101
|
Wang X, Tan B, Liao P, Cui Z, Zhang S, Li X, Yin Y, Xiao D. Functional bioactive substance improves the growth performance, antioxidant capacity and immune function of growth retardation pigs. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1728235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Xianze Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, People’s Republic of China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, People’s Republic of China
| | - Bi'e Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, People’s Republic of China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, People’s Republic of China
| | - Peng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, People’s Republic of China
| | - Zhijuan Cui
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, People’s Republic of China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, People’s Republic of China
| | - Shuo Zhang
- Yunnan Yin Yulong Academician Workstation at Yunnan Yin Yulong Academician Workstation, Yunnan Xinan Tianyou Animal Husbandry Technology co., Ltd., Kunming, People’s Republic of China
| | - Xiaozhen Li
- Yunnan Yin Yulong Academician Workstation at Yunnan Yin Yulong Academician Workstation, Yunnan Xinan Tianyou Animal Husbandry Technology co., Ltd., Kunming, People’s Republic of China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, People’s Republic of China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, People’s Republic of China
| | - Dingfu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, People’s Republic of China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, People’s Republic of China
| |
Collapse
|
102
|
Regulatory B cells in infection, inflammation, and autoimmunity. Cell Immunol 2020; 352:104076. [PMID: 32143836 DOI: 10.1016/j.cellimm.2020.104076] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022]
Abstract
Regulatory B (Breg) cells are characterized by differential expression of CD5 and CD1d in mouse and CD24 and CD38 in human immune systems. The Breg family also includes LAG-3+CD138hi plasma cells, CD1d CD5 CD21 CD23 cells, Tim1, PD-L1, PD-L2, CD200- expressing B cells, and CD39hiKi67+ cells originating from the transitional, marginal zone or germinal centre of the spleen. Breg cells produce IL10 and IL35 and to cause immunosuppression. These cells respond to TLR2, TLR4, and TLR9 agonists, CD40 ligands, IL12p35 and heat shock proteins. Emerging evidence suggests that TLR signalling component Myd88 impacts the modulation of Breg cell responses and the host's susceptibility to infection. Breg cells are found to reduce relapsing-remitting experimental autoimmune encephalomyelitis. However, the Breg-mediated mechanism used to control T cell-mediated immune responses is still unclear. Here, we review the existing literature to find gaps in the current knowledge and to build a pathway to further research.
Collapse
|
103
|
Hayashi S, Ishikawa S, Ishii E, Koike M, Kaminaga T, Hamasaki Y, Sairenchi T, Kobashi G, Igawa K. Anti-Inflammatory Effects of Potassium Iodide on SDS-Induced Murine Skin Inflammation. J Invest Dermatol 2020; 140:2001-2008. [PMID: 32109455 DOI: 10.1016/j.jid.2020.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/11/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Potassium iodide (KI), initially derived from seaweed in the early 19th century, is used for treating sporotrichosis in dermatological practice. KI has also been used to treat several noninfectious inflammatory skin diseases. However, the mechanisms underlying the improvement in such skin diseases remain unknown, and KI is not used widely. Thus, although KI is an old drug, physicians may not prescribe it frequently because they lack knowledge about it. Although KI is very inexpensive and causes few side effects, it has been superseded by new powerful and expensive drugs, such as biological agents. We applied 3% KI topically to areas of inflammation induced by SDS in mice. The levels of IL-1 and TNF-α gene expression were reduced, whereas that of IL-10 gene expression was increased. Small interfering RNA that was designed to reduce IL-10 gene expression levels was injected into the same mice, and the anti-inflammatory effects of KI were not observed. Thus, the pharmacologic action of KI is based on its anti-inflammatory effects caused by the increase in IL-10 levels. This information would increase dermatologists' awareness of KI as an efficacious and cost-effective treatment.
Collapse
Affiliation(s)
- Shujiro Hayashi
- Department of Dermatology, Dokkyo Medical University, School of Medicine, Shimotsuga, Tochigi, Japan.
| | - Satoko Ishikawa
- Department of Dermatology, Dokkyo Medical University, School of Medicine, Shimotsuga, Tochigi, Japan
| | - Eisuke Ishii
- Department of Dermatology, Dokkyo Medical University, School of Medicine, Shimotsuga, Tochigi, Japan
| | - Masami Koike
- Department of Dermatology, Dokkyo Medical University, School of Medicine, Shimotsuga, Tochigi, Japan
| | - Tomoko Kaminaga
- Department of Dermatology, Dokkyo Medical University, School of Medicine, Shimotsuga, Tochigi, Japan
| | - Yoichiro Hamasaki
- Department of Dermatology, Dokkyo Medical University, School of Medicine, Shimotsuga, Tochigi, Japan
| | - Toshimi Sairenchi
- Department of Public Health, Dokkyo Medical University, School of Medicine, Shimotsuga, Tochigi, Japan
| | - Gen Kobashi
- Department of Public Health, Dokkyo Medical University, School of Medicine, Shimotsuga, Tochigi, Japan
| | - Ken Igawa
- Department of Dermatology, Dokkyo Medical University, School of Medicine, Shimotsuga, Tochigi, Japan
| |
Collapse
|
104
|
Maerz JK, Trostel C, Lange A, Parusel R, Michaelis L, Schäfer A, Yao H, Löw HC, Frick JS. Bacterial Immunogenicity Is Critical for the Induction of Regulatory B Cells in Suppressing Inflammatory Immune Responses. Front Immunol 2020; 10:3093. [PMID: 32038631 PMCID: PMC6993086 DOI: 10.3389/fimmu.2019.03093] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/18/2019] [Indexed: 01/18/2023] Open
Abstract
B cells fulfill multifaceted functions that influence immune responses during health and disease. In autoimmune diseases, such as inflammatory bowel disease, multiple sclerosis and rheumatoid arthritis, depletion of functional B cells results in an aggravation of disease in humans and respective mouse models. This could be due to a lack of a pivotal B cell subpopulation: regulatory B cells (Bregs). Although Bregs represent only a small proportion of all immune cells, they exhibit critical properties in regulating immune responses, thus contributing to the maintenance of immune homeostasis in healthy individuals. In this study, we report that the induction of Bregs is differentially triggered by the immunogenicity of the host microbiota. In comparative experiments with low immunogenic Bacteroides vulgatus and strong immunogenic Escherichia coli, we found that the induction and longevity of Bregs depend on strong Toll-like receptor activation mediated by antigens of strong immunogenic commensals. The potent B cell stimulation via E. coli led to a pronounced expression of suppressive molecules on the B cell surface and an increased production of anti-inflammatory cytokines like interleukin-10. These bacteria-primed Bregs were capable of efficiently inhibiting the maturation and function of dendritic cells (DCs), preventing the proliferation and polarization of T helper (Th)1 and Th17 cells while simultaneously promoting Th2 cell differentiation in vitro. In addition, Bregs facilitated the development of regulatory T cells (Tregs) resulting in a possible feedback cooperation to establish immune homeostasis. Moreover, the colonization of germfree wild type mice with E. coli but not B. vulgatus significantly reduced intestinal inflammatory processes in dextran sulfate sodium (DSS)-induced colitis associated with an increase induction of immune suppressive Bregs. The quantity of Bregs directly correlated with the severity of inflammation. These findings may provide new insights and therapeutic approaches for B cell-controlled treatments of microbiota-driven autoimmune disease.
Collapse
Affiliation(s)
- Jan Kevin Maerz
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Constanze Trostel
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Anna Lange
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Raphael Parusel
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Lena Michaelis
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Andrea Schäfer
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Hans Yao
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Hanna-Christine Löw
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Julia-Stefanie Frick
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
105
|
Cui Y, Yu S, Zhu M, Cheng X, Yu Y, Tang Z, Wang X, Hou J, Hou Y, Ren D, Mao B, Khalid R, Liu T. Identifying Predictive Factors of Recurrence after Radical Resection in Gastric Cancer by RNA Immune-oncology Panel. J Cancer 2020; 11:638-647. [PMID: 31942187 PMCID: PMC6959033 DOI: 10.7150/jca.38536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/30/2019] [Indexed: 01/28/2023] Open
Abstract
Aiming to identify novel immunotargets for gastric cancer (GC), we retrospectively analyzed the formalin-fixed paraffin embedded (FFPE) samples of gastric cancer tissues from postoperative patients who relapsed or metastasized within (early recurrence, n=25) or after two years (late recurrence, n=23). RNA immune-oncology panel (RIOP) including 398 immune-related genes was used to detect the RNA expression level. Disease free survival (DFS) time in early and late recurrent group was 7.52±0.72 and 28.49±0.81 months, respectively. 18 genes were significantly different between the early and late recurrent groups, and the expression of ITK, EBI3, CX3CL1, MYC, EOMES, CA4, TAGAP, MMP2, HAVCR2, FCGR1 and SNAI2 were verified to be associated with the DFS time. We also found that 18 genes were differentially expressed in diffusal type and non-diffusal type of GC. Leukocyte-inhibition, Leukocyte-migration, and Lymphocyte-infiltrate signal/functional pathways were activated in diffusal type of GC by cluster analysis. Our data uncovered the gene set consisted of ITK, EBI3, and CX3CL1 as a potential tool for prediction of early recurrence or poor prognosis in GC, which could be used as novel immunotargets and prognostic markers for the management of GC.
Collapse
Affiliation(s)
- Yuehong Cui
- Department of medical oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shan Yu
- Department of medical oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengxuan Zhu
- Department of medical oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xi Cheng
- Department of medical oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiyi Yu
- Department of medical oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaoqing Tang
- Department of general surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuefei Wang
- Department of general surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Hou
- Department of pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yingyong Hou
- Department of pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dandan Ren
- Genecast Precision Medicine Technology Institute, Beijing, China
| | - Beibei Mao
- Genecast Precision Medicine Technology Institute, Beijing, China
| | - Rashid Khalid
- Department of medical oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianshu Liu
- Department of medical oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
106
|
Xu R, Shears RK, Sharma R, Krishna M, Webb C, Ali R, Wei X, Kadioglu A, Zhang Q. IL-35 is critical in suppressing superantigenic Staphylococcus aureus-driven inflammatory Th17 responses in human nasopharynx-associated lymphoid tissue. Mucosal Immunol 2020; 13:460-470. [PMID: 31896761 PMCID: PMC7181393 DOI: 10.1038/s41385-019-0246-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/08/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023]
Abstract
The human nasopharynx is frequently exposed to microbial pathogens, including superantigen-producing Staphylococcus aureus (SAg-Sau), which activates potent pro-inflammatory T cell responses. However, cellular mechanisms that control SAg-Sau-driven T cell activation are poorly understood. Using human nasopharynx-associated lymphoid tissue (NALT), we show that SAg-Sau drove a strong Th17 activation, which was associated with an impaired CD4+ T cell-mediated immune regulation. This impairment of immune control correlated with a significant downregulation of interleukin-35 (IL-35) expression in tonsillar CD4+ T cells by SAg-Sau. Supplementing recombinant IL-35 suppressed SAg-Sau-activated Th17 responses, and this IL-35-mediated suppression positively correlated with the level of Th17 activation. Interestingly, SAg-Sau stimulation induced Foxp3+ Treg expansion and interleukin-10 (IL-10) production, which effectively suppressed the Th1 response, but failed to control the activation of Th17 cells. Overall, our results reveal an aberrant T cell regulation on SAg-Sau-driven Th17 activation and identify IL-35 as a critical cytokine to control superantigenic S.aureus-activated Th17 responses.
Collapse
Affiliation(s)
- Rong Xu
- 0000 0004 1936 8470grid.10025.36Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Rebecca K. Shears
- 0000 0004 1936 8470grid.10025.36Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Ravi Sharma
- 0000 0001 0503 2798grid.413582.9ENT Department, Alder Hey Children’s Hospital, Liverpool, UK
| | - Madhan Krishna
- 0000 0001 0503 2798grid.413582.9ENT Department, Alder Hey Children’s Hospital, Liverpool, UK
| | - Christopher Webb
- 0000 0004 0421 1585grid.269741.fENT Department, Royal Liverpool and Broadgreen University Hospitals, Liverpool, UK
| | - Richard Ali
- 0000 0001 0807 5670grid.5600.3Institute of Tissue Engineering and Repair, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Xiaoqing Wei
- 0000 0001 0807 5670grid.5600.3Institute of Tissue Engineering and Repair, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Aras Kadioglu
- 0000 0004 1936 8470grid.10025.36Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Qibo Zhang
- 0000 0004 1936 8470grid.10025.36Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
107
|
Ma K, Du W, Wang X, Yuan S, Cai X, Liu D, Li J, Lu L. Multiple Functions of B Cells in the Pathogenesis of Systemic Lupus Erythematosus. Int J Mol Sci 2019; 20:E6021. [PMID: 31795353 PMCID: PMC6929160 DOI: 10.3390/ijms20236021] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by excessive autoantibody production and multi-organ involvement. Although the etiology of SLE still remains unclear, recent studies have characterized several pathogenic B cell subsets and regulatory B cell subsets involved in the pathogenesis of SLE. Among pathogenic B cell subsets, age-associated B cells (ABCs) are a newly identified subset of autoreactive B cells with T-bet-dependent transcriptional programs and unique functional features in SLE. Accumulation of T-bet+ CD11c+ ABCs has been observed in SLE patients and lupus mouse models. In addition, innate-like B cells with the autoreactive B cell receptor (BCR) expression and long-lived plasma cells with persistent autoantibody production contribute to the development of SLE. Moreover, several regulatory B cell subsets with immune suppressive functions have been identified, while the impaired inhibitory effects of regulatory B cells have been indicated in SLE. Thus, further elucidation on the functional features of B cell subsets will provide new insights in understanding lupus pathogenesis and lead to novel therapeutic interventions in the treatment of SLE.
Collapse
Affiliation(s)
- Kongyang Ma
- Department of Rheumatology and Immunology, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen 518000, China; (K.M.); (D.L.)
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong 999077, China; (W.D.); (X.W.)
| | - Wenhan Du
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong 999077, China; (W.D.); (X.W.)
| | - Xiaohui Wang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong 999077, China; (W.D.); (X.W.)
| | - Shiwen Yuan
- Department of Rheumatology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000, China; (S.Y.); (X.C.)
| | - Xiaoyan Cai
- Department of Rheumatology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000, China; (S.Y.); (X.C.)
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen 518000, China; (K.M.); (D.L.)
| | - Jingyi Li
- Department of Rheumatology and Immunology, Southwest Hospital, The First Hospital Affiliated to The Army Medical University, Chongqing 400038, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong 999077, China; (W.D.); (X.W.)
| |
Collapse
|
108
|
Calzada D, Cremades-Jimeno L, Pedro MÁD, Baos S, Rial M, Sastre J, Quiralte J, Florido F, Lahoz C, Cárdaba B. Therapeutic potential of peptides from Ole e 1 in olive-pollen allergy. Sci Rep 2019; 9:15942. [PMID: 31685862 PMCID: PMC6828773 DOI: 10.1038/s41598-019-52286-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/11/2019] [Indexed: 01/16/2023] Open
Abstract
Olive-pollen allergy is one of the leading causes of respiratory allergy in Mediterranean countries and some areas of North America. Currently, allergen-specific immunotherapy is the only etiophatogenic treatment. However, this approach is not fully optimal, safe, or effective. Thus, efforts continue in the search for novel immunotherapy strategies, being one of the most promising the use of peptides derived from major allergens. This work tries to determine the therapeutic potential and safety of 5 dodecapeptides derived from the main allergen of olive-pollen allergy, Ole e 1. The immunomodulatory capacity of these peptides was studied using peripheral blood mononuclear cells (PBMCs) obtained from 19 olive-pollen-allergic patients and 10 healthy controls. We determined the capacity of these peptides to inhibit the proliferative response toward olive-pollen allergenic extract and to induce the regulatory cytokines, IL-10 and IL-35. To test the safety and absence of allergenicity of the peptides, the basophil activation was analyzed by flow-cytometry, using peripheral blood. The results showed that two of five peptides inhibited near to 30% the proliferative response against the total olive-pollen allergenic extract in olive-pollen-allergic patients. Inhibition increased to nearly 35% when the 5 peptides were used in combination. In both cases, a statistically significant induction of IL-10 and IL-35 secretion was observed in the supernatants of allergic patients PBMCs cultures. None of the 5 peptides induced basophil activation and cross-link inflammatory cell-bound IgE. In conclusion, these results open up new possibilities in the treatment of olive-pollen allergy, which could solve some of the problems facing current therapy approaches.
Collapse
Affiliation(s)
- David Calzada
- Immunology Department, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | | | | | - Selene Baos
- Immunology Department, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Manuel Rial
- Allergy Department, Fundación Jiménez Díaz, Madrid, Spain.,CIBERES, CIBER of Respiratory Diseases, Madrid, Spain
| | - Joaquín Sastre
- Allergy Department, Fundación Jiménez Díaz, Madrid, Spain.,CIBERES, CIBER of Respiratory Diseases, Madrid, Spain
| | - Joaquín Quiralte
- Allergy Department, Vírgen del Rocío University Hospital, Seville, Spain
| | - Fernando Florido
- Allergy Department, San Cecilio University Hospital, Granada, Spain
| | - Carlos Lahoz
- Immunology Department, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain.,CIBERES, CIBER of Respiratory Diseases, Madrid, Spain
| | - Blanca Cárdaba
- Immunology Department, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain. .,CIBERES, CIBER of Respiratory Diseases, Madrid, Spain.
| |
Collapse
|
109
|
Yazdani Z, Rafiei A, Golpour M, Zafari P, Moonesi M, Ghaffari S. IL‐35, a double‐edged sword in cancer. J Cell Biochem 2019; 121:2064-2076. [DOI: 10.1002/jcb.29441] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Zahra Yazdani
- Department of Immunology, School of Medicine Mazandaran University of Medical Sciences Sari Iran
| | - Alireza Rafiei
- Department of Immunology, School of Medicine Mazandaran University of Medical Sciences Sari Iran
| | - Monireh Golpour
- Students Research Committee Mazandaran University of Medical Sciences Sari Iran
| | - Parisa Zafari
- Department of Immunology, School of Medicine Mazandaran University of Medical Sciences Sari Iran
- Students Research Committee Mazandaran University of Medical Sciences Sari Iran
| | - Mohammadreza Moonesi
- Department of Hematology, School of Medicine Tabriz University of Medical Science, Tabriz Iran
| | - Sasan Ghaffari
- Student Scientific Research Center Tehran University of Medical Sciences Tehran Iran
- Cell‐Based Therapies Research Center, Digestive Disease Research Institute Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
110
|
Abstract
Autoimmune uveitis is a sight-threatening, rare disease, potentially leading to blindness. Uveitis is a synonym for intraocular inflammation, presenting as various clinical phenotypes with different underlying immune responses in patients, whereas different animal models usually represent one certain clinical and immunological type of uveitis due to genetic uniformity and the method of disease induction. T cells recognizing intraocular antigens initiate the disease, recruiting inflammatory cells (granulocytes, monocytes/macrophages) to the eyes, which cause the damage of the tissue. The treatment of uveitis so far aims at downregulation of inflammation to protect the ocular tissues from damage, and at immunosuppression to stop fueling T cell reactivity. Uveitis is usually prevented by specific mechanisms of the ocular immune privilege and the blood-eye-barriers, but once the disease is induced, mechanisms of the immune privilege as well as a variety of novel regulatory features including new Treg cell populations and suppressive cytokines are induced to downregulate the ocular inflammation and T cell responses and to avoid relapses and chronicity. Here we describe mechanisms of regulation observed in experimental animal models as well as detected in studies with peripheral lymphocytes from patients.
Collapse
|
111
|
Alhabbab RY, Nova-Lamperti E, Aravena O, Burton HM, Lechler RI, Dorling A, Lombardi G. Regulatory B cells: Development, phenotypes, functions, and role in transplantation. Immunol Rev 2019; 292:164-179. [DOI: 10.1111/imr.12800] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/27/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Rowa Y. Alhabbab
- Infectious Disease Unit and Division of Applied Medical Sciences King Fahad Centre for medical research King Abdulaziz University Jeddah Saudi Arabia
- Peter Gorer Department of Immunobiology MRC Centre for Transplantation School of Immunology & Mucosal Biology King's College LondonKing's Health PartnersGuy's Hospital London UK
| | - Estefanía Nova-Lamperti
- Molecular and Translational Immunology Laboratory Department of Clinical Biochemistry and Immunology Pharmacy Faculty Universidad de Concepción Concepción Chile
| | - Octavio Aravena
- Programa Disciplinario de Immunología Instituto de Ciencias Biomédicas Facultad de Medicina Universidad de Chile Santiago Chile
| | - Hannah M. Burton
- Peter Gorer Department of Immunobiology MRC Centre for Transplantation School of Immunology & Mucosal Biology King's College LondonKing's Health PartnersGuy's Hospital London UK
| | - Robert I. Lechler
- Peter Gorer Department of Immunobiology MRC Centre for Transplantation School of Immunology & Mucosal Biology King's College LondonKing's Health PartnersGuy's Hospital London UK
| | - Anthony Dorling
- Peter Gorer Department of Immunobiology MRC Centre for Transplantation School of Immunology & Mucosal Biology King's College LondonKing's Health PartnersGuy's Hospital London UK
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology MRC Centre for Transplantation School of Immunology & Mucosal Biology King's College LondonKing's Health PartnersGuy's Hospital London UK
| |
Collapse
|
112
|
Oka A, Mishima Y, Liu B, Herzog JW, Steinbach EC, Kobayashi T, Plevy SE, Sartor RB. Phosphoinositide 3-Kinase P110δ-Signaling Is Critical for Microbiota-Activated IL-10 Production by B Cells that Regulate Intestinal Inflammation. Cells 2019; 8:1121. [PMID: 31546615 PMCID: PMC6829312 DOI: 10.3390/cells8101121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022] Open
Abstract
The phosphoinositide 3-kinase catalytic subunit p110δ (PI3Kδ) gene maps to a human inflammatory bowel diseases (IBD) susceptibility locus, and genetic deletion of PI3Kδ signaling causes spontaneous colitis in mice. However, little is known regarding the role of PI3Kδ on IL-10-producing B cells that help regulate mucosal inflammation in IBD. We investigated the role of PI3Kδ signaling in B cell production of IL-10, following stimulation by resident bacteria and B cell regulatory function against colitis. In vitro, B cells from PI3KδD910A/D910A mice or wild-type B cells treated with PI3K specific inhibitors secreted significantly less IL-10 with greater IL-12p40 following bacterial stimulation. These B cells failed to suppress inflammatory cytokines by co-cultured microbiota-activated macrophages or CD4+ T cells. In vivo, co-transferred wild-type B cells ameliorated T cell-mediated colitis, while PI3KδD910A/D910A B cells did not confer protection from mucosal inflammation. These results indicate that PI3Kδ-signaling mediates regulatory B cell immune differentiation when stimulated with resident microbiota or their components, and is critical for induction and regulatory function of IL-10-producing B cells in intestinal homeostasis and inflammation.
Collapse
Affiliation(s)
- Akihiko Oka
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Internal Medicine II, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan.
| | - Yoshiyuki Mishima
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Internal Medicine II, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan.
| | - Bo Liu
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Jeremy W Herzog
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Erin C Steinbach
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | - Taku Kobayashi
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, Minato-ku, Tokyo 108-8642, Japan.
| | - Scott E Plevy
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Synlogic Therapeutics, Boston, MA 02139, USA.
| | - R Balfour Sartor
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
113
|
Quaresma JAS. Organization of the Skin Immune System and Compartmentalized Immune Responses in Infectious Diseases. Clin Microbiol Rev 2019; 32:e00034-18. [PMID: 31366611 PMCID: PMC6750136 DOI: 10.1128/cmr.00034-18] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The skin is an organ harboring several types of immune cells that participate in innate and adaptive immune responses. The immune system of the skin comprises both skin cells and professional immune cells that together constitute what is designated skin-associated lymphoid tissue (SALT). In this review, I extensively discuss the organization of SALT and the mechanisms involved in its responses to infectious diseases of the skin and mucosa. The nature of these SALT responses, and the cellular mediators involved, often determines the clinical course of such infections. I list and describe the components of innate immunity, such as the roles of the keratinocyte barrier and of inflammatory and natural killer cells. I also examine the mechanisms involved in adaptive immune responses, with emphasis on new cytokine profiles, and the role of cell death phenomena in host-pathogen interactions and control of the immune responses to infectious agents. Finally, I highlight the importance of studying SALT in order to better understand host-pathogen relationships involving the skin and detail future directions in the immunological investigation of this organ, especially in light of recent findings regarding the skin immune system.
Collapse
Affiliation(s)
- Juarez Antonio Simões Quaresma
- Center of Biological and Health Sciences, State University of Pará, Belém, PA, Brazil
- Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
- Tropical Medicine Center, Federal University of Pará, Belém, PA, Brazil
- School of Medicine, São Paulo University, São Paulo, SP, Brazil
| |
Collapse
|
114
|
Michaud D, Mirlekar B, Bischoff S, Cowley DO, Vignali DAA, Pylayeva-Gupta Y. Pancreatic cancer-associated inflammation drives dynamic regulation of p35 and Ebi3. Cytokine 2019; 125:154817. [PMID: 31472403 DOI: 10.1016/j.cyto.2019.154817] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/05/2019] [Accepted: 08/19/2019] [Indexed: 01/12/2023]
Abstract
B cells are important modulators of immune responses both in autoimmunity and cancer. We have previously shown that B regulatory (Breg) cells promote pancreatic cancer via production of IL35, a heterodimeric cytokine comprised of the subunits p35 (Il12a) and Ebi3. However, it is not known how production of IL35 is regulated in vivo in the context of cancer-associated inflammation. To begin addressing this question, we have generated a knock-in mouse model, Il12aGFP, where an IRES-emGFP gene was inserted within the 3' UTR of the Il12a locus. EmGFP signal in B cells from the Il12aGFP mice correlated with expression of p35 mRNA and protein. Using this model, we observed that in addition to Bregs, expression of GFP (p35) is upregulated in several other B cell subtypes in response to cancer. We assessed the expression of the other IL35 subunit, Ebi3, using a published tdTomato reporter model. We determined that Ebi3 expression was more tightly regulated in vivo and in vitro, suggesting that stimuli affecting Ebi3 upregulation are more likely to result in production of full IL35 heterodimer. We were also able to detect GFP and Tomato signal in myeloid & T cell lineages suggesting that these reporter models could also be used for tracking IL12-, IL27- and IL35-producing cells. Furthermore, using primary B cells isolated from reporter mice, we identified BCR, CD40 and TLR pathways as potential drivers of IL35 expression. These findings highlight the importance of pancreatic cancer-associated inflammatory processes as drivers of cytokine expression and provide a tool to dissect both disease-associated regulation of IL12- and IL35-competent lineage cells as well as establish assays for pharmacological targeting of individual subunits of heterodimeric IL12 family cytokines.
Collapse
Affiliation(s)
- Daniel Michaud
- Department of Cell Biology & Physiology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - Bhalchandra Mirlekar
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - Steven Bischoff
- UNC Animal Models Core, University of North Carolina, Chapel Hill, NC, USA
| | - Dale O Cowley
- UNC Animal Models Core, University of North Carolina, Chapel Hill, NC, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Yuliya Pylayeva-Gupta
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA; Department of Genetics, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
115
|
Mohd Jaya FN, Garcia SG, Borràs FE, Chan GC, Franquesa M. Paradoxical role of Breg-inducing cytokines in autoimmune diseases. J Transl Autoimmun 2019; 2:100011. [PMID: 32743499 PMCID: PMC7388338 DOI: 10.1016/j.jtauto.2019.100011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 07/30/2019] [Accepted: 08/08/2019] [Indexed: 12/17/2022] Open
Abstract
Regulatory B cells (Breg) are crucial immunoregulators that maintain peripheral tolerance and suppress inflammatory autoimmune responses. In recent years, our understanding on the nature and mechanism of action of Bregs has revealed the important role of cytokines in promoting the regulatory properties of this unique B cell subset, both in animal and human models. In this review, we compiled the cytokines that have been reported by multiple studies to induce the expansion of Breg. The Breg-inducing cytokines which are currently known include IL-21, IL-6, IL1β, IFNα, IL-33, IL-35, BAFF and APRIL. As cytokines are also known to play a pivotal role in the pathogenesis of autoimmune diseases, in parallel we reviewed the pattern of expression of the Breg-inducing cytokines in Systemic Lupus Erythematosus (SLE), Rheumatoid Arthritis (RA), Inflammatory Bowel Diseases (IBD) and Multiple Sclerosis (MS). We show here that Breg-inducing cytokines are commonly implicated in these inflammatory diseases where they typically have a higher expression than in healthy individuals, suggesting their paradoxical nature. Interestingly, despite the general overexpression of Breg-inducing cytokines, it is known that Breg cells are often numerically or functionally impaired in various autoimmune conditions. Considering these alterations, we explored the possible parameters that may influence the function of Breg-inducing cytokines in exhibiting either their regulatory or pro-inflammatory properties in the context of autoimmune conditions.
Collapse
Affiliation(s)
- Fatin N. Mohd Jaya
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong
- Corresponding author.
| | - Sergio G. Garcia
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias I Pujol, Can Ruti Campus, 08916, Badalona, Spain
| | - Francesc E. Borràs
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias I Pujol, Can Ruti Campus, 08916, Badalona, Spain
| | - Godfrey C.F. Chan
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong
| | - Marcella Franquesa
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias I Pujol, Can Ruti Campus, 08916, Badalona, Spain
| |
Collapse
|
116
|
Chakraborty D, Pati S, Bose S, Dhar S, Dutta S, Sa G. Cancer immunotherapy: present scenarios and the future of immunotherapy. THE NUCLEUS 2019. [DOI: 10.1007/s13237-019-00273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
117
|
Koda Y, Nakamoto N, Chu PS, Ugamura A, Mikami Y, Teratani T, Tsujikawa H, Shiba S, Taniki N, Sujino T, Miyamoto K, Suzuki T, Yamaguchi A, Morikawa R, Sato K, Sakamoto M, Yoshimoto T, Kanai T. Plasmacytoid dendritic cells protect against immune-mediated acute liver injury via IL-35. J Clin Invest 2019; 129:3201-3213. [PMID: 31264967 DOI: 10.1172/jci125863] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/14/2019] [Indexed: 12/12/2022] Open
Abstract
Acute liver failure (ALF) is a life-threatening condition, and liver transplantation is the only therapeutic option. Although immune dysregulation is central to its pathogenesis, the precise mechanism remains unclear. Here, we show that the number of peripheral and hepatic plasmacytoid DCs (pDCs) decrease during acute liver injury in both humans and mice. Selective depletion of pDCs in Siglechdtr/+ mice exacerbated concanavalin A-induced acute liver injury. In contrast, adoptively transferred BM-derived pDCs preferentially accumulated in the inflamed liver and protected against liver injury. This protective effect was independent of TLR7 and TLR9 signaling, since a similar effect occurred following transfer of MyD88-deficient pDCs. Alternatively, we found an unexpected immunosuppressive role of pDCs in an IL-35-dependent manner. Both Il12a and Ebi3, heterodimeric components of IL-35, were highly expressed in transferred pDCs and CD4+CD25+ Tregs. However, the protective effect of pDC transfer was completely lost in mice depleted of Tregs by anti-CD25 antibody. Moreover, pDCs derived from IL-35-deficient mice had less of a protective effect both in vivo and in vitro even in the presence of Tregs. These results highlight a unique aspect of pDCs in association with Tregs, serving as a guide for immunotherapeutic options in ALF.
Collapse
Affiliation(s)
- Yuzo Koda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.,Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Po-Sung Chu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Aya Ugamura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hanako Tsujikawa
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Shunsuke Shiba
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhito Taniki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomohisa Sujino
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kentaro Miyamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takahiro Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Akihiro Yamaguchi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Rei Morikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Katsuaki Sato
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| |
Collapse
|
118
|
Mechanism underlying β2-AR agonist-mediated phenotypic conversion of LPS-activated microglial cells. J Neuroimmunol 2019; 332:37-48. [DOI: 10.1016/j.jneuroim.2019.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/23/2022]
|
119
|
Dai YC, Wang WD, Zhang JA, Chen C, Luo HL, Xu H, Peng Y, Luo H, Yang XR, Chen X, Wu XJ, Chen GH, Chen ZW, Xu JF. MTB driven B cells producing IL-35 and secreting high level of IL-10 in the patients with active pulmonary tuberculosis. Mol Immunol 2019; 112:175-181. [PMID: 31170628 DOI: 10.1016/j.molimm.2019.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/09/2019] [Accepted: 05/24/2019] [Indexed: 01/04/2023]
Abstract
Regulatory B cells (Bregs) have critical roles as a negative regulator of immunity, mainly due to the fact that it secrets high a level of interleukin 10 (IL-10). Recently, a new subset of Bregs was identified as a key source of IL-35, which is an immunosuppressive cytokine and conventionally thought to be secreted by regulatory T cells (Tregs). Our previous study showed that the level of IL-35 in serum was elevated in the patients with active tuberculosis (ATB). However, none of the studies reported that IL-35 is secreted by B cells in ATB patients. In the current study, we found that the mRNA expressions of the both subunits (p35 and Ebi3) of IL-35 by circulating B cells were increased in ATB patients. By using immunohistochemistry and immunofluorescence staining, we found a subset of B cells infiltrated into the tuberculous granuloma of ATB patients also expressed IL-35. Moreover, Mycobacterium tuberculosis (MTB) lysate stimulation assay also demonstrated higher levels of IL-35 were exerted by MTB lysate within purified B cells from healthy control group (HC). Flow cytometry analysis further showed that the IL-35-producing B cells from ATB patients produced a higher level of IL-10. Taken together, IL-35-producing B cells may play a regulatory role during MTB infection by producing IL-10.
Collapse
Affiliation(s)
- You-Chao Dai
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Wan-Dang Wang
- Department of Clinical medicine laboratory, Affiliated Xiaolan Hospital, Southern Medical University, China.
| | - Jun-Ai Zhang
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Chen Chen
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Hou-Long Luo
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Huan Xu
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Ying Peng
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Hong Luo
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Xu-Ran Yang
- Department of Clinical medicine laboratory, Affiliated Xiaolan Hospital, Southern Medical University, China.
| | - Xinchun Chen
- Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Guangdong Medical University, Shenzhen, 518020, China.
| | - Xian-Jin Wu
- Department of Clinical Laboratory, Huizhou Municipal Central Hospital, China.
| | - Guang-Hui Chen
- Department of Clinical medicine laboratory, Affiliated Xiaolan Hospital, Southern Medical University, China.
| | - Zheng W Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, USA.
| | - Jun-Fa Xu
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
120
|
Sakkas LI, Daoussis D, Mavropoulos A, Liossis SN, Bogdanos DP. Regulatory B cells: New players in inflammatory and autoimmune rheumatic diseases. Semin Arthritis Rheum 2019; 48:1133-1141. [PMID: 30409417 DOI: 10.1016/j.semarthrit.2018.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Regulatory B cells (Bregs) are a new subset of B cells with immunoregulatory functions, mainly through IL-10 production. Bregs suppress inflammatory Th1 and Th17 differentiation and induce Tregs suppressing autoimmune diseases. The aim of the study was to review the literature related to Bregs in autoimmune rheumatic diseases (ARDs). METHODS A literature review of publications in PUBMED published in English was performed using the relevant combinations of terms. RESULTS All relevant publications are discussed. Overall, recent studies in rheumatic diseases found Bregs to be decreased in ANCA-associated vasculitides (AAV) and in systemic sclerosis (SSc), particularly in SSc-associated lung fibrosis. In AAV Bregs levels are negatively correlated with autoantibody levels whereas in SSc this association is less clear but there is an inverse association with Th1 and Th17 cells. In rheumatoid arthritis (RA), Bregs were decreased, particularly in RA-associated lung fibrosis. In psoriatic arthritis IL-10 + Bregs are decreased and inversely associated with Th1 and Th17 cells. In systemic lupus erythematosus (SLE), the role of Bregs is unclear. In experimental diseases, when Bregs were expanded ex-vivo, they ameliorated established disease. CONCLUSION Bregs appear to be a new player in the pathogenesis of ARDs, and may offer a new strategy for therapeutic intervention.
Collapse
Affiliation(s)
- Lazaros I Sakkas
- Department of Rheumatology and clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa 41 110, Greece.
| | - Dimitrios Daoussis
- Division of Rheumatology, Department of Internal Medicine, University of Patras, Rio, Patras, Greece
| | - Athanasios Mavropoulos
- Department of Rheumatology and clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa 41 110, Greece
| | - Stamatis-Nick Liossis
- Division of Rheumatology, Department of Internal Medicine, University of Patras, Rio, Patras, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa 41 110, Greece
| |
Collapse
|
121
|
Research Progress on Regulatory B Cells in Systemic Lupus Erythematosus. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7948687. [PMID: 31240224 PMCID: PMC6556307 DOI: 10.1155/2019/7948687] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/05/2019] [Indexed: 11/25/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic, systemic, autoimmune inflammatory disease characterized by the production of numerous autoantibodies and cytokines, as well as multiple organ damage. Specific B cell subsets negatively regulate immune responses and have been termed regulatory B cells (Bregs). Bregs are characterized by the production of the immunoregulatory cytokines interleukin (IL)-10, IL-35, and transforming growth factor (TGF)-β. Bregs suppress other immune cells through the secretion of these immunosuppressive cytokines and have thus been studied extensively for their potential role in the treatment of various autoimmune diseases. The progress of the research on Bregs and SLE in recent years is reviewed in this paper.
Collapse
|
122
|
Ramakrishna C, Kujawski M, Chu H, Li L, Mazmanian SK, Cantin EM. Bacteroides fragilis polysaccharide A induces IL-10 secreting B and T cells that prevent viral encephalitis. Nat Commun 2019; 10:2153. [PMID: 31089128 PMCID: PMC6517419 DOI: 10.1038/s41467-019-09884-6] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 04/02/2019] [Indexed: 02/07/2023] Open
Abstract
The gut commensal Bacteroides fragilis or its capsular polysaccharide A (PSA) can prevent various peripheral and CNS sterile inflammatory disorders. Fatal herpes simplex encephalitis (HSE) results from immune pathology caused by uncontrolled invasion of the brainstem by inflammatory monocytes and neutrophils. Here we assess the immunomodulatory potential of PSA in HSE by infecting PSA or PBS treated 129S6 mice with HSV1, followed by delayed Acyclovir (ACV) treatment as often occurs in the clinical setting. Only PSA-treated mice survived, with dramatically reduced brainstem inflammation and altered cytokine and chemokine profiles. Importantly, PSA binding by B cells is essential for induction of regulatory CD4+ and CD8+ T cells secreting IL-10 to control innate inflammatory responses, consistent with the lack of PSA mediated protection in Rag−/−, B cell- and IL-10-deficient mice. Our data reveal the translational potential of PSA as an immunomodulatory symbiosis factor to orchestrate robust protective anti-inflammatory responses during viral infections. The capsular polysaccharide A (PSA) of Bacteroides fragilis is known to have immunomodulatory capability during sterile inflammatory disorders. Here Ramakrishna and colleagues show that PSA administration in a murine model of herpes simplex encephalitis induces IL-10 producing B and T cell populations that confer protection against lethal challenge and brain pathology.
Collapse
Affiliation(s)
- Chandran Ramakrishna
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| | - Maciej Kujawski
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Hiutung Chu
- Division of Biology and Biological Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Lin Li
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Sarkis K Mazmanian
- Division of Biology and Biological Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Edouard M Cantin
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
123
|
Ye J, Que B, Huang Y, Lin Y, Chen J, Liu L, Shi Y, Wang Y, Wang M, Zeng T, Wang Z, Hu H, Xu Y, Shi L, Ye D, Liu J, Jiang H, Wan J, Ji Q. Interleukin-12p35 knockout promotes macrophage differentiation, aggravates vascular dysfunction, and elevates blood pressure in angiotensin II-infused mice. Cardiovasc Res 2019; 115:1102-1113. [PMID: 30395167 DOI: 10.1093/cvr/cvy263] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/06/2018] [Accepted: 10/31/2018] [Indexed: 12/11/2022] Open
Abstract
AIMS Numerous studies have demonstrated that inflammation is involved in the progression of hypertension. Inflammatory cytokines interleukin (IL)-12 and IL-35 belong to the IL-12 cytokine family and share the same IL-12p35 subunit. Accumulating evidence has demonstrated that IL-12p35 knockout (IL-12p35 KO) leads to cardiovascular disease by regulating the inflammatory response. This study aimed to investigate whether IL-12p35 KO elevates blood pressure in a hypertension mouse model. METHODS AND RESULTS Mice with angiotensin (Ang) II infusion showed marked aortic IL-12p35 expression; thus, aortic macrophages may be the main source of IL-12p35. Wild-type and IL-12p35 KO mice were infused with Ang II or saline. IL-12p35 KO promoted M1 macrophage differentiation, amplified the inflammatory response, aggravated vascular dysfunction, and elevated blood pressure in Ang II-treated mice. Then, some Ang II-infused mice were given phosphate buffer saline, mouse recombinant IL-12 (rIL-12), or rIL-35, and the results showed that rIL-12 but not rIL-35 treatment had an antihypertensive effect on Ang II-infused mice. In addition, detection of human plasma IL-12 levels in hypertensive patients and control subjects showed that IL-12 was significantly increased in hypertensive patients when compared with control subjects. In hypertensive patients, IL-12 levels were positively correlated with blood pressure. CONCLUSION IL-12p35 KO amplifies the inflammatory response and promotes blood pressure elevation in Ang II-treated mice. In addition, IL-12, but not IL-35, plays a protective role in the Ang II-induced hypertension model. Thus, IL-12 may be a novel therapeutic agent for the prevention and treatment of clinical hypertension.
Collapse
Affiliation(s)
- Jing Ye
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Bin Que
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Ying Huang
- Department of Ultrasound, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yingzhong Lin
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jiangbin Chen
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ling Liu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ying Shi
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yuan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Tao Zeng
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Haiying Hu
- Department of Cardiology, Handan First Hospital, Handan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Lei Shi
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Huimin Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qingwei Ji
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
124
|
Tian S, Yan Y, Qi X, Li X, Li Z. Treatment of Type II Collagen-Induced Rat Rheumatoid Arthritis Model by Interleukin 10 (IL10)-Mesenchymal Stem Cells (BMSCs). Med Sci Monit 2019; 25:2923-2934. [PMID: 31005957 PMCID: PMC6489530 DOI: 10.12659/msm.911184] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis model (CIA) rats were treated by tail vein injection of IL-10-modified bone marrow mesenchymal stem cells (BMSCs) to investigate its feasibility and intrinsic molecular mechanism. MATERIAL AND METHODS The CIA rat model was established by induction type II collagen, and IL-10-modified BMSCs was established by transfecting BMSCs with adenovirus. IL-10-modified BMSCs were used to treat the CIA rats. The therapeutic effect was evaluated by measuring the changes in body weight, ankle swelling, and forced swimming time, as well as observation of synovial hyperplasia and cartilage tissue repair by HE staining. Western blot analysis and ELISA were used to detect gene expression. RESULTS After 4 weeks and 8 weeks of treatment with IL10-BMSCs, the body weight, swelling value, resting time, and forced swimming struggle time of CIA rats were significantly higher than those of BMSCs-treated and -untreated CIA rats (P<0.05). Compared to BMSCs-treated CIA model rats, after treatment with IL10-BMSCs, the repair rate of osteoarticular cartilage was higher and the inhibition of synovial proliferation was better, and serum IL-17, IL-1ß, and TNF-alpha levels were lower. We found that the protein level of SIRT1 in peripheral blood mononuclear cells was lower, the protein level in spleen was higher, and phosphorylation of p65 protein in peripheral blood mononuclear cells was reduced. CONCLUSIONS The efficacy of tail vein injection of IL-10-modified BMSCs in treatment of CIA rats was superior to that of BMSCs alone, which may be related to the more pronounced suppression of IL-10-modified BMSCs in peripheral blood inflammation and spleen immune response.
Collapse
Affiliation(s)
- Shuai Tian
- Department of Geratology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Yunyu Yan
- Department of CT/MRI, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Xiangbei Qi
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Xu Li
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Zhiyong Li
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| |
Collapse
|
125
|
Asad M, Sabur A, Shadab M, Das S, Kamran M, Didwania N, Ali N. EB1-3 Chain of IL-35 Along With TGF-β Synergistically Regulate Anti-leishmanial Immunity. Front Immunol 2019; 10:616. [PMID: 31031744 PMCID: PMC6474326 DOI: 10.3389/fimmu.2019.00616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 03/08/2019] [Indexed: 12/30/2022] Open
Abstract
Immunosuppression is a characteristic feature of chronic leishmaniasis. The dynamicity and the functional cross talks of host immune responses during Leishmania infection are still not clearly understood. Here we explored the functional aspects of accumulation of immune suppressive cellular and cytokine milieu during the progression of murine visceral leishmaniasis. In addition to IL-10 and TGF-β, investigation on the responses of different subunit chains of IL-12 family revealed a progressive elevation of EBI-3 and p35 chains of IL-35 with Leishmania donovani infection in BALB/c mice. The expansion of CD25 and FoxP3 positive T cells is associated with loss of IFN-γ and TNF-α response in advanced disease. Ex-vivo and in vivo neutralization of TGF-β and EBI-3 suggests a synergism in suppression of host anti-leishmanial immunity. The down-regulation of EBI-3 and TGF-β is crucial for re-activation of JAK-STAT pathway for induction as well as restoration of protective immunity against L. donovani infection.
Collapse
Affiliation(s)
- Mohammad Asad
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| | - Abdus Sabur
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| | - Mohammad Shadab
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| | - Sonali Das
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| | - Mohd Kamran
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| | - Nicky Didwania
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| |
Collapse
|
126
|
Heim L, Kachler K, Siegmund R, Trufa DI, Mittler S, Geppert CI, Friedrich J, Rieker RJ, Sirbu H, Finotto S. Increased expression of the immunosuppressive interleukin-35 in patients with non-small cell lung cancer. Br J Cancer 2019; 120:903-912. [PMID: 30956278 PMCID: PMC6734661 DOI: 10.1038/s41416-019-0444-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 02/08/2019] [Accepted: 03/15/2019] [Indexed: 01/01/2023] Open
Abstract
Background The immunosuppressive role of the cytokine IL-35 in patients with non-small cell lung cancer (NSCLC) is poorly understood. In this study, we analysed the localisation and regulation of IL-35 in the lung of patients with non-small cell lung cancer (NSCLC) to further elucidate the immune-escape of cancer cells in perioperative course of disease. Methods Interleukin 35 (IL-35) was measured by ELISA in postoperative serum from 7 patients with NSCLC as well as 8 samples from healthy controls. Immunohistochemistry, FACS analysis, real-time PCR, as well as western blot from samples of the control (CTR), peri-tumoural (PT) and the tumoural (TU) region of the lung derived from patients with NSCLC and 10 controls were performed. Results Here we found elevated levels of IL-35 in the TU region as well as postoperative serum from patients with lung adenocarcinoma. Consistently, we found an increased expression of IL-35+Foxp-3+ cells, which associated with ARG1 mRNA expression and decreased TNFA in the TU region of the lung of patients with NSCLC as compared to their CTR region. Furthermore, in the CTR region of the lung of patients with NSCLC, CD68+ macrophages were induced and correlated with IL-35+ cells. Finally, IL-35 positively correlated with TTF-1+PD-L1+ cells in the TU region of NSCLC patients. Conclusions Induced IL-35+Foxp3+ cell numbers in the TU region of the lung of patients with NSCLC associated with ARG1 mRNA expression and with TTF-1+PD-L1+ cells. In the tumour-free CTR area, IL-35 correlated with CD68+ macrophages. Thus inhibitors to IL-35 would probably succeed in combination with antibodies against immune checkpoints like PD-L1 and PD-1 currently used against NSCLC because they would inhibit immunosuppressive macrophages and T regulatory cells while promoting T cell-mediated anti-tumoural immune responses in the microenvironment as well as the TU region of NSCLC patients.
Collapse
Affiliation(s)
- Lisanne Heim
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Katerina Kachler
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Raphaela Siegmund
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Denis I Trufa
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Department of Thoracic Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Susanne Mittler
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Carol-Immanuel Geppert
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Juliane Friedrich
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ralf J Rieker
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Horia Sirbu
- Department of Thoracic Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
127
|
Ma N, Fang Y, Xu R, Zhai B, Hou C, Wang X, Jiang Z, Wang L, Liu Q, Han G, Wang R. Ebi3 promotes T- and B-cell division and differentiation via STAT3. Mol Immunol 2019; 107:61-70. [PMID: 30660991 DOI: 10.1016/j.molimm.2019.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 01/07/2019] [Accepted: 01/12/2019] [Indexed: 12/21/2022]
Abstract
Although sharing the same subunit Ebi3, IL-27 (p28/Ebi3) and IL-35 (p35/Ebi3) have different biological functions, suggesting that Ebi3 subunit may functions as a carrier. Our data demonstrated that activated T cells and B cells effectively up-regulated Ebi3 expression. In addition, Ebi3 effectively promoted T-cell activation and the differentiation of helper T 1 (Th1), Th17, and Foxp3+ regulatory T (Treg) cells induced by Th1, Th17, and Treg polarizing condition, respectively. Naturally, Ebi3 could promote B-cell activation and the production of CD138+ plasma cells (PC) induced by LPS. Conversely, neutralizing anti-Ebi3 antibody could significantly suppress T/B-cell activation and production of Th1, Th17, Tregs, and PC induced by Th1, Th17, Treg polarizing condition, and LPS, respectively. Furthermore, we found that Ebi3 time-dependently induced STAT3 activation in CD4+T cells and B cells. Conversely, STAT3-/- effectively reduced Ebi3 expression and the production of Th1, Th17, Tregs, and plasma cells. Finally, we showed that gp130 but not IL-27Rα mediates Ebi3-induced STAT3 activation. These results suggest that Ebi3 promotes Th- and B-cell differentiation via gp130-STAT3 signaling pathway. Thus, autocrine Ebi3 may play an important role in the differentiation of Th and B cells and thus in infection, inflammation, and autoimmune disorders.
Collapse
Affiliation(s)
- Ning Ma
- Department of Rheumatology, First hospital of Jilin University, Changchun 130021, China
| | - Ying Fang
- Department of Rheumatology, First hospital of Jilin University, Changchun 130021, China; Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ruonan Xu
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China; College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Bing Zhai
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China; Department of Geriatric Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Chunmei Hou
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiaoqian Wang
- Staidson (Beijing) Biopharmaceuticals Co., Ltd, Beijing 100176, China
| | - Zhenyu Jiang
- Department of Rheumatology, First hospital of Jilin University, Changchun 130021, China
| | - Liang Wang
- College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Qilin Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Gencheng Han
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Renxi Wang
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China.
| |
Collapse
|
128
|
A folding switch regulates interleukin 27 biogenesis and secretion of its α-subunit as a cytokine. Proc Natl Acad Sci U S A 2019; 116:1585-1590. [PMID: 30651310 DOI: 10.1073/pnas.1816698116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A common design principle of heteromeric signaling proteins is the use of shared subunits. This allows encoding of complex messages while maintaining evolutionary flexibility. How cells regulate and control assembly of such composite signaling proteins remains an important open question. An example of particular complexity and biological relevance is the interleukin 12 (IL-12) family. Four functionally distinct αβ heterodimers are assembled from only five subunits to regulate immune cell function and development. In addition, some subunits act as independent signaling molecules. Here we unveil key molecular mechanisms governing IL-27 biogenesis, an IL-12 family member that limits infections and autoimmunity. In mice, the IL-27α subunit is secreted as a cytokine, whereas in humans only heterodimeric IL-27 is present. Surprisingly, we find that differences in a single amino acid determine if IL-27α can be secreted autonomously, acting as a signaling molecule, or if it depends on heterodimerization for secretion. By combining computer simulations with biochemical experiments, we dissect the underlying structural determinants: a protein folding switch coupled to disulfide bond formation regulates chaperone-mediated retention versus secretion. Using these insights, we rationally change folding and assembly control for this protein. This provides the basis for a more human-like IL-27 system in mice and establishes a secretion-competent human IL-27α that signals on its own and can regulate immune cell function. Taken together, our data reveal a close link between protein folding and immunoregulation. Insights into the underlying mechanisms can be used to engineer immune modulators.
Collapse
|
129
|
Marrero B, He C, Oh HM, Ukwu UT, Yu CR, Dambuza IM, Sun L, Egwuagu CE. Persistent Activation of STAT3 Pathway in the Retina Induced Vision Impairment and Retinal Degenerative Changes in Ageing Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:353-358. [PMID: 31884637 PMCID: PMC11332194 DOI: 10.1007/978-3-030-27378-1_58] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurotrophic factors can promote the survival of degenerating retinal cells through the activation of STAT3 pathway. Thus, augmenting STAT3 activation in the retina has been proposed as potential therapy for retinal dystrophies. On the other hand, aberrant activation of STAT3 pathway is oncogenic and implicated in diverse human diseases. Furthermore, the STAT3/SOCS3 axis has been shown to induce the degradation of rhodopsin during retinal inflammation. In this study, we generated and used mice with constitutive activation of STAT3 pathway in the retina to evaluate the safety and consequences of enhancing STAT3 activities in the retina as a potential treatment for retinal degenerative diseases. We show that long-term activation of the STAT3 pathway can induce retinal degenerative changes and also exacerbate uveitis and other intraocular inflammatory diseases. Mechanisms underlying the development of vision impairment in the STAT3c-Tg mice derived in part from STAT3-mediated inhibition of rhodopsin and overexpression of SOCS3 in the retina. These results suggest that much caution should be exercised in the use of STAT3 augmentation therapy for retinal dystrophies.
Collapse
Affiliation(s)
- Bernadette Marrero
- Molecular Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Chang He
- Molecular Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Hyun-Mee Oh
- Molecular Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
- Bio-industrial Process Research Center, Korea Research Institute of Bioscience and BioTechnology, Jeongeup-si, Jeonbuk, South Korea
| | - Umegbewe T Ukwu
- Molecular Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cheng-Rong Yu
- Molecular Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ivy M Dambuza
- Molecular Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Lin Sun
- Molecular Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles E Egwuagu
- Molecular Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
130
|
Su J, Wang K, Zhou X, Wang Y, Xu J, Tao L, Zeng X, Chen N, Bai X, Li X. B-cell-specific-peroxisome proliferator-activated receptor γ deficiency augments contact hypersensitivity with impaired regulatory B cells. Immunology 2018; 156:282-296. [PMID: 30471095 DOI: 10.1111/imm.13027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022] Open
Abstract
Nuclear receptor peroxisome proliferator-activated receptor γ (PPAR-γ) activation can prevent immunoinflammatory disorders and diabetes. B cells play protective roles during inflammation as well. However, the roles of endogenous PPAR-γ in the regulatory properties of B cells to relieve inflammation remain unknown. Here, we developed B-cell-specific PPAR-γ knockout (B-PPAR-γ-/- ) mice and found that the conditional deletion of PPAR-γ in B cells resulted in exaggerated contact hypersensitivity (CHS). Meanwhile, interferon-γ (IFN-γ) of CD4+ CD8+ T cells was up-regulated in B-PPAR-γ-/- mice in CHS. This showed that the regulatory function of B cells in B-PPAR-γ-/- mice declined in vivo. Whereas splenic CD5+ CD1dhi regulatory B-cell numbers and peripheral regulatory T-cell numbers were not changed in naive B-PPAR-γ-/- mice. Loss of PPAR-γ in B cells also did not affect either CD86 or FasL expression in splenic CD5+ CD1dhi regulatory B cells after activation. Notably, interleukin-10 (IL-10) production in CD5+ CD1dhi regulatory B cells reduced in B-PPAR-γ-deficient mice. In addition, functional IL-10-producing CD5+ CD1dhi regulatory B cells decreased in B-PPAR-γ-/- mice in the CHS model. These findings were in accordance with augmented CHS. The current work indicated the involvement of endogenous PPAR-γ in the regulatory function of B cells by disturbing the expansion of IL-10-positive regulatory B cells.
Collapse
Affiliation(s)
- Jianbing Su
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Keng Wang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xuan Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yiyuan Wang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jialan Xu
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lei Tao
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiangzhou Zeng
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Nana Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaochun Bai
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaojuan Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
131
|
Ibrahim ML, Klement JD, Lu C, Redd PS, Xiao W, Yang D, Browning DD, Savage NM, Buckhaults PJ, Morse HC, Liu K. Myeloid-Derived Suppressor Cells Produce IL-10 to Elicit DNMT3b-Dependent IRF8 Silencing to Promote Colitis-Associated Colon Tumorigenesis. Cell Rep 2018; 25:3036-3046.e6. [PMID: 30540937 PMCID: PMC6319669 DOI: 10.1016/j.celrep.2018.11.050] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 10/06/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022] Open
Abstract
IL-10 functions as a suppressor of colitis and colitis-associated colon cancer, but it is also a risk locus associated with ulcerative colitis. The mechanism underlying the contrasting roles of IL-10 in inflammation and colon cancer is unknown. We report here that inflammation induces the accumulation of CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs) that express high levels of IL-10 in colon tissue. IL-10 induces the activation of STAT3 that directly binds to the Dnmt1 and Dnmt3b promoters to activate their expression, resulting in DNA hypermethylation at the Irf8 promoter to silence IRF8 expression in colon epithelial cells. Mice with Irf8 deleted in colonic epithelial cells exhibit significantly higher inflammation-induced tumor incidence. Human colorectal carcinomas have significantly higher DNMT1 and DNMT3b and lower IRF8 expression, and they exhibit significantly higher IRF8 promoter DNA methylation than normal colon. Our data identify the MDSC-IL-10-STAT3-DNMT3b-IRF8 pathway as a link between chronic inflammation and colon cancer initiation.
Collapse
Affiliation(s)
- Mohammed L Ibrahim
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Priscilla S Redd
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Wei Xiao
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Darren D Browning
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Natasha M Savage
- Department of Pathology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Phillip J Buckhaults
- Department of Drug Discovery and Biomedical Sciences, the University of South Carolina, Columbia, SC 29208, USA
| | - Herbert C Morse
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| |
Collapse
|
132
|
Yu CR, Choi JK, Uche AN, Egwuagu CE. Production of IL-35 by Bregs is mediated through binding of BATF-IRF-4-IRF-8 complex to il12a and ebi3 promoter elements. J Leukoc Biol 2018; 104:1147-1157. [PMID: 30117603 PMCID: PMC11290588 DOI: 10.1002/jlb.3a0218-071rrr] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/04/2018] [Accepted: 07/04/2018] [Indexed: 12/29/2022] Open
Abstract
IL-10 and IL-35 suppress excessive immune responses and therapeutic strategies are being developed to increase their levels in autoimmune diseases. In this study, we sought to identify major cell types that produce both cytokines in-vivo and to characterize mechanisms that regulate their production. Experimental autoimmune uveitis (EAU) is a CNS autoimmune disease that serves as model of human uveitis. We induced EAU in C57BL/6J mice and investigated whether T cells, B lymphocytes, or myeloid cells are the major producers of IL-10 or IL-35 in blood, lymph nodes (LNs), spleen, and at the site of ocular inflammation, the neuroretina. Analysis of these tissues identified B cells as the major producers of IL-10 and IL-35 in-vivo. Compared to regulatory T cells (Tregs), IL-10- or IL-35-producing regulatory B cells (Bregs) are substantially expanded in blood, LNs, spleen, and retina of mice with EAU. We performed EMSA and chromatin immunoprecipitation (ChIP) assays on activated B cells stimulated with IL-35 or TLR agonists. We found that BATF, IFN regulatory factor (IRF)-4, and IRF-8 transcription factors were recruited and bound to AP1-IRF-composite elements (AICEs) of il12a, ebi3, and/or il10 loci, suggesting their involvement in regulating IL-10 and IL-35 transcriptional programs of B cells. Showing that B cells are major source of IL-10 and IL-35 in-vivo and identifying transcription factors that contribute to IL-10 and IL-35 expression in the activated B-cell, suggest that the BATF/IRF-4/IRF-8 axis can be exploited therapeutically to regulate physiological levels of IL-10/IL-35-Bregs and that adoptive transfer of autologous Bregs might be an effective therapy for autoimmune and neurodegenerative diseases.
Collapse
Affiliation(s)
- Cheng-Rong Yu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jin Kyeong Choi
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anita N Uche
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Charles E Egwuagu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
133
|
Pan W, Xu HW, Hao WT, Sun FF, Qin YF, Hao SS, Liu H, Cao JP, Shen YJ, Zheng KY. The excretory-secretory products of Echinococcus granulosus protoscoleces stimulated IL-10 production in B cells via TLR-2 signaling. BMC Immunol 2018; 19:29. [PMID: 30355335 PMCID: PMC6201587 DOI: 10.1186/s12865-018-0267-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
Background Excretory-secretory products released by Echinococcus granulosus protoscoleces (EgPSC-ESPs) are well-known to regulate T cell responses. However, their direct influence on the differentiation of B cell subsets remains largely elusive. This study investigated the effects of EgPSC-ESPs on the differentiation of IL-10-producing B cells (B10), and explored the possible role of Toll-like receptor 2 (TLR-2) signaling in this process. Results In comparison to phosphate buffered saline (PBS), B cells exposed to the excretory–secretory products (ESPs) generated higher percentages of B10 cells, with higher expression of IL-10 mRNA, and larger amount of IL-10 production, which were in a dose dependent way. The mRNA and protein expression of TLR-2 in the ESPs-stimulated B cells were significantly higher than those in PBS, which was consistent to the results in B cells isolated from EgPSC infected mice. Moreover, TLR-2−/− B cells in response to ESPs stimulation expressed lower levels of IL-10 mRNA and produced undetectable IL-10 in comparison to those in normal B cells. In addition, Phosphatase and tensin homolog deleted on chromosome ten/AKT/Phosphatidylinositol-3 kinase (PTEN/AKT/PI3K) pathway was activated in ESPs-treated B cells, which was also dependent on TLR-2 signaling. Pam3CSK4, the agonist of TLR-2, could mock the effects of ESPs on the expression of PTEN, AKT and PI3K. Conclusion Overall, this study revealed that TLR-2 signaling was required for B10 induction mediated by EgPSC-ESPs, which might be an immunomodulatory target against the parasite infection. Electronic supplementary material The online version of this article (10.1186/s12865-018-0267-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Pan
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China.,National Demonstration Center for Experimental Basic Medical Science Education (Xuzhou Medical University), Xuzhou, Jiangsu Province, China
| | - Hui-Wen Xu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China.,National Demonstration Center for Experimental Basic Medical Science Education (Xuzhou Medical University), Xuzhou, Jiangsu Province, China.,Faculty of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Wen-Ting Hao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Fen-Fen Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China.,National Demonstration Center for Experimental Basic Medical Science Education (Xuzhou Medical University), Xuzhou, Jiangsu Province, China
| | - Yan-Fang Qin
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Shan-Shan Hao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Hua Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Jian-Ping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Yu-Juan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China. .,National Demonstration Center for Experimental Basic Medical Science Education (Xuzhou Medical University), Xuzhou, Jiangsu Province, China.
| |
Collapse
|
134
|
Zhu Z, Zhang Y, Ye J, Wang X, Fu X, Yin Y, Wen J, Wu X, Xia Z. IL-35 promoted STAT3 phosphorylation and IL-10 production in B cells, but its production was reduced in patients with coronary artery diseases. Hum Immunol 2018; 79:869-875. [PMID: 30316971 DOI: 10.1016/j.humimm.2018.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 12/01/2022]
Abstract
Interleukin (IL)-35 is a heterodimeric cytokine composed of the IL-12A subunit and the Epstein-Barr virus induced gene 3 (EBI3) subunit. Binding of IL-35 with IL-12 receptor subunit beta 2 (IL-12RB2) and IL-6 signal transducer (IL-6ST) occupies the binding sites of IL-6, IL-12, and IL-27 and prevents their signal transduction. IL-35 is also shown to promote the development of regulatory T cells (Tregs) and regulatory B cells (Bregs). In this study, we investigated B cell-mediated IL-35 production in patients with coronary artery disease (CAD). The expression levels of IL-35 subunits and IL-10 were significantly lower in B cells from CAD patients than in B cells from healthy control individuals. Exogenous IL-35 could effectively increase the IL-10 production by B cells in a concentration-dependent manner. IL-35 promoted the phosphorylation of STAT1 and STAT3 in B cells, and the inhibition of STAT3 phosphorylation suppressed IL-10 production. Raising the IL-35 concentration in cell culture eliminated the difference in IL-10 expression between CAD B cells and healthy B cells. We also demonstrated that B cells from CAD patients presented lower capacity to suppress interferon gamma (IFNG) and tumor necrosis factor (TNF) expression by T cells than B cells from healthy controls. Exogenous IL-35 could significantly improve the suppressive capacity of B cells in both healthy controls and CAD patients. Together, these results demonstrated that a reduction in IL-35 production was associated with Breg defects in CAD patients. IL-35 and IL-35 targets may serve as therapeutic candidates in the treatment of CAD and related diseases.
Collapse
Affiliation(s)
- Zhendong Zhu
- Department of Cardiology, The Third People's Hospital of Yunnan Province, The Second Affiliated Hospital of Dali University, Kunming, Yunnan, China.
| | - Yunmei Zhang
- Department of Cardiology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jiyun Ye
- Pathogenic Organisms Department of Experimental Center, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Xuechang Wang
- Department of Pharmacy, The Third People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Xuemei Fu
- Department of Geriatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yan Yin
- Central Lab, The Third People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jin Wen
- Department of Pharmacy, The Third People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Xinran Wu
- Central Lab, The Third People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Zhonghua Xia
- Faculty of Clinical Medicine, Dali University, Kunming, Yunnan, China
| |
Collapse
|
135
|
Abstract
Inflammatory intraocular eye diseases, grouped under the term uveitis are blinding conditions, believed to be mediated by pathogenic autoimmune processes that overcome the protective mechanisms of the immune privilege status of the eye. An animal model for these diseases, named experimental autoimmune uveitis (EAU), is induced by initiation of immunity against ocular-specific antigens, or it develops spontaneously in mice with T-cells that transgenically express TCR specific to the target eye antigen(s). T-Cells specific to ocular antigens are generated in the thymus and their majority are eliminated by exposure to their target antigen expressed in this organ. T-cells that escape this negative selection acquire pathogenicity by their activation with the target antigen. In spontaneous EAU, the microbiota play crucial roles in the acquisition of pathogenicity by providing both antigenic stimulation, by molecules that mimic the target ocular antigen, and an additional stimulation that allows invasion of tissues that harbor the target antigen. The pathogenic process is physiologically inhibited by the peripheral tolerance, composed of antigen-specific T-regulatory (Treg) lymphocytes. Deleting the Tregs enhances the ocular inflammation, whereas adoptively transferring them suppresses the pathogenic response. Potential usage of Treg cells for suppression of autoimmune diseases in humans is under intensive investigation.
Collapse
Affiliation(s)
- Igal Gery
- Laboratory of Immunology, National Eye Institute, Bethesda, MD, United States
| | | |
Collapse
|
136
|
Interleukin-12p35 Knock Out Aggravates Doxorubicin-Induced Cardiac Injury and Dysfunction by Aggravating the Inflammatory Response, Oxidative Stress, Apoptosis and Autophagy in Mice. EBioMedicine 2018; 35:29-39. [PMID: 30228093 PMCID: PMC6154773 DOI: 10.1016/j.ebiom.2018.06.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023] Open
Abstract
Background Recent evidence has demonstrated that interleukin 12p35 knockout (IL-12p35 KO) is involved in cardiac diseases by regulating the inflammatory response. The involvement of inflammatory cells has also been observed in doxorubicin (DOX)-induced cardiac injury. This study aimed to investigate whether IL-12p35 KO affects DOX-induced cardiac injury and the underlying mechanisms. Methods First, the effect of DOX treatment on cardiac IL-12p35 expression was assessed. In addition, to investigate the effect of IL-12p35 KO on DOX-induced cardiac injury, IL-12p35 KO mice were treated with DOX. Because IL-12p35 is the mutual subunit of IL-12 and IL-35, to determine the cytokine that mediates the effect of IL-12p35 KO on DOX-induced cardiac injury, mice were given phosphate-buffered saline (PBS), mouse recombinant IL-12 (rIL-12) or rIL-35 before treatment with DOX. Results DOX treatment significantly increased the level of cardiac IL-12p35 expression. In addition, IL-12p35 KO mice exhibited higher serum and heart lactate dehydrogenase levels, higher serum and heart creatine kinase myocardial bound levels, and greater cardiac dysfunction than DOX-treated mice. Furthermore, IL-12p35 KO further increased M1 macrophage and decreased M2 macrophage differentiation, aggravated the imbalance of oxidants and antioxidants, and further activated the mitochondrial apoptotic pathway and endoplasmic reticulum stress autophagy pathway. Both rIL-12 and rIL-35 protected against DOX-induced cardiac injury by alleviating the inflammatory response, oxidative stress, apoptosis and autophagy. Conclusions IL-12p35 KO aggravated DOX-induced cardiac injury by amplifying the levels of inflammation, oxidative stress, apoptosis and autophagy. (234 words). IL-12p35 KO aggravates DOX-induced cardiac injury and dysfunction. IL-12p35 further increases the DOX-induced imbalance in inflammation, oxidative stress, apoptosis and autophagy. Both exogenous rIL-12 and rIL-35 relieved cardiac injury mediated by DOX.
CD4+ T helper (Th) cells are closely related to cardiac injury; regulatory T cells (Tregs) are a new subset of Th cells, and IL-35 is the functional cytokine of Tregs. Cardiac injury mediated by DOX is the most serious complication during chemotherapy, and there are no good preventive measures. This study aimed to investigate whether IL-35 can reduce cardiac injury induced by DOX during chemotherapy. In addition to IL-35, IL-12p35 KO can cancel the biological effect of IL-12; therefore, we also determined whether IL-12 participates in DOX-induced cardiac injury and the underlying mechanisms.
Collapse
|
137
|
Zheng XF, Hu XY, Ma B, Fang H, Zhang F, Mao YF, Yang FY, Xiao SC, Xia ZF. Interleukin-35 Attenuates D-Galactosamine/Lipopolysaccharide-Induced Liver Injury via Enhancing Interleukin-10 Production in Kupffer Cells. Front Pharmacol 2018; 9:959. [PMID: 30197594 PMCID: PMC6117388 DOI: 10.3389/fphar.2018.00959] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/03/2018] [Indexed: 12/30/2022] Open
Abstract
Interleukin (IL) -35 is an anti-inflammatory cytokine which exerts various beneficial effects on autoimmune diseases. However, whether IL-35 plays a role in endotoxin induced hepatitis demands clarification. This study aims to reveal the effect and mechanism of IL-35 on endotoxin induced liver injury. Acute hepatic injury was induced by D-galactosamine (D-GalN, 400 mg/kg) and lipopolysaccharide (LPS, 5 μg/kg) administration in mice. IL-35 treatment ameliorated D-GalN/LPS induced liver injury in a dose dependent manner as shown by histological examination, ALT determination and Caspase-3 activity assay. It also reduced production of pro-inflammatory cytokines, tumor necrosis factor (TNF)-α, IL-1β, and IL-6, and increased production of anti-inflammatory cytokines, IL-4, IL-10, and transforming growth factor (TGF)-β. This hepato-protective effect was proved mainly mediated by Kupffer cells (KC) via gadolinium chloride depletion and cell adoptive transfer experiment. In addition, IL-35 emolliated the cytotoxicity of LPS-triggered KCs to hepatocytes, suppressed nitric oxide (NO) and TNF-α production, and elevated IL-10 production in LPS stimulated KCs. Furthermore, IL-35 could not exert hepato-protective effect in IL-10-deficient mice in vivo and it could not suppress LPS induced NO and TNF-α production in IL-10-deficient KCs in vitro. In conclusion, IL-35 protects endotoxin-induced acute liver injury, which mainly acts thought increasing IL-10 production in KCs. This finding demonstrates a role of IL-35 in anti-infectious immunity and provides a potential therapeutic target in treating fulminant hepatitis.
Collapse
Affiliation(s)
- Xing-Feng Zheng
- Department of Burn Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Xiao-Yan Hu
- Department of Burn Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Bing Ma
- Department of Burn Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - He Fang
- Department of Burn Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Fang Zhang
- Department of Burn Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Yan-Fei Mao
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng-Yong Yang
- Intensive Care Unit, The People's Hospital of Laiwu City, Laiwu, China
| | - Shi-Chu Xiao
- Department of Burn Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Zhao-Fan Xia
- Department of Burn Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
138
|
Peng M, Wang Y, Qiang L, Xu Y, Li C, Li T, Zhou X, Xiao M, Wang J. Interleukin-35 Inhibits TNF-α-Induced Osteoclastogenesis and Promotes Apoptosis via Shifting the Activation From TNF Receptor-Associated Death Domain (TRADD)-TRAF2 to TRADD-Fas-Associated Death Domain by JAK1/STAT1. Front Immunol 2018; 9:1417. [PMID: 30061878 PMCID: PMC6054960 DOI: 10.3389/fimmu.2018.01417] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 06/06/2018] [Indexed: 12/27/2022] Open
Abstract
Over-activated osteoclasts derived from myeloid or peripheral blood monocytes by inflammatory cytokines results in osteoporosis, osteoarthritis, and other bone erosion-related diseases. Interleukin 35 (IL-35) is a novel anti-inflammatory and immunosuppressive factor. This study investigated the effect of IL-35 on TNF-α-induced osteoclastogenesis. In the presence of IL-35, this process was detected by Tartrate-Resistant Acid Phosphatase (TRAP) staining, F-actin staining, and bone resorption assays. The effects of IL-35 on TNF-α-induced apoptosis were demonstrated by TUNEL staining, cell viability assays, and flow cytometry. Moreover, a microarray was performed to detect the effect of IL-35 on TNF-α-activated phosphatase kinase. The effect of IL-35 on the TNF-α-mediated activation of NF-κB, MAPK, TRAF2, RIP1, Fas-associated death domain (FADD), and caspase3 was further investigated. In addition, a murine calvarial osteolysis model was established via the subcutaneous injection of TNF-α onto the calvaria, and histological analysis was subsequently performed. As a result, IL-35 inhibited TNF-α-induced osteoclast formation and bone resorption in vitro and osteolysis calvaria in vivo. NFATc1, c-fos, and TRAP were downregulated by IL-35 through the inhibition of NF-κB and MAPK, during which JAK1/STAT1 was activated. Moreover, based on TUNEL staining and flow cytometry, IL-35 was shown to enhance TNF-α-induced osteoclast apoptosis. Meanwhile, FADD and cleaved-caspase 3 were increased in cells treated with TNF-α and IL-35, whereas the DNA-binding activity of NF-κB was increased in TNF-α-treated cells, but was decreased in cells treated with both TNF-α and IL-35. In conclusion, IL-35 inhibits TNF-α-induced osteoclastogenesis and promotes apoptosis by activating JAK1/STAT1 and shifting activation from TNF receptor-associated death domain (TRADD)-TRAF2/RIP1-NF-κB to TRADD-FADD-caspase 3 signaling.
Collapse
Affiliation(s)
- Mingzheng Peng
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanguo Wang
- Department of Orthopedic-Spine Surgery, Binzhou Central Hospital, Binzhou Medical College, Binzhou, China
| | - Lei Qiang
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Southwest Jiaotong University College of Medicine, Chengdu, China
| | - Yan Xu
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Southwest Jiaotong University College of Medicine, Chengdu, China
| | - Cuidi Li
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojun Zhou
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Xiao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
139
|
Mirlekar B, Michaud D, Searcy R, Greene K, Pylayeva-Gupta Y. IL35 Hinders Endogenous Antitumor T-cell Immunity and Responsiveness to Immunotherapy in Pancreatic Cancer. Cancer Immunol Res 2018; 6:1014-1024. [PMID: 29980536 DOI: 10.1158/2326-6066.cir-17-0710] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/24/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022]
Abstract
Although successes in cancer immunotherapy have generated considerable excitement, this form of treatment has been largely ineffective in patients with pancreatic ductal adenocarcinoma (PDA). Mechanisms that contribute to the poor antitumor immune response in PDA are not well understood. Here, we demonstrated that cytokine IL35 is a major immunosuppressive driver in PDA and potentiates tumor growth via the suppression of endogenous antitumor T-cell responses. The growth of pancreatic tumors in mice deficient for IL35 was significantly reduced. An analysis of tumor-infiltrating immune cells revealed a role for IL35 in the expansion of regulatory T cells and the suppression of CD4+ effector T cells. We also detected a robust increase in both the infiltration and activation of cytotoxic CD8+ T cells, suggesting that targeting IL35 may be an effective strategy to convert PDA from an immunologically "cold" to "hot" tumor. Although PDA is typically resistant to anti-PD-1 immunotherapy, we demonstrated robust synergistic reduction in tumor growth when IL35 deficiency was combined with anti-PD-1 treatment. These findings provide new insight into the function of IL35 in the pathogenesis of pancreatic cancer and underscore the potential significance of IL35 as a therapeutic target for use in combination immunotherapy approaches in this deadly malignancy. Cancer Immunol Res; 6(9); 1014-24. ©2018 AACR.
Collapse
Affiliation(s)
- Bhalchandra Mirlekar
- Department of Genetics, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina.,The Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Daniel Michaud
- The Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina.,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Ryan Searcy
- Department of Genetics, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina.,The Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Kevin Greene
- The Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina.,Department of Pathology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Yuliya Pylayeva-Gupta
- Department of Genetics, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina. .,The Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
140
|
Sakkas LI, Mavropoulos A, Perricone C, Bogdanos DP. IL-35: a new immunomodulator in autoimmune rheumatic diseases. Immunol Res 2018; 66:305-312. [DOI: 10.1007/s12026-018-8998-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|