizes an alternative approach to antagonize the type II-A CRISPR response in Streptococcus pyogenes. Immediately after infection, this phage expresses a small anti-CRISPR protein, AcrIIA23, that prevents Cas9 function, allowing ΦAP1.1 to integrate into the direct repeats of the CRISPR locus, neutralizing immunity. However, acrIIA23 is not transcribed during lysogeny and phage integration/excision cycles can result in the deletion and/or transduction of spacers, enabling a complex modulation of the type II-A CRISPR immune response. A bioinformatic search identified prophages integrated not only in the CRISPR repeats, but also the cas genes, of diverse bacterial species, suggesting that prophage disruption of the CRISPR-cas locus is a recurrent mechanism to counteract immunity.
Collapse
|
127
|
Unveiling Ecological and Genetic Novelty within Lytic and Lysogenic Viral Communities of Hot Spring Phototrophic Microbial Mats. Microbiol Spectr 2021; 9:e0069421. [PMID: 34787442 PMCID: PMC8597652 DOI: 10.1128/spectrum.00694-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Viruses exert diverse ecosystem impacts by controlling their host community through lytic predator-prey dynamics. However, the mechanisms by which lysogenic viruses influence their host-microbial community are less clear. In hot springs, lysogeny is considered an active lifestyle, yet it has not been systematically studied in all habitats, with phototrophic microbial mats (PMMs) being particularly not studied. We carried out viral metagenomics following in situ mitomycin C induction experiments in PMMs from Porcelana hot spring (Northern Patagonia, Chile). The compositional changes of viral communities at two different sites were analyzed at the genomic and gene levels. Furthermore, the presence of integrated prophage sequences in environmental metagenome-assembled genomes from published Porcelana PMM metagenomes was analyzed. Our results suggest that virus-specific replicative cycles (lytic and lysogenic) were associated with specific host taxa with different metabolic capacities. One of the most abundant lytic viral groups corresponded to cyanophages, which would infect the cyanobacteria Fischerella, the most active and dominant primary producer in thermophilic PMMs. Likewise, lysogenic viruses were related exclusively to chemoheterotrophic bacteria from the phyla Proteobacteria, Firmicutes, and Actinobacteria. These temperate viruses possess accessory genes to sense or control stress-related processes in their hosts, such as sporulation and biofilm formation. Taken together, these observations suggest a nexus between the ecological role of the host (metabolism) and the type of viral lifestyle in thermophilic PMMs. This has direct implications in viral ecology, where the lysogenic-lytic switch is determined by nutrient abundance and microbial density but also by the metabolism type that prevails in the host community. IMPORTANCE Hot springs harbor microbial communities dominated by a limited variety of microorganisms and, as such, have become a model for studying community ecology and understanding how biotic and abiotic interactions shape their structure. Viruses in hot springs are shown to be ubiquitous, numerous, and active components of these communities. However, lytic and lysogenic viral communities of thermophilic phototrophic microbial mats (PMMs) remain largely unexplored. In this work, we use the power of viral metagenomics to reveal changes in the viral community following a mitomycin C induction experiment in PMMs. The importance of our research is that it will improve our understanding of viral lifestyles in PMMs via exploring the differences in the composition of natural and induced viral communities at the genome and gene levels. This novel information will contribute to deciphering which biotic and abiotic factors may control the transitions between lytic and lysogenic cycles in these extreme environments.
Collapse
|
128
|
Voigt E, Rall BC, Chatzinotas A, Brose U, Rosenbaum B. Phage strategies facilitate bacterial coexistence under environmental variability. PeerJ 2021; 9:e12194. [PMID: 34760346 PMCID: PMC8572521 DOI: 10.7717/peerj.12194] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022] Open
Abstract
Bacterial communities are often exposed to temporal variations in resource availability, which exceed bacterial generation times and thereby affect bacterial coexistence. Bacterial population dynamics are also shaped by bacteriophages, which are a main cause of bacterial mortality. Several strategies are proposed in the literature to describe infections by phages, such as "Killing the Winner", "Piggyback the loser" (PtL) or "Piggyback the Winner" (PtW). The two temperate phage strategies PtL and PtW are defined by a change from lytic to lysogenic infection when the host density changes, from high to low or from low to high, respectively. To date, the occurrence of different phage strategies and their response to environmental variability is poorly understood. In our study, we developed a microbial trophic network model using ordinary differential equations (ODEs) and performed 'in silico' experiments. To model the switch from the lysogenic to the lytic cycle, we modified the lysis rate of infected bacteria and their growth was turned on or off using a density-dependent switching point. We addressed whether and how the different phage strategies facilitate bacteria coexistence competing for limiting resources. We also studied the impact of a fluctuating resource inflow to evaluate the response of the different phage strategies to environmental variability. Our results show that the viral shunt (i.e. nutrient release after bacterial lysis) leads to an enrichment of the system. This enrichment enables bacterial coexistence at lower resource concentrations. We were able to show that an established, purely lytic model leads to stable bacterial coexistence despite fluctuating resources. Both temperate phage models differ in their coexistence patterns. The model of PtW yields stable bacterial coexistence at a limited range of resource supply and is most sensitive to resource fluctuations. Interestingly, the purely lytic phage strategy and PtW both result in stable bacteria coexistence at oligotrophic conditions. The PtL model facilitates stable bacterial coexistence over a large range of stable and fluctuating resource inflow. An increase in bacterial growth rate results in a higher resilience to resource variability for the PtL and the lytic infection model. We propose that both temperate phage strategies represent different mechanisms of phages coping with environmental variability. Our study demonstrates how phage strategies can maintain bacterial coexistence in constant and fluctuating environments.
Collapse
Affiliation(s)
- Esther Voigt
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Björn C Rall
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Antonis Chatzinotas
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany.,Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Benjamin Rosenbaum
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
129
|
Hosseini N, Paquet VE, Chehreghani M, Moineau S, Charette SJ. Phage Cocktail Development against Aeromonas salmonicida subsp. salmonicida Strains Is Compromised by a Prophage. Viruses 2021; 13:2241. [PMID: 34835047 PMCID: PMC8621227 DOI: 10.3390/v13112241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022] Open
Abstract
Aquaculture is a rapidly growing food production sector. Fish farmers are experiencing increasing problems with antibiotic resistance when fighting against pathogenic bacteria such as Aeromonas salmonicida subsp. salmonicida, the causative agent of furunculosis. Phage therapy may provide an alternative, but effective use must be determined. Here, we studied the inhibition of A. salmonicida subsp. salmonicida strains by five phages (HER98 [44RR2.8t.2], HER110 [65.2], SW69-9, L9-6 and Riv-10) used individually or as combinations of two to five phages. A particular combination of four phages (HER98 [44RR2.8t.2], SW69-9, Riv-10, and HER110 [65.2]) was found to be the most effective when used at an initial multiplicity of infection (MOI) of 1 against the A. salmonicida subsp. salmonicida strain 01-B526. The same phage cocktail is effective against other strains except those bearing a prophage (named Prophage 3), which is present in 2/3 of the strains from the province of Quebec. To confirm the impact of this prophage, we tested the effectiveness of the same cocktail on strains that were either cured or lysogenized with Prophage 3. While the parental strains were sensitive to the phage cocktail, the lysogenized ones were much less sensitive. These data indicate that the prophage content of A. salmonicida subsp. salmonicida can affect the efficacy of a cocktail of virulent phages for phage therapy purposes.
Collapse
Affiliation(s)
- Nava Hosseini
- Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC G1V 0A6, Canada; (N.H.); (V.E.P.); (S.M.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada
| | - Valérie E. Paquet
- Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC G1V 0A6, Canada; (N.H.); (V.E.P.); (S.M.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada
| | - Mahdi Chehreghani
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada;
| | - Sylvain Moineau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC G1V 0A6, Canada; (N.H.); (V.E.P.); (S.M.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, QC G1V 0A6, Canada
- Félix d’Hérelle Reference Center for Bacterial Viruses, Faculté de Médecine Dentaire, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Steve J. Charette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC G1V 0A6, Canada; (N.H.); (V.E.P.); (S.M.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada
| |
Collapse
|
130
|
Marques AT, Tanoeiro L, Duarte A, Gonçalves L, Vítor JMB, Vale FF. Genomic Analysis of Prophages from Klebsiella pneumoniae Clinical Isolates. Microorganisms 2021; 9:2252. [PMID: 34835377 PMCID: PMC8617712 DOI: 10.3390/microorganisms9112252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
Klebsiella pneumoniae is an increasing threat to public health and represents one of the most concerning pathogens involved in life-threatening infections. The resistant and virulence determinants are coded by mobile genetic elements which can easily spread between bacteria populations and co-evolve with its genomic host. In this study, we present the full genomic sequences, insertion sites and phylogenetic analysis of 150 prophages found in 40 K. pneumoniae clinical isolates obtained from an outbreak in a Portuguese hospital. All strains harbored at least one prophage and we identified 104 intact prophages (69.3%). The prophage size ranges from 29.7 to 50.6 kbp, coding between 32 and 78 putative genes. The prophage GC content is 51.2%, lower than the average GC content of 57.1% in K. pneumoniae. Complete prophages were classified into three families in the order Caudolovirales: Myoviridae (59.6%), Siphoviridae (38.5%) and Podoviridae (1.9%). In addition, an alignment and phylogenetic analysis revealed nine distinct clusters. Evidence of recombination was detected within the genome of some prophages but, in most cases, proteins involved in viral structure, transcription, replication and regulation (lysogenic/lysis) were maintained. These results support the knowledge that prophages are diverse and widely disseminated in K. pneumoniae genomes, contributing to the evolution of this species and conferring additional phenotypes. Moreover, we identified K. pneumoniae prophages in a set of endolysin genes, which were found to code for proteins with lysozyme activity, cleaving the β-1,4 linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in the peptidoglycan network and thus representing genes with the potential for lysin phage therapy.
Collapse
Affiliation(s)
- Andreia T. Marques
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (L.T.); (J.M.B.V.)
| | - Luís Tanoeiro
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (L.T.); (J.M.B.V.)
| | - Aida Duarte
- Faculty of Pharmacy, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal;
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, 2829-511 Monte da Caparica, Portugal
| | - Luisa Gonçalves
- Clinical Pathology Unit, Hospital SAMS, Cidade de Gabela, 1849-017 Lisboa, Portugal;
| | - Jorge M. B. Vítor
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (L.T.); (J.M.B.V.)
| | - Filipa F. Vale
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (L.T.); (J.M.B.V.)
| |
Collapse
|
131
|
Equine Intestinal O-Seroconverting Temperate Coliphage Hf4s: Genomic and Biological Characterization. Appl Environ Microbiol 2021; 87:e0112421. [PMID: 34406832 DOI: 10.1128/aem.01124-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Tailed bacteriophages constitute the bulk of the intestinal viromes of vertebrate animals. However, the relationships between lytic and lysogenic lifestyles of phages in these ecosystems are not always clear and may vary between the species or even between the individuals. The human intestinal (fecal) viromes are dominated mostly by temperate phages, while in horse feces virulent phages are more prevalent. To our knowledge, all the previously reported isolates of horse fecal coliphages are virulent. Temperate coliphage Hf4s was isolated from horse feces, from the indigenous equine Escherichia coli 4s strain. It is a podovirus related to the Lederbergvirus genus (including the well-characterized Salmonella bacteriophage P22). Hf4s recognizes the host O antigen as its primary receptor and possesses a functional O antigen seroconversion cluster that renders the lysogens protected from superinfection by the same bacteriophage and also abolishes the adsorption of some indigenous equine virulent coliphages, such as DT57C, while other phages, such as G7C or phiKT, retain the ability to infect E. coli 4s (Hf4s) lysogens. IMPORTANCE The relationships between virulent and temperate bacteriophages and their impact on high-density symbiotic microbial ecosystems of animals are not always clear and may vary between species or even between individuals. The horse intestinal virome is dominated by virulent phages, and Hf4s is the first temperate equine intestinal coliphage characterized. It recognizes the host O antigen as its primary receptor and possesses a functional O antigen seroconversion cluster that renders the lysogens protected from superinfection by some indigenous equine virulent coliphages, such as DT57C, while other phages, such as G7C or phiKT, retain the ability to infect E. coli 4s (Hf4s) lysogens. These findings raise questions on the significance of bacteriophage-bacteriophage interactions within the ecology of microbial viruses in mammal intestinal ecosystems.
Collapse
|
132
|
Johnson CN, Sheriff EK, Duerkop BA, Chatterjee A. Let Me Upgrade You: Impact of Mobile Genetic Elements on Enterococcal Adaptation and Evolution. J Bacteriol 2021; 203:e0017721. [PMID: 34370561 PMCID: PMC8508098 DOI: 10.1128/jb.00177-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococci are Gram-positive bacteria that have evolved to thrive as both commensals and pathogens, largely due to their accumulation of mobile genetic elements via horizontal gene transfer (HGT). Common agents of HGT include plasmids, transposable elements, and temperate bacteriophages. These vehicles of HGT have facilitated the evolution of the enterococci, specifically Enterococcus faecalis and Enterococcus faecium, into multidrug-resistant hospital-acquired pathogens. On the other hand, commensal strains of Enterococcus harbor CRISPR-Cas systems that prevent the acquisition of foreign DNA, restricting the accumulation of mobile genetic elements. In this review, we discuss enterococcal mobile genetic elements by highlighting their contributions to bacterial fitness, examine the impact of CRISPR-Cas on their acquisition, and identify key areas of research that can improve our understanding of enterococcal evolution and ecology.
Collapse
Affiliation(s)
- Cydney N. Johnson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Emma K. Sheriff
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
133
|
Tang K, Wang W, Sun Y, Zhou Y, Wang P, Guo Y, Wang X. Prophage Tracer: precisely tracing prophages in prokaryotic genomes using overlapping split-read alignment. Nucleic Acids Res 2021; 49:e128. [PMID: 34551431 PMCID: PMC8682789 DOI: 10.1093/nar/gkab824] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 01/22/2023] Open
Abstract
The life cycle of temperate phages includes a lysogenic cycle stage when the phage integrates into the host genome and becomes a prophage. However, the identification of prophages that are highly divergent from known phages remains challenging. In this study, by taking advantage of the lysis-lysogeny switch of temperate phages, we designed Prophage Tracer, a tool for recognizing active prophages in prokaryotic genomes using short-read sequencing data, independent of phage gene similarity searching. Prophage Tracer uses the criterion of overlapping split-read alignment to recognize discriminative reads that contain bacterial (attB) and phage (attP) att sites representing prophage excision signals. Performance testing showed that Prophage Tracer could predict known prophages with precise boundaries, as well as novel prophages. Two novel prophages, dsDNA and ssDNA, encoding highly divergent major capsid proteins, were identified in coral-associated bacteria. Prophage Tracer is a reliable data mining tool for the identification of novel temperate phages and mobile genetic elements. The code for the Prophage Tracer is publicly available at https://github.com/WangLab-SCSIO/Prophage_Tracer.
Collapse
Affiliation(s)
- Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yamin Sun
- Research Center for Functional Genomics and Biochip, 23 Hongda St., Tianjin 300457, China
| | - Yiqing Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
134
|
Liang X, Wang Y, Zhang Y, Li B, Radosevich M. Bacteriophage-host depth distribution patterns in soil are maintained after nutrient stimulation in vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147589. [PMID: 33991924 DOI: 10.1016/j.scitotenv.2021.147589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/16/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Previous research has revealed the ecological importance of viruses in different ecosystems. However, bacteriophage-host distribution patterns in soil depth profiles have not been investigated. Environmental factors such as nutrient availability and physiological stress can impact the mode (either lytic or lysogenic) of viral reproduction and subsequent influence of virus infection on ecological processes. Soil depth profiles with distinct geochemical properties are ideal models to investigate the virus-host relationships as a function of environmental trophic status and cell abundance. Batch enrichment experiments using soil collected at varying depths (0-140 cm) as inoculum were performed to explore the interactions between viruses and co-occurring microbial hosts under nutrient stimulation. Both viral and bacterial abundance increased in the nutrient media compared with those in the original soils. Bacterial abundance was similar in mixed-cultures of soils regardless of sampling depth, whereas viral abundance was negatively correlated with the depth of soil samples which caused a decreasing virus-to-bacteria ratio. The lysogenetic fraction increased with soil depth in a similar manner as in the original soils assessed directly without nutrient stimulation. The bacterial diversity decreased with soil depth, and was influenced primarily by soil type, viral abundance, and virus-to-bacteria ratio. The bacterial communities were dominated by Bacilli, Beta-, Gamma-Proteobacteria, and Clostridia after nutrient stimulation. Viral and bacterial community structure also varied with soil horizons (i.e., depth). The results showed that the patterns for virus-host interactions shaped by the geochemical properties in the original environment were conserved or similar after in vitro nutrient stimulation. These findings suggest that short-term changes in trophic status alone may not significantly alter the balance of viral reproductive strategies in terrestrial ecosystems as in the antecedent environmental conditions that the host community has long adapted to, and other factors such as stress, host diversity or adaptation may be necessary to trigger community-level shifts in the interactions between viruses and hosts that responded most favorably to nutrient addition.
Collapse
Affiliation(s)
- Xiaolong Liang
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Yusong Wang
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Ying Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning Province 110016, China
| | - Bingxue Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Mark Radosevich
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
135
|
Pei K, Zhang J, Zou T, Liu Z. AimR Adopts Preexisting Dimer Conformations for Specific Target Recognition in Lysis-Lysogeny Decisions of Bacillus Phage phi3T. Biomolecules 2021; 11:biom11091321. [PMID: 34572534 PMCID: PMC8464984 DOI: 10.3390/biom11091321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 12/04/2022] Open
Abstract
A bacteriophage switches between lytic and lysogenic life cycles. The AimR-AimP-AimX communication system is responsible for phage lysis-lysogeny decisions during the infection of Bacillus subtilis. AimX is a regulator biasing phage lysis, AimR is a transcription factor activating AimX expression, and AimP is an arbitrium peptide that determines phage lysogeny by deactivating AimR. A strain-specific mechanism for the lysis-lysogeny decisions is proposed in SPbeta and phi3T phages. That is, the arbitrium peptide of the SPbeta phage stabilizes the SPbeta AimR (spAimR) dimer, whereas the phi3T-derived peptide disassembles the phi3T AimR (phAimR) dimer into a monomer. Here, we find that phAimR does not undergo dimer-to-monomer conversion upon arbitrium peptide binding. Gel-filtration, static light scattering (SLS) and analytical ultracentrifugation (AUC) results show that phAimR is dimeric regardless of the presence of arbitrium peptide. Small-angle X-ray scattering (SAXS) reveals that the arbitrium peptide binding makes an extended dimeric conformation. Single-molecule fluorescence resonance energy transfer (smFRET) analysis reveals that the phAimR dimer fluctuates among two distinct conformational states, and each preexisting state is selectively recognized by the arbitrium peptide or the target DNA, respectively. Collectively, our biophysical characterization of the phAimR dynamics underlying specific target recognition provides new mechanistic insights into understanding lysis-lysogeny decisions in Bacillus phage phi3T.
Collapse
|
136
|
Cornuault JK, Moineau S. Induction and Elimination of Prophages Using CRISPR Interference. CRISPR J 2021; 4:549-557. [PMID: 34406037 DOI: 10.1089/crispr.2021.0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Prophages are widely spread among bacterial genomes, and they can have positive or negative effects on their hosts. A key aspect in the study of prophages is the discovery of their induction signals. Prophage induction can occur by inactivating a phage transcriptional repressor, which is responsible for maintaining the lysogenic state. This repressor can be inactivated through the bacterial SOS response. However, the induction signals for numerous prophages do not involve the SOS system, and therefore significant efforts are needed to identify these conditions. Similarly, curing bacterial strains of inducible prophages is a tedious process, requiring the screening of several colonies. Here, we investigated whether transcriptional silencing of a prophage repressor using CRISPR interference (CRISPRi) would lead to prophage induction. Using Escherichia coli phages λ and P2 as models, we demonstrated the efficiency of CRISPRi for prophage induction and for curing lysogenic strains of their prophages.
Collapse
Affiliation(s)
- Jeffrey K Cornuault
- Département de Biochimie, de Mmicrobiologie, et de Bio-informatique, Faculté des sciences et de Génie, Université Laval, Québec City, Canada; Université Laval, Québec City, Canada.,Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec City, Canada; and Université Laval, Québec City, Canada
| | - Sylvain Moineau
- Département de Biochimie, de Mmicrobiologie, et de Bio-informatique, Faculté des sciences et de Génie, Université Laval, Québec City, Canada; Université Laval, Québec City, Canada.,Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec City, Canada; and Université Laval, Québec City, Canada.,Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec City, Canada
| |
Collapse
|
137
|
Schroven K, Aertsen A, Lavigne R. Bacteriophages as drivers of bacterial virulence and their potential for biotechnological exploitation. FEMS Microbiol Rev 2021; 45:5902850. [PMID: 32897318 DOI: 10.1093/femsre/fuaa041] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
Bacteria-infecting viruses (phages) and their hosts maintain an ancient and complex relationship. Bacterial predation by lytic phages drives an ongoing phage-host arms race, whereas temperate phages initiate mutualistic relationships with their hosts upon lysogenization as prophages. In human pathogens, these prophages impact bacterial virulence in distinct ways: by secretion of phage-encoded toxins, modulation of the bacterial envelope, mediation of bacterial infectivity and the control of bacterial cell regulation. This review builds the argument that virulence-influencing prophages hold extensive, unexplored potential for biotechnology. More specifically, it highlights the development potential of novel therapies against infectious diseases, to address the current antibiotic resistance crisis. First, designer bacteriophages may serve to deliver genes encoding cargo proteins which repress bacterial virulence. Secondly, one may develop small molecules mimicking phage-derived proteins targeting central regulators of bacterial virulence. Thirdly, bacteria equipped with phage-derived synthetic circuits which modulate key virulence factors could serve as vaccine candidates to prevent bacterial infections. The development and exploitation of such antibacterial strategies will depend on the discovery of other prophage-derived, virulence control mechanisms and, more generally, on the dissection of the mutualistic relationship between temperate phages and bacteria, as well as on continuing developments in the synthetic biology field.
Collapse
Affiliation(s)
- Kaat Schroven
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, KU Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| |
Collapse
|
138
|
Ma T, Ru J, Xue J, Schulz S, Mirzaei MK, Janssen KP, Quante M, Deng L. Differences in Gut Virome Related to Barrett Esophagus and Esophageal Adenocarcinoma. Microorganisms 2021; 9:microorganisms9081701. [PMID: 34442780 PMCID: PMC8401523 DOI: 10.3390/microorganisms9081701] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/01/2021] [Accepted: 08/06/2021] [Indexed: 12/22/2022] Open
Abstract
The relationship between viruses (dominated by bacteriophages or phages) and lower gastrointestinal (GI) tract diseases has been investigated, whereas the relationship between gut bacteriophages and upper GI tract diseases, such as esophageal diseases, which mainly include Barrett’s esophagus (BE) and esophageal adenocarcinoma (EAC), remains poorly described. This study aimed to reveal the gut bacteriophage community and their behavior in the progression of esophageal diseases. In total, we analyzed the gut phage community of sixteen samples from patients with esophageal diseases (six BE patients and four EAC patients) as well as six healthy controls. Differences were found in the community composition of abundant and rare bacteriophages among three groups. In addition, the auxiliary metabolic genes (AMGs) related to bacterial exotoxin and virulence factors such as lipopolysaccharides (LPS) biosynthesis proteins were found to be more abundant in the genome of rare phages from BE and EAC samples compared to the controls. These results suggest that the community composition of gut phages and functional traits encoded by them were different in two stages of esophageal diseases. However, the findings from this study need to be validated with larger sample sizes in the future.
Collapse
Affiliation(s)
- Tianli Ma
- Helmholtz Centre Munich—German Research Center for Environmental Health, Institute of Virology, 85764 Neuherberg, Germany; (T.M.); (J.R.); (J.X.); (S.S.); (M.K.M.)
- Institute of Virology, Technical University of Munich, 81675 Munich, Germany
| | - Jinlong Ru
- Helmholtz Centre Munich—German Research Center for Environmental Health, Institute of Virology, 85764 Neuherberg, Germany; (T.M.); (J.R.); (J.X.); (S.S.); (M.K.M.)
- Institute of Virology, Technical University of Munich, 81675 Munich, Germany
| | - Jinling Xue
- Helmholtz Centre Munich—German Research Center for Environmental Health, Institute of Virology, 85764 Neuherberg, Germany; (T.M.); (J.R.); (J.X.); (S.S.); (M.K.M.)
- Institute of Virology, Technical University of Munich, 81675 Munich, Germany
| | - Sarah Schulz
- Helmholtz Centre Munich—German Research Center for Environmental Health, Institute of Virology, 85764 Neuherberg, Germany; (T.M.); (J.R.); (J.X.); (S.S.); (M.K.M.)
- Institute of Virology, Technical University of Munich, 81675 Munich, Germany
| | - Mohammadali Khan Mirzaei
- Helmholtz Centre Munich—German Research Center for Environmental Health, Institute of Virology, 85764 Neuherberg, Germany; (T.M.); (J.R.); (J.X.); (S.S.); (M.K.M.)
- Institute of Virology, Technical University of Munich, 81675 Munich, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany;
| | - Michael Quante
- II. Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, 81675 Munich, Germany
- Innere Medizin II, Universitätsklinik Freiburg, Universität Freiburg, 79106 Freiburg, Germany
- Correspondence: (M.Q.); (L.D.)
| | - Li Deng
- Helmholtz Centre Munich—German Research Center for Environmental Health, Institute of Virology, 85764 Neuherberg, Germany; (T.M.); (J.R.); (J.X.); (S.S.); (M.K.M.)
- Institute of Virology, Technical University of Munich, 81675 Munich, Germany
- Correspondence: (M.Q.); (L.D.)
| |
Collapse
|
139
|
Brady A, Felipe-Ruiz A, Gallego Del Sol F, Marina A, Quiles-Puchalt N, Penadés JR. Molecular Basis of Lysis-Lysogeny Decisions in Gram-Positive Phages. Annu Rev Microbiol 2021; 75:563-581. [PMID: 34343015 DOI: 10.1146/annurev-micro-033121-020757] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Temperate bacteriophages (phages) are viruses of bacteria. Upon infection of a susceptible host, a temperate phage can establish either a lytic cycle that kills the host or a lysogenic cycle as a stable prophage. The life cycle pursued by an infecting temperate phage can have a significant impact not only on the individual host bacterium at the cellular level but also on bacterial communities and evolution in the ecosystem. Thus, understanding the decision processes of temperate phages is crucial. This review delves into the molecular mechanisms behind lysis-lysogeny decision-making in Gram-positive phages. We discuss a variety of molecular mechanisms and the genetic organization of these well-understood systems. By elucidating the strategies used by phages to make lysis-lysogeny decisions, we can improve our understanding of phage-host interactions, which is crucial for a variety of studies including bacterial evolution, community and ecosystem diversification, and phage therapeutics. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Aisling Brady
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom;
| | - Alonso Felipe-Ruiz
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain;
| | - Francisca Gallego Del Sol
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain;
| | - Alberto Marina
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain;
| | - Nuria Quiles-Puchalt
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom;
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom; .,MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom;
| |
Collapse
|
140
|
|
141
|
Tang X, Zhou M, Fan C, Zeng G, Lu Y, Dong H, Song B, Fu Q, Zeng Y. The arsenic chemical species proportion and viral arsenic biotransformation genes composition affects lysogenic phage treatment under arsenic stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146628. [PMID: 34030306 DOI: 10.1016/j.scitotenv.2021.146628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 05/25/2023]
Abstract
When temperate phages and their hosts have a consistent interest, they are considered reciprocal. Based on the bacterium-phage collaboration, lysogenic phage treatment is a promising method to resist pollution through lysogenic phage reshaping indigenous microbial communities to maintain their ecological function under environmental stress. However, the potential factors affecting the establishment of bacterium-phage collaboration are still poorly understood. Here, lysogenic phages carrying arsenic biotransformation genes (ABGs) were induced from the enriched arsenic-resistant microorganisms (from arsenic-contaminated sites). The diversity analysis of viral arsC and arsM demonstrated that arsM tended to proliferate rapidly under high arsenic levels, and the transduction of arsM might be the key to lysogenic phages to help the hosts relieve the stress of high arsenic. Microcosm experiments confirmed that with the increase of the As(III) content (0% to 50%, of 200 mg/kg total arsenic) in the soil, inoculation of lysogenic phages with both arsC and arsM resulted in more transduction of arsM (0.06 ± 0.007 to 0.23 ± 0.024 per 16S rRNA) among soil microorganisms. In contrast, inoculation of lysogenic phages carrying the only arsC transduces more arsC (0.12 ± 0.037 to 0.315 ± 0.051 per 16S rRNA) compare with the control. This article confirmed that different arsenic species proportions and different viral gene compositions could change the abundance of ABGs in the soil microbe, which might provide basic knowledge for further understanding of arsenic pollution control mediated by lysogenic phage.
Collapse
Affiliation(s)
- Xiang Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Man Zhou
- Power China Zhongnan Engineering Corporation Limited, Changsha, Hunan 410014, PR China
| | - Changzheng Fan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yue Lu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qizi Fu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yanjing Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
142
|
Correa AMS, Howard-Varona C, Coy SR, Buchan A, Sullivan MB, Weitz JS. Revisiting the rules of life for viruses of microorganisms. Nat Rev Microbiol 2021; 19:501-513. [PMID: 33762712 DOI: 10.1038/s41579-021-00530-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 02/01/2023]
Abstract
Viruses that infect microbial hosts have traditionally been studied in laboratory settings with a focus on either obligate lysis or persistent lysogeny. In the environment, these infection archetypes are part of a continuum that spans antagonistic to beneficial modes. In this Review, we advance a framework to accommodate the context-dependent nature of virus-microorganism interactions in ecological communities by synthesizing knowledge from decades of virology research, eco-evolutionary theory and recent technological advances. We discuss that nuanced outcomes, rather than the extremes of the continuum, are particularly likely in natural communities given variability in abiotic factors, the availability of suboptimal hosts and the relevance of multitrophic partnerships. We revisit the 'rules of life' in terms of how long-term infections shape the fate of viruses and microbial cells, populations and ecosystems.
Collapse
Affiliation(s)
| | | | - Samantha R Coy
- BioSciences Department, Rice University, Houston, TX, USA
| | - Alison Buchan
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA.
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA. .,Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA.
| | - Joshua S Weitz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA. .,School of Physics, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
143
|
Control of the Serine Integrase Reaction: Roles of the Coiled-Coil and Helix E Regions in DNA Site Synapsis and Recombination. J Bacteriol 2021; 203:e0070320. [PMID: 34060907 DOI: 10.1128/jb.00703-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bacteriophage serine integrases catalyze highly specific recombination reactions between defined DNA segments called att sites. These reactions are reversible depending upon the presence of a second phage-encoded directionality factor. The bipartite C-terminal DNA-binding region of integrases includes a recombinase domain (RD) connected to a zinc-binding domain (ZD), which contains a long flexible coiled-coil (CC) motif that extends away from the bound DNA. We directly show that the identities of the phage A118 integrase att sites are specified by the DNA spacing between the RD and ZD DNA recognition determinants, which in turn directs the relative trajectories of the CC motifs on each subunit of the att-bound integrase dimer. Recombination between compatible dimer-bound att sites requires minimal-length CC motifs and 14 residues surrounding the tip where the pairing of CC motifs between synapsing dimers occurs. Our alanine-scanning data suggest that molecular interactions between CC motif tips may differ in integrative (attP × attB) and excisive (attL × attR) recombination reactions. We identify mutations in 5 residues within the integrase oligomerization helix that control the remodeling of dimers into tetramers during synaptic complex formation. Whereas most of these gain-of-function mutants still require the CC motifs for synapsis, one mutant efficiently, but indiscriminately, forms synaptic complexes without the CC motifs. However, the CC motifs are still required for recombination, suggesting a function for the CC motifs after the initial assembly of the integrase synaptic tetramer. IMPORTANCE The robust and exquisitely regulated site-specific recombination reactions promoted by serine integrases are integral to the life cycle of temperate bacteriophage and, in the case of the A118 prophage, are an important virulence factor of Listeria monocytogenes. The properties of these recombinases have led to their repurposing into tools for genetic engineering and synthetic biology. In this report, we identify determinants regulating synaptic complex formation between correct DNA sites, including the DNA architecture responsible for specifying the identity of recombination sites, features of the unique coiled-coil structure on the integrase that are required to initiate synapsis, and amino acid residues on the integrase oligomerization helix that control the remodeling of synapsing dimers into a tetramer active for DNA strand exchange.
Collapse
|
144
|
Du S, Qin F, Zhang Z, Tian Z, Yang M, Liu X, Zhao G, Xia Q, Zhao Y. Genomic diversity, life strategies and ecology of marine HTVC010P-type pelagiphages. Microb Genom 2021; 7. [PMID: 34227930 PMCID: PMC8477408 DOI: 10.1099/mgen.0.000596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
SAR11 bacteria dominate ocean surface bacterioplankton communities, and play an important role in marine carbon and nutrient cycling. The biology and ecology of SAR11 are impacted by SAR11 phages (pelagiphages) that are highly diverse and abundant in the ocean. Among the currently known pelagiphages, HTVC010P represents an extremely abundant but under-studied phage group in the ocean. In this study, we have isolated seven new HTVC010P-type pelagiphages, and recovered 77 nearly full-length HTVC010P-type metagenomic viral genomes from marine metagenomes. Comparative genomic and phylogenomic analyses showed that HTVC010P-type pelagiphages display genome synteny and can be clustered into two major subgroups, with subgroup I consisting of strictly lytic phages and subgroup II mostly consisting of phages with potential lysogenic life cycles. All but one member of the subgroup II contain an integrase gene. Site-specific integration of subgroup II HTVC010P-type pelagiphage was either verified experimentally or identified by in silico genomic sequence analyses, which revealed that various SAR11 tRNA genes can serve as the integration sites of HTVC010P-type pelagiphages. Moreover, HTVC010P-type pelagiphage integration was confirmed by the detection of several Global Ocean Survey (GOS) fragments that contain hybrid phage–host integration sites. Metagenomic recruitment analysis revealed that these HTVC010P-type phages were globally distributed and most lytic subgroup I members exhibited higher relative abundance. Altogether, this study significantly expands our knowledge about the genetic diversity, life strategies and ecology of HTVC010P-type pelagiphages.
Collapse
Affiliation(s)
- Sen Du
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Fang Qin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Zefeng Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Zhen Tian
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Mingyu Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Xinxin Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Guiyuan Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Qian Xia
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Yanlin Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
| |
Collapse
|
145
|
Mkwata HM, Omoregie AI, Nissom PM. Lytic bacteriophages isolated from limestone caves for biocontrol of Pseudomonas aeruginosa. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
146
|
Marshall CW, Gloag ES, Lim C, Wozniak DJ, Cooper VS. Rampant prophage movement among transient competitors drives rapid adaptation during infection. SCIENCE ADVANCES 2021; 7:7/29/eabh1489. [PMID: 34272240 PMCID: PMC8284892 DOI: 10.1126/sciadv.abh1489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/03/2021] [Indexed: 05/11/2023]
Abstract
Interactions between bacteria, their close competitors, and viral parasites are common in infections, but understanding of these eco-evolutionary dynamics is limited. Most examples of adaptations caused by phage lysogeny are through the acquisition of new genes. However, integrated prophages can also insert into functional genes and impart a fitness benefit by disrupting their expression, a process called active lysogeny. Here, we show that active lysogeny can fuel rapid, parallel adaptations in establishing a chronic infection. These recombination events repeatedly disrupted genes encoding global regulators, leading to increased cyclic di-GMP levels and elevated biofilm production. The implications of prophage-mediated adaptation are broad, as even transient members of microbial communities can alter the course of evolution and generate persistent phenotypes associated with poor clinical outcomes.
Collapse
Affiliation(s)
| | - Erin S Gloag
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Christina Lim
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
147
|
Anand U, Bianco F, Suresh S, Tripathi V, Núñez-Delgado A, Race M. SARS-CoV-2 and other viruses in soil: An environmental outlook. ENVIRONMENTAL RESEARCH 2021; 198:111297. [PMID: 33971130 PMCID: PMC8102436 DOI: 10.1016/j.envres.2021.111297] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 05/15/2023]
Abstract
In the present review, the authors shed light on the SARS-CoV-2 impact, persistence, and monitoring in the soil environment. With this purpose, several aspects have been deepened: i) viruses in soil ecosystems; ii) direct and indirect impact on the soil before and after the pandemic, and iii) methods for quantification of viruses and SARS-CoV-2 monitoring in soil. Viruses are present in soil (i.e. up to 417 × 107 viruses per g TS-1 in wetlands) and can affect the behavior and ecology of other life forms (e.g. bacteria), which are remarkably important for maintaining environmental equilibrium. Also, SARS-CoV-2 can be found in soil (i.e. up to 550 copies·g-1). Considering that the SARS-CoV-2 is very recent, poor knowledge is available in the literature on persistence in the soil and reference has been made to coronaviruses and other families of viruses. For instance, the survival of enveloped viruses (e.g. SARS-CoV) can reach 90 days in soils with 10% of moisture content at ambient. In such a context, the possible spread of the SARS-CoV-2 in the soil was evaluated by analyzing the possible contamination routes.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Francesco Bianco
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy
| | - S Suresh
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462 003, Madhya Pradesh, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Avelino Núñez-Delgado
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Campus Univ. Lugo, Univ. Santiago de Compostela, 27002, Spain
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy.
| |
Collapse
|
148
|
Huang D, Yu P, Ye M, Schwarz C, Jiang X, Alvarez PJJ. Enhanced mutualistic symbiosis between soil phages and bacteria with elevated chromium-induced environmental stress. MICROBIOME 2021; 9:150. [PMID: 34183048 PMCID: PMC8240259 DOI: 10.1186/s40168-021-01074-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/07/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Microbe-virus interactions have broad implications on the composition, function, and evolution of microbiomes. Elucidating the effects of environmental stresses on these interactions is critical to identify the ecological function of viral communities and understand microbiome environmental adaptation. Heavy metal-contaminated soils represent a relevant ecosystem to study the interplay between microbes, viruses, and environmental stressors. RESULTS Metagenomic analysis revealed that Cr pollution adversely altered the abundance, diversity, and composition of viral and bacterial communities. Host-phage linkage based on CRISPR indicated that, in soils with high Cr contamination, the abundance of phages associated with heavy metal-tolerant hosts increased, as did the relative abundance of phages with broad host ranges (identified as host-phage linkages across genera), which would facilitate transfection and broader distribution of heavy metal resistance genes in the bacterial community. Examining variations along the pollutant gradient, enhanced mutualistic phage-bacterium interactions were observed in the face of greater environmental stresses. Specifically, the fractions of lysogens in bacterial communities (identified by integrase genes within bacterial genomes and prophage induction assay by mitomycin-C) were positively correlated with Cr contamination levels. Furthermore, viral genomic analysis demonstrated that lysogenic phages under higher Cr-induced stresses carried more auxiliary metabolic genes regulating microbial heavy metal detoxification. CONCLUSION With the intensification of Cr-induced environmental stresses, the composition, replication strategy, and ecological function of the phage community all evolve alongside the bacterial community to adapt to extreme habitats. These result in a transformation of the phage-bacterium interaction from parasitism to mutualism in extreme environments and underscore the influential role of phages in bacterial adaptation to pollution-related stress and in related biogeochemical processes. Video Abstract.
Collapse
Affiliation(s)
- Dan Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Pingfeng Yu
- Department of Civil and Environmental Engineering, Rice University, Houston, 77005, USA.
| | - Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China.
| | - Cory Schwarz
- Department of Civil and Environmental Engineering, Rice University, Houston, 77005, USA
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, 77005, USA
| |
Collapse
|
149
|
Boichis E, Sigal N, Borovok I, Herskovits AA. A Metzincin and TIMP-Like Protein Pair of a Phage Origin Sensitize Listeria monocytogenes to Phage Lysins and Other Cell Wall Targeting Agents. Microorganisms 2021; 9:1323. [PMID: 34207021 PMCID: PMC8235301 DOI: 10.3390/microorganisms9061323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
Infection of mammalian cells by Listeria monocytogenes (Lm) was shown to be facilitated by its phage elements. In a search for additional phage remnants that play a role in Lm's lifecycle, we identified a conserved locus containing two XRE regulators and a pair of genes encoding a secreted metzincin protease and a lipoprotein structurally similar to a TIMP-family metzincin inhibitor. We found that the XRE regulators act as a classic CI/Cro regulatory switch that regulates the expression of the metzincin and TIMP-like genes under intracellular growth conditions. We established that when these genes are expressed, their products alter Lm morphology and increase its sensitivity to phage mediated lysis, thereby enhancing virion release. Expression of these proteins also sensitized the bacteria to cell wall targeting compounds, implying that they modulate the cell wall structure. Our data indicate that these effects are mediated by the cleavage of the TIMP-like protein by the metzincin, and its subsequent release to the extracellular milieu. While the importance of this locus to Lm pathogenicity remains unclear, the observation that this phage-associated protein pair act upon the bacterial cell wall may hold promise in the field of antibiotic potentiation to combat antibiotic resistant bacterial pathogens.
Collapse
Affiliation(s)
| | | | | | - Anat A. Herskovits
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel; (E.B.); (N.S.); (I.B.)
| |
Collapse
|
150
|
Rohmer C, Wolz C. The Role of hlb-Converting Bacteriophages in Staphylococcus aureus Host Adaption. Microb Physiol 2021; 31:109-122. [PMID: 34126612 DOI: 10.1159/000516645] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/17/2021] [Indexed: 11/19/2022]
Abstract
As an opportunistic pathogen of humans and animals, Staphylococcus aureus asymptomatically colonizes the nasal cavity but is also a leading cause of life-threatening acute and chronic infections. The evolution of S. aureus resulting from short- and long-term adaptation to diverse hosts is tightly associated with mobile genetic elements. S. aureus strains can carry up to four temperate phages, many of which possess accessory genes encoding staphylococcal virulence factors. More than 90% of human nasal isolates of S. aureus have been shown to carry Sa3int phages, whereas invasive S. aureus isolates tend to lose these phages. Sa3int phages integrate as prophages into the bacterial hlb gene, disrupting the expression of the sphingomyelinase Hlb, an important virulence factor under specific infection conditions. Virulence factors encoded by genes carried by Sa3int phages include staphylokinase, enterotoxins, chemotaxis-inhibitory protein, and staphylococcal complement inhibitor, all of which are highly human specific and probably essential for bacterial survival in the human host. The transmission of S. aureus from humans to animals is strongly correlated with the loss of Sa3int phages, whereas phages are regained once a strain is transmitted from animals to humans. Thus, both the insertion and excision of prophages may confer a fitness advantage to this bacterium. There is also growing evidence that Sa3int phages may perform "active lysogeny," a process during which prophages are temporally excised from the chromosome without forming intact phage particles. The molecular mechanisms controlling the peculiar life cycle of Sa3int phages remain largely unclear. Nevertheless, their regulation is likely fine-tuned to ensure bacterial survival within different hosts.
Collapse
Affiliation(s)
- Carina Rohmer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| |
Collapse
|