101
|
Zhang N, Shu G, Qiao E, Xu X, Shen L, Lu C, Chen W, Fang S, Yang Y, Song J, Zhao Z, Tu J, Xu M, Chen M, Du Y, Ji J. DNA-Functionalized Liposomes In Vivo Fusion for NIR-II/MRI Guided Pretargeted Ferroptosis Therapy of Metastatic Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20603-20615. [PMID: 35476429 DOI: 10.1021/acsami.2c01105] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In clinic, metastasis is still the main reason for death for cancer patients. Therefore, it is necessary to track cancer metastases accurately, kill cancer cells effectively, and then improve the prognosis of patients with advanced cancer. Therefore, we designed a liposome-based pretargeted system modified with single-stranded DNA and targeting peptide injected in sequence and then assembled in vivo for multimodality imaging-guided pretargeted synergistic therapy of metastatic breast cancer. The pretargeted system is composed of the first liposome, loaded with near-infrared fluorescence imaging (NIR-II) probe downconversion nanoprobes (DCNP) and magnetic resonance imaging (MRI) contrast agent SPIO (L1/C-Lipo/DS), for primary/metastatic tumor MRI/NIR-II dual-modal imaging, and the second liposome, loaded with glucose oxidase (GOx) and doxorubicin (DOX) (L2/C-Lipo/GD), as the therapeutic component. The SPIO in L1/C-Lipo/DS accumulated in the tumor tissue will provide a necessary iron ion for the therapeutic liposome (L2/C-Lipo/GD) to exert the pretargeted ferroptosis therapy to cancer cells. We demonstrate that the DNA-mediated pretargeting strategy can realize the multimodality imaging-guided synergistically enhanced antitumor effect between the two liposomes. This pretargeted and synergistic in vivo assembly nanomedicine strategy for diagnosis and treatment holds clinical translation potential for cancer management.
Collapse
Affiliation(s)
- Nannan Zhang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, School of Medicine, Zhejiaing University, Lishui 323000, Zhejiang, China
- Department of Pain, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| | - Gaofeng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, School of Medicine, Zhejiaing University, Lishui 323000, Zhejiang, China
| | - Enqi Qiao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, School of Medicine, Zhejiaing University, Lishui 323000, Zhejiang, China
| | - Xiaoling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Lin Shen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, School of Medicine, Zhejiaing University, Lishui 323000, Zhejiang, China
| | - Chenying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, School of Medicine, Zhejiaing University, Lishui 323000, Zhejiang, China
| | - Weiqian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, School of Medicine, Zhejiaing University, Lishui 323000, Zhejiang, China
| | - Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, School of Medicine, Zhejiaing University, Lishui 323000, Zhejiang, China
| | - Yang Yang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, School of Medicine, Zhejiaing University, Lishui 323000, Zhejiang, China
| | - Jingjing Song
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, School of Medicine, Zhejiaing University, Lishui 323000, Zhejiang, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, School of Medicine, Zhejiaing University, Lishui 323000, Zhejiang, China
| | - Jianfei Tu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, School of Medicine, Zhejiaing University, Lishui 323000, Zhejiang, China
| | - Min Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, School of Medicine, Zhejiaing University, Lishui 323000, Zhejiang, China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, School of Medicine, Zhejiaing University, Lishui 323000, Zhejiang, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, School of Medicine, Zhejiaing University, Lishui 323000, Zhejiang, China
| |
Collapse
|
102
|
Wang J, Zhang L, Su Y, Qu Y, Cao Y, Qin W, Liu Y. A Novel Fluorescent Probe Strategy Activated by β-Glucuronidase for Assisting Surgical Resection of Liver Cancer. Anal Chem 2022; 94:7012-7020. [PMID: 35506678 DOI: 10.1021/acs.analchem.1c05635] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liver cancer is a primary malignant tumor with a very high fatality rate, which has seriously threatened human health and life. In normal hepatocellular lesions, β-glucuronidase (GLU) activity in liver cancer tissues is significantly increased. Therefore, GLU has become one of the important biomarkers of primary liver cancer. Here, a series of fluorescent probes (DCDH, DCDCH3, DCDOCH3, and DCDNO2) for early diagnosis of liver cancer and auxiliary surgical resection were successfully synthesized. Since the electron-withdrawing group -NO2 connected to the probe DCDNO2 accelerates the rapid cleavage of the glycosidic bond, DCDNO2 exhibits superior fluorescence properties that are more sensitive and rapid than the other three probes DCDH, DCDCH3, and DCDOCH3 when detecting GLU. DCDNO2 has been well-applied in real-time fluorescent visualization imaging for the detection of GLU activity in liver cancer cells and tumor tissues. In addition, DCDNO2 has also been successfully used in the early diagnosis of liver cancer and real-time imaging to guide the surgical resection of liver cancer tumors. Therefore, DCDNO2 has great potential for development in bioclinical medicine for the early detection and treatment of liver cancer.
Collapse
Affiliation(s)
- Jiemin Wang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Liang Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Yaling Su
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yi Qu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yuping Cao
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Wenwu Qin
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yun Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| |
Collapse
|
103
|
Cai L, Wang Z, Lin B, Liu K, Wang Y, Yuan Y, Tao X, Lv R. Rare earth nanoparticles for sprayed and intravenous NIR II imaging and photodynamic therapy of tongue cancer. NANOSCALE ADVANCES 2022; 4:2224-2232. [PMID: 36133451 PMCID: PMC9418583 DOI: 10.1039/d2na00197g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/09/2022] [Indexed: 06/16/2023]
Abstract
In this research, rare earth nanoparticles coupled with dihydroartemisinin (DHA) and a targeted antibody (RENP-DHA-Cap) for sprayed NIR II imaging and photodynamic therapy (PDT) of tongue cancer were designed. Genetic algorithms combined with combinatorial chemistry were proposed and successfully achieved in a single optimized luminescent phosphor with enhanced NIR II and high upconversion luminescence (UCL) under a NIR laser of wavelength 980 nm or/and 808 nm. In particular, T1 magnetic resonance imaging (MRI) signals can be adjusted with the Gd ion concentration. In combination with the targeted antibody of capmatinib (Cap), precise NIR II imaging for in situ tongue cancer by a simple spray method can be achieved. Most importantly, NIR II imaging and PDT treatment can be realized with RENP-DHA-capmatinib injected intravenously. This orthogonal theranostic mode with precise diagnosis under 808 nm and targeted effective treatment under 980 nm may promote tongue cancer theranostics.
Collapse
Affiliation(s)
- Lingling Cai
- Department of Radiology, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University Shanghai 200011 China
| | - Zhan Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University Xi'an Shaanxi 710071 China
| | - Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University Xi'an Shaanxi 710071 China
| | - Kaikai Liu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University Xi'an Shaanxi 710071 China
| | - Yanxing Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University Xi'an Shaanxi 710071 China
| | - Ying Yuan
- Department of Radiology, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University Shanghai 200011 China
| | - Xiaofeng Tao
- Department of Radiology, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University Shanghai 200011 China
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University Xi'an Shaanxi 710071 China
| |
Collapse
|
104
|
Yuan Y, Feng Z, Li S, Huang Z, Wan Y, Cao C, Lin S, Wu L, Zhou J, Liao LS, Qian J, Lee CS. Molecular Programming of NIR-IIb-Emissive Semiconducting Small Molecules for In Vivo High-Contrast Bioimaging Beyond 1500 nm. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201263. [PMID: 35307885 DOI: 10.1002/adma.202201263] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Materials with long-wavelength second near-infrared (NIR-II) emission are highly desired for in vivo dynamic visualizating of microstructures in deep tissues. Herein, by employing an atom-programming strategy, a series of highly fluorescent semiconducting oligomers (SOMs) with tunable NIR-IIb emissions are developed for bioimaging applications. After self-assembly into nanoparticles (NPs), they show good brightness, high photostability, and satisfactory biocompatibility. The SOM NPs are applied as probes for high-resolution imaging of whole-body and hind-limb blood vessels, biliary tract, and bladder with their emissions over 1500 nm. This work demonstrates an atom-programming strategy for constructing semiconducting small molecules with enhanced NIR-II fluorescence for deep-tissue imaging, affording new insight for advancing molecular design of NIR-II fluorophores.
Collapse
Affiliation(s)
- Yi Yuan
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 000000, P. R. China
| | - Zhe Feng
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Zhongming Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Yingpeng Wan
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, P. R. China
| | - Chen Cao
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 000000, P. R. China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, 000000, P. R. China
| | - Lan Wu
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jing Zhou
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Liang-Sheng Liao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 000000, P. R. China
| |
Collapse
|
105
|
Lee S, Park CS, Yoon H. Nanoparticulate Photoluminescent Probes for Bioimaging: Small Molecules and Polymers. Int J Mol Sci 2022; 23:4949. [PMID: 35563340 PMCID: PMC9100005 DOI: 10.3390/ijms23094949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/22/2022] Open
Abstract
Recent interest in research on photoluminescent molecules due to their unique properties has played an important role in advancing the bioimaging field. In particular, small molecules and organic dots as probes have great potential for the achievement of bioimaging because of their desirable properties. In this review, we provide an introduction of probes consisting of fluorescent small molecules and polymers that emit light across the ultraviolet and near-infrared wavelength ranges, along with a brief summary of the most recent techniques for bioimaging. Since photoluminescence probes emitting light in different ranges have different goals and targets, their respective strategies also differ. Diverse and novel strategies using photoluminescence probes against targets have gradually been introduced in the related literature. Among recent papers (published within the last 5 years) on the topic, we here concentrate on the photophysical properties and strategies for the design of molecular probes, with key examples of in vivo photoluminescence research for practical applications. More in-depth studies on these probes will provide key insights into how to control the molecular structure and size/shape of organic probes for expanded bioimaging research and applications.
Collapse
Affiliation(s)
- Sanghyuck Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
| | - Chul Soon Park
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea;
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| |
Collapse
|
106
|
Li Y, Wen X, Deng Z, Jiang M, Zeng S. In Vivo High-Resolution Bioimaging of Bone Marrow and Fracture Diagnosis Using Lanthanide Nanoprobes with 1525 nm Emission. NANO LETTERS 2022; 22:2691-2701. [PMID: 35298182 DOI: 10.1021/acs.nanolett.1c04531] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bones play vital roles in human health. Noninvasive visualization of the full extent of bones is highly demanded to evaluate many bone-related diseases. Herein, we report poly (acrylic acid) (PAA)-modified NaLuF4:Yb/Er/Gd/Ce@NaYF4 nanoparticles (PAA-Er) with second near-infrared emission beyond 1500 nm (also referred as NIR-IIb) for high-resolution bone/bone marrow imaging and bone fracture diagnosis. The NIR-IIb optical-guided bone marrow imaging presents a high signal to noise ratio, which is superior to that for imaging in the NIR-II window (1000-1400 nm, NIR-IIa). Importantly, we also investigated the size-dependent accumulation of the nanoparticles and the possible accumulation mechanism of the designed PAA-Er nanoprobes in bone marrow. Due to the high affinity capability of the PAA-Er nanoprobes, a highly sensitive NIR-IIb optical-guided bone fracture diagnosis was successfully achieved. This novel technology paves the way to design lanthanide nanoprobes for NIR-IIb optical-guided high-resolution bone marrow imaging and bone-related disease diagnosis.
Collapse
Affiliation(s)
- Youbin Li
- School of Physics and Electronics, Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, and Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha, 410081, People's Republic of China
- School of Physics and Electronic Sciences, Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha, 410114, People's Republic of China
| | - Xingwang Wen
- School of Physics and Electronics, Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, and Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha, 410081, People's Republic of China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Zhiming Deng
- School of Physics and Electronics, Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, and Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha, 410081, People's Republic of China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Mingyang Jiang
- School of Physics and Electronics, Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, and Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha, 410081, People's Republic of China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Songjun Zeng
- School of Physics and Electronics, Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, and Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha, 410081, People's Republic of China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, People's Republic of China
| |
Collapse
|
107
|
Mi C, Guan M, Zhang X, Yang L, Wu S, Yang Z, Guo Z, Liao J, Zhou J, Lin F, Ma E, Jin D, Yuan X. High Spatial and Temporal Resolution NIR-IIb Gastrointestinal Imaging in Mice. NANO LETTERS 2022; 22:2793-2800. [PMID: 35324206 DOI: 10.1021/acs.nanolett.1c04909] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Conventional biomedical imaging modalities, including endoscopy, X-rays, and magnetic resonance, are invasive and insufficient in spatial and temporal resolutions for gastrointestinal (GI) tract imaging to guide prognosis and therapy. Here we report a noninvasive method based on lanthanide-doped nanocrystals with ∼1530 nm fluorescence in the near-infrared-IIb window (NIR-IIb, 1500-1700 nm). The rational design of nanocrystals have led to an absolute quantum yield (QY) up to 48.6%. Further benefiting from the minimized scattering through the NIR-IIb window, we enhanced the spatial resolution to ∼1 mm in GI tract imaging, which is ∼3 times higher compared with the near-infrared-IIa (NIR-IIa, 1000-1500 nm) method. The approach also realized a high temporal resolution of 8 frames per second; thus the moment of mice intestinal peristalsis can be captured. Furthermore, with a light-sheet imaging system, we demonstrated a three-dimensional (3D) imaging on the GI tract. Moreover, we successfully translated these advances to diagnose inflammatory bowel disease.
Collapse
Affiliation(s)
- Chao Mi
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Ming Guan
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xun Zhang
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Liu Yang
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Sitong Wu
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhichao Yang
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhiyong Guo
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiayan Liao
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jiajia Zhou
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Fulin Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - En Ma
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Dayong Jin
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Xiaocong Yuan
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong 518055, China
| |
Collapse
|
108
|
Feng X, Cao Y, Zhuang P, Cheng R, Zhang X, Liu H, Wang G, Sun SK. Rational synthesis of IR820-albumin complex for NIR-II fluorescence imaging-guided surgical treatment of tumors and gastrointestinal obstruction. RSC Adv 2022; 12:12136-12144. [PMID: 35481109 PMCID: PMC9023119 DOI: 10.1039/d2ra00449f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
IR820, an analog of FDA-approved indocyanine green, is a promising second near-infrared window (NIR-II) fluorescence probe with better NIR-II fluorescence stability and great clinical transformation potential. Moreover, its fluorescence can be further remarkably enhanced by the interaction with albumin. Therefore, it is significant to flexibly design IR820-albumin complex using endogenous or exogenetic albumin to meet the requirements of different biological applications. Herein, we show the rational synthesis of IR820-albumin complex for NIR-II fluorescence imaging-guided surgical treatment of tumors and gastrointestinal obstruction. We compared the NIR-II fluorescence imaging ability of IR820 pre-incubated with albumin or not to visualize tumors and the gastrointestinal tract in vivo and found that the formation of IR820-albumin was essential for the intense NIR-II fluorescence. For imaging-guided tumor treatment, after intravenous injection of free IR820, IR820-albumin complex can be formed in vivo due to the presence of plenty of albumin in the blood. For imaging-guided gastrointestinal obstruction removal, IR820-albumin complex should be synthesized in vitro before oral administration. NIR-II fluorescence imaging-guided surgeries were successfully realized in both tumor resection and gastrointestinal obstruction removal. Besides, toxicity assessments in vitro and in vivo confirmed the good biocompatibility of IR820. Our study provides a flexible paradigm for IR820-based NIR-II fluorescence imaging and surgical navigation towards different diseases.
Collapse
Affiliation(s)
- Xinyu Feng
- School of Medical Imaging, Tianjin Medical University Tianjin 300203 China
| | - Yuan Cao
- School of Medical Imaging, Tianjin Medical University Tianjin 300203 China
| | - Pengrui Zhuang
- Department of Radiology, The Second Hospital of Tianjin Medical University Tianjin 300211 China
| | - Ran Cheng
- School of Medical Imaging, Tianjin Medical University Tianjin 300203 China
| | - Xuejun Zhang
- School of Medical Imaging, Tianjin Medical University Tianjin 300203 China
| | - Hong Liu
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer Tianjin 300060 China
| | - Guohe Wang
- School of Medical Imaging, Tianjin Medical University Tianjin 300203 China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University Tianjin 300203 China
| |
Collapse
|
109
|
Wang F, Qu L, Ren F, Baghdasaryan A, Jiang Y, Hsu R, Liang P, Li J, Zhu G, Ma Z, Dai H. High-precision tumor resection down to few-cell level guided by NIR-IIb molecular fluorescence imaging. Proc Natl Acad Sci U S A 2022; 119:e2123111119. [PMID: 35380898 PMCID: PMC9169804 DOI: 10.1073/pnas.2123111119] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/03/2022] [Indexed: 12/19/2022] Open
Abstract
In vivo fluorescence/luminescence imaging in the near-infrared-IIb (NIR-IIb, 1,500 to 1,700 nm) window under <1,000 nm excitation can afford subcentimeter imaging depth without any tissue autofluorescence, promising high-precision intraoperative navigation in the clinic. Here, we developed a compact imager for concurrent visible photographic and NIR-II (1,000 to 3,000 nm) fluorescence imaging for preclinical image-guided surgery. Biocompatible erbium-based rare-earth nanoparticles (ErNPs) with bright down-conversion luminescence in the NIR-IIb window were conjugated to TRC105 antibody for molecular imaging of CD105 angiogenesis markers in 4T1 murine breast tumors. Under a ∼940 ± 38 nm light-emitting diode (LED) excitation, NIR-IIb imaging of 1,500- to 1,700-nm emission afforded noninvasive tumor–to–normal tissue (T/NT) signal ratios of ∼40 before surgery and an ultrahigh intraoperative tumor-to-muscle (T/M) ratio of ∼300, resolving tumor margin unambiguously without interfering background signal from surrounding healthy tissues. High-resolution imaging resolved small numbers of residual cancer cells during surgery, allowing thorough and nonexcessive tumor removal at the few-cell level. NIR-IIb molecular imaging afforded 10-times-higher and 100-times-higher T/NT and T/M ratios, respectively, than imaging with IRDye800CW-TRC105 in the ∼900- to 1,300-nm range. The vastly improved resolution of tumor margin and diminished background open a paradigm of molecular imaging-guided surgery.
Collapse
Affiliation(s)
- Feifei Wang
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Bio-X, Stanford University, Stanford, CA 94305
| | - Liangqiong Qu
- School of Medicine, Stanford University, Stanford, CA 94303
| | - Fuqiang Ren
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Bio-X, Stanford University, Stanford, CA 94305
| | - Ani Baghdasaryan
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Bio-X, Stanford University, Stanford, CA 94305
| | - Yingying Jiang
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Bio-X, Stanford University, Stanford, CA 94305
| | - RuSiou Hsu
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Bio-X, Stanford University, Stanford, CA 94305
| | - Peng Liang
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Bio-X, Stanford University, Stanford, CA 94305
| | - Jiachen Li
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Bio-X, Stanford University, Stanford, CA 94305
| | - Guanzhou Zhu
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Bio-X, Stanford University, Stanford, CA 94305
| | - Zhuoran Ma
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Bio-X, Stanford University, Stanford, CA 94305
| | - Hongjie Dai
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Bio-X, Stanford University, Stanford, CA 94305
| |
Collapse
|
110
|
Yang R, Wang P, Lou K, Dang Y, Tian H, Li Y, Gao Y, Huang W, Zhang Y, Liu X, Zhang G. Biodegradable Nanoprobe for NIR-II Fluorescence Image-Guided Surgery and Enhanced Breast Cancer Radiotherapy Efficacy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104728. [PMID: 35170876 PMCID: PMC9036023 DOI: 10.1002/advs.202104728] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Indexed: 05/19/2023]
Abstract
Positive resection margin frequently exists in breast-conserving treatment (BCT) of early-stage breast cancer, and insufficient therapeutic efficacy is common during radiotherapy (RT) in advanced breast cancer patients. Moreover, a multimodal nanotherapy platform is urgently required for precision cancer medicine. Therefore, a biodegradable cyclic RGD pentapeptide/hollow virus-like gadolinium (Gd)-based indocyanine green (R&HV-Gd@ICG) nanoprobe is developed to improve fluorescence image-guided surgery and breast cancer RT efficacy. R&HV-Gd exhibits remarkably improved aqueous stability, tumor retention, and target specificity of ICG, and achieves outstanding magnetic resonance/second near-infrared (NIR-II) window multimodal imaging in vivo. The nanoprobe-based NIR-II fluorescence image guidance facilitates complete tumor resection, improves the overall mouse survival rate, and effectively discriminates between benign and malignant breast tissues in spontaneous breast cancer transgenic mice (area under the curve = 0.978; 95% confidence interval: 0.952, 1.0). Moreover, introducing the nanoprobe to tumors generated more reactive oxygen species under X-ray irradiation, improved RT sensitivity, and reduced mouse tumor progression. Notably, the nanoprobe is biodegradable in vivo and exhibits accelerated bodily clearance, which is expected to reduce the potential long-term inorganic nanoparticle toxicity. Overall, the nanoprobe provides a basis for developing precision breast cancer treatment strategies.
Collapse
Affiliation(s)
- Rui‐Qin Yang
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361100China
- Key Laboratory for Endocrine‐Related Cancer Precision Medicine of XiamenXiang'an Hospital of Xiamen UniversityXiamenFujian361100China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid CancersXiamenFujian361100China
| | - Pei‐Yuan Wang
- Key Laboratory of Design and Assembly of Functional NanostructuresFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350000China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouFujian350025China
| | - Kang‐Liang Lou
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361100China
- Key Laboratory for Endocrine‐Related Cancer Precision Medicine of XiamenXiang'an Hospital of Xiamen UniversityXiamenFujian361100China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid CancersXiamenFujian361100China
| | - Yong‐Ying Dang
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361100China
- Key Laboratory for Endocrine‐Related Cancer Precision Medicine of XiamenXiang'an Hospital of Xiamen UniversityXiamenFujian361100China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid CancersXiamenFujian361100China
| | - Hai‐Na Tian
- Department of BiomaterialsCollege of MaterialsResearch Center of Biomedical Engineering of Xiamen and Key Laboratory of Biomedical Engineering of Fujian Province and Fujian Provincial Key Laboratory for Soft Functional Materials ResearchXiamen UniversityXiamenFujian361005China
| | - Yang Li
- Key Laboratory of Design and Assembly of Functional NanostructuresFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350000China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouFujian350025China
| | - Yi‐Yang Gao
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361100China
- Key Laboratory for Endocrine‐Related Cancer Precision Medicine of XiamenXiang'an Hospital of Xiamen UniversityXiamenFujian361100China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid CancersXiamenFujian361100China
| | - Wen‐He Huang
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361100China
- Key Laboratory for Endocrine‐Related Cancer Precision Medicine of XiamenXiang'an Hospital of Xiamen UniversityXiamenFujian361100China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid CancersXiamenFujian361100China
| | - Yong‐Qu Zhang
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361100China
- Key Laboratory for Endocrine‐Related Cancer Precision Medicine of XiamenXiang'an Hospital of Xiamen UniversityXiamenFujian361100China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid CancersXiamenFujian361100China
| | - Xiao‐Long Liu
- Key Laboratory of Design and Assembly of Functional NanostructuresFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350000China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouFujian350025China
| | - Guo‐Jun Zhang
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361100China
- Key Laboratory for Endocrine‐Related Cancer Precision Medicine of XiamenXiang'an Hospital of Xiamen UniversityXiamenFujian361100China
- Cancer Research CenterSchool of MedicineXiamen UniversityXiamenFujian361100China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid CancersXiamenFujian361100China
| |
Collapse
|
111
|
Wu Y, Wu H, Lu X, Chen Y, Zhang X, Ju J, Zhang D, Zhu B, Huang S. Development and Evaluation of Targeted Optical Imaging Probes for Image‐Guided Surgery in Head and Neck Cancer. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yue Wu
- Department of Oral and Maxillofacial Surgery Shandong Provincial Hospital Cheeloo College of Medicine Shandong University Jinan Shandong 250021 China
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery Shandong Provincial Hospital Cheeloo College of Medicine Shandong University Jinan Shandong 250021 China
| | - Xiaoya Lu
- Department of Oral and Maxillofacial Surgery Shandong Provincial Hospital Cheeloo College of Medicine Shandong University Jinan Shandong 250021 China
| | - Yi Chen
- Department of Oral and Maxillofacial Surgery Shandong Provincial Hospital Cheeloo College of Medicine Shandong University Jinan Shandong 250021 China
| | - Xue Zhang
- University of Jinan Jinan Shandong 250021 China
| | - Jiandong Ju
- Department of Oral and Maxillofacial Surgery Shandong Provincial Hospital Cheeloo College of Medicine Shandong University Jinan Shandong 250021 China
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery Shandong Provincial Hospital Cheeloo College of Medicine Shandong University Jinan Shandong 250021 China
| | - Baocun Zhu
- University of Jinan Jinan Shandong 250021 China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery Shandong Provincial Hospital Cheeloo College of Medicine Shandong University Jinan Shandong 250021 China
| |
Collapse
|
112
|
Ma Y, Wang Y, Hui X, Lin B, Yuan Y, Tao X, Lv R. Dual-molecular targeted NIR II probe with enhanced response for head and neck squamous cell carcinoma imaging. NANOTECHNOLOGY 2022; 33:225101. [PMID: 35189605 DOI: 10.1088/1361-6528/ac56f9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
In this research, a fluorescent probe of 7-(diethylamine) coumarin derivatives with multiple binding sites to detect biothiols in tumor cell with strong NIR II luminescencein vivowas synthesized. The biothiols include cysteine (Cys) and glutathione (GSH) in tumor cells, and the tumor-response luminescence was proved by the cell experiment. Importantly, the monolayer functional phospholipid (DSPE-PEG) coating and aggregation induced emission (AIE) dye of TPE modification made the probe have good stability and biocompatibility with little luminescence quenching in aqueous phase, which was proved byin vitroandin vivoexperiments. The final aqueous NIR II probe combined with bevacizumab (for VEGF recognition in the cancer cells) and Capmatinib (for Met protein recognition in the cancer cells) has stronger targeted imaging on head and neck squamous cell carcinoma (HNSCC) cancer with intravenous injection. This GSH/Cys detection in the tumor cell and strong dual-molecular NIR II bioimagingin vivomay provide new strategy to tumor detection.
Collapse
Affiliation(s)
- Yaqun Ma
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| | - Yanxing Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| | - Xin Hui
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| | - Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| | - Ying Yuan
- Department of Radiology, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
| | - Xiaofeng Tao
- Department of Radiology, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| |
Collapse
|
113
|
Zhou H, Lu Z, Zhang Y, Li M, Xue D, Zhang D, Liu J, Li L, Qian J, Huang W. Simultaneous Enhancement of the Long-Wavelength NIR-II Brightness and Photothermal Performance of Semiconducting Polymer Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8705-8717. [PMID: 35148047 DOI: 10.1021/acsami.1c20722] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Theranostic agents with fluorescence in the second near-infrared (NIR-II) window, especially in its long-wavelength region, and NIR-II-excitable photothermal effect is promising but challenging in tumor diagnosis and therapy. Here, we report a simple but effective strategy to develop semiconducting polymer nanoparticles-based theranostic agents (PBQx NPs) and demonstrate their applications for long-wavelength NIR-II fluorescence imaging beyond 1400 nm and photothermal therapy (PTT) of tumors upon excitation at 1064 nm. Both experimental results and theory calculations show that the brightness and photothermal performance of PBQx NPs can be simultaneously improved by simply increasing the repeating unit number of semiconducting polymers. For example, PBQ45 NPs have 5-fold higher brightness than PBQ5 NPs and 6.7-fold higher photothermal effect (based on PCE × ε) than PBQ3 NPs, and exhibit promising applications in long-wavelength NIR-II fluorescence abdomen imaging, image-guided tumor resection, and image-guided PTT. This study demonstrates the effectiveness and importance of repeating unit numbers in regulating the theranostic performance, which has not received enough attention before.
Collapse
Affiliation(s)
- Hongli Zhou
- Key Laboratory of Flexible Electronics (KLOFE) Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211800, China
| | - Zeyi Lu
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Yuhuang Zhang
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Mengyuan Li
- Key Laboratory of Flexible Electronics (KLOFE) Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211800, China
| | - Dingwei Xue
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Duoteng Zhang
- Key Laboratory of Flexible Electronics (KLOFE) Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211800, China
| | - Jie Liu
- Key Laboratory of Flexible Electronics (KLOFE) Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211800, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211800, China
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
114
|
Wang Y, Zhen W, Jiang X, Li J. Driving Forces Sorted In Situ Size‐Increasing Strategy for Enhanced Tumor Imaging and Therapy. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202100117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yue Wang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Wenyao Zhen
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Jinghong Li
- Department of Chemistry Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| |
Collapse
|
115
|
Ding Y, Park B, Ye J, Wang X, Liu G, Yang X, Jiang Z, Han M, Fan Y, Song J, Kim C, Zhang Y. Surfactant-Stripped Semiconducting Polymer Micelles for Tumor Theranostics and Deep Tissue Imaging in the NIR-II Window. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104132. [PMID: 34850550 DOI: 10.1002/smll.202104132] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Photoacoustic imaging (PA) in the second near infrared (NIR-II) window presents key advantages for deep tissue imaging owing to reduced light scattering and low background signal from biological structures. Here, a thiadiazoloquinoxaline-based semiconducting polymer (SP) with strong absorption in the NIR-II region is reported. After encapsulation of SP in Pluronic F127 (F127) followed by removal of excess surfactant, a dual functional polymer system named surfactant-stripped semiconductor polymeric micelles (SSS-micelles) are generated with water solubility, storage stability, and high photothermal conversion efficiency, permitting tumor theranostics in a mouse model. SSS-micelles have a wideband absorption in the NIR-II window, allowing for the PA imaging at both 1064 and 1300 nm wavelengths. The PA signal of the SSS-micelles can be detected through 6.5 cm of chicken breast tissue in vitro. In mice or rats, SSS-micelles can be visualized in bladder and intestine overlaid 5 cm (signal to noise ratio, SNR ≈ 17 dB) and 5.8 cm (SNR over 10 dB) chicken breast tissue, respectively. This work demonstrates the SSS-micelles as a nanoplatform for deep tissue theranostics.
Collapse
Affiliation(s)
- Yuanmeng Ding
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Byullee Park
- Department of Electrical Engineering, Convergence IT Engineering and Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Jiamin Ye
- College of Chemistry, MOE key Laboratory for Analytical Science of Food Safety and Biology Institution, Fuzhou University, Fuzhou, 350108, China
| | - Xiaojie Wang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Gengqi Liu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Xingyue Yang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Zhen Jiang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Moongyu Han
- Department of Electrical Engineering, Convergence IT Engineering and Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Yong Fan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymer and IChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Fudan, 200433, China
| | - Jibin Song
- College of Chemistry, MOE key Laboratory for Analytical Science of Food Safety and Biology Institution, Fuzhou University, Fuzhou, 350108, China
| | - Chulhong Kim
- Department of Electrical Engineering, Convergence IT Engineering and Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| |
Collapse
|
116
|
Goto M, Ryoo I, Naffouje S, Mander S, Christov K, Wang J, Green A, Shilkaitis A, Das Gupta TK, Yamada T. Image-guided surgery with a new tumour-targeting probe improves the identification of positive margins. EBioMedicine 2022; 76:103850. [PMID: 35108666 PMCID: PMC8814381 DOI: 10.1016/j.ebiom.2022.103850] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/06/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Given the lack of visual discrepancy between malignant and surrounding normal tissue, current breast conserving surgery (BCS) is associated with a high re-excision rate. Due to the increasing cases of BCS, a novel method of complete tumour removal at the initial surgical resection is critically needed in the operating room to help optimize the surgical procedure and to confirm tumour-free edges. METHODS We developed a unique near-infrared (NIR) fluorescence imaging probe, ICG-p28, composed of the clinically nontoxic tumour-targeting peptide p28 and the FDA-approved NIR dye indocyanine green (ICG). ICG-p28 was characterized in vitro and evaluated in multiple breast cancer animal models with appropriate control probes. Our experimental approach with multiple-validations and -blinded procedures was designed to determine whether ICG-p28 can accurately identify tumour margins in mimicked intraoperative settings. FINDINGS The in vivo kinetics were analysed to optimize settings for potential clinical use. Xenograft tumours stably expressing iRFP as a tumour marker showed significant colocalization with ICG-p28, but not ICG alone. Image-guided surgery with ICG-p28 showed an over 6.6 × 103-fold reduction in residual normalized tumour DNA at the margin site relative to control approaches (i.e., surgery with ICG or palpation/visible inspection alone), resulting in an improved tumour recurrence rate (92% specificity) in multiple breast cancer animal models independent of the receptor expression status. ICG-p28 allowed accurate identification of tumour cells in the margin to increase the complete resection rate. INTERPRETATION Our simple and cost-effective approach has translational potential and offers a new surgical procedure that enables surgeons to intraoperatively identify tumour margins in a real-time, 3D fashion and that notably improves overall outcomes by reducing re-excision rates. FUNDING This work was supported by NIH/ National Institute of Biomedical Imaging and Bioengineering, R01EB023924.
Collapse
Affiliation(s)
- Masahide Goto
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Ingeun Ryoo
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Samer Naffouje
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA; Surgical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Sunam Mander
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Konstantin Christov
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Jing Wang
- Department of Mathematics, Statistics and Computer Science, University of Illinois College of Liberal Arts and Sciences, IL 60607, USA
| | - Albert Green
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Anne Shilkaitis
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Tapas K Das Gupta
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Tohru Yamada
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA; Department of Bioengineering, University of Illinois College of Engineering, Chicago, IL 60607, USA.
| |
Collapse
|
117
|
Zheng J, Zhao S, Mao Y, Du Z, Li G, Sang M. Lipid-Activatable Fluorescent Probe for Intraoperative Imaging of Atherosclerotic Plaque Using In Situ Patch. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104471. [PMID: 34837454 DOI: 10.1002/smll.202104471] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The surgical removal of lesions is among the most common and effective treatments for atherosclerosis. It is often the only curative treatment option, and the ability to visualize the full extent of atherosclerotic plaque during the operation has major implications for the therapeutic outcome. Fluorescence imaging is a promising approach for the inspection of atherosclerotic plaques during surgery. However, there is no systematic strategy for intraoperative fluorescent imaging in atherosclerosis. In this study, the in situ attachment of a lipid-activatable fluorescent probe (CN-N2)-soaked patch to the outer arterial surface is reported for rapid and precise localization of the atherosclerotic plaque in ApoE-deficient mouse during surgery. Stable imaging of the plaque is conducted within 5 min via rapid recognition of abnormally accumulated lipid droplets (LDs) in foam cells. Furthermore, the plaque/normal ratio (P/N) is significantly enhanced to facilitate surgical delineation of carotid atherosclerotic plaques. Visible fluorescence bioimaging using lipid-activatable probes can accurately delineate plaque sizes down to diameters of <0.5 mm, and the images can be swiftly captured within the stable plaque imaging time window. These findings on intraoperative fluorescent imaging of plaques via the in situ attachment of the CN-N2 patch hold promise for effective clinical applications.
Collapse
Affiliation(s)
- Jinrong Zheng
- Xiamen Cardiovascular Hospital, Xiamen University, 2999 Jinshan Road, Huli District, Xiamen, 361006, China
| | - Shanshan Zhao
- Xiamen Cardiovascular Hospital, Xiamen University, 2999 Jinshan Road, Huli District, Xiamen, 361006, China
| | - Yijie Mao
- Xiamen Cardiovascular Hospital, Xiamen University, 2999 Jinshan Road, Huli District, Xiamen, 361006, China
| | - Zhichao Du
- School of Pharmaceutical Sciences, Tsinghua University, 30 Shuangqing Road, Haiding District, Beijing, 100084, China
- Department of Pharmacy, Xilingol League Central Hospital, 9 Nadam Street, Xilinhot, 026000, China
| | - Gang Li
- Xiamen Cardiovascular Hospital, Xiamen University, 2999 Jinshan Road, Huli District, Xiamen, 361006, China
| | - Mangmang Sang
- Xiamen Cardiovascular Hospital, Xiamen University, 2999 Jinshan Road, Huli District, Xiamen, 361006, China
| |
Collapse
|
118
|
Yang Y, Zhang F. Molecular fluorophores for in vivo bioimaging in the second near-infrared window. Eur J Nucl Med Mol Imaging 2022; 49:3226-3246. [PMID: 35088125 DOI: 10.1007/s00259-022-05688-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/11/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE This systematic review aims to summarize the current developments of fluorescence and chemi/bioluminescence imaging based on the molecular fluorophores for in vivo imaging in the second near-infrared window. METHODS AND RESULTS By investigating most of the relevant references on the web of science and some journals, this review firstly begins with an overview of the background of fluorescence and chemi/bioluminescence imaging. Secondly, the chemical and optical properties of NIR-II dyes are discussed, such as water solubility, chemostability and photo-stability, and brightness. Thirdly, the bioimaging based on NIR-II fluorescence emission is outlined, including the in vivo imaging of polymethine dyes, donor - acceptor - donor (D - A - D) chromophores, and lanthanide complexes. Fourthly, we demonstrate the chemi/bioluminescence in vivo imaging in the second near-infrared window. Fifthly, the clinical application and translation of near-infrared fluorescence imaging are presented. Finally, the current challenges, feasible strategies and potential prospects of the fluorophores and in vivo bioimaging are discussed. CONCLUSIONS Based on the above literature research on the applications of molecular fluorescent and chemi/bioluminescent probes in the second near-infrared window in recent years, this review weighs the advantages and disadvantages of fluorescence and chemi/bioluminescence imaging, and NIR-II fluorophores based on polymethine dyes, D - A - D chromophores, and lanthanide complexes. Besides, this review also provides a very important guidance for expanding the imaging applications of molecular fluorophores in the second near-infrared window.
Collapse
Affiliation(s)
- Yanling Yang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
119
|
Ren H, Zeng XZ, Zhao XX, Hou DY, Yao H, Yaseen M, Zhao L, Xu WH, Wang H, Li LL. A bioactivated in vivo assembly nanotechnology fabricated NIR probe for small pancreatic tumor intraoperative imaging. Nat Commun 2022; 13:418. [PMID: 35058435 PMCID: PMC8776730 DOI: 10.1038/s41467-021-27932-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022] Open
Abstract
Real-time imaging of the tumour boundary is important during surgery to ensure that sufficient tumour tissue has been removed. However, the current fluorescence probes for bioimaging suffer from poor tumour specificity and narrow application of the imaging window used. Here, we report a bioactivated in vivo assembly (BIVA) nanotechnology, demonstrating a general optical probe with enhanced tumour accumulation and prolonged imaging window. The BIVA probe exhibits active targeting and assembly induced retention effect, which improves selectivity to tumours. The surface specific nanofiber assembly on the tumour surface increases the accumulation of probe at the boundary of the tumor. The blood circulation time of the BIVA probe is prolonged by 110 min compared to idocyanine green. The assembly induced metabolic stability broaden the difference between the tumor and background, obtaining a delayed imaging window between 8-96 h with better signal-to-background contrast (>9 folds). The fabricated BIVA probe permits precise imaging of small sized (<2 mm) orthotopic pancreatic tumors in vivo. The high specificity and sensitivity of the BIVA probe may further benefit the intraoperative imaging in a clinical setting.
Collapse
Affiliation(s)
- Han Ren
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Xiang-Zhong Zeng
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), 100049, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Xiao-Xiao Zhao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Da-Yong Hou
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, 150001, Harbin, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Haodong Yao
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), 100049, Beijing, China
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Lina Zhao
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), 100049, Beijing, China
| | - Wan-Hai Xu
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, 150001, Harbin, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Li-Li Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| |
Collapse
|
120
|
Wu Z, Ke J, Liu Y, Sun P, Hong M. Lanthanide-based NIR-II Fluorescent Nanoprobes and Their Biomedical Applications ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
121
|
Zhang Y, Zhang G, Zeng Z, Pu K. Activatable molecular probes for fluorescence-guided surgery, endoscopy and tissue biopsy. Chem Soc Rev 2021; 51:566-593. [PMID: 34928283 DOI: 10.1039/d1cs00525a] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The real-time, dynamic optical visualization of lesions and margins ensures not only complete resection of the malignant tissues but also better preservation of the vital organs/tissues during surgical procedures. Most imaging probes with an "always-on" signal encounter high background noise due to their non-specific accumulation in normal tissues. By contrast, activatable molecular probes only "turn on" their signals upon reaction with the targeted biomolecules that are overexpressed in malignant cells, offering high target-to-background ratios with high specificity and sensitivity. This review summarizes the recent progress of activatable molecular probes in surgical imaging and diagnosis. The design principle and mechanism of activatable molecular probes are discussed, followed by specific emphasis on applications ranging from fluorescence-guided surgery to endoscopy and tissue biopsy. Finally, potential challenges and perspectives in the field of activatable molecular probe-enabled surgical imaging are discussed.
Collapse
Affiliation(s)
- Yan Zhang
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guopeng Zhang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Ziling Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| |
Collapse
|
122
|
Sang M, Cai B, Qin S, Zhao S, Mao Y, Wang Y, Yu X, Zheng J. Lipid Droplet-Specific Probe for Rapidly Locating Atherosclerotic Plaques and Intraoperative Imaging via In Situ Spraying. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58369-58381. [PMID: 34870406 DOI: 10.1021/acsami.1c17797] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The ability to visualize the full extent of atherosclerotic plaques during surgery has major implications for therapeutic outcomes. Fluorescence imaging is a promising approach for atherosclerotic plaque inspection during surgery. However, a specific strategy for the intraoperative fluorescence imaging of atherosclerosis has not been established. This study presents an in situ spraying aerosol of a lipid droplet-specific probe to rapidly and precisely locate atherosclerotic plaques during surgery. Stable imaging of the plaque was achieved within 5 min by nebulizing the aqueous solution of the lipid droplet-specific probe (CN-PD) into 3 μm droplets and rapidly permeating it in situ. The visible fluorescence bioimaging of CN-PD can accurately delineate the plaque margins and size even with a diameter ≤0.5 mm, which are capable of being swiftly captured during the stable plaque imaging window (>2 h). This strategy combines the consideration of a specific probe design and an efficient in situ delivery, which results in weak interference from the background signals. Therefore, the plaque-to-normal tissue ratio (P/N) is sufficient to facilitate the surgical delineation of carotid atherosclerotic plaques. The originality of the intraoperative fluorescence imaging of the plaques via in situ delivery of the lipid droplet-specific probe holds promise for effective clinical application.
Collapse
Affiliation(s)
- Mangmang Sang
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, Xiamen University, 2999 Jinshan Road, Huli District, Xiamen 361006, China
| | - Bicheng Cai
- Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Southern University of Science and Technology, 3046 Shennan East Road, Luohu District, Shenzhen 518055, China
| | - Shuheng Qin
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China
| | - Shanshan Zhao
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, Xiamen University, 2999 Jinshan Road, Huli District, Xiamen 361006, China
| | - Yijie Mao
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, Xiamen University, 2999 Jinshan Road, Huli District, Xiamen 361006, China
| | - Yan Wang
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, Xiamen University, 2999 Jinshan Road, Huli District, Xiamen 361006, China
| | - Xiu Yu
- Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Southern University of Science and Technology, 3046 Shennan East Road, Luohu District, Shenzhen 518055, China
| | - Jinrong Zheng
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, Xiamen University, 2999 Jinshan Road, Huli District, Xiamen 361006, China
| |
Collapse
|
123
|
Jia R, Xu H, Wang C, Su L, Jing J, Xu S, Zhou Y, Sun W, Song J, Chen X, Chen H. NIR-II emissive AIEgen photosensitizers enable ultrasensitive imaging-guided surgery and phototherapy to fully inhibit orthotopic hepatic tumors. J Nanobiotechnology 2021; 19:419. [PMID: 34903233 PMCID: PMC8670198 DOI: 10.1186/s12951-021-01168-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/28/2021] [Indexed: 12/15/2022] Open
Abstract
Accurate diagnosis and effective treatment of primary liver tumors are of great significance, and optical imaging has been widely employed in clinical imaging-guided surgery for liver tumors. The second near-infrared window (NIR-II) emissive AIEgen photosensitizers have attracted a lot of attention with higher-resolution bioimaging and deeper penetration. NIR-II aggregation-induced emission-based luminogen (AIEgen) photosensitizers have better phototherapeutic effects and accuracy of the image-guided surgery/phototherapy. Herein, an NIR-II AIEgen phototheranostic dot was proposed for NIR-II imaging-guided resection surgery and phototherapy for orthotopic hepatic tumors. Compared with indocyanine green (ICG), the AIEgen dots showed bright and sharp NIR-II emission at 1250 nm, which extended to 1600 nm with high photostability. Moreover, the AIEgen dots efficiently generated reactive oxygen species (ROS) for photodynamic therapy. Investigations of orthotopic liver tumors in vitro and in vivo demonstrated that AIEgen dots could be employed both for imaging-guided tumor surgery of early-stage tumors and for 'downstaging' intention to reduce the size. Moreover, the therapeutic strategy induced complete inhibition of orthotopic tumors without recurrence and with few side effects.
Collapse
Affiliation(s)
- Ruizhen Jia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Han Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chenlu Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jinpeng Jing
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Shuyu Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yu Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wenjing Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology and Surgery, Clinical Imaging Research Centre, Centre for Translational Medicine, Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, Singapore, Singapore
- Departments of Chemical and Biomolecular Engineering, and Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Hongmin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
124
|
Tan J, Yin K, Ouyang Z, Wang R, Pan H, Wang Z, Zhao C, Guo W, Gu X. Real-Time Monitoring Renal Impairment Due to Drug-Induced AKI and Diabetes-Caused CKD Using an NAG-Activatable NIR-II Nanoprobe. Anal Chem 2021; 93:16158-16165. [PMID: 34813273 DOI: 10.1021/acs.analchem.1c03926] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Real-time in vivo optical imaging of kidney function is important for the diagnosis of renal diseases, such as acute kidney injury (AKI) and chronic kidney disease (CKD), with high morbidity and mortality worldwide. However, the reported optical imaging agents still have limitations for identifying AKI or CKD in the early stage due to their low sensitivity, poor tissue penetration, and significant background interference. Herein, an N-acetyl-β-d-glucosaminidase (NAG)-activatable second near-infrared (NIR-II) fluorescent nanoprobe (BOD-II-NAG-NP) is developed for monitoring the progression of drug-induced AKI and in vivo imaging of diabetes-caused CKD. NAG, as a biomarker of renal diseases, is able to specifically activate BOD-II-NAG-NP to release NIR-II fluorescence signals, enabling in vivo imaging of kidney dysfunctions in living mice. Importantly, such an active imaging mechanism allows BOD-II-NAG-NP to noninvasively detect the onset of drug-induced AKI at least 32 h earlier than the most existing assays, which indicates that BOD-II-NAG-NP has the potential to be an optical imaging agent for the early diagnosis of AKI. Moreover, NIR-II fluorescence produced by BOD-II-NAG-NP could deeply penetrate into the relatively thick layers of fat in diabetic nephropathy mice and provide in vivo imaging with high resolution, indicating that BOD-II-NAG-NP has clinical potential for precision diagnosis of CKD.
Collapse
Affiliation(s)
- Jiahui Tan
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Kai Yin
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Zhirong Ouyang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Rongchen Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Hongming Pan
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Zhijun Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Chuchang Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wei Guo
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Xianfeng Gu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| |
Collapse
|
125
|
Li X, Xiu W, Xiao H, Li Y, Yang K, Yuwen L, Yang D, Weng L, Wang L. Fluorescence and ratiometric photoacoustic imaging of endogenous furin activity via peptide functionalized MoS 2 nanosheets. Biomater Sci 2021; 9:8313-8322. [PMID: 34782897 DOI: 10.1039/d1bm01410b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Furin is an important cellular endoprotease, which is expressed at high levels in various cancer cells. Accurate and real-time detection of endogenous furin with high sensitivity and selectivity is significant for the diagnosis of cancer. Herein an activatable nanoprobe (MoS2@PDA-PEG/peptide, MPPF) with dual-mode near-infrared fluorescence (NIRF)/ratiometric photoacoustic (PA) imaging of endogenous furin activity has been developed. The MPPF nanoprobes were constructed by the covalent functionalization of polydopamine (PDA) coated MoS2 nanosheets (NSs) with Cy7-labeled furin substrate peptides. Upon cleavage of the peptides by furin, Cy7 molecules are released from MPPF nanoprobes and recover their fluorescence, realizing furin activity detection with the limit of detection (LOD) down to 3.73 × 10-4 U mL-1. Meanwhile, the ratio of the PA signal at 768 nm to that at 900 nm (PA768/PA900) decreases over time due to the destruction of fluorescence resonance energy transfer effect from Cy7 to MoS2 NSs and the rapid clearance of small Cy7 molecules from tissues. Thus, the simultaneous change in NIRF and ratiometric PA signals enables the imaging of endogenous furin activity in real time, and with high sensitivity, and high selectivity in both tumor cells and tumor-bearing mice.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Weijun Xiu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Hang Xiao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Yuqing Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Kaili Yang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Lihui Yuwen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Dongliang Yang
- School of Physical and Mathematical Sciences & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211800, China
| | - Lixing Weng
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
126
|
An activated excretion-retarded tumor imaging strategy towards metabolic organs. Bioact Mater 2021; 14:110-119. [PMID: 35310363 PMCID: PMC8892090 DOI: 10.1016/j.bioactmat.2021.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
Intraoperative fluorescence-based tumor imaging plays a crucial role in performing the oncological safe tumor resection with the advantage of differentiating tumor from normal tissues. However, the application of these fluorescence contrast agents in renal cell carcinoma (RCC) and hepatocellular carcinoma (HCC) was dramatically hammered as a result of lacking active targeting and poor retention time in tumor, which limited the Signal to Noise Ratio (SNR) and narrowed the imaging window for complicated surgery. Herein, we reported an activated excretion-retarded tumor imaging (AERTI) strategy, which could be in situ activated with MMP-2 and self-assembled on the surface of tumor cells, thereby resulting in a promoted excretion-retarded effect with an extended tumor retention time and enhanced SNR. Briefly, the AERTI strategy could selectively recognize the Integrin αvβ3. Afterwards, the AERTI strategy would be activated and in situ assembled into nanofibrillar structure after specifically cleaved by MMP-2 upregulated in a variety of human tumors. We demonstrated that the AERTI strategy was successfully accumulated at the tumor sites in the 786-O and HepG2 xenograft models. More importantly, the modified modular design strategy obviously enhanced the SNR of AERTI strategy in the imaging of orthotopic RCC and HCC. Taken together, the results presented here undoubtedly confirmed the design and advantage of this AERTI strategy for the imaging of tumors in metabolic organs. Fluorescence-based tumor imaging plays a crucial role in performing the oncological safe tumor resection. Self-assembled peptide possesses the advantage of active targeting and long-term retention time in tumor. The activated excretion-retarded tumor imaging strategy extended the tumor retention time and enhanced SNR. Assembly-mediated peptide probe successfully achieved the accurate identification of tumor boundaries and detection of minimal tumors (<2 mm).
Collapse
|
127
|
Luo Z, Hu D, Gao D, Yi Z, Zheng H, Sheng Z, Liu X. High-Specificity In Vivo Tumor Imaging Using Bioorthogonal NIR-IIb Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102950. [PMID: 34617645 DOI: 10.1002/adma.202102950] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Lanthanide-based NIR-IIb nanoprobes are ideal for in vivo imaging. However, existing NIR-IIb nanoprobes often suffer from low tumor-targeting specificity, limiting their widespread use. Here the application of bioorthogonal nanoprobes with high tumor-targeting specificity for in vivo NIR-IIb luminescence imaging and magnetic resonance imaging (MRI) is reported. These dual-modality nanoprobes can enhance NIR-IIb emission by 20-fold and MRI signal by twofold, compared with non-bioorthogonal nanoprobes in murine subcutaneous tumors. Moreover, these bioorthogonal probes enable orthotopic brain tumor imaging. Implementation of bio-orthogonal chemistry significantly reduces the nanoprobe dose and hence cytotoxicity, providing a paradigm for real-time in vivo visualization of tumors.
Collapse
Affiliation(s)
- Zichao Luo
- Department of Chemistry and The N.1 Institute for Health, National University of Singapore, Singapore, 117543, Singapore
| | - Dehong Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS key laboratory of health informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Duyang Gao
- Paul C. Lauterbur Research Center for Biomedical Imaging, Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS key laboratory of health informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Zhigao Yi
- Department of Chemistry and The N.1 Institute for Health, National University of Singapore, Singapore, 117543, Singapore
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS key laboratory of health informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS key laboratory of health informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Xiaogang Liu
- Department of Chemistry and The N.1 Institute for Health, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
128
|
Ma H, Wang J, Zhang XD. Near-infrared II emissive metal clusters: From atom physics to biomedicine. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214184] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
129
|
Wei Z, Duan G, Huang B, Qiu S, Zhou D, Zeng J, Cui J, Hu C, Wang X, Wen L, Gao M. Rapidly liver-clearable rare-earth core-shell nanoprobe for dual-modal breast cancer imaging in the second near-infrared window. J Nanobiotechnology 2021; 19:369. [PMID: 34789288 PMCID: PMC8600917 DOI: 10.1186/s12951-021-01112-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Fluorescence imaging as the beacon for optical navigation has wildly developed in preclinical studies due to its prominent advantages, including noninvasiveness and superior temporal resolution. However, the traditional optical methods based on ultraviolet (UV, 200-400 nm) and visible light (Vis, 400-650 nm) limited by their low penetration, signal-to-noise ratio, and high background auto-fluorescence interference. Therefore, the development of near-infrared-II (NIR-II 1000-1700 nm) nanoprobe attracted significant attentions toward in vivo imaging. Regrettably, most of the NIR-II fluorescence probes, especially for inorganic NPs, were hardly excreted from the reticuloendothelial system (RES), yielding the anonymous long-term circulatory safety issue. RESULTS Here, we develop a facile strategy for the fabrication of Nd3+-doped rare-earth core-shell nanoparticles (Nd-RENPs), NaGdF4:5%Nd@NaLuF4, with strong emission in the NIR-II window. What's more, the Nd-RENPs could be quickly eliminated from the hepatobiliary pathway, reducing the potential risk with the long-term retention in the RES. Further, the Nd-RENPs are successfully utilized for NIR-II in vivo imaging and magnetic resonance imaging (MRI) contrast agents, enabling the precise detection of breast cancer. CONCLUSIONS The rationally designed Nd-RENPs nanoprobes manifest rapid-clearance property revealing the potential application toward the noninvasive preoperative imaging of tumor lesions and real-time intra-operative supervision.
Collapse
Affiliation(s)
- Zhuxin Wei
- Department of Radiology, The First Affiliated Hospital of Soochow University, Institute of Medical Imaging, Soochow University, 188 Shizi Street, Suzhou, 215000, Jiangsu, China
| | - Guangxin Duan
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Baoxing Huang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Shanshan Qiu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Dandan Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Jiabin Cui
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Institute of Medical Imaging, Soochow University, 188 Shizi Street, Suzhou, 215000, Jiangsu, China
| | - Ximing Wang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Institute of Medical Imaging, Soochow University, 188 Shizi Street, Suzhou, 215000, Jiangsu, China.
| | - Ling Wen
- Department of Radiology, The First Affiliated Hospital of Soochow University, Institute of Medical Imaging, Soochow University, 188 Shizi Street, Suzhou, 215000, Jiangsu, China.
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| |
Collapse
|
130
|
Li W, Zhang G, Liu L. Near-Infrared Inorganic Nanomaterials for Precise Diagnosis and Therapy. Front Bioeng Biotechnol 2021; 9:768927. [PMID: 34765596 PMCID: PMC8576183 DOI: 10.3389/fbioe.2021.768927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Traditional wavelengths (400–700 nm) have made tremendous inroads in vivo fluorescence imaging. However, the ability of visible light photon penetration hampered the bio-applications. With reduced photon scattering, minimal tissue absorption and negligible autofluorescence properties, near-infrared light (NIR 700–1700 nm) demonstrates better resolution, high signal-to-background ratios, and deep tissue penetration capability, which will be of great significance for in-vivo determination in deep tissue. In this review, we summarized the latest novel NIR inorganic nanomaterials and the emission mechanism including single-walled carbon nanotubes, rare-earth nanoparticles, quantum dots, metal nanomaterials. Subsequently, the recent progress of precise noninvasive diagnosis in biomedicine and cancer therapy utilizing near-infrared inorganic nanomaterials are discussed. In addition, this review will highlight the concerns, challenges and future directions of near-infrared light utilization.
Collapse
Affiliation(s)
- Wenling Li
- Medicine and Pharmacy Research Center, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Guilong Zhang
- Medicine and Pharmacy Research Center, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Lu Liu
- Medicine and Pharmacy Research Center, School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
131
|
Zhong D, Chen W, Xia Z, Hu R, Qi Y, Zhou B, Li W, He J, Wang Z, Zhao Z, Ding D, Tian M, Tang BZ, Zhou M. Aggregation-induced emission luminogens for image-guided surgery in non-human primates. Nat Commun 2021; 12:6485. [PMID: 34759280 PMCID: PMC9632329 DOI: 10.1038/s41467-021-26417-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 09/20/2021] [Indexed: 11/09/2022] Open
Abstract
During the past two decades, aggregation-induced emission luminogens (AIEgens) have been intensively exploited for biological and biomedical applications. Although a series of investigations have been performed in non-primate animal models, there is few pilot studies in non-human primate animal models, strongly hindering the clinical translation of AIE luminogens (AIEgens). Herein, we present a systemic and multifaceted demonstration of an optical imaging-guided surgical operation via AIEgens from small animals (e.g., mice and rabbits) to rhesus macaque, the typical non-human primate animal model. Specifically, the folic conjugated-AIE luminogen (folic-AIEgen) generates strong and stable fluorescence for the detection and surgical excision of sentinel lymph nodes (SLNs). Moreover, with the superior tumor/normal tissue ratio and rapid tumor accumulation, folic-AIEgen successfully images and guides the precise resection of invisible cancerous metastases. Taken together, the presented strategies of folic-AIEgen based fluorescence intraoperative imaging and visualization-guided surgery show potential for clinical applications. Most applications of aggregation-induced emission luminogens (AIEgens) have been limited in small animal models. Here, the authors show the versatility of AIEgens-based imaging-guided surgical operation from small animals to rhesus macaque, in support of the clinical translation of AIEgens.
Collapse
Affiliation(s)
- Danni Zhong
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Weiyu Chen
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 320000, China.,Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, Stanford, 94305, USA
| | - Zhiming Xia
- Department of Nuclear Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Rong Hu
- NSFC Center for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yuchen Qi
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Bo Zhou
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Wanlin Li
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jian He
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zhiming Wang
- NSFC Center for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Zujin Zhao
- NSFC Center for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Dan Ding
- Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Mei Tian
- Department of Nuclear Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Ben Zhong Tang
- NSFC Center for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China. .,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Neuroscienceand Division of Biomedical Engineering, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China.
| | - Min Zhou
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China. .,Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China. .,Cancer Center, Zhejiang University, Hangzhou, 310009, China. .,State Key Laboratory of Modern Optical Instrumentations, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
132
|
Chen Y, Xue L, Zhu Q, Feng Y, Wu M. Recent Advances in Second Near-Infrared Region (NIR-II) Fluorophores and Biomedical Applications. Front Chem 2021; 9:750404. [PMID: 34733821 PMCID: PMC8558517 DOI: 10.3389/fchem.2021.750404] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/24/2021] [Indexed: 12/19/2022] Open
Abstract
Fluorescence imaging technique, characterized by high sensitivity, non-invasiveness and no radiation hazard, has been widely applicated in the biomedical field. However, the depth of tissue penetration is limited in the traditional (400-700 nm) and NIR-I (the first near-infrared region, 700-900 nm) imaging, which urges researchers to explore novel bioimaging modalities with high imaging performance. Prominent progress in the second near-infrared region (NIR-II, 1000-1700 nm) has greatly promoted the development of biomedical imaging. The NIR-II fluorescence imaging significantly overcomes the strong tissue absorption, auto-fluorescence as well as photon scattering, and has deep tissue penetration, micron-level spatial resolution, and high signal-to-background ratio. NIR-II bioimaging has been regarded as the most promising in vivo fluorescence imaging technology. High brightness and biocompatible fluorescent probes are crucial important for NIR-II in vivo imaging. Herein, we focus on the recently developed NIR-II fluorescent cores and their applications in the field of biomedicine, especially in tumor delineation and image-guided surgery, vascular imaging, NIR-II-based photothermal therapy and photodynamic therapy, drug delivery. Besides, the challenges and potential future developments of NIR-II fluorescence imaging are further discussed. It is expected that our review will lay a foundation for clinical translation of NIR-II biological imaging, and inspire new ideas and more researches in this field.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Gynecology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Liru Xue
- Department of Gynecology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Qingqing Zhu
- Department of Gynecology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yanzhi Feng
- Department of Gynecology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Mingfu Wu
- Department of Gynecology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
133
|
Li S, Cheng D, He L, Yuan L. Recent Progresses in NIR-I/II Fluorescence Imaging for Surgical Navigation. Front Bioeng Biotechnol 2021; 9:768698. [PMID: 34790654 PMCID: PMC8591038 DOI: 10.3389/fbioe.2021.768698] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is still one of the main causes of morbidity and death rate around the world, although diagnostic and therapeutic technologies are used to advance human disease treatment. Currently, surgical resection of solid tumors is the most effective and a prior remedial measure to treat cancer. Although medical treatment, technology, and science have advanced significantly, it is challenging to completely treat this lethal disease. Near-infrared (NIR) fluorescence, including the first near-infrared region (NIR-I, 650-900 nm) and the second near-infrared region (NIR-II, 1,000-1,700 nm), plays an important role in image-guided cancer surgeries due to its inherent advantages, such as great tissue penetration, minimal tissue absorption and emission light scattering, and low autofluorescence. By virtue of its high precision in identifying tumor tissue margins, there are growing number of NIR fluorescence-guided surgeries for various living animal models as well as patients in clinical therapy. Herein, this review introduces the basic construction and operation principles of fluorescence molecular imaging technology, and the representative application of NIR-I/II image-guided surgery in biomedical research studies are summarized. Ultimately, we discuss the present challenges and future perspectives in the field of fluorescence imaging for surgical navigation and also put forward our opinions on how to improve the efficiency of the surgical treatment.
Collapse
Affiliation(s)
- Songjiao Li
- Cancer Research Institute, Department of Pharmacy and Pharmacology, The First Affiliated Hospital, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, China
| | - Dan Cheng
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Longwei He
- Cancer Research Institute, Department of Pharmacy and Pharmacology, The First Affiliated Hospital, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| |
Collapse
|
134
|
Henderson E, Huynh G, Wilson K, Plebanski M, Corrie S. The Development of Nanoparticles for the Detection and Imaging of Ovarian Cancers. Biomedicines 2021; 9:1554. [PMID: 34829783 PMCID: PMC8615601 DOI: 10.3390/biomedicines9111554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/27/2022] Open
Abstract
Ovarian cancer remains as one of the most lethal gynecological cancers to date, with major challenges associated with screening, diagnosis and treatment of the disease and an urgent need for new technologies that can meet these challenges. Nanomaterials provide new opportunities in diagnosis and therapeutic management of many different types of cancers. In this review, we highlight recent promising developments of nanoparticles designed specifically for the detection or imaging of ovarian cancer that have reached the preclinical stage of development. This includes contrast agents, molecular imaging agents and intraoperative aids that have been designed for integration into standard imaging procedures. While numerous nanoparticle systems have been developed for ovarian cancer detection and imaging, specific design criteria governing nanomaterial targeting, biodistribution and clearance from the peritoneal cavity remain key challenges that need to be overcome before these promising tools can accomplish significant breakthroughs into the clinical setting.
Collapse
Affiliation(s)
- Edward Henderson
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; (E.H.); (G.H.)
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (K.W.); (M.P.)
| | - Gabriel Huynh
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; (E.H.); (G.H.)
| | - Kirsty Wilson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (K.W.); (M.P.)
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (K.W.); (M.P.)
| | - Simon Corrie
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; (E.H.); (G.H.)
- ARC Training Center for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
135
|
Liu Y, Li Y, Koo S, Sun Y, Liu Y, Liu X, Pan Y, Zhang Z, Du M, Lu S, Qiao X, Gao J, Wang X, Deng Z, Meng X, Xiao Y, Kim JS, Hong X. Versatile Types of Inorganic/Organic NIR-IIa/IIb Fluorophores: From Strategic Design toward Molecular Imaging and Theranostics. Chem Rev 2021; 122:209-268. [PMID: 34664951 DOI: 10.1021/acs.chemrev.1c00553] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In vivo imaging in the second near-infrared window (NIR-II, 1000-1700 nm), which enables us to look deeply into living subjects, is producing marvelous opportunities for biomedical research and clinical applications. Very recently, there has been an upsurge of interdisciplinary studies focusing on developing versatile types of inorganic/organic fluorophores that can be used for noninvasive NIR-IIa/IIb imaging (NIR-IIa, 1300-1400 nm; NIR-IIb, 1500-1700 nm) with near-zero tissue autofluorescence and deeper tissue penetration. This review provides an overview of the reports published to date on the design, properties, molecular imaging, and theranostics of inorganic/organic NIR-IIa/IIb fluorophores. First, we summarize the design concepts of the up-to-date functional NIR-IIa/IIb biomaterials, in the order of single-walled carbon nanotubes (SWCNTs), quantum dots (QDs), rare-earth-doped nanoparticles (RENPs), and organic fluorophores (OFs). Then, these novel imaging modalities and versatile biomedical applications brought by these superior fluorescent properties are reviewed. Finally, challenges and perspectives for future clinical translation, aiming at boosting the clinical application progress of NIR-IIa and NIR-IIb imaging technology are highlighted.
Collapse
Affiliation(s)
- Yishen Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Yang Li
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Seyoung Koo
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Center of Chemical Biology, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yixuan Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China
| | - Xing Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Laboratory of Plant Systematics and Evolutionary Biology, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Yanna Pan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Zhiyun Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Mingxia Du
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Siyu Lu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xue Qiao
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China
| | - Jianfeng Gao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Center for Animal Experiment, Wuhan University, Wuhan 430071, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zixin Deng
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuling Xiao
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Xuechuan Hong
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| |
Collapse
|
136
|
Li X, Wu P, Cao W, Xiong H. Development of pH-activatable fluorescent probes for rapid visualization of metastatic tumours and fluorescence-guided surgery via topical spraying. Chem Commun (Camb) 2021; 57:10636-10639. [PMID: 34581325 DOI: 10.1039/d1cc04408g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of pH-activatable aza-BODIPY-based fluorescent probes were developed for rapid cancer visualization and real-time fluorescence-guided surgery by harnessing topical spraying. These probes exhibited good water-solubility, a tunable pKa from 5.0 to 7.9, and stable intense NIR emission at ∼725 nm under acidic conditions. AzaB5 with a pKa value of 6.7 was able to rapidly and clearly visualize pulmonary and abdominal metastatic tumours including tiny metastases less than 2 mm via topical spraying, further improving intraoperative fluorescence-guided resection. We believe that AzaB5 is promising as a powerful tool to rapidly delineate a broad range of malignancies and assist surgical tumour resection.
Collapse
Affiliation(s)
- Xiaoxin Li
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Peng Wu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Wenwen Cao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Hu Xiong
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
137
|
Wang Z, Wang X, Wan JB, Xu F, Zhao N, Chen M. Optical Imaging in the Second Near Infrared Window for Vascular Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103780. [PMID: 34643028 DOI: 10.1002/smll.202103780] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Optical imaging in the second near infrared region (NIR-II, 1000-1700 nm) provides higher resolution and deeper penetration depth for accurate and real-time vascular anatomy, blood dynamics, and function information, effectively contributing to the early diagnosis and curative effect assessment of vascular anomalies. Currently, NIR-II optical imaging demonstrates encouraging results including long-term monitoring of vascular injury and regeneration, real-time feedback of blood perfusion, tracking of lymphatic metastases, and imaging-guided surgery. This review summarizes the latest progresses of NIR-II optical imaging for angiography including fluorescence imaging, photoacoustic (PA) imaging, and optical coherence tomography (OCT). The development of current NIR-II fluorescence, PA, and OCT probes (i.e., single-walled carbon nanotubes, quantum dots, rare earth doped nanoparticles, noble metal-based nanostructures, organic dye-based probes, and semiconductor polymer nanoparticles), highlighting probe optimization regarding high brightness, longwave emission, and biocompatibility through chemical modification or nanotechnology, is first introduced. The application of NIR-II probes in angiography based on the classification of peripheral vascular, cerebrovascular, tumor vessel, and cardiovascular, is then reviewed. Major challenges and opportunities in the NIR-II optical imaging for vascular imaging are finally discussed.
Collapse
Affiliation(s)
- Zi'an Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Xuan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Fujian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100000, China
| | - Nana Zhao
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100000, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| |
Collapse
|
138
|
Jiang Q, Liu X, Liang G, Sun X. Self-assembly of peptide nanofibers for imaging applications. NANOSCALE 2021; 13:15142-15150. [PMID: 34494635 DOI: 10.1039/d1nr04992e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pathological stimuli-responsive self-assembly of peptide nanofibers enables selective accumulation of imaging agent cargos in the stimuli-rich regions of interest. It provides enhanced imaging signals, biocompatibility, and tumor/disease accessibility and retention, thereby promoting smart, precise, and sensitive tumor/disease imaging both in vitro and in vivo. Considering the remarkable significance and recent encouraging breakthroughs of self-assembled peptide nanofibers in tumor/disease diagnosis, this reivew is herein proposed. We emphasize the recent advances particularly in the past three years, and provide an outlook in this field.
Collapse
Affiliation(s)
- Qiaochu Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China.
| | - Xiaoyang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China.
| | - Gaolin Liang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China.
| | - Xianbao Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China.
| |
Collapse
|
139
|
Xie N, Hou Y, Wang S, Ai X, Bai J, Lai X, Zhang Y, Meng X, Wang X. Second near-infrared (NIR-II) imaging: a novel diagnostic technique for brain diseases. Rev Neurosci 2021; 33:467-490. [PMID: 34551223 DOI: 10.1515/revneuro-2021-0088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/02/2021] [Indexed: 12/20/2022]
Abstract
Imaging in the second near-infrared II (NIR-II) window, a kind of biomedical imaging technology with characteristics of high sensitivity, high resolution, and real-time imaging, is commonly used in the diagnosis of brain diseases. Compared with the conventional visible light (400-750 nm) and NIR-I (750-900 nm) imaging, the NIR-II has a longer wavelength of 1000-1700 nm. Notably, the superiorities of NIR-II can minimize the light scattering and autofluorescence of biological tissue with the depth of brain tissue penetration up to 7.4 mm. Herein, we summarized the main principles of NIR-II in animal models of traumatic brain injury, cerebrovascular visualization, brain tumor, inflammation, and stroke. Simultaneously, we encapsulated the in vivo process of NIR-II probes and their in vivo and in vitro toxic effects. We further dissected its limitations and following optimization measures.
Collapse
Affiliation(s)
- Na Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Ya Hou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Shaohui Wang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Xiaopeng Ai
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Jinrong Bai
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Xianrong Lai
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| |
Collapse
|
140
|
Vijay N, Wu SP, Velmathi S. "Covalent-Assembly"-Triggered Striking Far-Red to near-Infrared Emitting Fluorescent Probe for Abrupt Detection of Nerve-Agent Mimic (DCP): Real Time Application in Monitoring the Presence of Trace Amounts in Soil and Live Cells. ACS APPLIED BIO MATERIALS 2021; 4:7007-7015. [PMID: 35006933 DOI: 10.1021/acsabm.1c00647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Detection of chemical warfare agents (CWA) by simple and rapid methods with real-sample applications are quite inevitable in order to ease the threats to living systems caused by uncertain terror attacks and wars. Herein we have developed the first far-red to near infra-red (NIR) probe based on a covalent assembly approach for the detection of trace amounts of nerve agent mimic diethyl chloro phosphate (DCP) in soil and their fluorescent bio imaging in live cells. The probe features abrupt fluorescence turn on sensing of DCP with fluorescence quantum yield Φ = 0.622. It senses DCP selectively over other analytes in excellent sensitivity with a detection limit of 6.9 nM. In real time, the probe treated strips were employed to detect the DCP vapor effectively with eye catching fluorescence response. The presence of trace amounts of these acute warfare agents in the environment were monitored by soil analysis. Further fluorescent bio imaging was carried out to monitor trace level DCP in living cells using the HeLa cell line.
Collapse
Affiliation(s)
- Natarajan Vijay
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India
| | - Shu Pao Wu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC
| | - Sivan Velmathi
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India
| |
Collapse
|
141
|
Dai R, Peng X, Lin B, Xu D, Lv R. NIR II Luminescence Imaging for Sentinel Lymph Node and Enhanced Chemo-/Photothermal Therapy for Breast Cancer. Bioconjug Chem 2021; 32:2117-2127. [PMID: 34470215 DOI: 10.1021/acs.bioconjchem.1c00393] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this research, a NIR II luminescence imaging and enhanced chemo-/photothermal therapy system of CuS-DOX-Nd/FA NPs for breast cancer and lymph node tracing under single 808 nm irradiation is proposed. Nd-DTPA molecular cluster with the NIR II imaging effect as the carrier was designed to load the ultrasmall CuS nanoparticles and chemotherapeutic drug doxorubicin hydrochloride (DOX). The composite probe is used for tumor lesion imaging and tracking the breast cancer sentinel lymph nodes with simultaneous chemo-/photothermal therapy (PTT) for breast cancer under the single 808 nm laser. This designed probe not only has high permeability and retention (EPR) targeting effect but also can respond to the tumor microenvironment (TME), realizing more precise and efficient release of DOX at the cancer focus. At the same time, CuS as a drug carrier has a good photothermal therapy effect (photothermal conversion efficiency: 27.9%). The serialized released chemotherapy DOX and synergistic PTT effect can be used to the treat the in situ breast cancer land and simultaneously kill the metastasis cancer. The system made the combined molecular clusters Nd-DTPA achieve NIR II imaging of tumor lesions of breast cancer and lymph node to obtain the integration of diagnosis of the transferred disease for better prognosis. The feasibility of the system had obvious tumor growth inhibition effect with NIR II imaging guided is verified by a series of in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Ruiyi Dai
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China
| | - Xiangrong Peng
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China
| | - Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China
| | - Danyang Xu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China
| |
Collapse
|
142
|
Mendez CB, Gonda A, Shah JV, Siebert JN, Zhao X, He S, Riman RE, Tan MC, Moghe PV, Ganapathy V, Pierce MC. Short-Wave Infrared Emitting Nanocomposites for Fluorescence-Guided Surgery. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2021; 27:7300307. [PMID: 36710719 PMCID: PMC9881055 DOI: 10.1109/jstqe.2021.3066895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fluorescence-guided surgery (FGS) is an emerging technique for tissue visualization during surgical procedures. Structures of interest are labeled with exogenous probes whose fluorescent emissions are acquired and viewed in real-time with optical imaging systems. This study investigated rare-earth-doped albumin-encapsulated nanocomposites (REANCs) as short-wave infrared emitting contrast agents for FGS. Experiments were conducted using an animal model of 4T1 breast cancer. The signal-to-background ratio (SBR) obtained with REANCs was compared to values obtained using indocyanine green (ICG), a near-infrared dye used in clinical practice. Prior to resection, the SBR for tumors following intratumoral administration of REANCs was significantly higher than for tumors injected with ICG. Following FGS, evaluation of fluorescence intensity levels in excised tumors and at the surgical bed demonstrated higher contrast between tissues at these sites with REANC contrast than ICG. REANCs also demonstrated excellent photostability over 2 hours of continuous illumination, as well as the ability to perform FGS under ambient lighting, establishing these nanocomposites as a promising contrast agent for FGS applications.
Collapse
Affiliation(s)
- Carolina Bobadilla Mendez
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Amber Gonda
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Jay V Shah
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Jake N Siebert
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Xinyu Zhao
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Shuqing He
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Richard E Riman
- Department of Materials Science and Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Mei Chee Tan
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Prabhas V Moghe
- Department of Biomedical Engineering, and the Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Vidya Ganapathy
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Mark C Pierce
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| |
Collapse
|
143
|
Boosting Photoacoustic Effect via Intramolecular Motions Amplifying Thermal‐to‐Acoustic Conversion Efficiency for Adaptive Image‐Guided Cancer Surgery. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
144
|
Gao H, Duan X, Jiao D, Zeng Y, Zheng X, Zhang J, Ou H, Qi J, Ding D. Boosting Photoacoustic Effect via Intramolecular Motions Amplifying Thermal-to-Acoustic Conversion Efficiency for Adaptive Image-Guided Cancer Surgery. Angew Chem Int Ed Engl 2021; 60:21047-21055. [PMID: 34309160 DOI: 10.1002/anie.202109048] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 12/19/2022]
Abstract
Photoacoustic (PA) imaging emerges as a promising technique for biomedical applications. The development of new strategies to boost PA conversion without depressing other properties (e.g., fluorescence) is highly desirable for multifunctional imaging but difficult to realize. Here, we report a new phenomenon that active intramolecular motions could promote PA signal by specifically increasing thermal-to-acoustic conversion efficiency. The compound with intense intramolecular motion exhibits amplified PA signal by elevating thermal-to-acoustic conversion, and the fluorescence also increases due to aggregation-induced emission signature. The simultaneously high PA and fluorescence brightness of TPA-TQ3 NPs enable precise image-guided surgery. The preoperative fluorescence and PA imaging are capable of locating orthotopic breast tumor in a high-contrast manner, and the intraoperative fluorescence imaging delineates tiny residual tumors. This study highlights a new design guideline of intramolecular motion amplifying PA effect.
Collapse
Affiliation(s)
- Heqi Gao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xingchen Duan
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Di Jiao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yi Zeng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jingtian Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hanlin Ou
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
145
|
He Y, Wang S, Yu P, Yan K, Ming J, Yao C, He Z, El-Toni AM, Khan A, Zhu X, Sun C, Lei Z, Zhang F. NIR-II cell endocytosis-activated fluorescent probes for in vivo high-contrast bioimaging diagnostics. Chem Sci 2021; 12:10474-10482. [PMID: 34447540 PMCID: PMC8356747 DOI: 10.1039/d1sc02763h] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/29/2021] [Indexed: 11/21/2022] Open
Abstract
Fluorescence probes have great potential to empower bioimaging, precision clinical diagnostics and surgery. However, current probes are limited to in vivo high-contrast diagnostics, due to the substantial background interference from tissue scattering and nonspecific activation in blood and normal tissues. Here, we developed a kind of cell endocytosis-activated fluorescence (CEAF) probe, which consists of a hydrophilic polymer unit and an acid pH-sensitive small-molecule fluorescent moiety that operates in the "tissue-transparent" second near-infrared (NIR-II) window. The CEAF probe stably presents in the form of quenched nanoaggregates in water and blood, and can be selectively activated and retained in lysosomes through cell endocytosis, driven by a synergetic mechanism of disaggregation and protonation. In vivo imaging of tumor and inflammation with a passive-targeting and affinity-tagged CEAF probe, respectively, yields highly specific signals with target-to-background ratios over 15 and prolonged observation time up to 35 hours, enabling positive implications for surgical, diagnostic and fundamental biomedical studies.
Collapse
Affiliation(s)
- Yue He
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| | - Shangfeng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| | - Peng Yu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| | - Kui Yan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| | - Jiang Ming
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| | - Chenzhi Yao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| | - Zuyang He
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| | - Ahmed Mohamed El-Toni
- King Abdullah Institute for Nanotechnology, King Saud University Riyadh 11451 Saudi Arabia
| | - Aslam Khan
- King Abdullah Institute for Nanotechnology, King Saud University Riyadh 11451 Saudi Arabia
| | - Xinyan Zhu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| | - Caixia Sun
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| | - Zuhai Lei
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| |
Collapse
|
146
|
Ming L, Song L, Xu J, Wang R, Shi J, Chen M, Zhang Y. Smart Manganese Dioxide-Based Lanthanide Nanoprobes for Triple-Negative Breast Cancer Precise Gene Synergistic Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35444-35455. [PMID: 34292714 DOI: 10.1021/acsami.1c08927] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Small interfering RNA (siRNA)-based gene therapy has been widely studied as a promising treatment for malignant triple-negative breast cancer (TNBC), but efficient delivery of siRNA still remains a challenge. In this study, a smart manganese dioxide (MnO2)-based lanthanide nanoprobe therapeutic nanoplatform (ErNPs@MnO2-siS100A4-RGD) was developed for tumor imaging and precise stimuli-responsive S100A4 siRNA (siS100A4)-mediated gene therapy in synergism with chemodynamic therapy (CDT) of TNBC. ErNPs@MnO2-siS100A4-RGD has a tumor microenvironment-responsive capability attributed to the presence of MnO2, which can be degraded by glutathione (GSH) in the tumor region while releasing siRNA and generating Mn2+ to achieve precise gene therapy and a Fenton-like reaction-mediated CDT effect on TNBC. Subsequently, the lanthanide nanoprobes (ErNPs) are exposed to the second near-infrared region (NIR-II) fluorescence emission to realize the precise tumor location. Both the in vitro and in vivo results demonstrated that the smart nanoplatform possessed high siRNA delivery efficiency and GSH-responsive precise siRNA releasing ability, and compared with individual gene therapy, the GSH-depletion-enhanced CDT effect further reinforced TNBC inhibition, demonstrating excellent GSH-responsive-enhanced NIR-II precise tumor imaging therapy. These results indicate that the nanoplatform provides a crucial foundation for further research on theranostic systems of TNBC.
Collapse
Affiliation(s)
- Liyan Ming
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Liang Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Jiangxi 341000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jixuan Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Ruoping Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Junpeng Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Jiangxi 341000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Min Chen
- Clinical Central Research Core, Xiangan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, P. R. China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Jiangxi 341000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
147
|
Thangudu S, Kaur N, Korupalli C, Sharma V, Kalluru P, Vankayala R. Recent advances in near infrared light responsive multi-functional nanostructures for phototheranostic applications. Biomater Sci 2021; 9:5472-5483. [PMID: 34269365 DOI: 10.1039/d1bm00631b] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Light-based theranostics have become indispensable tools in the field of cancer nanomedicine. Specifically, near infrared (NIR) light mediated imaging and therapy of deeply seated tumors using a single multi-functional nanoplatform have gained significant attention. To this end, several multi-functional nanomaterials have been utilized to tackle cancer and thereby achieve significant outcomes. The present review mainly focuses on the recent advances in the development of NIR light activatable multi-functional materials such as small molecules, quantum dots, and metallic nanostructures for the diagnosis and treatment of deeply seated tumors. The need for improved disease detection and enhanced treatment options, together with realistic considerations for clinically translatable nanomaterials will be the key driving factors for theranostic agent research in the near future. NIR-light mediated cancer imaging and therapeutic approaches offer several advantages in terms of minimal invasiveness, deeper tissue penetration, spatiotemporal resolution, and molecular specificities. Herein, we have reviewed the recent developments in NIR light responsive multi-functional nanostructures for phototheranostic applications in cancer therapy.
Collapse
Affiliation(s)
- Suresh Thangudu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Navpreet Kaur
- Discipline of Biosciences & Bio-Medical Engineering, Indian Institute of Technology Indore, Simrol 453552, India
| | - Chiranjeevi Korupalli
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Vinay Sharma
- Discipline of Materials Engineering, Indian Institute of Technology Jammu, Jammu 181221, India
| | - Poliraju Kalluru
- Department of Chemistry, University of Calgary, Calgary, AB T2N1N4, Canada
| | - Raviraj Vankayala
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342037, India.
| |
Collapse
|
148
|
Rare-earth Doped Nanoparticles with Narrow NIR-II Emission for Optical Imaging with Reduced Autofluorescence. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1172-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
149
|
Luo X, Hu D, Gao D, Wang Y, Chen X, Liu X, Zheng H, Sun M, Sheng Z. Metabolizable Near-Infrared-II Nanoprobes for Dynamic Imaging of Deep-Seated Tumor-Associated Macrophages in Pancreatic Cancer. ACS NANO 2021; 15:10010-10024. [PMID: 34060821 DOI: 10.1021/acsnano.1c01608] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tumor-associated macrophages (TAMs) play a crucial part in cancer evolution. Dynamic imaging of TAMs is of great significance for treatment outcome evaluation and precision tumor therapy. Currently, most fluorescence nanoprobes tend to accumulate in the liver and are difficult to metabolize, which leads to strong background signals and inadequate imaging quality of TAMs nearby the liver such as pancreatic cancer. Herein, we aim to develop metabolizable dextran-indocyanine green (DN-ICG) nanoprobes in the second near-infrared window (NIR-II, 1 000-1 700 nm) for dynamic imaging of TAMs in pancreatic cancer. Compared to free ICG, the NIR-II fluorescence intensity of DN-ICG nanoprobes increased by 279% with significantly improved stability. We demonstrated that DN-ICG nanoprobes could specifically target TAMs through the interaction of dextran with specific ICAM-3-grabbing nonintegrin related 1 (SIGN-R1), which were highly expressed in TAMs. Subsequently, DN-ICG nanoprobes gradually metabolized in the liver yet remained in pancreatic tumor stroma in mouse models, achieving a high signal-to-background ratio (SBR = 7) in deep tissue (∼0.5 cm) NIR-II imaging of TAMs. Moreover, DN-ICG nanoprobes could detect dynamic changes of TAMs induced by low-dose radiotherapy and zoledronic acid. Therefore, the highly biocompatible and biodegradable DN-ICG nanoprobes harbor great potential for precision therapy in pancreatic cancer.
Collapse
Affiliation(s)
- Xinping Luo
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, P. R. China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS Key Laboratory of Health Informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Dehong Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS Key Laboratory of Health Informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Duyang Gao
- Paul C. Lauterbur Research Center for Biomedical Imaging, Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS Key Laboratory of Health Informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Yuenan Wang
- Department of Radiaton Oncology, Peking University Shenzhen Hospital, No. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong Province 518036, P. R. China
| | - Xinhua Chen
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003, P. R. China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS Key Laboratory of Health Informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS Key Laboratory of Health Informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Minjie Sun
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS Key Laboratory of Health Informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| |
Collapse
|
150
|
Jiang R, Dai J, Dong X, Wang Q, Meng Z, Guo J, Yu Y, Wang S, Xia F, Zhao Z, Lou X, Tang BZ. Improving Image-Guided Surgical and Immunological Tumor Treatment Efficacy by Photothermal and Photodynamic Therapies Based on a Multifunctional NIR AIEgen. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101158. [PMID: 33904232 DOI: 10.1002/adma.202101158] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Multimodal therapy is attracting increasing attention to improve tumor treatment efficacy, but generally requires various complicated ingredients combined within one theranostic system to achieve multiple functions. Herein, a multifunctional theranostic nanoplatform based on a single aggregation-induced-emission luminogen (AIEgen), DDTB, is designed to integrate near-infrared (NIR) fluorescence, photothermal, photodynamic, and immunological effects. Intravenously injected AIEgen-based nanoparticles can efficiently accumulate in tumors with NIR fluorescence to provide preoperative diagnosis. Most of the tumors are excised under intraoperative fluorescence navigation, whereafter, some microscopic residual tumors are completely ablated by photodynamic and photothermal therapies for maximally killing the tumor cells and tissues. Up to 90% of the survival rate can be achieved by this synergistic image-guided surgery and photodynamic and photothermal therapies. Importantly, the nanoparticles-mediated photothermal/photodynamic therapy plus programmed death-ligand 1 antibody significantly induce tumor elimination by enhancing the effect of immunotherapy. This theranostic strategy on the basis of a single AIEgen significantly improves the survival of cancer mice with maximized therapeutic outcomes, and holds great promise for clinical cancer treatment.
Collapse
Affiliation(s)
- Ruming Jiang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, South China University of Technology, Guangzhou, 510640, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaoqi Dong
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Quan Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Zijuan Meng
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jingjing Guo
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, South China University of Technology, Guangzhou, 510640, China
| | - Yongjiang Yu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, South China University of Technology, Guangzhou, 510640, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, South China University of Technology, Guangzhou, 510640, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, South China University of Technology, Guangzhou, 510640, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| |
Collapse
|