101
|
Nardella F, Mairet-Khedim M, Roesch C, Maher SP, Ke S, Leang R, Leroy D, Witkowski B. Cross-resistance of the chloroquine-derivative AQ-13 with amodiaquine in Cambodian Plasmodium falciparum isolates. J Antimicrob Chemother 2021; 76:2565-2568. [PMID: 34245274 PMCID: PMC8446910 DOI: 10.1093/jac/dkab219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/03/2021] [Indexed: 11/14/2022] Open
Abstract
Background Expanding resistance to multiple antimalarials, including chloroquine, in South-East Asia (SEA) urges the development of new therapies. AQ-13, a chloroquine derivative, is a new drug candidate for treating malaria caused by Plasmodium falciparum. Objectives Possible cross-resistance between the 4-aminoquinolines amodiaquine, piperaquine and AQ-13 has not been assessed. In vitro parasite growth assays were used to characterize the susceptibility of multidrug-resistant and susceptible P. falciparum patient isolates to AQ-13. Methods A [3H]hypoxanthine uptake assay and a 384-well high content imaging assay were used to assess efficacy of AQ-13 and desethyl-amodiaquine against 38 P. falciparum isolates. Results We observed a strong cross-resistance between the chloroquine derivative amodiaquine and AQ-13 in Cambodian P. falciparum isolates (Pearson correlation coefficient of 0.8621, P < 0.0001). Conclusions In light of the poor efficacy of amodiaquine that we described recently in Cambodia, and its cross resistance with AQ-13, there is a significant risk that similar clinical efficacy of AQ-13-based combinations should be anticipated in areas of amodiaquine resistance.
Collapse
Affiliation(s)
- Flore Nardella
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, CNRS ERL9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris, 75015, France
| | - Mélissa Mairet-Khedim
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh, Cambodia
| | - Camille Roesch
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh, Cambodia
| | - Steven P Maher
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 D.W. Brooks Dr., Athens, GA 30602, USA
| | - Sopheakvatey Ke
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh, Cambodia
| | - Rithea Leang
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Didier Leroy
- Medicine for Malaria Venture, Geneva, Switzerland
| | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh, Cambodia
| |
Collapse
|
102
|
Duvalsaint M, Conrad MD, Tukwasibwe S, Tumwebaze PK, Legac J, Cooper RA, Rosenthal PJ. Balanced impacts of fitness and drug pressure on the evolution of PfMDR1 polymorphisms in Plasmodium falciparum. Malar J 2021; 20:292. [PMID: 34193148 PMCID: PMC8247092 DOI: 10.1186/s12936-021-03823-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/16/2021] [Indexed: 11/26/2022] Open
Abstract
Background Anti-malarial drug resistance may be limited by decreased fitness in resistant parasites. Important contributors to resistance are mutations in the Plasmodium falciparum putative drug transporter PfMDR1. Methods Impacts on in vitro fitness of two common PfMDR1 polymorphisms, N86Y, which is associated with sensitivity to multiple drugs, and Y184F, which has no clear impact on drug sensitivity, were evaluated to study associations between resistance mediators and parasite fitness, measured as relative growth in competitive culture experiments. NF10 P. falciparum lines engineered to represent all PfMDR1 N86Y and Y184F haplotypes were co-cultured for 40 days, and the genetic make-up of the cultures was characterized every 4 days by pyrosequencing. The impacts of culture with anti-malarials on the growth of different haplotypes were also assessed. Lastly, the engineering of P. falciparum containing another common polymorphism, PfMDR1 D1246Y, was attempted. Results Co-culture results were as follows. With wild type (WT) Y184 fixed (N86/Y184 vs. 86Y/Y184), parasites WT and mutant at 86 were at equilibrium. With mutant 184 F fixed (N86/184F vs. 86Y/184F), mutants at 86 overgrew WT. With WT N86 fixed (N86/Y184 vs. N86/184F), WT at 184 overgrew mutants. With mutant 86Y fixed (86Y/Y184 vs. 86Y/184F), WT and mutant at 86 were at equilibrium. Parasites with the double WT were in equilibrium with the double mutant, but 86Y/Y184 overgrew N86/184F. Overall, WT N86/mutant 184F parasites were less fit than parasites with all other haplotypes. Parasites engineered for another mutation, PfMDR1 1246Y, were unstable in culture, with reversion to WT over time. Thus, the N86 WT is stable when accompanied by the Y184 WT, but incurs a fitness cost when accompanied by mutant 184F. Culturing in the presence of chloroquine favored 86Y mutant parasites and in the presence of lumefantrine favored N86 WT parasites; piperaquine had minimal impact. Conclusions These results are consistent with those for Ugandan field isolates, suggest reasons for varied haplotypes, and highlight the interplay between drug pressure and fitness that is guiding the evolution of resistance-mediating haplotypes in P. falciparum.
Collapse
Affiliation(s)
- Marvin Duvalsaint
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Melissa D Conrad
- Department of Medicine, University of California, San Francisco, CA, USA
| | | | | | - Jennifer Legac
- Department of Medicine, University of California, San Francisco, CA, USA
| | | | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
103
|
Boonyalai N, Thamnurak C, Sai-Ngam P, Ta-Aksorn W, Arsanok M, Uthaimongkol N, Sundrakes S, Chattrakarn S, Chaisatit C, Praditpol C, Fagnark W, Kirativanich K, Chaorattanakawee S, Vanachayangkul P, Lertsethtakarn P, Gosi P, Utainnam D, Rodkvamtook W, Kuntawunginn W, Vesely BA, Spring MD, Fukuda MM, Lanteri C, Walsh D, Saunders DL, Smith PL, Wojnarski M, Sirisopana N, Waters NC, Jongsakul K, Gaywee J. Plasmodium falciparum phenotypic and genotypic resistance profile during the emergence of Piperaquine resistance in Northeastern Thailand. Sci Rep 2021; 11:13419. [PMID: 34183715 PMCID: PMC8238947 DOI: 10.1038/s41598-021-92735-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/15/2021] [Indexed: 11/09/2022] Open
Abstract
Malaria remains a public health problem in Thailand, especially along its borders where highly mobile populations can contribute to persistent transmission. This study aimed to determine resistant genotypes and phenotypes of 112 Plasmodium falciparum isolates from patients along the Thai-Cambodia border during 2013-2015. The majority of parasites harbored a pfmdr1-Y184F mutation. A single pfmdr1 copy number had CVIET haplotype of amino acids 72-76 of pfcrt and no pfcytb mutations. All isolates had a single pfk13 point mutation (R539T, R539I, or C580Y), and increased % survival in the ring-stage survival assay (except for R539I). Multiple copies of pfpm2 and pfcrt-F145I were detected in 2014 (12.8%) and increased to 30.4% in 2015. Parasites containing either multiple pfpm2 copies with and without pfcrt-F145I or a single pfpm2 copy with pfcrt-F145I exhibited elevated IC90 values of piperaquine. Collectively, the emergence of these resistance patterns in Thailand near Cambodia border mirrored the reports of dihydroartemisinin-piperaquine treatment failures in the adjacent province of Cambodia, Oddar Meanchey, suggesting a migration of parasites across the border. As malaria elimination efforts ramp up in Southeast Asia, host nations militaries and other groups in border regions need to coordinate the proposed interventions.
Collapse
Affiliation(s)
- Nonlawat Boonyalai
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.
| | - Chatchadaporn Thamnurak
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Piyaporn Sai-Ngam
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Winita Ta-Aksorn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Montri Arsanok
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Nichapat Uthaimongkol
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Siratchana Sundrakes
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sorayut Chattrakarn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chaiyaporn Chaisatit
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chantida Praditpol
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Watcharintorn Fagnark
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Kirakarn Kirativanich
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Suwanna Chaorattanakawee
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.,Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Pattaraporn Vanachayangkul
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Paphavee Lertsethtakarn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Panita Gosi
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Darunee Utainnam
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Wuttikon Rodkvamtook
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Worachet Kuntawunginn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Brian A Vesely
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Michele D Spring
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mark M Fukuda
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Charlotte Lanteri
- Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Douglas Walsh
- Department of Dermatology, Syracuse VA medical center, Syracuse, USA
| | - David L Saunders
- U.S. Army Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Philip L Smith
- Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Mariusz Wojnarski
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Narongrid Sirisopana
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Norman C Waters
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Krisada Jongsakul
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Jariyanart Gaywee
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| |
Collapse
|
104
|
Rovira-Vallbona E, Van Hong N, Kattenberg JH, Huan RM, Hien NTT, Ngoc NTH, Guetens P, Hieu NL, Mai TT, Duong NTT, Duong TT, Phuc BQ, Xa NX, Erhart A, Rosanas-Urgell A. Efficacy of dihydroartemisinin/piperaquine and artesunate monotherapy for the treatment of uncomplicated Plasmodium falciparum malaria in Central Vietnam. J Antimicrob Chemother 2021; 75:2272-2281. [PMID: 32437557 DOI: 10.1093/jac/dkaa172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/20/2020] [Accepted: 04/03/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Artemisinin-based combination therapies (ACTs) have significantly contributed to reduce Plasmodium falciparum malaria burden in Vietnam, but their efficacy is challenged by treatment failure of dihydroartemisinin/piperaquine ACT in Southern provinces. OBJECTIVES To assess the efficacy of dihydroartemisinin/piperaquine for uncomplicated P. falciparum malaria in Gia Lai, Central Vietnam, and determine parasite resistance to artemisinin (ClinicalTrials.gov identifier NCT02604966). METHODS Sixty patients received either dihydroartemisinin/piperaquine (4 mg/kg/day, 3 days; n = 33) or artesunate monotherapy (4 mg/kg/day, 3 days; n = 27) followed by dihydroartemisinin/piperaquine (AS + DHA/PPQ). Clinical phenotypes were determined during a 42 day follow-up and analysed together with ex vivo susceptibility to antimalarials and molecular markers of drug resistance. RESULTS Day 3 positivity rate was significantly higher in the AS + DHA/PPQ arm compared with dihydroartemisinin/piperaquine (70.4% versus 39.4%, P = 0.016). Parasite clearance time was 95.2 h (AS + DHA/PPQ) versus 71.9 h (dihydroartemisinin/piperaquine, P = 0.063) and parasite clearance half-life was 7.4 h (AS + DHA/PPQ) versus 7.0 h (dihydroartemisinin/piperaquine, P = 0.140). Adequate clinical and parasitological response at Day 42 was 100% in both arms. By RT-qPCR, 36% (19/53) patients remained positive until Day 7. No recurrences were detected. kelch13 artemisinin resistance mutations were found in 87% (39/45) of isolates and 50% (20/40) were KEL1/C580Y. The piperaquine resistance marker plasmepsin-2 was duplicated in 10.4% (5/48). Isolates from Day 3-positive patients (n = 18) had higher ex vivo survival rates to artemisinin compounds (P < 0.048) and prevalence of kelch13 mutations (P = 0.005) than Day 3-negative patients (n = 5). The WHO definition of artemisinin resistance was fulfilled in 60% (24/40) of cases. CONCLUSIONS Although dihydroartemisinin/piperaquine remained effective to treat P. falciparum, the high Day 3 positivity rate and prevalence of KEL1 strains calls for continuous monitoring of dihydroartemisinin/piperaquine efficacy in Central Vietnam.
Collapse
Affiliation(s)
| | - Nguyen Van Hong
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Johanna H Kattenberg
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ro Mah Huan
- Centre for Disease Control and Prevention, Gia Lai Province, Vietnam
| | - Nguyen Thi Thu Hien
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | | | - Pieter Guetens
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Nguyen Luong Hieu
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Tran Tuyet Mai
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | | | - Tran Thanh Duong
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Bui Quang Phuc
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Nguyen Xuan Xa
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Annette Erhart
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Medical Research Council Unit The Gambia (MRCG) at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
105
|
Ikeda M, Hirai M, Tachibana SI, Mori T, Mita T. Isolation of Mutants With Reduced Susceptibility to Piperaquine From a Mutator of the Rodent Malaria Parasite Plasmodium berghei. Front Cell Infect Microbiol 2021; 11:672691. [PMID: 34222045 PMCID: PMC8242943 DOI: 10.3389/fcimb.2021.672691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Elucidation of the mechanisms of drug resistance in malaria parasites is crucial for combatting the emergence and spread of resistant parasites, which can be achieved by tracing resistance-associated mutations and providing useful information for drug development. Previously, we produced a novel genetic tool, a Plasmodium berghei mutator (PbMut), whose base substitution rate is 36.5 times higher than that of wild-type parasites. Here, we report the isolation of a mutant with reduced susceptibility to piperaquine (PPQ) from PbMut under PPQ pressure by sequential nine-cycle screening and named it PbMut-PPQ-R-P9. The ED50 of PbMut-PPQ-R-P9 was 1.79 times higher than that of wild-type parasites, suggesting that its PPQ resistance is weak. In the 1st screen, recrudescence occurred in the mice infected with PbMut but not in those infected with wild-type parasites, suggesting earlier emergence of PPQ-resistant parasites from PbMut. Whole-genome sequence analysis of PbMut-PPQ-R-P9 clones revealed that eight nonsynonymous mutations were conserved in all clones, including N331I in PbCRT, the gene encoding chloroquine resistance transporter (CRT). The PbCRT(N331I) mutation already existed in the parasite population after the 2nd screen and was predominant in the population after the 8th screen. An artificially inserted PbCRT(N331I) mutation gave rise to reduced PPQ susceptibility in genome-edited parasites (PbCRT-N331I). The PPQ susceptibility and growth rates of PbCRT-N331I parasites were significantly lower than those of PbMut-PPQ-R-P9, implying that additional mutations in the PbMut-PPQ-R9 parasites could compensate for the fitness cost of the PbCRT(N331I) mutation and contribute to reduced PPQ susceptibility. In summary, PbMut could serve as a novel genetic tool for predicting gene mutations responsible for drug resistance. Further study on PbMut-PPQ-R-P9 could identify genetic changes that compensate for fitness costs owing to drug resistance acquisition.
Collapse
Affiliation(s)
| | - Makoto Hirai
- *Correspondence: Makoto Hirai, ; Toshihiro Mita,
| | | | | | - Toshihiro Mita
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
106
|
Button-Simons KA, Kumar S, Carmago N, Haile MT, Jett C, Checkley LA, Kennedy SY, Pinapati RS, Shoue DA, McDew-White M, Li X, Nosten FH, Kappe SH, Anderson TJC, Romero-Severson J, Ferdig MT, Emrich SJ, Vaughan AM, Cheeseman IH. The power and promise of genetic mapping from Plasmodium falciparum crosses utilizing human liver-chimeric mice. Commun Biol 2021; 4:734. [PMID: 34127785 PMCID: PMC8203791 DOI: 10.1038/s42003-021-02210-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 04/30/2021] [Indexed: 12/30/2022] Open
Abstract
Genetic crosses are most powerful for linkage analysis when progeny numbers are high, parental alleles segregate evenly and numbers of inbred progeny are minimized. We previously developed a novel genetic crossing platform for the human malaria parasite Plasmodium falciparum, an obligately sexual, hermaphroditic protozoan, using mice carrying human hepatocytes (the human liver-chimeric FRG NOD huHep mouse) as the vertebrate host. We report on two genetic crosses-(1) an allopatric cross between a laboratory-adapted parasite (NF54) of African origin and a recently patient-derived Asian parasite, and (2) a sympatric cross between two recently patient-derived Asian parasites. We generated 144 unique recombinant clones from the two crosses, doubling the number of unique recombinant progeny generated in the previous 30 years. The allopatric African/Asian cross has minimal levels of inbreeding and extreme segregation distortion, while in the sympatric Asian cross, inbred progeny predominate and parental alleles segregate evenly. Using simulations, we demonstrate that these progeny provide the power to map small-effect mutations and epistatic interactions. The segregation distortion in the allopatric cross slightly erodes power to detect linkage in several genome regions. We greatly increase the power and the precision to map biomedically important traits with these new large progeny panels.
Collapse
Affiliation(s)
- Katrina A Button-Simons
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nelly Carmago
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Meseret T Haile
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Catherine Jett
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Lisa A Checkley
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Spencer Y Kennedy
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Douglas A Shoue
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Marina McDew-White
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Xue Li
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, UK
| | - Stefan H Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Timothy J C Anderson
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Michael T Ferdig
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ian H Cheeseman
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
107
|
Okombo J, Kanai M, Deni I, Fidock DA. Genomic and Genetic Approaches to Studying Antimalarial Drug Resistance and Plasmodium Biology. Trends Parasitol 2021; 37:476-492. [PMID: 33715941 PMCID: PMC8162148 DOI: 10.1016/j.pt.2021.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022]
Abstract
Recent progress in genomics and molecular genetics has empowered novel approaches to study gene functions in disease-causing pathogens. In the human malaria parasite Plasmodium falciparum, the application of genome-based analyses, site-directed genome editing, and genetic systems that allow for temporal and quantitative regulation of gene and protein expression have been invaluable in defining the genetic basis of antimalarial resistance and elucidating candidate targets to accelerate drug discovery efforts. Using examples from recent studies, we review applications of some of these approaches in advancing our understanding of Plasmodium biology and illustrate their contributions and limitations in characterizing parasite genomic loci associated with antimalarial drug responses.
Collapse
Affiliation(s)
- John Okombo
- Department of Microbiology & Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Mariko Kanai
- Department of Microbiology & Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ioanna Deni
- Department of Microbiology & Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - David A Fidock
- Department of Microbiology & Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
108
|
Duffey M, Blasco B, Burrows JN, Wells TNC, Fidock DA, Leroy D. Assessing risks of Plasmodium falciparum resistance to select next-generation antimalarials. Trends Parasitol 2021; 37:709-721. [PMID: 34001441 DOI: 10.1016/j.pt.2021.04.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
Strategies to counteract or prevent emerging drug resistance are crucial for the design of next-generation antimalarials. In the past, resistant parasites were generally identified following treatment failures in patients, and compounds would have to be abandoned late in development. An early understanding of how candidate therapeutics lose efficacy as parasites evolve resistance is important to facilitate drug design and improve resistance detection and monitoring up to the postregistration phase. We describe a new strategy to assess resistance to antimalarial compounds as early as possible in preclinical development by leveraging tools to define the Plasmodium falciparum resistome, predict potential resistance risks of clinical failure for candidate therapeutics, and inform decisions to guide antimalarial drug development.
Collapse
Affiliation(s)
| | - Benjamin Blasco
- Medicines for Malaria Venture, Geneva, Switzerland; Global Antibiotic Research and Development Partnership, Geneva, Switzerland
| | | | | | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland.
| |
Collapse
|
109
|
Sutherland CJ, Henrici RC, Artavanis-Tsakonas K. Artemisinin susceptibility in the malaria parasite Plasmodium falciparum: propellers, adaptor proteins and the need for cellular healing. FEMS Microbiol Rev 2021; 45:fuaa056. [PMID: 33095255 PMCID: PMC8100002 DOI: 10.1093/femsre/fuaa056] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Studies of the susceptibility of Plasmodium falciparum to the artemisinin family of antimalarial drugs provide a complex picture of partial resistance (tolerance) associated with increased parasite survival in vitro and in vivo. We present an overview of the genetic loci that, in mutant form, can independently elicit parasite tolerance. These encode Kelch propeller domain protein PfK13, ubiquitin hydrolase UBP-1, actin filament-organising protein Coronin, also carrying a propeller domain, and the trafficking adaptor subunit AP-2μ. Detailed studies of these proteins and the functional basis of artemisinin tolerance in blood-stage parasites are enabling a new synthesis of our understanding to date. To guide further experimental work, we present two major conclusions. First, we propose a dual-component model of artemisinin tolerance in P. falciparum comprising suppression of artemisinin activation in early ring stage by reducing endocytic haemoglobin capture from host cytosol, coupled with enhancement of cellular healing mechanisms in surviving cells. Second, these two independent requirements limit the likelihood of development of complete artemisinin resistance by P. falciparum, favouring deployment of existing drugs in new schedules designed to exploit these biological limits, thus extending the useful life of current combination therapies.
Collapse
Affiliation(s)
- Colin J Sutherland
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
| | - Ryan C Henrici
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, PA, USA
| | | |
Collapse
|
110
|
Zhao D, Zhang H, Ji P, Li S, Yang C, Liu Y, Qian D, Deng Y, Wang H, Lu D, Zhou R, Zhao Y. Surveillance of Antimalarial Drug-Resistance Genes in Imported Plasmodium falciparum Isolates From Nigeria in Henan, China, 2012-2019. Front Cell Infect Microbiol 2021; 11:644576. [PMID: 33968801 PMCID: PMC8102827 DOI: 10.3389/fcimb.2021.644576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/31/2021] [Indexed: 12/01/2022] Open
Abstract
Malaria remains a major public health issue in Nigeria, and Nigeria is one of the main sources of imported malaria in China. Antimalarial drug resistance is a significant obstacle to the control and prevention of malaria globally. The molecular markers associated with antimalarial drug resistance can provide early warnings about the emergence of resistance. The prevalence of antimalarial drug resistant genes and mutants, including PfK13, Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps, was evaluated among the imported Plasmodium falciparum isolates from Nigeria in Henan, China, from 2012 to 2019. Among the 167 imported P. falciparum isolates, the wild-type frequency of PfK13, Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps was 98.7, 63.9, 34.8, 3.1, and 3.1%, respectively. The mutation of PfK13 was rare, with just two nonsynonymous (S693F and Q613H) and two synonymous mutations (C469C and G496G) identified from four isolates. The prevalence of Pfcrt mutation at codon 74–76 decreased year-by-year, while the prevalence of pfmdr1 86Y also decreased significantly with time. The prevalence of Pfdhfr and Pfdhps mutants was high. Combined mutations of Pfdhfr and Pfdhps had a high prevalence of the quadruple mutant I51R59N108-G437 (39.0%), followed by the octal mutant I51R59N108-V431A436G437G581S613 (17.0%). These molecular findings update the known data on antimalarial drug-resistance genes and provide supplemental information for Nigeria.
Collapse
Affiliation(s)
- Dongyang Zhao
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Hongwei Zhang
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Penghui Ji
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Suhua Li
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Chengyun Yang
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Ying Liu
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Dan Qian
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Yan Deng
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Hao Wang
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Deling Lu
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Ruimin Zhou
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Yuling Zhao
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| |
Collapse
|
111
|
Structural Insights into Transporter-Mediated Drug Resistance in Infectious Diseases. J Mol Biol 2021; 433:167005. [PMID: 33891902 DOI: 10.1016/j.jmb.2021.167005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Infectious diseases present a major threat to public health globally. Pathogens can acquire resistance to anti-infectious agents via several means including transporter-mediated efflux. Typically, multidrug transporters feature spacious, dynamic, and chemically malleable binding sites to aid in the recognition and transport of chemically diverse substrates across cell membranes. Here, we discuss recent structural investigations of multidrug transporters involved in resistance to infectious diseases that belong to the ATP-binding cassette (ABC) superfamily, the major facilitator superfamily (MFS), the drug/metabolite transporter (DMT) superfamily, the multidrug and toxic compound extrusion (MATE) family, the small multidrug resistance (SMR) family, and the resistance-nodulation-division (RND) superfamily. These structural insights provide invaluable information for understanding and combatting multidrug resistance.
Collapse
|
112
|
In Vitro Susceptibility of Plasmodium falciparum Isolates from the China-Myanmar Border Area to Piperaquine and Association with Candidate Markers. Antimicrob Agents Chemother 2021; 65:AAC.02305-20. [PMID: 33685900 PMCID: PMC8092910 DOI: 10.1128/aac.02305-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmodium falciparum from the Greater Mekong subregion has evolved resistance to the artemisinin-based combination therapy dihydroartemisinin and the partner drug piperaquine. To monitor the potential westward spread or independent evolution of piperaquine resistance, we evaluated the in vitro susceptibility of 120 P. falciparum isolates collected at the China-Myanmar border during 2007-2016. The parasite isolates displayed a relatively wide range of piperaquine susceptibility estimates. While 56.7% of the parasites showed bimodal drug response curves, all but five generated area-under-the-curve (AUC) estimates consistent with a susceptible phenotype. Using the piperaquine survival assay (PSA), 5.6% parasites showed reduced susceptibility. Of note, parasites from 2014-2016 showed the highest AUC value and the highest proportion with a bimodal curve, suggesting falling effectiveness in these later years. Unsupervised K-mean analysis of the combined data assigned parasites into three clusters and identified significant correlations between IC50, IC90, and AUC values. No parasites carried the E415G mutation in a putative exo-nuclease, new mutations in PfCRT, or amplification of the plasmepsin 2/3 genes, suggesting mechanisms of reduced piperaquine susceptibility that differ from those described in other countries of the region. The association of increased AUC, IC50, and IC90 values with major PfK13 mutations (F446I and G533S) suggests that piperaquine resistance may evolve in these PfK13 genetic backgrounds. Additionally, the Pfmdr1 F1226Y mutation was associated with significantly higher PSA values. Further elucidation of piperaquine resistance mechanisms and continuous surveillance are warranted.
Collapse
|
113
|
Arya A, Kojom Foko LP, Chaudhry S, Sharma A, Singh V. Artemisinin-based combination therapy (ACT) and drug resistance molecular markers: A systematic review of clinical studies from two malaria endemic regions - India and sub-Saharan Africa. Int J Parasitol Drugs Drug Resist 2021; 15:43-56. [PMID: 33556786 PMCID: PMC7887327 DOI: 10.1016/j.ijpddr.2020.11.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 11/23/2022]
Abstract
Artemisinin-based combination therapies (ACT) are currently used as a first-line malaria therapy in endemic countries worldwide. This systematic review aims at presenting the current scenario of drug resistance molecular markers, either selected or involved in treatment failures (TF) during in vivo ACT efficacy studies from sub-Saharan Africa (sSA) and India. Eight electronic databases were comprehensively used to search relevant articles and finally a total of 28 studies were included in the review, 21 from sSA and seven from India. On analysis, Artemether + lumefantrine (AL) and artesunate + sulfadoxine-pyrimethamine (AS + SP) are the main ACT in African and Indian regions with a 28-day efficacy range of 54.3-100% for AL and 63-100% for AS + SP respectively. It was observed that mutations in the Pfcrt (76T), Pfdhfr (51I, 59R, 108N), Pfdhps (437G) and Pfmdr1 (86Y, 184F, 1246Y) genes were involved in TF, which varied with respect to ACTs. Based on studies that have genotyped the Pfk13 gene, the reported TF cases, were mainly linked with mutations in genes associated with resistance to ACT partner drugs; indicating that the protection of the partner drug efficacy is crucial for maintaining the efficacy of ACT. This review reveals that ACT are largely efficacious in India and sSA despite the fact that some clinical efficacy and epidemiological studies have reported some validated mutations (i.e., 476I, 539T and 561H) in circulation in these two regions. Also, the role of PfATPase6 in ART resistance is controversial still, while P. falciparum plasmepsin 2 (Pfpm2) in piperaquine (PPQ) resistance and dihydroartemisinin (DHA) + PPQ failures is well documented in Southeast Asian countries but studied less in sSA. Hence, there is a need for continuous molecular surveillance of Pfk13 mutations for emergence of artemisinin (ART) resistance in these countries.
Collapse
Affiliation(s)
- Aditi Arya
- ICMR-National Institute of Malaria Research, New Delhi, India
| | | | - Shewta Chaudhry
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Amit Sharma
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Vineeta Singh
- ICMR-National Institute of Malaria Research, New Delhi, India.
| |
Collapse
|
114
|
Asua V, Conrad MD, Aydemir O, Duvalsaint M, Legac J, Duarte E, Tumwebaze P, Chin DM, Cooper RA, Yeka A, Kamya MR, Dorsey G, Nsobya SL, Bailey J, Rosenthal PJ. Changing Prevalence of Potential Mediators of Aminoquinoline, Antifolate, and Artemisinin Resistance Across Uganda. J Infect Dis 2021; 223:985-994. [PMID: 33146722 PMCID: PMC8006419 DOI: 10.1093/infdis/jiaa687] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/27/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND In Uganda, artemether-lumefantrine is recommended for malaria treatment and sulfadoxine-pyrimethamine for chemoprevention during pregnancy, but drug resistance may limit efficacies. METHODS Genetic polymorphisms associated with sensitivities to key drugs were characterized in samples collected from 16 sites across Uganda in 2018 and 2019 by ligase detection reaction fluorescent microsphere, molecular inversion probe, dideoxy sequencing, and quantitative polymerase chain reaction assays. RESULTS Considering transporter polymorphisms associated with resistance to aminoquinolines, the prevalence of Plasmodium falciparum chloroquine resistance transporter (PfCRT) 76T decreased, but varied markedly between sites (0-46% in 2018; 0-23% in 2019); additional PfCRT polymorphisms and plasmepsin-2/3 amplifications associated elsewhere with resistance to piperaquine were not seen. For P. falciparum multidrug resistance protein 1, in 2019 the 86Y mutation was absent at all sites, the 1246Y mutation had prevalence ≤20% at 14 of 16 sites, and gene amplification was not seen. Considering mutations associated with high-level sulfadoxine-pyrimethamine resistance, prevalences of P. falciparum dihydrofolate reductase 164L (up to 80%) and dihydropteroate synthase 581G (up to 67%) were high at multiple sites. Considering P. falciparum kelch protein propeller domain mutations associated with artemisinin delayed clearance, prevalence of the 469Y and 675V mutations has increased at multiple sites in northern Uganda (up to 23% and 41%, respectively). CONCLUSIONS We demonstrate concerning spread of mutations that may limit efficacies of key antimalarial drugs.
Collapse
Affiliation(s)
- Victor Asua
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Melissa D Conrad
- University of California, San Francisco, San Francisco, California, USA
| | | | - Marvin Duvalsaint
- University of California, San Francisco, San Francisco, California, USA
| | - Jennifer Legac
- University of California, San Francisco, San Francisco, California, USA
| | - Elias Duarte
- University of California, San Francisco, San Francisco, California, USA
| | | | | | - Roland A Cooper
- Dominican University of California, San Rafael, California, USA
| | - Adoke Yeka
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Grant Dorsey
- University of California, San Francisco, San Francisco, California, USA
| | - Sam L Nsobya
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | |
Collapse
|
115
|
Kunkel A, White M, Piola P. Novel anti-malarial drug strategies to prevent artemisinin partner drug resistance: A model-based analysis. PLoS Comput Biol 2021; 17:e1008850. [PMID: 33764971 PMCID: PMC8023453 DOI: 10.1371/journal.pcbi.1008850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 04/06/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
Emergence of resistance to artemisinin and partner drugs in the Greater Mekong Subregion has made elimination of malaria from this region a global priority; it also complicates its achievement. Novel drug strategies such as triple artemisinin combination therapies (ACTs) and chemoprophylaxis have been proposed to help limit resistance and accelerate elimination. The objective of this study was to better understand the potential impacts of triple ACTs and chemoprophylaxis, using a mathematical model parameterized using data from Cambodia. We used a simple compartmental model to predict trends in malaria incidence and resistance in Cambodia from 2020-2025 assuming no changes in transmission since 2018. We assessed three scenarios: a status quo scenario with artesunate-mefloquine (ASMQ) as treatment; a triple ACT scenario with dihydroartemisinin-piperaquine (DP) plus mefloquine (MQ) as treatment; and a chemoprophylaxis scenario with ASMQ as treatment plus DP as chemoprophylaxis. We predicted MQ resistance to increase under the status quo scenario. Triple ACT treatment reversed the spread of MQ resistance, but had no impact on overall malaria incidence. Joint MQ-PPQ resistance declined under the status quo scenario for the baseline parameter set and most sensitivity analyses. Compared to the status quo, triple ACT treatment limited spread of MQ resistance but also slowed declines in PPQ resistance in some sensitivity analyses. The chemoprophylaxis scenario decreased malaria incidence, but increased the spread of strains resistant to both MQ and PPQ; both effects began to reverse after the intervention was removed. We conclude that triple ACTs may limit spread of MQ resistance in the Cambodia, but would have limited impact on malaria incidence and might slow declines in PPQ resistance. Chemoprophylaxis could have greater impact on incidence but also carries higher risks of resistance. Aggressive strategies to limit transmission the GMS are needed to achieve elimination goals, but any intervention should be accompanied by monitoring for drug resistance.
Collapse
Affiliation(s)
- Amber Kunkel
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Paris, France
- * E-mail:
| | - Michael White
- Malaria: Parasites and Hosts Unit, Institut Pasteur, Paris, France
| | - Patrice Piola
- Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| |
Collapse
|
116
|
Nkhoma SC, Ahmed AOA, Zaman S, Porier D, Baker Z, Stedman TT. Dissection of haplotype-specific drug response phenotypes in multiclonal malaria isolates. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 15:152-161. [PMID: 33780700 PMCID: PMC8039770 DOI: 10.1016/j.ijpddr.2021.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 10/28/2022]
Abstract
Natural infections of Plasmodium falciparum, the parasite responsible for the deadliest form of human malaria, often comprise multiple parasite lineages (haplotypes). Multiclonal parasite isolates may exhibit variable phenotypes including different drug susceptibility profiles over time due to the presence of multiple haplotypes. To test this hypothesis, three P. falciparum Cambodian isolates IPC_3445 (MRA-1236), IPC_5202 (MRA-1240) and IPC_6403 (MRA-1285) suspected to be multiclonal were cloned by limiting dilution, and the resulting clones genotyped at 24 highly polymorphic single nucleotide polymorphisms (SNPs). Isolates harbored up to three constituent haplotypes, and exhibited significant variability (p < 0.05) in susceptibility to chloroquine, mefloquine, artemisinin and piperaquine as measured by half maximal drug inhibitory concentration (IC50) assays and parasite survival assays, which measure viability following exposure to pharmacologically relevant concentrations of antimalarial drugs. The IC50 of the most abundant haplotype frequently reflected that of the uncloned parental isolate, suggesting that a single haplotype dominates the antimalarial susceptibility profile and masks the effect of minor frequency haplotypes. These results indicate that phenotypic variability in parasite isolates is often due to the presence of multiple haplotypes. Depending on intended end-use, clinical isolates should be cloned to yield single parasite lineages with well-defined phenotypes and genotypes. The availability of such standardized clonal parasite lineages through NIAID's BEI Resources program will aid research directed towards the development of diagnostics and interventions including drugs against malaria.
Collapse
Affiliation(s)
- Standwell C Nkhoma
- BEI Resources, ATCC, 10801 University Boulevard, Manassas, VA, 20110-2209, USA.
| | - Amel O A Ahmed
- BEI Resources, ATCC, 10801 University Boulevard, Manassas, VA, 20110-2209, USA
| | - Sharmeen Zaman
- BEI Resources, ATCC, 10801 University Boulevard, Manassas, VA, 20110-2209, USA
| | - Danielle Porier
- BEI Resources, ATCC, 10801 University Boulevard, Manassas, VA, 20110-2209, USA
| | - Zachary Baker
- BEI Resources, ATCC, 10801 University Boulevard, Manassas, VA, 20110-2209, USA
| | - Timothy T Stedman
- BEI Resources, ATCC, 10801 University Boulevard, Manassas, VA, 20110-2209, USA.
| |
Collapse
|
117
|
Semimechanistic Pharmacokinetic and Pharmacodynamic Modeling of Piperaquine in a Volunteer Infection Study with Plasmodium falciparum Blood-Stage Malaria. Antimicrob Agents Chemother 2021; 65:AAC.01583-20. [PMID: 33468477 PMCID: PMC8097471 DOI: 10.1128/aac.01583-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/10/2021] [Indexed: 11/20/2022] Open
Abstract
Dihydroartemisinin-piperaquine is a recommended first-line artemisinin combination therapy for Plasmodium falciparum malaria. Piperaquine is also under consideration for other antimalarial combination therapies. The aim of this study was to develop a pharmacokinetic-pharmacodynamic model that might be useful when optimizing the use of piperaquine in new antimalarial combination therapies. The pharmacokinetic-pharmacodynamic model was developed using data from a previously reported dose-ranging study where 24 healthy volunteers were inoculated with 1,800 blood-stage Plasmodium falciparum parasites. All volunteers received a single oral dose of piperaquine (960 mg, 640 mg, or 480 mg) on day 7 or day 8 after parasite inoculation in separate cohorts. Parasite densities were measured by quantitative PCR (qPCR), and piperaquine levels were measured in plasma samples. We used nonlinear mixed-effect modeling to characterize the pharmacokinetic properties of piperaquine and the parasite dynamics associated with piperaquine exposure. The pharmacokinetics of piperaquine was described by a three-compartment disposition model. A semimechanistic parasite dynamics model was developed to explain the maturation of parasites, sequestration of mature parasites, synchronicity of infections, and multiplication of parasites, as seen in natural clinical infections with P. falciparum malaria. Piperaquine-associated parasite killing was estimated using a maximum effect (E max) function. Treatment simulations (i.e., 3-day oral dosing of dihydroartemisinin-piperaquine) indicated that to be able to combat multidrug-resistant infections, an ideal additional drug in a new antimalarial triple-combination therapy should have a parasite reduction ratio of ≥102 per life cycle (38.8 h) with a duration of action of ≥2 weeks. The semimechanistic pharmacokinetic-pharmacodynamic model described here offers the potential to be a valuable tool for assessing and optimizing current and new antimalarial drug combination therapies containing piperaquine and the impact of these therapies on killing multidrug-resistant infections. (This study has been registered in the Australian and New Zealand Clinical Trials Registry under no. ANZCTRN12613000565741.).
Collapse
|
118
|
Multidrug-Resistant Plasmodium falciparum Parasites in the Central Highlands of Vietnam Jeopardize Malaria Control and Elimination Strategies. Antimicrob Agents Chemother 2021; 65:AAC.01639-20. [PMID: 33526483 DOI: 10.1128/aac.01639-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/10/2021] [Indexed: 11/20/2022] Open
Abstract
Plasmodium falciparum resistance to dihydroartemisinin-piperaquine has spread through the Greater Mekong Subregion to southwestern Vietnam. In 2018 to 2019, we collected 127 P. falciparum isolates from Dak Nong (36), Dak Lak (55), Gia Lai (13), and Kon Tum (23) provinces in Vietnam's Central Highlands and found parasites bearing the Pfkelch13 C580Y mutation and multiple plasmepsin 2/3 genes (mean prevalence, 17.9%; range, 4.3% to 27.8%), conferring resistance to dihydroartemisinin-piperaquine. This information is important for drug policy decisions in Vietnam.
Collapse
|
119
|
Ippolito MM, Moser KA, Kabuya JBB, Cunningham C, Juliano JJ. Antimalarial Drug Resistance and Implications for the WHO Global Technical Strategy. CURR EPIDEMIOL REP 2021; 8:46-62. [PMID: 33747712 PMCID: PMC7955901 DOI: 10.1007/s40471-021-00266-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Five years have passed since the World Health Organization released its Global Technical Strategy for Malaria (GTS). In that time, progress against malaria has plateaued. This review focuses on the implications of antimalarial drug resistance for the GTS and how interim progress in parasite genomics and antimalarial pharmacology offer a bulwark against it. RECENT FINDINGS For the first time, drug resistance-conferring genes have been identified and validated before their global expansion in malaria parasite populations. More efficient methods for their detection and elaboration have been developed, although low-density infections and polyclonality remain a nuisance to be solved. Clinical trials of alternative regimens for multidrug-resistant malaria have delivered promising results. New agents continue down the development pipeline, while a nascent infrastructure in sub-Saharan Africa for conducting phase I trials and trials of transmission-blocking agents has come to fruition after years of preparation. SUMMARY These and other developments can help inform the GTS as the world looks ahead to the next two decades of its implementation. To remain ahead of the threat that drug resistance poses, wider application of genomic-based surveillance and optimization of existing and forthcoming antimalarial drugs are essential.
Collapse
Affiliation(s)
- Matthew M. Ippolito
- Divisions of Clinical Pharmacology and Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
- The Johns Hopkins Malaria Research Institute, Johns Hopkins University School of Public Health, Baltimore, MD USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Kara A. Moser
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC USA
| | | | - Clark Cunningham
- School of Medicine, University of North Carolina, Chapel Hill, NC USA
| | - Jonathan J. Juliano
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina, CB#7030, 130 Mason Farm Rd, Chapel Hill, NC 27599 USA
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina, Chapel Hill, NC USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
120
|
Hassett MR, Roepe PD. In vitro growth competition experiments that suggest consequences of the substandard artemisinin epidemic that may be accelerating drug resistance in P. falciparum malaria. PLoS One 2021; 16:e0248057. [PMID: 33690638 PMCID: PMC7942984 DOI: 10.1371/journal.pone.0248057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/18/2021] [Indexed: 11/18/2022] Open
Abstract
Over the past decade, artemisinin (ART)-combination therapies (ACTs) have shown declining efficacy within Southeast Asia (SEA). These resistance-like phenomena manifest as a delayed clearance phenotype (DCP) in some patients treated with ACTs. ACTs are currently the recommended treatment for P. falciparum infections by the World Health Organization (WHO), and they are our last line of defense to effectively treat all strains of malaria. Acceleration of antimicrobial resistance (AMR) is often theorized to be exacerbated by the use of subtherapeutic dosages of drugs ("substandard" drug), which for ACTs has been well documented over the last decade. Troublingly, in 2017, the WHO estimated that nearly 1 in 10 medical products tested in low- and middle-income countries failed to meet quality standards. We have developed a tissue culture-based approach for testing possible connections between substandard treatment and the spread of ACT resistant blood stage forms of P. falciparum. Via sequencing of pfk13, a molecular marker that is predictive for ART resistance (ARTR), we monitor competition of sensitive vs resistant strains over time and under various conditions and define conditions that favor emergence of ARTR parasites. Our findings help to define the conditions under which substandard drug treatments might favor the proliferation of mutant PfK13-mediated drug resistant strains over drug sensitive.
Collapse
Affiliation(s)
- Matthew R. Hassett
- Dept. of Chemistry and Dept. of Biochemistry & Cellular & Molecular Biology, Georgetown University (MRH, PDR), Washington, DC, United States of America
| | - Paul D. Roepe
- Dept. of Chemistry and Dept. of Biochemistry & Cellular & Molecular Biology, Georgetown University (MRH, PDR), Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
121
|
Lawong A, Gahalawat S, Okombo J, Striepen J, Yeo T, Mok S, Deni I, Bridgford JL, Niederstrasser H, Zhou A, Posner B, Wittlin S, Gamo FJ, Crespo B, Churchyard A, Baum J, Mittal N, Winzeler E, Laleu B, Palmer MJ, Charman SA, Fidock DA, Ready JM, Phillips MA. Novel Antimalarial Tetrazoles and Amides Active against the Hemoglobin Degradation Pathway in Plasmodium falciparum. J Med Chem 2021; 64:2739-2761. [PMID: 33620219 DOI: 10.1021/acs.jmedchem.0c02022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Malaria control programs continue to be threatened by drug resistance. To identify new antimalarials, we conducted a phenotypic screen and identified a novel tetrazole-based series that shows fast-kill kinetics and a relatively low propensity to develop high-level resistance. Preliminary structure-activity relationships were established including identification of a subseries of related amides with antiplasmodial activity. Assaying parasites with resistance to antimalarials led us to test whether the series had a similar mechanism of action to chloroquine (CQ). Treatment of synchronized Plasmodium falciparum parasites with active analogues revealed a pattern of intracellular inhibition of hemozoin (Hz) formation reminiscent of CQ's action. Drug selections yielded only modest resistance that was associated with amplification of the multidrug resistance gene 1 (pfmdr1). Thus, we have identified a novel chemical series that targets the historically druggable heme polymerization pathway and that can form the basis of future optimization efforts to develop a new malaria treatment.
Collapse
Affiliation(s)
- Aloysus Lawong
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Suraksha Gahalawat
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Josefine Striepen
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Ioanna Deni
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Jessica L Bridgford
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Hanspeter Niederstrasser
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Anwu Zhou
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Bruce Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland.,University of Basel, 4002 Basel, Switzerland
| | | | - Benigno Crespo
- Medicines Development Campus, GlaxoSmithKline, Tres Cantos, 28760 Madrid, Spain
| | - Alisje Churchyard
- Department of Life Sciences, Imperial College London, SW7 2AZ South Kensington, U.K
| | - Jake Baum
- Department of Life Sciences, Imperial College London, SW7 2AZ South Kensington, U.K
| | - Nimisha Mittal
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, United States
| | - Elizabeth Winzeler
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, United States
| | - Benoît Laleu
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | | | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States.,Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Joseph M Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Margaret A Phillips
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
122
|
Shrestha B, Shah Z, Morgan AP, Saingam P, Chaisatit C, Chaorattanakawee S, Praditpol C, Boonyalai N, Lertsethtakarn P, Wojnarski M, Deutsch-Feldman M, Adams M, Sea D, Chann S, Tyner SD, Lanteri CA, Spring MD, Saunders DL, Smith PL, Lon C, Gosi P, Sok S, Satharath P, Rekol H, Lek D, Vesely BA, Lin JT, Waters NC, Takala-Harrison S. Distribution and temporal dynamics of P. falciparum chloroquine resistance transporter mutations associated with piperaquine resistance in Northern Cambodia. J Infect Dis 2021; 224:1077-1085. [PMID: 33528566 DOI: 10.1093/infdis/jiab055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/26/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Newly emerged mutations within the Plasmodium falciparum chloroquine resistance transporter (PfCRT) can confer piperaquine resistance in the absence of amplified plasmepsin II (pfpm2). In this study, we estimated the prevalence of co-circulating piperaquine resistance mutations in P. falciparum isolates collected in northern Cambodia from 2009-2017. METHODS The sequence of pfcrt was determined for 410 P. falciparum isolates using PacBio amplicon sequencing or whole genome sequencing. Quantitative PCR was used to estimate pfpm2 and pfmdr1 copy number. RESULTS Newly emerged PfCRT mutations increased in prevalence after the change to dihydroartemisinin-piperaquine in 2010, with >98% of parasites harboring these mutations by 2017. After 2014, the prevalence of PfCRT F145I declined, being out-competed by parasites with less resistant, but more fit PfCRT alleles. After the change to artesunate-mefloquine, the prevalence of parasites with amplified pfpm2 decreased, with nearly half of piperaquine-resistant PfCRT mutants having single copy pfpm2. CONCLUSIONS The large proportion of PfCRT mutants that lack pfpm2 amplification emphasizes the importance of including PfCRT mutations as part of molecular surveillance for piperaquine resistance in this region. Likewise, it is critical to monitor for amplified pfmdr1 in these PfCRT mutants, as increased mefloquine pressure could lead to mutants resistant to both drugs.
Collapse
Affiliation(s)
- Biraj Shrestha
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zalak Shah
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrew P Morgan
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Piyaporn Saingam
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | - Suwanna Chaorattanakawee
- Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | | | | | | | - Mariusz Wojnarski
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | - Matthew Adams
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Darapiseth Sea
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Soklyda Chann
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Stuart D Tyner
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | - Michele D Spring
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - David L Saunders
- US Army Research Institute of Infectious Diseases, Ft. Detrick, MD, USA
| | - Philip L Smith
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chanthap Lon
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Panita Gosi
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Somethy Sok
- Royal Cambodian Armed Forces, Phnom Penh, Cambodia
| | | | - Huy Rekol
- National Center for Parasitology Entomology and Malaria Control, Village Trapangsvay, Sanakat Phnom Penh, Cambodia
| | - Dysoley Lek
- National Center for Parasitology Entomology and Malaria Control, Village Trapangsvay, Sanakat Phnom Penh, Cambodia
| | - Brian A Vesely
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Jessica T Lin
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Norman C Waters
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Shannon Takala-Harrison
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
123
|
Transmission of Artemisinin-Resistant Malaria Parasites to Mosquitoes under Antimalarial Drug Pressure. Antimicrob Agents Chemother 2020; 65:AAC.00898-20. [PMID: 33139275 PMCID: PMC7927852 DOI: 10.1128/aac.00898-20] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/20/2020] [Indexed: 12/24/2022] Open
Abstract
Resistance to artemisinin-based combination therapy (ACT) in the Plasmodium falciparum parasite is threatening to reverse recent gains in reducing global deaths from malaria. While resistance manifests as delayed parasite clearance in patients, the phenotype can only spread geographically via the sexual stages and mosquito transmission. In addition to their asexual killing properties, artemisinin and its derivatives sterilize sexual male gametocytes. Whether resistant parasites overcome this sterilizing effect has not, however, been fully tested. Resistance to artemisinin-based combination therapy (ACT) in the Plasmodium falciparum parasite is threatening to reverse recent gains in reducing global deaths from malaria. While resistance manifests as delayed parasite clearance in patients, the phenotype can only spread geographically via the sexual stages and mosquito transmission. In addition to their asexual killing properties, artemisinin and its derivatives sterilize sexual male gametocytes. Whether resistant parasites overcome this sterilizing effect has not, however, been fully tested. Here, we analyzed P. falciparum clinical isolates from the Greater Mekong Subregion, each demonstrating delayed clinical clearance and known resistance-associated polymorphisms in the Kelch13 (PfK13var) gene. As well as demonstrating reduced asexual sensitivity to drug, certain PfK13var isolates demonstrated a marked reduction in sensitivity to artemisinin in an in vitro male gamete formation assay. Importantly, this same reduction in sensitivity was observed when the most resistant isolate was tested directly in mosquito feeds. These results indicate that, under artemisinin drug pressure, while sensitive parasites are blocked, resistant parasites continue transmission. This selective advantage for resistance transmission could favor acquisition of additional host-specificity or polymorphisms affecting partner drug sensitivity in mixed infections. Favored resistance transmission under ACT coverage could have profound implications for the spread of multidrug-resistant malaria beyond Southeast Asia.
Collapse
|
124
|
Ansbro MR, Itkin Z, Chen L, Zahoranszky-Kohalmi G, Amaratunga C, Miotto O, Peryea T, Hobbs CV, Suon S, Sá JM, Dondorp AM, van der Pluijm RW, Wellems TE, Simeonov A, Eastman RT. Modulation of Triple Artemisinin-Based Combination Therapy Pharmacodynamics by Plasmodium falciparum Genotype. ACS Pharmacol Transl Sci 2020; 3:1144-1157. [PMID: 33344893 PMCID: PMC7737215 DOI: 10.1021/acsptsci.0c00110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Indexed: 01/19/2023]
Abstract
The first-line treatments for uncomplicated Plasmodium falciparum malaria are artemisinin-based combination therapies (ACTs), consisting of an artemisinin derivative combined with a longer acting partner drug. However, the spread of P. falciparum with decreased susceptibility to artemisinin and partner drugs presents a significant challenge to malaria control efforts. To stem the spread of drug resistant parasites, novel chemotherapeutic strategies are being evaluated, including the implementation of triple artemisinin-based combination therapies (TACTs). Currently, there is limited knowledge on the pharmacodynamic and pharmacogenetic interactions of proposed TACT drug combinations. To evaluate these interactions, we established an in vitro high-throughput process for measuring the drug concentration-response to three distinct antimalarial drugs present in a TACT. Sixteen different TACT combinations were screened against 15 parasite lines from Cambodia, with a focus on parasites with differential susceptibilities to piperaquine and artemisinins. Analysis revealed drug-drug interactions unique to specific genetic backgrounds, including antagonism between piperaquine and pyronaridine associated with gene amplification of plasmepsin II/III, two aspartic proteases that localize to the parasite digestive vacuole. From this initial study, we identified parasite genotypes with decreased susceptibility to specific TACTs, as well as potential TACTs that display antagonism in a genotype-dependent manner. Our assay and analysis platform can be further leveraged to inform drug implementation decisions and evaluate next-generation TACTs.
Collapse
Affiliation(s)
- Megan R. Ansbro
- Laboratory of Malaria
and Vector Research, National Institute of Allergy and Infectious
Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
- Wellcome Sanger Institute, Hinxton CB10 1SA, U.K.
| | - Zina Itkin
- National
Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Lu Chen
- National
Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Gergely Zahoranszky-Kohalmi
- National
Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Chanaki Amaratunga
- Laboratory of Malaria
and Vector Research, National Institute of Allergy and Infectious
Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Olivo Miotto
- Wellcome Sanger Institute, Hinxton CB10 1SA, U.K.
- Mahidol-Oxford Tropical Medicine Research
Unit, Faculty of Tropical Medicine, Mahidol
University, Bangkok 10400, Thailand
- Centre
for Tropical Medicine and Global Health, Nuffield Department of Medicine
Research, University of Oxford, Oxford OX3 7LF, U.K.
- Medical Research Council (MRC) Centre for Genomics and
Global Health, University of Oxford, Oxford OX3 7BN, U.K.
| | - Tyler Peryea
- National
Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Charlotte V. Hobbs
- Division of Infectious Diseases, Children’s
Hospital, University of Mississippi Medical
Center, Jackson, Mississippi 39216, United States
| | - Seila Suon
- National Center for Parasitology, Entomology,
and Malaria Control, Phnom Penh, Cambodia
| | - Juliana M. Sá
- Laboratory of Malaria
and Vector Research, National Institute of Allergy and Infectious
Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Arjen M. Dondorp
- Mahidol-Oxford Tropical Medicine Research
Unit, Faculty of Tropical Medicine, Mahidol
University, Bangkok 10400, Thailand
- Centre
for Tropical Medicine and Global Health, Nuffield Department of Medicine
Research, University of Oxford, Oxford OX3 7LF, U.K.
| | - Rob W. van der Pluijm
- Mahidol-Oxford Tropical Medicine Research
Unit, Faculty of Tropical Medicine, Mahidol
University, Bangkok 10400, Thailand
- Centre
for Tropical Medicine and Global Health, Nuffield Department of Medicine
Research, University of Oxford, Oxford OX3 7LF, U.K.
| | - Thomas E. Wellems
- Laboratory of Malaria
and Vector Research, National Institute of Allergy and Infectious
Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Anton Simeonov
- National
Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Richard T. Eastman
- National
Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| |
Collapse
|
125
|
de Koning-Ward TF, Boddey JA, Fowkes FJI. Molecular approaches to Malaria 2020. Cell Microbiol 2020; 23:e13289. [PMID: 33197142 DOI: 10.1111/cmi.13289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 11/30/2022]
Abstract
Twenty years ago the Molecular Approaches to Malaria conference was conceived as a forum to present the very latest advances in malaria research and to consolidate and forge new collaborative links between international researchers. The 6th MAM conference, held in February 2020 in Australia, provided 5 days of stimulating scientific exchange and highlighted the incredible malaria research conducted globally that is providing the critical knowledge and cutting-edge technological tools needed to control and ultimately eliminate malaria.
Collapse
Affiliation(s)
| | - Justin A Boddey
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Freya J I Fowkes
- The Burnet Institute, Melbourne, Australia.,Department of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.,Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Australia
| |
Collapse
|
126
|
Imwong M, Dhorda M, Myo Tun K, Thu AM, Phyo AP, Proux S, Suwannasin K, Kunasol C, Srisutham S, Duanguppama J, Vongpromek R, Promnarate C, Saejeng A, Khantikul N, Sugaram R, Thanapongpichat S, Sawangjaroen N, Sutawong K, Han KT, Htut Y, Linn K, Win AA, Hlaing TM, van der Pluijm RW, Mayxay M, Pongvongsa T, Phommasone K, Tripura R, Peto TJ, von Seidlein L, Nguon C, Lek D, Chan XHS, Rekol H, Leang R, Huch C, Kwiatkowski DP, Miotto O, Ashley EA, Kyaw MP, Pukrittayakamee S, Day NPJ, Dondorp AM, Smithuis FM, Nosten FH, White NJ. Molecular epidemiology of resistance to antimalarial drugs in the Greater Mekong subregion: an observational study. THE LANCET. INFECTIOUS DISEASES 2020; 20:1470-1480. [PMID: 32679084 PMCID: PMC7689289 DOI: 10.1016/s1473-3099(20)30228-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/19/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The Greater Mekong subregion is a recurrent source of antimalarial drug resistance in Plasmodium falciparum malaria. This study aimed to characterise the extent and spread of resistance across this entire region between 2007 and 2018. METHODS P falciparum isolates from Myanmar, Thailand, Laos, and Cambodia were obtained from clinical trials and epidemiological studies done between Jan 1, 2007, and Dec 31, 2018, and were genotyped for molecular markers (pfkelch, pfcrt, pfplasmepsin2, and pfmdr1) of antimalarial drug resistance. Genetic relatedness was assessed using microsatellite and single nucleotide polymorphism typing of flanking sequences around target genes. FINDINGS 10 632 isolates were genotyped. A single long pfkelch Cys580Tyr haplotype (from -50 kb to +31·5 kb) conferring artemisinin resistance (PfPailin) now dominates across the eastern Greater Mekong subregion. Piperaquine resistance associated with pfplasmepsin2 gene amplification and mutations in pfcrt downstream of the Lys76Thr chloroquine resistance locus has also developed. On the Thailand-Myanmar border a different pfkelch Cys580Tyr lineage rose to high frequencies before it was eliminated. Elsewhere in Myanmar the Cys580Tyr allele remains widespread at low allele frequencies. Meanwhile a single artemisinin-resistant pfkelch Phe446Ile haplotype has spread across Myanmar. Despite intense use of dihydroartemisinin-piperaquine in Kayin state, eastern Myanmar, both in treatment and mass drug administrations, no selection of piperaquine resistance markers was observed. pfmdr1 amplification, a marker of resistance to mefloquine, remains at low prevalence across the entire region. INTERPRETATION Artemisinin resistance in P falciparum is now prevalent across the Greater Mekong subregion. In the eastern Greater Mekong subregion a multidrug resistant P falciparum lineage (PfPailin) dominates. In Myanmar a long pfkelch Phe446Ile haplotype has spread widely but, by contrast with the eastern Greater Mekong subregion, there is no indication of artemisinin combination therapy (ACT) partner drug resistance from genotyping known markers, and no evidence of spread of ACT resistant P falciparum from the east to the west. There is still a window of opportunity to prevent global spread of ACT resistance. FUNDING Thailand Science Research and Innovation, Initiative 5%, Expertise France, Wellcome Trust.
Collapse
Affiliation(s)
- Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Mehul Dhorda
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Worldwide Antimalarial Resistance Network, Bangkok, Thailand
| | - Kyaw Myo Tun
- Department of Preventive and Social Medicine, Defence Services Medical Academy, Yangon, Myanmar
| | - Aung Myint Thu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand; Myanmar Oxford Clinical Research Unit, Yangon, Myanmar
| | - Stephane Proux
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Kanokon Suwannasin
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chanon Kunasol
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Suttipat Srisutham
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jureeporn Duanguppama
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | - Aungkana Saejeng
- Bureau of Vector-borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | | | - Rungniran Sugaram
- Bureau of Vector-borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | | | - Nongyao Sawangjaroen
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Kreepol Sutawong
- Buntharik Hospital, Amphoe Buntharik, Ubon Ratchathani, Thailand
| | - Kay Thwe Han
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Ye Htut
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Khin Linn
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Aye Aye Win
- Department of Tropical and Infectious Diseases, University of Medicine 1, Yangon, Myanmar
| | - Tin M Hlaing
- Defence Services Medical Research Centre, Naypyitaw, Myanmar
| | - Rob W van der Pluijm
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mayfong Mayxay
- Institute of Research and Education Development, University of Health Sciences, Ministry of Health, Vientiane, Laos; Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Laos
| | - Tiengkham Pongvongsa
- Savannakhet Provincial Health Department, Phonsavangnuea village, Kaysone-Phomvihan district, Savannakhet, Laos
| | - Koukeo Phommasone
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Laos
| | - Rupam Tripura
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Thomas J Peto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lorenz von Seidlein
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chea Nguon
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Dysoley Lek
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Xin Hui S Chan
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Huy Rekol
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Rithea Leang
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Cheah Huch
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Dominic P Kwiatkowski
- Wellcome Sanger Institute, Hinxton, UK; Medical Research Council Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Wellcome Sanger Institute, Hinxton, UK; Medical Research Council Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Elizabeth A Ashley
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Laos
| | - Myat Phone Kyaw
- Department of Medical Research, Myanmar Health Network Organization, Yangon, Myanmar
| | - Sasithon Pukrittayakamee
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; The Royal Society of Thailand, Dusit, Bangkok, Thailand
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Frank M Smithuis
- Myanmar Oxford Clinical Research Unit, Yangon, Myanmar; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Medical Action Myanmar, Yangon, Myanmar
| | - Francois H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
127
|
Rodriguez C, Ibáñez R, Rollins-Smith LA, Gutiérrez M, Durant-Archibold AA. Antimicrobial Secretions of Toads (Anura, Bufonidae): Bioactive Extracts and Isolated Compounds against Human Pathogens. Antibiotics (Basel) 2020; 9:antibiotics9120843. [PMID: 33255881 PMCID: PMC7761505 DOI: 10.3390/antibiotics9120843] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 11/20/2022] Open
Abstract
Species of the family Bufonidae, better known as true toads, are widespread and produce bioactive substances in the secretions obtained from specialized skin macroglands. Some true toads have been employed as a folk remedy to treat infectious diseases caused by microbial pathogens. Recent publications based on in silico analysis highlighted the Bufonidae as promising sources of antimicrobial peptides. A review of the literature reveals that Bufonidae skin secretion extracts show inhibitory activity in vitro against clinical isolates of bacteria, resistant and standard strains of bacterial, and fungal and parasitic human pathogens. Secondary metabolites belonging to the classes of alkaloids, bufadienolides, and peptides with antimicrobial activity have been isolated from species of the genera Bufo, Bufotes, Duttaphrynus, and Rhinella. Additionally, some antimicrobial extracts and purified compounds display low cytotoxicity against mammal cells.
Collapse
Affiliation(s)
- Candelario Rodriguez
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, Panama City 0843-01103, Panama;
- Departamento de Bioquímica, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Apartado 0824-03366, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522510, India
- Scientific Station COIBA, (COIBA AIP), Ciudad del Saber, Apartado 0816-02852, Panama
| | - Roberto Ibáñez
- Smithsonian Tropical Research Institute (STRI), Balboa 0843-03092, Panama;
- Departamento de Zoología, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Apartado 0824-03366, Panama
| | - Louise A. Rollins-Smith
- Department of Pathology, Microbiology, and Immunology, and Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
| | - Marcelino Gutiérrez
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, Panama City 0843-01103, Panama;
- Correspondence: (M.G.); (A.A.D.-A.)
| | - Armando A. Durant-Archibold
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, Panama City 0843-01103, Panama;
- Departamento de Bioquímica, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Apartado 0824-03366, Panama
- Correspondence: (M.G.); (A.A.D.-A.)
| |
Collapse
|
128
|
Associations between Malaria-Preventive Regimens and Plasmodium falciparum Drug Resistance-Mediating Polymorphisms in Ugandan Pregnant Women. Antimicrob Agents Chemother 2020; 64:AAC.01047-20. [PMID: 33020152 DOI: 10.1128/aac.01047-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/25/2020] [Indexed: 11/20/2022] Open
Abstract
Intermittent preventive treatment in pregnancy (IPTp) with monthly sulfadoxine-pyrimethamine (SP) is recommended for malaria-endemic parts of Africa, but efficacy is compromised by resistance, and, in recent trials, dihydroartemisinin-piperaquine (DP) has shown better antimalarial protective efficacy. We utilized blood samples from a recent trial to evaluate selection by IPTp with DP or SP of Plasmodium falciparum genetic polymorphisms that alter susceptibility to these drugs. The prevalence of known genetic polymorphisms associated with altered drug susceptibility was determined in parasitemic samples, including 375 collected before IPTp drugs were administered, 125 randomly selected from those receiving SP, and 80 from those receiving DP. For women receiving DP, the prevalence of mixed/mutant sequences was greater in samples collected during IPTp than that in samples collected prior to the intervention for PfMDR1 N86Y (20.3% versus 3.9%; P < 0.001), PfMDR1 Y184F (73.0% versus 53.0%; P < 0.001), and PfCRT K76T (46.4% versus 24.0%; P < 0.001). Considering SP, prior to IPTp, the prevalence of all 5 common antifolate mutations was over 92%, and this prevalence increased following exposure to SP, although none of these changes were statistically significant. For two additional mutations associated with high-level SP resistance, the prevalence of PfDHFR 164L (13.7% versus 4.0%; P = 0.004), but not PfDHPS 581G (1.9% versus 3.0%; P = 0.74), was greater in samples collected during IPTp compared to those collected before the intervention. Use of IPTp in Uganda selected for parasites with mutations associated with decreased susceptibility to IPTp regimens. Thus, a potential drawback of IPTp is selection of parasites with decreased drug susceptibility.
Collapse
|
129
|
Wang S, Xu S, Geng J, Si Y, Zhao H, Li X, Yang Q, Zeng W, Xiang Z, Chen X, Zhang Y, Li C, Kyaw MP, Cui L, Yang Z. Molecular Surveillance and in vitro Drug Sensitivity Study of Plasmodium falciparum Isolates from the China-Myanmar Border. Am J Trop Med Hyg 2020; 103:1100-1106. [PMID: 32588794 DOI: 10.4269/ajtmh.20-0235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The emergence and spread of resistance in Plasmodium falciparum to the frontline treatment artemisinin-based combination therapies in Southeast Asia require close monitoring of the situation. Here, we collected 36 clinical samples of P. falciparum from the China-Myanmar border in 2014-2016, adapted these parasites to continuous culture, and performed in vitro drug assays on seven antimalarial drugs. Data for 23 parasites collected in 2010 and 2012 from the same area reported in an early study were used to assess longitudinal changes in drug sensitivity. Parasites remained highly resistant to chloroquine (CQ) and pyrimethamine, whereas they were generally sensitive to mefloquine (MFQ), lumefantrine (LMF), naphthoquine (NQ), and pyronaridine (PND). Parasites showed a similar temporal trend in sensitivity to CQ, NQ, and PND, with gradual reduction in the half-maximal inhibitory concentrations (IC50s) after 2012. The IC50s to the aminoalcohol drugs MFQ, LMF, and quinine (QN) all significantly declined in 2014, followed by various degrees of increase in 2016. Pyrimethamine displayed a continuous increase in IC50 over the years. The Dd2-like P. falciparum chloroquine-resistant transporter mutations were fixed or nearly fixed in the parasite population. The P. falciparum multidrug resistance 1 F1226Y mutation was detected in 80% parasites in 2016 and associated with reduced sensitivity to LMF and QN (P < 0.05). The N51I in P. falciparum dihydrofolate reductase and K540E/N and A581G in P. falciparum dihydropteroate synthase that are associated with antifolate resistance were either fixed or were approaching fixation in recent years. This study provides an updated picture and temporal trend of antimalarial drug resistance in the China-Myanmar border region, which will serve as a reference for antimalarial treatment.
Collapse
Affiliation(s)
- Siqi Wang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Shiling Xu
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Jinting Geng
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Yu Si
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Hui Zhao
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Xinxin Li
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Qi Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Weilin Zeng
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Zheng Xiang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Xi Chen
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Yanmei Zhang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Cuiying Li
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | | | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| |
Collapse
|
130
|
Gupta H, Galatas B, Chidimatembue A, Huijben S, Cisteró P, Matambisso G, Nhamussua L, Simone W, Bassat Q, Ménard D, Ringwald P, Rabinovich NR, Alonso PL, Saúte F, Aide P, Mayor A. Effect of mass dihydroartemisinin-piperaquine administration in southern Mozambique on the carriage of molecular markers of antimalarial resistance. PLoS One 2020; 15:e0240174. [PMID: 33075062 PMCID: PMC7571678 DOI: 10.1371/journal.pone.0240174] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mass drug administration (MDA) can rapidly reduce the burden of Plasmodium falciparum (Pf). However, concerns remain about its contribution to select for antimalarial drug resistance. METHODS We used Sanger sequencing and real-time PCR to determine the proportion of molecular markers associated with antimalarial resistance (k13, pfpm2, pfmdr1 and pfcrt) in Pf isolates collected before (n = 99) and after (n = 112) the implementation of two monthly MDA rounds with dihydroartemisinin-piperaquine (DHAp) for two consecutive years in Magude district of Southern Mozambique. RESULTS None of the k13 polymorphisms associated with artemisinin resistance were observed in the Pf isolates analyzed. The proportion of Pf isolates with multiple copies of pfpm2, an amplification associated with piperaquine resistance, was similar in pre- (4.9%) and post-MDA groups (3.4%; p = 1.000). No statistically significant differences were observed between pre- and post-MDA groups in the proportion of Pf isolates neither with mutations in pfcrt and pfmdr1 genes, nor with the carriage of pfmdr1 multiple copies (p>0.05). CONCLUSIONS This study does not show any evidence of increased frequency of molecular makers of antimalarial resistance after MDA with DHAp in southern Mozambique where markers of antimalarial resistance were absent or low at the beginning of the intervention.
Collapse
Affiliation(s)
- Himanshu Gupta
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| | - Beatriz Galatas
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
| | | | - Silvie Huijben
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| | - Pau Cisteró
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| | | | - Lidia Nhamussua
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
| | - Wilson Simone
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
| | - Quique Bassat
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
- ICREA, Pg. Lluís Companys, Barcelona, Spain
- Spanish Consortium for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain
| | - Didier Ménard
- Institut Pasteur, Paris, France
- INSERM U1201, Paris, France
- CNRS ERL9195, Paris, France
| | - Pascal Ringwald
- World Health Organization (WHO), Global Malaria Programme, Geneva, Switzerland
| | - N. Regina Rabinovich
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Pedro L. Alonso
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
| | - Francisco Saúte
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
- National Institute of Health, Ministry of Health, Manhica, Mozambique
| | - Alfredo Mayor
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
- ICREA, Pg. Lluís Companys, Barcelona, Spain
| |
Collapse
|
131
|
Huang G, Solano CM, Melendez J, Yu-Alfonzo S, Boonhok R, Min H, Miao J, Chakrabarti D, Yuan Y. Discovery of fast-acting dual-stage antimalarial agents by profiling pyridylvinylquinoline chemical space via copper catalyzed azide-alkyne cycloadditions. Eur J Med Chem 2020; 209:112889. [PMID: 33045660 DOI: 10.1016/j.ejmech.2020.112889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/08/2020] [Accepted: 09/24/2020] [Indexed: 11/18/2022]
Abstract
To identity fast-acting, multistage antimalarial agents, a series of pyridylvinylquinoline-triazole analogues have been synthesized via CuAAC. Most of the compounds display significant inhibitory effect on the drug-resistant malarial Dd2 strain at low submicromolar concentrations. Among the tested analogues, compound 60 is the most potent molecule with an EC50 value of 0.04 ± 0.01 μM. Our current study indicates that compound 60 is a fast-acting antimalarial compound and it demonstrates stage specific action at the trophozoite phase in the P. falciparum asexual life cycle. In addition, compound 60 is active against both early and late stage P. falciparum gametocytes. From a mechanistic perspective, compound 60 shows good activity as an inhibitor of β-hematin formation. Collectively, our findings suggest that fast-acting agent 60 targets dual life stages of the malarial parasites and warrant further investigation of pyridylvinylquinoline hybrids as new antimalarials.
Collapse
Affiliation(s)
- Guang Huang
- Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA
| | - Claribel Murillo Solano
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32826, USA
| | - Joel Melendez
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32826, USA
| | - Sabrina Yu-Alfonzo
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32826, USA
| | - Rachasak Boonhok
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA; Department of Medical Technology, School of Allied Health Science, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Hui Min
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Debopam Chakrabarti
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32826, USA.
| | - Yu Yuan
- Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
132
|
Uwimana A, Legrand E, Stokes BH, Ndikumana JLM, Warsame M, Umulisa N, Ngamije D, Munyaneza T, Mazarati JB, Munguti K, Campagne P, Criscuolo A, Ariey F, Murindahabi M, Ringwald P, Fidock DA, Mbituyumuremyi A, Menard D. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat Med 2020; 26:1602-1608. [PMID: 32747827 PMCID: PMC7541349 DOI: 10.1038/s41591-020-1005-2] [Citation(s) in RCA: 478] [Impact Index Per Article: 95.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/01/2020] [Indexed: 12/24/2022]
Abstract
Artemisinin resistance (delayed P. falciparum clearance following artemisinin-based combination therapy), is widespread across Southeast Asia but to date has not been reported in Africa1-4. Here we genotyped the P. falciparum K13 (Pfkelch13) propeller domain, mutations in which can mediate artemisinin resistance5,6, in pretreatment samples collected from recent dihydroarteminisin-piperaquine and artemether-lumefantrine efficacy trials in Rwanda7. While cure rates were >95% in both treatment arms, the Pfkelch13 R561H mutation was identified in 19 of 257 (7.4%) patients at Masaka. Phylogenetic analysis revealed the expansion of an indigenous R561H lineage. Gene editing confirmed that this mutation can drive artemisinin resistance in vitro. This study provides evidence for the de novo emergence of Pfkelch13-mediated artemisinin resistance in Rwanda, potentially compromising the continued success of antimalarial chemotherapy in Africa.
Collapse
Affiliation(s)
- Aline Uwimana
- Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Centre (RBC), Kigali, Rwanda.
| | - Eric Legrand
- Malaria Genetics and Resistance Unit-Institut Pasteur, INSERM U1201, CNRS ERL9195, Paris, France
| | - Barbara H Stokes
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, USA
| | | | | | - Noella Umulisa
- Maternal and Child Survival Program/JHPIEGO, Baltimore, MD, USA
- Impact Malaria Rwanda, Kigali, Rwanda
| | | | - Tharcisse Munyaneza
- National Reference Laboratory (NRL), BIOS /Rwanda Biomedical Centre (RBC), Kigali, Rwanda
| | - Jean-Baptiste Mazarati
- National Reference Laboratory (NRL), BIOS /Rwanda Biomedical Centre (RBC), Kigali, Rwanda
| | | | - Pascal Campagne
- Hub de Bioinformatique et Biostatistique-Département Biologie Computationnelle, Paris, France
| | - Alexis Criscuolo
- Hub de Bioinformatique et Biostatistique-Département Biologie Computationnelle, Paris, France
| | - Frédéric Ariey
- INSERM 1016, Institut Cochin, Service de Parasitologie-Mycologie, Hôpital Cochin, Université de Paris, Paris, France
| | | | - Pascal Ringwald
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Aimable Mbituyumuremyi
- Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Centre (RBC), Kigali, Rwanda
| | - Didier Menard
- Malaria Genetics and Resistance Unit-Institut Pasteur, INSERM U1201, CNRS ERL9195, Paris, France.
| |
Collapse
|
133
|
Plasmodium falciparum Knockout for the GPCR-Like PfSR25 Receptor Displays Greater Susceptibility to 1,2,3-Triazole Compounds That Block Malaria Parasite Development. Biomolecules 2020; 10:biom10081197. [PMID: 32824696 PMCID: PMC7465636 DOI: 10.3390/biom10081197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 01/05/2023] Open
Abstract
The search for new compounds with antimalarial activity is urgent, as resistance to ones in the classical drug, has already been described in more than one continent. Compounds derived from 1,2,3-triazoles are effective against parasites and bacteria. Here, we evaluated the potential antimalarial activity against the human malaria parasite Plasmodium falciparum in a culture of fifty-four triazole compounds derived from 1H-and 2H-1,2,3-triazole. We identified thirty-one compounds with potential antimalarial activity at concentrations in the micromolar order (µM) and IC50 values ranging from 2.80 µM (9) to 29.27 µM (21). Then, we selected some of these compounds to perform the same tests on the PfSR25- strain (knockout for P. falciparum G-protein coupled receptor-like, SR25). Our experiences with the PfSR25- strain showed that both compounds with higher antimalarial activity for the 3D7 strain and those with less activity resulted in lower IC50 values for the knockout strain. The cytotoxicity of the compounds was evaluated in human renal embryonic cells (HEK 293), using MTT assays. This demonstrated that the compounds with the highest activity (9, 13, 19, 22, 24, 29), showed no toxicity at the tested concentrations.
Collapse
|
134
|
Boonyalai N, Vesely BA, Thamnurak C, Praditpol C, Fagnark W, Kirativanich K, Saingam P, Chaisatit C, Lertsethtakarn P, Gosi P, Kuntawunginn W, Vanachayangkul P, Spring MD, Fukuda MM, Lon C, Smith PL, Waters NC, Saunders DL, Wojnarski M. Piperaquine resistant Cambodian Plasmodium falciparum clinical isolates: in vitro genotypic and phenotypic characterization. Malar J 2020; 19:269. [PMID: 32711538 PMCID: PMC7382038 DOI: 10.1186/s12936-020-03339-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND High rates of dihydroartemisinin-piperaquine (DHA-PPQ) treatment failures have been documented for uncomplicated Plasmodium falciparum in Cambodia. The genetic markers plasmepsin 2 (pfpm2), exonuclease (pfexo) and chloroquine resistance transporter (pfcrt) genes are associated with PPQ resistance and are used for monitoring the prevalence of drug resistance and guiding malaria drug treatment policy. METHODS To examine the relative contribution of each marker to PPQ resistance, in vitro culture and the PPQ survival assay were performed on seventeen P. falciparum isolates from northern Cambodia, and the presence of E415G-Exo and pfcrt mutations (T93S, H97Y, F145I, I218F, M343L, C350R, and G353V) as well as pfpm2 copy number polymorphisms were determined. Parasites were then cloned by limiting dilution and the cloned parasites were tested for drug susceptibility. Isobolographic analysis of several drug combinations for standard clones and newly cloned P. falciparum Cambodian isolates was also determined. RESULTS The characterization of culture-adapted isolates revealed that the presence of novel pfcrt mutations (T93S, H97Y, F145I, and I218F) with E415G-Exo mutation can confer PPQ-resistance, in the absence of pfpm2 amplification. In vitro testing of PPQ resistant parasites demonstrated a bimodal dose-response, the existence of a swollen digestive vacuole phenotype, and an increased susceptibility to quinine, chloroquine, mefloquine and lumefantrine. To further characterize drug sensitivity, parental parasites were cloned in which a clonal line, 14-B5, was identified as sensitive to artemisinin and piperaquine, but resistant to chloroquine. Assessment of the clone against a panel of drug combinations revealed antagonistic activity for six different drug combinations. However, mefloquine-proguanil and atovaquone-proguanil combinations revealed synergistic antimalarial activity. CONCLUSIONS Surveillance for PPQ resistance in regions relying on DHA-PPQ as the first-line treatment is dependent on the monitoring of molecular markers of drug resistance. P. falciparum harbouring novel pfcrt mutations with E415G-exo mutations displayed PPQ resistant phenotype. The presence of pfpm2 amplification was not required to render parasites PPQ resistant suggesting that the increase in pfpm2 copy number alone is not the sole modulator of PPQ resistance. Genetic background of circulating field isolates appear to play a role in drug susceptibility and biological responses induced by drug combinations. The use of latest field isolates may be necessary for assessment of relevant drug combinations against P. falciparum strains and when down-selecting novel drug candidates.
Collapse
Affiliation(s)
- Nonlawat Boonyalai
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand.
| | - Brian A Vesely
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Chatchadaporn Thamnurak
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Chantida Praditpol
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Watcharintorn Fagnark
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Kirakarn Kirativanich
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Piyaporn Saingam
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Chaiyaporn Chaisatit
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Paphavee Lertsethtakarn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Panita Gosi
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Worachet Kuntawunginn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Pattaraporn Vanachayangkul
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Michele D Spring
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Mark M Fukuda
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Chanthap Lon
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Philip L Smith
- Walter Reed Army Institute of Research, Silver Spring, Maryland, 20910, USA
| | - Norman C Waters
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - David L Saunders
- U.S. Army Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Mariusz Wojnarski
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| |
Collapse
|
135
|
Plasmodium falciparum Isolates Carrying pfk13 Polymorphisms Harbor the SVMNT Allele of pfcrt in Northwestern Indonesia. Antimicrob Agents Chemother 2020; 64:AAC.02539-19. [PMID: 32393498 DOI: 10.1128/aac.02539-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/23/2020] [Indexed: 11/20/2022] Open
Abstract
Artemisinin-based combination therapy (ACT) is the first-line antimalarial regimen in Indonesia. Susceptibility of Plasmodium falciparum to artemisinin is falling in the Greater Mekong subregion, but it is not known whether the efficacy of current combinations is also threatened in nearby Sumatera. We evaluated the genetic loci pfcrt, pfmdr1, and pfk13, considered to be under selection by artemisinin combination therapy, among 404 P. falciparum infections identified by PCR detection in a cross-sectional survey of 3,731 residents of three regencies. The pfcrt haplotype SVMNT (codons 72 to 76) was the most prevalent and displayed significant linkage disequilibrium with the pfmdr1 haplotype YY (codons 86 and 184) (odds ratio [OR] 26.7; 95% confidence interval [CI], 5.96 to 239.4; P < 0.001). This contrasts with Mekong countries, where the CVIET haplotype of pfcrt predominates. Among 231 evaluable isolates, only 9 (3.9%) showed any evidence of nonsynonymous gene variants in the propeller domain of pfk13 The Thr474Ala variant was seen in six individuals, and Cys580Tyr was identified with low confidence in only a single isolate from an asymptomatic individual. Among a subset of 117 symptomatic P. falciparum-infected individuals randomized to receive either dihydroartemisinin-piperaquine or artemether-lumefantrine, the treatment outcome was not associated with pretreatment genotype. However, submicroscopic persistent parasites at day 28 or day 42 of follow-up were significantly more likely to harbor the pfmdr1 haplotype NF (codons 86 and 184) than were pretreatment isolates (P < 0.001 for both treatment groups). Current ACT regimens appear to be effective in Sumatera, but evidence of persistent submicroscopic infection in some patients suggests further detailed studies of drug susceptibility should be undertaken.
Collapse
|
136
|
Rosenthal MR, Ng CL. Plasmodium falciparum Artemisinin Resistance: The Effect of Heme, Protein Damage, and Parasite Cell Stress Response. ACS Infect Dis 2020; 6:1599-1614. [PMID: 32324369 DOI: 10.1021/acsinfecdis.9b00527] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite a significant decline in morbidity and mortality over the last two decades, in 2018 there were 228 million reported cases of malaria and 405000 malaria-related deaths. Artemisinin, the cornerstone of artemisinin-based combination therapies, is the most potent drug in the antimalarial armamentarium against falciparum malaria. Heme-mediated activation of artemisinin and its derivatives results in widespread parasite protein alkylation, which is thought to lead to parasite death. Alarmingly, cases of decreased artemisinin efficacy have been widely detected across Cambodia and in neighboring countries, and a few cases have been reported in the Guiana Shield, India, and Africa. The grim prospect of widespread artemisinin resistance propelled a concerted effort to understand the mechanisms of artemisinin action and resistance. The identification of genetic markers and the knowledge of molecular mechanisms underpinning artemisinin resistance allow prospective surveillance and inform future drug development strategies, respectively. Here, we highlight recent advances in our understanding of how parasite vesicle trafficking, hemoglobin digestion, and cell stress responses contribute to artemisinin resistance.
Collapse
Affiliation(s)
- Melissa R. Rosenthal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Caroline L. Ng
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
137
|
Riegel B, Roepe PD. Altered Drug Transport by Plasmodium falciparum Chloroquine Resistance Transporter Isoforms Harboring Mutations Associated with Piperaquine Resistance. Biochemistry 2020; 59:2484-2493. [DOI: 10.1021/acs.biochem.0c00247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bryce Riegel
- Department of Chemistry and Department of Biochemistry and Cellular and Molecular Biology, Georgetown University, Washington, D.C. 20057, United States
| | - Paul D. Roepe
- Department of Chemistry and Department of Biochemistry and Cellular and Molecular Biology, Georgetown University, Washington, D.C. 20057, United States
| |
Collapse
|
138
|
Wellems TE, Sá JM, Su XZ, Connelly SV, Ellis AC. 'Artemisinin Resistance': Something New or Old? Something of a Misnomer? Trends Parasitol 2020; 36:735-744. [PMID: 32586776 DOI: 10.1016/j.pt.2020.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 01/02/2023]
Abstract
Artemisinin and its derivatives (ART) are crucial first-line antimalarial drugs that rapidly clear parasitemia, but recrudescences of the infection frequently follow ART monotherapy. For this reason, ART must be used in combination with one or more partner drugs that ensure complete cure. The ability of malaria parasites to survive ART monotherapy may relate to an innate growth bistability phenomenon whereby a fraction of the drug-exposed population enters into metabolic quiescence (dormancy) as persister forms. Characterization of the events that underlie entry and waking from persistence may lead to lasting breakthroughs in malaria chemotherapy that can prevent recrudescences and protect the future of ART-based combination therapies.
Collapse
Affiliation(s)
- Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Juliana M Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sean V Connelly
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angela C Ellis
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
139
|
Nasamu AS, Polino AJ, Istvan ES, Goldberg DE. Malaria parasite plasmepsins: More than just plain old degradative pepsins. J Biol Chem 2020; 295:8425-8441. [PMID: 32366462 PMCID: PMC7307202 DOI: 10.1074/jbc.rev120.009309] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Plasmepsins are a group of diverse aspartic proteases in the malaria parasite Plasmodium Their functions are strikingly multifaceted, ranging from hemoglobin degradation to secretory organelle protein processing for egress, invasion, and effector export. Some, particularly the digestive vacuole plasmepsins, have been extensively characterized, whereas others, such as the transmission-stage plasmepsins, are minimally understood. Some (e.g. plasmepsin V) have exquisite cleavage sequence specificity; others are fairly promiscuous. Some have canonical pepsin-like aspartic protease features, whereas others have unusual attributes, including the nepenthesin loop of plasmepsin V and a histidine in place of a catalytic aspartate in plasmepsin III. We have learned much about the functioning of these enzymes, but more remains to be discovered about their cellular roles and even their mechanisms of action. Their importance in many key aspects of parasite biology makes them intriguing targets for antimalarial chemotherapy. Further consideration of their characteristics suggests that some are more viable drug targets than others. Indeed, inhibitors of invasion and egress offer hope for a desperately needed new drug to combat this nefarious organism.
Collapse
Affiliation(s)
- Armiyaw S Nasamu
- Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alexander J Polino
- Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eva S Istvan
- Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel E Goldberg
- Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
140
|
Foguim FT, Bogreau H, Gendrot M, Mosnier J, Fonta I, Benoit N, Amalvict R, Madamet M, Wein S, Pradines B. Prevalence of mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, and association with ex vivo susceptibility to common anti-malarial drugs against African Plasmodium falciparum isolates. Malar J 2020; 19:201. [PMID: 32503540 PMCID: PMC7275453 DOI: 10.1186/s12936-020-03281-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/30/2020] [Indexed: 01/19/2023] Open
Abstract
Background The Plasmodium falciparum chloroquine transporter gene (pfcrt) is known to be involved in chloroquine and amodiaquine resistance, and more particularly the mutations on the loci 72 to 76 localized within the second exon. Additionally, new mutations (T93S, H97Y, C101F, F145I, M343L, C350R and G353V) were recently shown to be associated with in vitro reduced susceptibility to piperaquine in Asian or South American P. falciparum strains. However, very few data are available on the prevalence of these mutations and their effect on parasite susceptibility to anti-malarial drugs, and more particularly piperaquine in Africa. Methods A molecular investigation of these mutations was performed in 602 African P. falciparum parasites collected between 2017 and 2018 on malaria patients hospitalized in France after a travel in African countries. Associations between genotypes and in vitro susceptibilities to piperaquine and standard antimalarial drugs were assessed. Results None of the mutations, previously described as associated with piperaquine resistance, was found in the 602 P. falciparum African isolates. The K76T mutation is associated with resistance to chloroquine (p < 0.0002) and desethylamodiaquine (p < 0.002) in Africa. The K76T mutation is not associated with in vitro reduced susceptibility to piperaquine. The mutation I356T, identified in 54.7% (n = 326) of the African isolates, was significantly associated with reduced susceptibility to quinine (p < 0.02) and increased susceptibility to mefloquine (p < 0.04). The K76T and I356T mutations were significantly associated in West African isolates (p = 0.008). Conclusion None of the mutations in pfcrt found to be associated with piperaquine reduced susceptibility in Asia or South America (T93S, H97Y, C101F, F145I, M343L C350R and G353V) were found in the 602 African isolates including the three isolates with reduced susceptibility to piperaquine. The K76T mutation, involved in resistance to chloroquine and amodiaquine, and the I356T mutation were not associated with in vitro reduced susceptibility to piperaquine. Differences in mefloquine susceptibility between I356 and 356T isolates were, while statistically different, minimal. Further analyses are needed with a more important sample size from the same geographic area to confirm the role of the I356T mutation on quinine susceptibility.
Collapse
Affiliation(s)
- Francis Tsombeng Foguim
- Unité Parasitologie et entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Hervé Bogreau
- Unité Parasitologie et entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Mathieu Gendrot
- Unité Parasitologie et entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Joel Mosnier
- Unité Parasitologie et entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre National de Référence du Paludisme, Marseille, France
| | - Isabelle Fonta
- Unité Parasitologie et entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre National de Référence du Paludisme, Marseille, France
| | - Nicolas Benoit
- Unité Parasitologie et entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre National de Référence du Paludisme, Marseille, France
| | - Rémy Amalvict
- Unité Parasitologie et entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre National de Référence du Paludisme, Marseille, France
| | - Marylin Madamet
- Unité Parasitologie et entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre National de Référence du Paludisme, Marseille, France
| | - Sharon Wein
- Laboratory of Pathogen Host Interactions, UMR 5235, CNRS-Université de Montpellier, Montpellier, France
| | - Bruno Pradines
- Unité Parasitologie et entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France. .,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France. .,IHU Méditerranée Infection, Marseille, France. .,Centre National de Référence du Paludisme, Marseille, France.
| | | |
Collapse
|
141
|
Dhingra SK, Small-Saunders JL, Ménard D, Fidock DA. Plasmodium falciparum resistance to piperaquine driven by PfCRT. THE LANCET. INFECTIOUS DISEASES 2020; 19:1168-1169. [PMID: 31657776 DOI: 10.1016/s1473-3099(19)30543-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/25/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Satish K Dhingra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York 10032, NY, USA
| | - Jennifer L Small-Saunders
- Division of Infectious Diseases in the Department of Medicine, Columbia University Irving Medical Center, New York 10032, NY, USA
| | - Didier Ménard
- Biology of Host-Parasite Interactions Unit, Malaria Genetics and Resistance Group, INSERM U1201, CNRS ERL9195, Institut Pasteur, Paris, France
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York 10032, NY, USA; Division of Infectious Diseases in the Department of Medicine, Columbia University Irving Medical Center, New York 10032, NY, USA.
| |
Collapse
|
142
|
Ansbro MR, Jacob CG, Amato R, Kekre M, Amaratunga C, Sreng S, Suon S, Miotto O, Fairhurst RM, Wellems TE, Kwiatkowski DP. Development of copy number assays for detection and surveillance of piperaquine resistance associated plasmepsin 2/3 copy number variation in Plasmodium falciparum. Malar J 2020; 19:181. [PMID: 32404110 PMCID: PMC7218657 DOI: 10.1186/s12936-020-03249-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/29/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Long regarded as an epicenter of drug-resistant malaria, Southeast Asia continues to provide new challenges to the control of Plasmodium falciparum malaria. Recently, resistance to the artemisinin combination therapy partner drug piperaquine has been observed in multiple locations across Southeast Asia. Genetic studies have identified single nucleotide polymorphisms as well as copy number variations in the plasmepsin 2 and plasmepsin 3 genes, which encode haemoglobin-degrading proteases that associate with clinical and in vitro piperaquine resistance. RESULTS To accurately and quickly determine the presence of copy number variations in the plasmepsin 2/3 genes in field isolates, this study developed a quantitative PCR assay using TaqMan probes. Copy number estimates were validated using a separate SYBR green-based quantitative PCR assay as well as a novel PCR-based breakpoint assay to detect the hybrid gene product. Field samples from 2012 to 2015 across three sites in Cambodia were tested using DNA extracted from dried blood spots and whole blood to monitor the extent of plasmepsin 2/3 gene amplifications, as well as amplifications in the multidrug resistance transporter 1 gene (pfmdr1), a marker of mefloquine resistance. This study found high concordance across all methods of copy number detection. For samples derived from dried blood spots, a success rate greater than 80% was found in each assay, with more recent samples performing better. Evidence of extensive plasmepsin 2/3 copy number amplifications was observed in Pursat (94%, 2015) (Western Cambodia) and Preah Vihear (87%, 2014) (Northern Cambodia), and lower levels in Ratanakiri (16%, 2014) (Eastern Cambodia). A shift was observed from two copies of plasmepsin 2 in Pursat in 2013 to three copies in 2014-2015 (25% to 64%). Pfmdr1 amplifications were absent in all samples from Preah Vihear and Ratanakiri in 2014 and absent in Pursat in 2015. CONCLUSIONS The multiplex TaqMan assay is a robust tool for monitoring both plasmepsin 2/3 and pfmdr1 copy number variations in field isolates, and the SYBR-green and breakpoint assays are useful for monitoring plasmepsin 2/3 amplifications. This study shows increasing levels of plasmepsin 2 copy numbers across Cambodia from 2012 to 2015 and a complete reversion of multicopy pfmdr1 parasites to single copy parasites in all study locations.
Collapse
Affiliation(s)
- Megan R Ansbro
- Wellcome Sanger Institute, Hinxton, UK.
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| | | | | | | | - Chanaki Amaratunga
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Sokunthea Sreng
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Seila Suon
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Olivo Miotto
- Wellcome Sanger Institute, Hinxton, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Genomics and Global Health, Wellcome Centre for Human Genetics, Oxford, UK
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Dominic P Kwiatkowski
- Wellcome Sanger Institute, Hinxton, UK
- Centre for Genomics and Global Health, Wellcome Centre for Human Genetics, Oxford, UK
| |
Collapse
|
143
|
Mathieu LC, Cox H, Early AM, Mok S, Lazrek Y, Paquet JC, Ade MP, Lucchi NW, Grant Q, Udhayakumar V, Alexandre JS, Demar M, Ringwald P, Neafsey DE, Fidock DA, Musset L. Local emergence in Amazonia of Plasmodium falciparum k13 C580Y mutants associated with in vitro artemisinin resistance. eLife 2020; 9:51015. [PMID: 32394893 PMCID: PMC7217694 DOI: 10.7554/elife.51015] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 03/25/2020] [Indexed: 12/15/2022] Open
Abstract
Antimalarial drug resistance has historically arisen through convergent de novo mutations in Plasmodium falciparum parasite populations in Southeast Asia and South America. For the past decade in Southeast Asia, artemisinins, the core component of first-line antimalarial therapies, have experienced delayed parasite clearance associated with several pfk13 mutations, primarily C580Y. We report that mutant pfk13 has emerged independently in Guyana, with genome analysis indicating an evolutionary origin distinct from Southeast Asia. Pfk13 C580Y parasites were observed in 1.6% (14/854) of samples collected in Guyana in 2016-2017. Introducing pfk13 C580Y or R539T mutations by gene editing into local parasites conferred high levels of in vitro artemisinin resistance. In vitro growth competition assays revealed a fitness cost associated with these pfk13 variants, potentially explaining why these resistance alleles have not increased in frequency more quickly in South America. These data place local malaria control efforts at risk in the Guiana Shield.
Collapse
Affiliation(s)
- Luana C Mathieu
- Laboratoire de parasitologie, Centre Nationale de Référence du Paludisme, World Health Organization Collaborating Center for surveillance of antimalarial drug resistance, Institut Pasteur de la Guyane, Cayenne, French Guiana.,Ecole Doctorale n°587, Diversités, Santé, et Développement en Amazonie, Université de Guyane, Cayenne, French Guiana
| | - Horace Cox
- Ministry of Public Health, Georgetown, Guyana
| | - Angela M Early
- Broad Institute of MIT and Harvard, Cambridge, United States.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Yassamine Lazrek
- Laboratoire de parasitologie, Centre Nationale de Référence du Paludisme, World Health Organization Collaborating Center for surveillance of antimalarial drug resistance, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Jeanne-Celeste Paquet
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Maria-Paz Ade
- Department of Communicable Diseases and Environmental Determinants of Health, Pan American Health Organization/World Health Organization, Washington, United States
| | - Naomi W Lucchi
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, United States
| | - Quacy Grant
- Ministry of Public Health, Georgetown, Guyana
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, United States
| | | | - Magalie Demar
- Service de Maladies Infectieuses et Tropicales, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana.,Ecosystèmes Amazoniens et Pathologie Tropicale (EPAT), EA3593, Université de Guyane, Cayenne, French Guiana
| | - Pascal Ringwald
- Global Malaria Program, World Health Organization, Geneva, Switzerland
| | - Daniel E Neafsey
- Broad Institute of MIT and Harvard, Cambridge, United States.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States.,Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, United States
| | - Lise Musset
- Laboratoire de parasitologie, Centre Nationale de Référence du Paludisme, World Health Organization Collaborating Center for surveillance of antimalarial drug resistance, Institut Pasteur de la Guyane, Cayenne, French Guiana
| |
Collapse
|
144
|
Liebman KM, Burgess SJ, Gunsaru B, Kelly JX, Li Y, Morrill W, Liebman MC, Peyton DH. Unsymmetrical Bisquinolines with High Potency against P. falciparum Malaria. Molecules 2020; 25:molecules25092251. [PMID: 32397659 PMCID: PMC7249153 DOI: 10.3390/molecules25092251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
Quinoline-based scaffolds have been the mainstay of antimalarial drugs, including many artemisinin combination therapies (ACTs), over the history of modern drug development. Although much progress has been made in the search for novel antimalarial scaffolds, it may be that quinolines will remain useful, especially if very potent compounds from this class are discovered. We report here the results of a structure-activity relationship (SAR) study assessing potential unsymmetrical bisquinoline antiplasmodial drug candidates using in vitro activity against intact parasites in cell culture. Many unsymmetrical bisquinolines were found to be highly potent against both chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum parasites. Further work to develop such compounds could focus on minimizing toxicities in order to find suitable candidates for clinical evaluation.
Collapse
Affiliation(s)
- Katherine M. Liebman
- DesignMedix, Inc., Portland, OR 97201, USA; (K.M.L.); (S.J.B.); (W.M.)
- Department of Chemistry, Portland State University, Portland, OR 97207, USA; (B.G.); (J.X.K.); (M.C.L.)
| | - Steven J. Burgess
- DesignMedix, Inc., Portland, OR 97201, USA; (K.M.L.); (S.J.B.); (W.M.)
| | - Bornface Gunsaru
- Department of Chemistry, Portland State University, Portland, OR 97207, USA; (B.G.); (J.X.K.); (M.C.L.)
| | - Jane X. Kelly
- Department of Chemistry, Portland State University, Portland, OR 97207, USA; (B.G.); (J.X.K.); (M.C.L.)
- Portland VA Research Foundation, Portland, OR 97239, USA;
| | - Yuexin Li
- Portland VA Research Foundation, Portland, OR 97239, USA;
| | - Westin Morrill
- DesignMedix, Inc., Portland, OR 97201, USA; (K.M.L.); (S.J.B.); (W.M.)
| | - Michael C. Liebman
- Department of Chemistry, Portland State University, Portland, OR 97207, USA; (B.G.); (J.X.K.); (M.C.L.)
| | - David H. Peyton
- DesignMedix, Inc., Portland, OR 97201, USA; (K.M.L.); (S.J.B.); (W.M.)
- Department of Chemistry, Portland State University, Portland, OR 97207, USA; (B.G.); (J.X.K.); (M.C.L.)
- Correspondence: ; Tel.: +1-503-805-1291
| |
Collapse
|
145
|
|
146
|
Lubis IND, Wijaya H, Lubis M, Lubis CP, Beshir KB, Staedke SG, Sutherland CJ. Recurrence of Plasmodium malariae and P. falciparum Following Treatment of Uncomplicated Malaria in North Sumatera With Dihydroartemisinin-Piperaquine or Artemether-Lumefantrine. Open Forum Infect Dis 2020; 7:ofaa116. [PMID: 32420402 PMCID: PMC7216766 DOI: 10.1093/ofid/ofaa116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/01/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND We assessed the efficacy of artemisinin-based combination therapies for treatment of uncomplicated falciparum malaria, with or without co-infecting Plasmodium spp., in Sumatera, Indonesia. METHODS Febrile patients aged >6 months with uncomplicated P. falciparum were randomized to receive dihydroartemisinin-piperaquine or artemether-lumefantrine, plus single-dose primaquine, and were followed for 42 days. Mixed Plasmodium infections were included; P. vivax infections received 14 days of primaquine. We retrospectively restricted the analysis to cases with polymerase chain reaction (PCR)-confirmed parasitemia. Recurrent parasitemia in follow-up was identified by species-specific nested PCR. RESULTS Of the 3731 participants screened, 302 were enrolled and randomized. In the dihydroartemisinin-piperaquine arm, P. falciparum infections were confirmed by PCR in 59 participants, with mixed infections in 23 (39.0%). In the artemether-lumefantrine arm, P. falciparum infections were confirmed by PCR in 55 participants, with mixed infections in 16 (29.0%). Both regimens were well tolerated, and symptoms improved rapidly in all treated participants. In the dihydroartemisinin-piperaquine arm, 1 P. falciparum recurrence (on day 7) and 6 P. malariae recurrences (1 had a mixed infection with P. falciparum) were identified during days 3-42 of follow-up. In the artemether-lumefantrine arm, 1 P. falciparum/P. malariae/P. vivax recurrence occurred on day 35. Submicroscopic persistence occurred during follow-up in 21 (37%) of 57 receiving dihydroartemisinin-piperaquine and 20 (39%) of 51 receiving artemether-lumefantrine. CONCLUSIONS In Sumatera, both regimens effectively cleared initial parasitemia, but P. falciparum and P. malariae persisted in some individuals. Molecular species detection should be deployed in antimalarial efficacy trials in Indonesia. TRIAL REGISTRATION NCT02325180.
Collapse
Affiliation(s)
- Inke Nadia D Lubis
- Department of Paediatrics, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
- Infection and Immunity Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Hendri Wijaya
- Department of Paediatrics, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Munar Lubis
- Department of Paediatrics, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Chairuddin P Lubis
- Department of Paediatrics, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Khalid B Beshir
- Infection and Immunity Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Sarah G Staedke
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Colin J Sutherland
- Infection and Immunity Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- PHE Malaria Reference Laboratory, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
147
|
Structural and evolutionary analyses of the Plasmodium falciparum chloroquine resistance transporter. Sci Rep 2020; 10:4842. [PMID: 32179795 PMCID: PMC7076037 DOI: 10.1038/s41598-020-61181-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) confer resistance to several antimalarial drugs such as chloroquine (CQ) or piperaquine (PPQ), a partner molecule in current artemisinin-based combination therapies. As a member of the Drug/Metabolite Transporter (DMT) superfamily, the vacuolar transporter PfCRT may translocate substrate molecule(s) across the membrane of the digestive vacuole (DV), a lysosome-like organelle. However, the physiological substrate(s), the transport mechanism and the functional regions of PfCRT remain to be fully characterized. Here, we hypothesized that identification of evolutionary conserved sites in a tertiary structural context could help locate putative functional regions of PfCRT. Hence, site-specific substitution rates were estimated over Plasmodium evolution at each amino acid sites, and the PfCRT tertiary structure was predicted in both inward-facing (open-to-vacuole) and occluded states through homology modeling using DMT template structures sharing <15% sequence identity with PfCRT. We found that the vacuolar-half and membrane-spanning domain (and especially the transmembrane helix 9) of PfCRT were more conserved, supporting that its physiological substrate is expelled out of the parasite DV. In the PfCRT occluded state, some evolutionary conserved sites, including positions related to drug resistance mutations, participate in a putative binding pocket located at the core of the PfCRT membrane-spanning domain. Through structural comparison with experimentally-characterized DMT transporters, we identified several conserved PfCRT amino acid sites located in this pocket as robust candidates for mediating substrate transport. Finally, in silico mutagenesis revealed that drug resistance mutations caused drastic changes in the electrostatic potential of the transporter vacuolar entry and pocket, facilitating the escape of protonated CQ and PPQ from the parasite DV.
Collapse
|
148
|
The Plasmodium falciparum Artemisinin Susceptibility-Associated AP-2 Adaptin μ Subunit is Clathrin Independent and Essential for Schizont Maturation. mBio 2020; 11:mBio.02918-19. [PMID: 32098816 PMCID: PMC7042695 DOI: 10.1128/mbio.02918-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The efficacy of current antimalarial drugs is threatened by reduced susceptibility of Plasmodium falciparum to artemisinin, associated with mutations in pfkelch13 Another gene with variants known to modulate the response to artemisinin encodes the μ subunit of the AP-2 adaptin trafficking complex. To elucidate the cellular role of AP-2μ in P. falciparum, we performed a conditional gene knockout, which severely disrupted schizont organization and maturation, leading to mislocalization of key merozoite proteins. AP-2μ is thus essential for blood-stage replication. We generated transgenic P. falciparum parasites expressing hemagglutinin-tagged AP-2μ and examined cellular localization by fluorescence and electron microscopy. Together with mass spectrometry analysis of coimmunoprecipitating proteins, these studies identified AP-2μ-interacting partners, including other AP-2 subunits, the K10 kelch-domain protein, and PfEHD, an effector of endocytosis and lipid mobilization, but no evidence was found of interaction with clathrin, the expected coat protein for AP-2 vesicles. In reverse immunoprecipitation experiments with a clathrin nanobody, other heterotetrameric AP-complexes were shown to interact with clathrin, but AP-2 complex subunits were absent.IMPORTANCE We examine in detail the AP-2 adaptin complex from the malaria parasite Plasmodium falciparum In most studied organisms, AP-2 is involved in bringing material into the cell from outside, a process called endocytosis. Previous work shows that changes to the μ subunit of AP-2 can contribute to drug resistance. Our experiments show that AP-2 is essential for parasite development in blood but does not have any role in clathrin-mediated endocytosis. This suggests that a specialized function for AP-2 has developed in malaria parasites, and this may be important for understanding its impact on drug resistance.
Collapse
|
149
|
Yoo E, Schulze CJ, Stokes BH, Onguka O, Yeo T, Mok S, Gnädig NF, Zhou Y, Kurita K, Foe IT, Terrell SM, Boucher MJ, Cieplak P, Kumpornsin K, Lee MCS, Linington RG, Long JZ, Uhlemann AC, Weerapana E, Fidock DA, Bogyo M. The Antimalarial Natural Product Salinipostin A Identifies Essential α/β Serine Hydrolases Involved in Lipid Metabolism in P. falciparum Parasites. Cell Chem Biol 2020; 27:143-157.e5. [PMID: 31978322 PMCID: PMC8027986 DOI: 10.1016/j.chembiol.2020.01.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 12/15/2022]
Abstract
Salinipostin A (Sal A) is a potent antiplasmodial marine natural product with an undefined mechanism of action. Using a Sal A-derived activity-based probe, we identify its targets in the Plasmodium falciparum parasite. All of the identified proteins contain α/β serine hydrolase domains and several are essential for parasite growth. One of the essential targets displays a high degree of homology to human monoacylglycerol lipase (MAGL) and is able to process lipid esters including a MAGL acylglyceride substrate. This Sal A target is inhibited by the anti-obesity drug Orlistat, which disrupts lipid metabolism. Resistance selections yielded parasites that showed only minor reductions in sensitivity and that acquired mutations in a PRELI domain-containing protein linked to drug resistance in Toxoplasma gondii. This inability to evolve efficient resistance mechanisms combined with the non-essentiality of human homologs makes the serine hydrolases identified here promising antimalarial targets.
Collapse
Affiliation(s)
- Euna Yoo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christopher J Schulze
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Barbara H Stokes
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ouma Onguka
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nina F Gnädig
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yani Zhou
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - Kenji Kurita
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Ian T Foe
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephanie M Terrell
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Michael J Boucher
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Piotr Cieplak
- Infectious & Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - Marcus C S Lee
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Roger G Linington
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
150
|
Exploration of copy number variation in genes related to anti-malarial drug resistance in Plasmodium falciparum. Gene 2020; 736:144414. [PMID: 32006594 DOI: 10.1016/j.gene.2020.144414] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022]
Abstract
Development of drug resistance in P. falciparum is one of the major problems associated with malaria treatment. Parasite genetic factors such as single nucleotide polymorphisms (SNPs) and copy number variations (CNV) have shown their role in drug resistance. Most of the studies have focused on the role of SNPs and drug resistance in parasite. However, it has also been shown that CNV is associated with adaptation and drug resistance in parasite. Hence, exploration of copy number polymorphism in essential genes of P. falciparum and their role in anti-malarial resistance is important. This review provides the recent information related to genetic profile of CNV marker in plasmepsin and other genes associated with drugresistanceinP. falciparum. It may be suggested that CNVs in plasmepsin genes are the major driver of piperaquine resistance. Moreover, CNVs in pfcrt and pfmdr1genes appear to play important role in adaptation and hence survival of the parasite. It may be hypothesized that targeting of CNV formation in the parasite could be beneficial for breakdown of its adaption in response to drug pressure.
Collapse
|