101
|
Zentout S, Smith R, Jacquier M, Huet S. New Methodologies to Study DNA Repair Processes in Space and Time Within Living Cells. Front Cell Dev Biol 2021; 9:730998. [PMID: 34589495 PMCID: PMC8473836 DOI: 10.3389/fcell.2021.730998] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
DNA repair requires a coordinated effort from an array of factors that play different roles in the DNA damage response from recognizing and signaling the presence of a break, creating a repair competent environment, and physically repairing the lesion. Due to the rapid nature of many of these events, live-cell microscopy has become an invaluable method to study this process. In this review we outline commonly used tools to induce DNA damage under the microscope and discuss spatio-temporal analysis tools that can bring added information regarding protein dynamics at sites of damage. In particular, we show how to go beyond the classical analysis of protein recruitment curves to be able to assess the dynamic association of the repair factors with the DNA lesions as well as the target-search strategies used to efficiently find these lesions. Finally, we discuss how the use of mathematical models, combined with experimental evidence, can be used to better interpret the complex dynamics of repair proteins at DNA lesions.
Collapse
Affiliation(s)
- Siham Zentout
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, BIOSIT-UMS 3480, Rennes, France
| | - Rebecca Smith
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, BIOSIT-UMS 3480, Rennes, France
| | - Marine Jacquier
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, BIOSIT-UMS 3480, Rennes, France
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, BIOSIT-UMS 3480, Rennes, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
102
|
Price RL, Bhan A, Mandal SS. HOTAIR beyond repression: In protein degradation, inflammation, DNA damage response, and cell signaling. DNA Repair (Amst) 2021; 105:103141. [PMID: 34183273 PMCID: PMC10426209 DOI: 10.1016/j.dnarep.2021.103141] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 01/17/2023]
Abstract
Long noncoding RNAs (lncRNAs) are pervasively transcribed from the mammalian genome as transcripts that are usually >200 nucleotides long. LncRNAs generally do not encode proteins but are involved in a variety of physiological processes, principally as epigenetic regulators. HOX transcript antisense intergenic RNA (HOTAIR) is a well-characterized lncRNA that has been implicated in several cancers and in various other diseases. HOTAIR is a repressor lncRNA and regulates various repressive chromatin modifications. However, recent studies have revealed additional functions of HOTAIR in regulation of protein degradation, microRNA (miRNA) sponging, NF-κB activation, inflammation, immune signaling, and DNA damage response. Herein, we have summarized the diverse functions and modes of action of HOTAIR in protein degradation, inflammation, DNA repair, and diseases, beyond its established functions in gene silencing.
Collapse
Affiliation(s)
- Rachel L Price
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, United States
| | - Arunoday Bhan
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, United States
| | - Subhrangsu S Mandal
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, United States.
| |
Collapse
|
103
|
Bowry A, Kelly RDW, Petermann E. Hypertranscription and replication stress in cancer. Trends Cancer 2021; 7:863-877. [PMID: 34052137 DOI: 10.1016/j.trecan.2021.04.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022]
Abstract
Replication stress results from obstacles to replication fork progression, including ongoing transcription, which can cause transcription-replication conflicts. Oncogenic signaling can promote global increases in transcription activity, also termed hypertranscription. Despite the widely accepted importance of oncogene-induced hypertranscription, its study remains neglected compared with other causes of replication stress and genomic instability in cancer. A growing number of recent studies are reporting that oncogenes, such as RAS, and targeted cancer treatments, such as bromodomain and extraterminal motif (BET) bromodomain inhibitors, increase global transcription, leading to R-loop accumulation, transcription-replication conflicts, and the activation of replication stress responses. Here we discuss our mechanistic understanding of hypertranscription-induced replication stress and the resulting cellular responses, in the context of oncogenes and targeted cancer therapies.
Collapse
Affiliation(s)
- Akhil Bowry
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Richard D W Kelly
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Eva Petermann
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
104
|
Uruci S, Lo CSY, Wheeler D, Taneja N. R-Loops and Its Chro-Mates: The Strange Case of Dr. Jekyll and Mr. Hyde. Int J Mol Sci 2021; 22:ijms22168850. [PMID: 34445553 PMCID: PMC8396322 DOI: 10.3390/ijms22168850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 12/22/2022] Open
Abstract
Since their discovery, R-loops have been associated with both physiological and pathological functions that are conserved across species. R-loops are a source of replication stress and genome instability, as seen in neurodegenerative disorders and cancer. In response, cells have evolved pathways to prevent R-loop accumulation as well as to resolve them. A growing body of evidence correlates R-loop accumulation with changes in the epigenetic landscape. However, the role of chromatin modification and remodeling in R-loops homeostasis remains unclear. This review covers various mechanisms precluding R-loop accumulation and highlights the role of chromatin modifiers and remodelers in facilitating timely R-loop resolution. We also discuss the enigmatic role of RNA:DNA hybrids in facilitating DNA repair, epigenetic landscape and the potential role of replication fork preservation pathways, active fork stability and stalled fork protection pathways, in avoiding replication-transcription conflicts. Finally, we discuss the potential role of several Chro-Mates (chromatin modifiers and remodelers) in the likely differentiation between persistent/detrimental R-loops and transient/benign R-loops that assist in various physiological processes relevant for therapeutic interventions.
Collapse
Affiliation(s)
- Sidrit Uruci
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (S.U.); (C.S.Y.L.)
| | - Calvin Shun Yu Lo
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (S.U.); (C.S.Y.L.)
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA;
| | - Nitika Taneja
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (S.U.); (C.S.Y.L.)
- Correspondence:
| |
Collapse
|
105
|
Guha S, Bhaumik SR. Transcription-coupled DNA double-strand break repair. DNA Repair (Amst) 2021; 109:103211. [PMID: 34883263 DOI: 10.1016/j.dnarep.2021.103211] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/20/2022]
Abstract
The genomic DNA is constantly under attack by cellular and/or environmental factors. Fortunately, the cell is armed to safeguard its genome by various mechanisms such as nucleotide excision, base excision, mismatch and DNA double-strand break repairs. While these processes maintain the integrity of the genome throughout, DNA repair occurs preferentially faster at the transcriptionally active genes. Such transcription-coupled repair phenomenon plays important roles to maintain active genome integrity, failure of which would interfere with transcription, leading to an altered gene expression (and hence cellular pathologies/diseases). Among the various DNA damages, DNA double-strand breaks are quite toxic to the cells. If DNA double-strand break occurs at the active gene, it would interfere with transcription/gene expression, thus threatening cellular viability. Such DNA double-strand breaks are found to be repaired faster at the active gene in comparison to its inactive state or the inactive gene, thus supporting the existence of a new phenomenon of transcription-coupled DNA double-strand break repair. Here, we describe the advances of this repair process.
Collapse
Affiliation(s)
- Shalini Guha
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA.
| |
Collapse
|
106
|
Jia N, Guo C, Nakazawa Y, van den Heuvel D, Luijsterburg MS, Ogi T. Dealing with transcription-blocking DNA damage: Repair mechanisms, RNA polymerase II processing and human disorders. DNA Repair (Amst) 2021; 106:103192. [PMID: 34358806 DOI: 10.1016/j.dnarep.2021.103192] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/15/2022]
Abstract
Transcription-blocking DNA lesions (TBLs) in genomic DNA are triggered by a wide variety of DNA-damaging agents. Such lesions cause stalling of elongating RNA polymerase II (RNA Pol II) enzymes and fully block transcription when unresolved. The toxic impact of DNA damage on transcription progression is commonly referred to as transcription stress. In response to RNA Pol II stalling, cells activate and employ transcription-coupled repair (TCR) machineries to repair cytotoxic TBLs and resume transcription. Increasing evidence indicates that the modification and processing of stalled RNA Pol II is an integral component of the cellular response to and the repair of TBLs. If TCR pathways fail, the prolonged stalling of RNA Pol II will impede global replication and transcription as well as block the access of other DNA repair pathways that may act upon the TBL. Consequently, such prolonged stalling will trigger profound genome instability and devastating clinical features. In this review, we will discuss the mechanisms by which various types of TBLs are repaired by distinct TCR pathways and how RNA Pol II processing is regulated during these processes. We will also discuss the clinical consequences of transcription stress and genotype-phenotype correlations of related TCR-deficiency disorders.
Collapse
Affiliation(s)
- Nan Jia
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Chaowan Guo
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yuka Nakazawa
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Diana van den Heuvel
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan.
| |
Collapse
|
107
|
Barabino SML, Citterio E, Ronchi AE. Transcription Factors, R-Loops and Deubiquitinating Enzymes: Emerging Targets in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13153753. [PMID: 34359655 PMCID: PMC8345071 DOI: 10.3390/cancers13153753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The advent of DNA massive sequencing technologies has allowed for the first time an extensive look into the heterogeneous spectrum of genes and mutations underpinning myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML). In this review, we wish to explore the most recent advances and the rationale for the potential therapeutic interest of three main actors in myelo-leukemic transformation: transcription factors that govern myeloid differentiation; RNA splicing factors, which ensure proper mRNA maturation and whose mutations increase R-loops formation; and deubiquitinating enzymes, which contribute to genome stability in hematopoietic stem cells (HSCs). Abstract Myeloid neoplasms encompass a very heterogeneous family of diseases characterized by the failure of the molecular mechanisms that ensure a balanced equilibrium between hematopoietic stem cells (HSCs) self-renewal and the proper production of differentiated cells. The origin of the driver mutations leading to preleukemia can be traced back to HSC/progenitor cells. Many properties typical to normal HSCs are exploited by leukemic stem cells (LSCs) to their advantage, leading to the emergence of a clonal population that can eventually progress to leukemia with variable latency and evolution. In fact, different subclones might in turn develop from the original malignant clone through accumulation of additional mutations, increasing their competitive fitness. This process ultimately leads to a complex cancer architecture where a mosaic of cellular clones—each carrying a unique set of mutations—coexists. The repertoire of genes whose mutations contribute to the progression toward leukemogenesis is broad. It encompasses genes involved in different cellular processes, including transcriptional regulation, epigenetics (DNA and histones modifications), DNA damage signaling and repair, chromosome segregation and replication (cohesin complex), RNA splicing, and signal transduction. Among these many players, transcription factors, RNA splicing proteins, and deubiquitinating enzymes are emerging as potential targets for therapeutic intervention.
Collapse
|
108
|
Missense Variants of Uncertain Significance: A Powerful Genetic Tool for Function Discovery with Clinical Implications. Cancers (Basel) 2021; 13:cancers13153719. [PMID: 34359619 PMCID: PMC8345083 DOI: 10.3390/cancers13153719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Variants of uncertain significance in the breast cancer susceptibility gene BRCA2 represent 50–80% of the results from genetic testing. These mutations may lead to the dysfunction of the gene, thus conferring breast cancer predisposition; however, because they are rare and their impact on the function is not easy to predict, their classification into benign or pathogenic variants remains a challenge. By focusing on three specific rare missense variants identified in breast cancer patients, in this review, we discuss how the functional evaluation of this type of variants can be used to reveal novel activities of BRCA2. Based on these findings, we suggest additional functional tests that might be required for accurate variant classification and how their characterization may be leveraged to find novel clinical strategies for patients bearing these mutations. Abstract The breast cancer susceptibility gene BRCA2 encodes a multifunctional protein required for the accurate repair of DNA double-strand breaks and replicative DNA lesions. In addition, BRCA2 exhibits emerging important roles in mitosis. As a result, mutations in BRCA2 may affect chromosomal integrity in multiple ways. However, many of the BRCA2 mutations found in breast cancer patients and their families are single amino acid substitutions, sometimes unique, and their relevance in cancer risk remains difficult to assess. In this review, we focus on three recent reports that investigated variants of uncertain significance (VUS) located in the N-terminal region of BRCA2. In this framework, we make the case for how the functional evaluation of VUS can be a powerful genetic tool not only for revealing novel aspects of BRCA2 function but also for re-evaluating cancer risk. We argue that other functions beyond homologous recombination deficiency or “BRCAness” may influence cancer risk. We hope our discussion will help the reader appreciate the potential of these functional studies in the prevention and diagnostics of inherited breast and ovarian cancer. Moreover, these novel aspects in BRCA2 function might help find new therapeutic strategies.
Collapse
|
109
|
Mancini M, Magnani E, Macchi F, Bonapace IM. The multi-functionality of UHRF1: epigenome maintenance and preservation of genome integrity. Nucleic Acids Res 2021; 49:6053-6068. [PMID: 33939809 PMCID: PMC8216287 DOI: 10.1093/nar/gkab293] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
During S phase, the cooperation between the macromolecular complexes regulating DNA synthesis, epigenetic information maintenance and DNA repair is advantageous for cells, as they can rapidly detect DNA damage and initiate the DNA damage response (DDR). UHRF1 is a fundamental epigenetic regulator; its ability to coordinate DNA methylation and histone code is unique across proteomes of different species. Recently, UHRF1’s role in DNA damage repair has been explored and recognized to be as important as its role in maintaining the epigenome. UHRF1 is a sensor for interstrand crosslinks and a determinant for the switch towards homologous recombination in the repair of double-strand breaks; its loss results in enhanced sensitivity to DNA damage. These functions are finely regulated by specific post-translational modifications and are mediated by the SRA domain, which binds to damaged DNA, and the RING domain. Here, we review recent studies on the role of UHRF1 in DDR focusing on how it recognizes DNA damage and cooperates with other proteins in its repair. We then discuss how UHRF1’s epigenetic abilities in reading and writing histone modifications, or its interactions with ncRNAs, could interlace with its role in DDR.
Collapse
Affiliation(s)
- Monica Mancini
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA 21052, Italy
| | - Elena Magnani
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Filippo Macchi
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Ian Marc Bonapace
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA 21052, Italy
| |
Collapse
|
110
|
Audoynaud C, Vagner S, Lambert S. Non-homologous end-joining at challenged replication forks: an RNA connection? Trends Genet 2021; 37:973-985. [PMID: 34238592 DOI: 10.1016/j.tig.2021.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/20/2021] [Accepted: 06/11/2021] [Indexed: 12/29/2022]
Abstract
Defective DNA replication, known as 'replication stress', is a source of DNA damage, a hallmark of numerous human diseases, including cancer, developmental defect, neurological disorders, and premature aging. Recent work indicates that non-homologous end-joining (NHEJ) is unexpectedly active during DNA replication to repair replication-born DNA lesions and to safeguard replication fork integrity. However, erroneous NHEJ events are deleterious to genome stability. RNAs are novel regulators of NHEJ activity through their ability to modulate the assembly of repair complexes in trans. At DNA damage sites, RNAs and DNA-embedded ribonucleotides modulate repair efficiency and fidelity. We discuss here how RNAs and associated proteins, including RNA binding proteins, may regulate NHEJ to sustain genome stability during DNA replication.
Collapse
Affiliation(s)
- Charlotte Audoynaud
- Institut Curie, Université PSL, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Equipes Labélisées Ligue Nationale Contre Le Cancer, 91400 Orsay, France
| | - Stéphan Vagner
- Institut Curie, Université PSL, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Equipes Labélisées Ligue Nationale Contre Le Cancer, 91400 Orsay, France
| | - Sarah Lambert
- Institut Curie, Université PSL, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Equipes Labélisées Ligue Nationale Contre Le Cancer, 91400 Orsay, France.
| |
Collapse
|
111
|
Wang W, Li K, Yang Z, Hou Q, Zhao WW, Sun Q. RNase H1C collaborates with ssDNA binding proteins WHY1/3 and recombinase RecA1 to fulfill the DNA damage repair in Arabidopsis chloroplasts. Nucleic Acids Res 2021; 49:6771-6787. [PMID: 34133716 PMCID: PMC8266629 DOI: 10.1093/nar/gkab479] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/25/2021] [Accepted: 05/19/2021] [Indexed: 12/28/2022] Open
Abstract
Proper repair of damaged DNA is crucial for genetic integrity and organismal survival. As semi-autonomous organelles, plastids have their own genomes whose integrity must be preserved. Several factors have been shown to participate in plastid DNA damage repair; however, the underlying mechanism remains unclear. Here, we elucidate a mechanism of homologous recombination (HR) repair in chloroplasts that involves R-loops. We find that the recombinase RecA1 forms filaments in chloroplasts during HR repair, but aggregates as puncta when RNA:DNA hybrids accumulate. ssDNA-binding proteins WHY1/3 and chloroplast RNase H1 AtRNH1C are recruited to the same genomic sites to promote HR repair. Depletion of AtRNH1C or WHY1/3 significantly suppresses the binding of RNA polymerase to the damaged DNA, thus reducing HR repair and modulating microhomology-mediated double-strand break repair. Furthermore, we show that DNA polymerase IB works with AtRNH1C genetically to complete the DNA damage repair process. This study reveals the positive role of R-loops in facilitating the activities of WHY1/3 and RecA1, which in turn secures HR repair and organellar development.
Collapse
Affiliation(s)
- Wenjie Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Kuan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Zhuo Yang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Quancan Hou
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei W Zhao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
112
|
Ortega P, Mérida-Cerro JA, Rondón AG, Gómez-González B, Aguilera A. DNA-RNA hybrids at DSBs interfere with repair by homologous recombination. eLife 2021; 10:e69881. [PMID: 34236317 PMCID: PMC8289408 DOI: 10.7554/elife.69881] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022] Open
Abstract
DNA double-strand breaks (DSBs) are the most harmful DNA lesions and their repair is crucial for cell viability and genome integrity. The readout of DSB repair may depend on whether DSBs occur at transcribed versus non-transcribed regions. Some studies have postulated that DNA-RNA hybrids form at DSBs to promote recombinational repair, but others have challenged this notion. To directly assess whether hybrids formed at DSBs promote or interfere with the recombinational repair, we have used plasmid and chromosomal-based systems for the analysis of DSB-induced recombination in Saccharomyces cerevisiae. We show that, as expected, DNA-RNA hybrid formation is stimulated at DSBs. In addition, mutations that promote DNA-RNA hybrid accumulation, such as hpr1∆ and rnh1∆ rnh201∆, cause high levels of plasmid loss when DNA breaks are induced at sites that are transcribed. Importantly, we show that high levels or unresolved DNA-RNA hybrids at the breaks interfere with their repair by homologous recombination. This interference is observed for both plasmid and chromosomal recombination and is independent of whether the DSB is generated by endonucleolytic cleavage or by DNA replication. These data support a model in which DNA-RNA hybrids form fortuitously at DNA breaks during transcription and need to be removed to allow recombinational repair, rather than playing a positive role.
Collapse
Affiliation(s)
- Pedro Ortega
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de OlavideSevilleSpain
| | - José Antonio Mérida-Cerro
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de OlavideSevilleSpain
| | - Ana G Rondón
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de OlavideSevilleSpain
| | - Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de OlavideSevilleSpain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de OlavideSevilleSpain
| |
Collapse
|
113
|
Ngo GHP, Grimstead JW, Baird DM. UPF1 promotes the formation of R loops to stimulate DNA double-strand break repair. Nat Commun 2021; 12:3849. [PMID: 34158508 PMCID: PMC8219777 DOI: 10.1038/s41467-021-24201-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
DNA-RNA hybrid structures have been detected at the vicinity of DNA double-strand breaks (DSBs) occurring within transcriptional active regions of the genome. The induction of DNA-RNA hybrids strongly affects the repair of these DSBs, but the nature of these structures and how they are formed remain poorly understood. Here we provide evidence that R loops, three-stranded structures containing DNA-RNA hybrids and the displaced single-stranded DNA (ssDNA) can form at sub-telomeric DSBs. These R loops are generated independently of DNA resection but are induced alongside two-stranded DNA-RNA hybrids that form on ssDNA generated by DNA resection. We further identified UPF1, an RNA/DNA helicase, as a crucial factor that drives the formation of these R loops and DNA-RNA hybrids to stimulate DNA resection, homologous recombination, microhomology-mediated end joining and DNA damage checkpoint activation. Our data show that R loops and DNA-RNA hybrids are actively generated at DSBs to facilitate DNA repair.
Collapse
Affiliation(s)
- Greg H P Ngo
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Julia W Grimstead
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
114
|
Palancade B, Rothstein R. The Ultimate (Mis)match: When DNA Meets RNA. Cells 2021; 10:cells10061433. [PMID: 34201169 PMCID: PMC8227541 DOI: 10.3390/cells10061433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/20/2022] Open
Abstract
RNA-containing structures, including ribonucleotide insertions, DNA:RNA hybrids and R-loops, have recently emerged as critical players in the maintenance of genome integrity. Strikingly, different enzymatic activities classically involved in genome maintenance contribute to their generation, their processing into genotoxic or repair intermediates, or their removal. Here we review how this substrate promiscuity can account for the detrimental and beneficial impacts of RNA insertions during genome metabolism. We summarize how in vivo and in vitro experiments support the contribution of DNA polymerases and homologous recombination proteins in the formation of RNA-containing structures, and we discuss the role of DNA repair enzymes in their removal. The diversity of pathways that are thus affected by RNA insertions likely reflects the ancestral function of RNA molecules in genome maintenance and transmission.
Collapse
Affiliation(s)
- Benoit Palancade
- Institut Jacques Monod, Université de Paris, CNRS, F-75006 Paris, France
- Correspondence: (B.P.); (R.R.)
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Correspondence: (B.P.); (R.R.)
| |
Collapse
|
115
|
Senataxin Ortholog Sen1 Limits DNA:RNA Hybrid Accumulation at DNA Double-Strand Breaks to Control End Resection and Repair Fidelity. Cell Rep 2021; 31:107603. [PMID: 32375052 DOI: 10.1016/j.celrep.2020.107603] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/07/2020] [Accepted: 04/10/2020] [Indexed: 11/20/2022] Open
Abstract
An important but still enigmatic function of DNA:RNA hybrids is their role in DNA double-strand break (DSB) repair. Here, we show that Sen1, the budding yeast ortholog of the human helicase Senataxin, is recruited at an HO endonuclease-induced DSB and limits the local accumulation of DNA:RNA hybrids. In the absence of Sen1, hybrid accumulation proximal to the DSB promotes increased binding of the Ku70-80 (KU) complex at the break site, mutagenic non-homologous end joining (NHEJ), micro-homology-mediated end joining (MMEJ), and chromosome translocations. We also show that homology-directed recombination (HDR) by gene conversion is mostly proficient in sen1 mutants after single DSB. However, in the absence of Sen1, DNA:RNA hybrids, Mre11, and Dna2 initiate resection through a non-canonical mechanism. We propose that this resection mechanism through local DNA:RNA hybrids acts as a backup to prime HDR when canonical pathways are altered, but at the expense of genome integrity.
Collapse
|
116
|
Ouyang J, Yadav T, Zhang JM, Yang H, Rheinbay E, Guo H, Haber DA, Lan L, Zou L. RNA transcripts stimulate homologous recombination by forming DR-loops. Nature 2021; 594:283-288. [PMID: 33981036 PMCID: PMC8855348 DOI: 10.1038/s41586-021-03538-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Homologous recombination (HR) repairs DNA double-strand breaks (DSBs) in the S and G2 phases of the cell cycle1-3. Several HR proteins are preferentially recruited to DSBs at transcriptionally active loci4-10, but how transcription promotes HR is poorly understood. Here we develop an assay to assess the effect of local transcription on HR. Using this assay, we find that transcription stimulates HR to a substantial extent. Tethering RNA transcripts to the vicinity of DSBs recapitulates the effects of local transcription, which suggests that transcription enhances HR through RNA transcripts. Tethered RNA transcripts stimulate HR in a sequence- and orientation-dependent manner, indicating that they function by forming DNA-RNA hybrids. In contrast to most HR proteins, RAD51-associated protein 1 (RAD51AP1) only promotes HR when local transcription is active. RAD51AP1 drives the formation of R-loops in vitro and is required for tethered RNAs to stimulate HR in cells. Notably, RAD51AP1 is necessary for the DSB-induced formation of DNA-RNA hybrids in donor DNA, linking R-loops to D-loops. In vitro, RAD51AP1-generated R-loops enhance the RAD51-mediated formation of D-loops locally and give rise to intermediates that we term 'DR-loops', which contain both DNA-DNA and DNA-RNA hybrids and favour RAD51 function. Thus, at DSBs in transcribed regions, RAD51AP1 promotes the invasion of RNA transcripts into donor DNA, and stimulates HR through the formation of DR-loops.
Collapse
Affiliation(s)
- Jian Ouyang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA.
| | - Tribhuwan Yadav
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Jia-Min Zhang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Haibo Yang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Esther Rheinbay
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Hongshan Guo
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Howard Hughes Medical Institute, Massachusetts General Hospital, Charlestown, MA, USA
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Howard Hughes Medical Institute, Massachusetts General Hospital, Charlestown, MA, USA
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
117
|
Lesage E, Clouaire T, Legube G. Repair of DNA double-strand breaks in RNAPI- and RNAPII-transcribed loci. DNA Repair (Amst) 2021; 104:103139. [PMID: 34111758 DOI: 10.1016/j.dnarep.2021.103139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022]
Abstract
DNA double-strand breaks (DSBs) are toxic lesions triggered not only by environmental sources, but also by a large number of physiological processes. Of importance, endogenous DSBs frequently occur in genomic loci that are transcriptionally active. Recent work suggests that DSBs occurring in transcribed loci are handled by specific pathway(s) that entail local transcriptional repression, chromatin signaling, the involvement of RNA species and DSB mobility. In this Graphical Review we provide an updated view of the "Transcription-Coupled DSB Repair" (TC-DSBR) pathway(s) that are mounted at DSBs occurring in loci transcribed by RNA Polymerase I (RNAPI) or RNA Polymerase II (RNAPII), highlighting differences and common features, as well as yet unanswered questions.
Collapse
Affiliation(s)
- E Lesage
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), UPS, CNRS, Toulouse, France
| | - T Clouaire
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), UPS, CNRS, Toulouse, France
| | - G Legube
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), UPS, CNRS, Toulouse, France.
| |
Collapse
|
118
|
San Martin Alonso M, Noordermeer S. Untangling the crosstalk between BRCA1 and R-loops during DNA repair. Nucleic Acids Res 2021; 49:4848-4863. [PMID: 33755171 PMCID: PMC8136775 DOI: 10.1093/nar/gkab178] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 01/13/2023] Open
Abstract
R-loops are RNA:DNA hybrids assembled during biological processes but are also linked to genetic instability when formed out of their natural context. Emerging evidence suggests that the repair of DNA double-strand breaks requires the formation of a transient R-loop, which eventually must be removed to guarantee a correct repair process. The multifaceted BRCA1 protein has been shown to be recruited at this specific break-induced R-loop, and it facilitates mechanisms in order to regulate R-loop removal. In this review, we discuss the different potential roles of BRCA1 in R-loop homeostasis during DNA repair and how these processes ensure faithful DSB repair.
Collapse
Affiliation(s)
- Marta San Martin Alonso
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Sylvie M Noordermeer
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
119
|
Klaric JA, Wüst S, Panier S. New Faces of old Friends: Emerging new Roles of RNA-Binding Proteins in the DNA Double-Strand Break Response. Front Mol Biosci 2021; 8:668821. [PMID: 34026839 PMCID: PMC8138124 DOI: 10.3389/fmolb.2021.668821] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions. To protect genomic stability and ensure cell homeostasis, cells mount a complex signaling-based response that not only coordinates the repair of the broken DNA strand but also activates cell cycle checkpoints and, if necessary, induces cell death. The last decade has seen a flurry of studies that have identified RNA-binding proteins (RBPs) as novel regulators of the DSB response. While many of these RBPs have well-characterized roles in gene expression, it is becoming increasingly clear that they also have non-canonical functions in the DSB response that go well beyond transcription, splicing and mRNA processing. Here, we review the current understanding of how RBPs are integrated into the cellular response to DSBs and describe how these proteins directly participate in signal transduction, amplification and repair at damaged chromatin. In addition, we discuss the implications of an RBP-mediated DSB response for genome instability and age-associated diseases such as cancer and neurodegeneration.
Collapse
Affiliation(s)
- Julie A Klaric
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Stas Wüst
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Stephanie Panier
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD) Research Center, University of Cologne, Cologne, Germany
| |
Collapse
|
120
|
Miriklis EL, Rozario AM, Rothenberg E, Bell TDM, Whelan DR. Understanding DNA organization, damage, and repair with super-resolution fluorescence microscopy. Methods Appl Fluoresc 2021; 9. [PMID: 33765677 DOI: 10.1088/2050-6120/abf239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/25/2021] [Indexed: 11/12/2022]
Abstract
Super-resolution microscopy (SRM) comprises a suite of techniques well-suited to probing the nanoscale landscape of genomic function and dysfunction. Offering the specificity and sensitivity that has made conventional fluorescence microscopy a cornerstone technique of biological research, SRM allows for spatial resolutions as good as 10 nanometers. Moreover, single molecule localization microscopies (SMLMs) enable examination of individual molecular targets and nanofoci allowing for the characterization of subpopulations within a single cell. This review describes how key advances in both SRM techniques and sample preparation have enabled unprecedented insights into DNA structure and function, and highlights many of these new discoveries. Ongoing development and application of these novel, highly interdisciplinary SRM assays will continue to expand the toolbox available for research into the nanoscale genomic landscape.
Collapse
Affiliation(s)
| | | | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, United States of America
| | - Toby D M Bell
- School of Chemistry, Monash University, Clayton, VIC, Australia
| | - Donna R Whelan
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| |
Collapse
|
121
|
Abstract
The DNA damage response (DDR) fulfils essential roles to preserve genome integrity. Targeting the DDR in tumors has had remarkable success over the last decade, exemplified by the licensing of PARP inhibitors for cancer therapy. Recent studies suggest that the application of DDR inhibitors impacts on cellular innate and adaptive immune responses, wherein key DNA repair factors have roles in limiting chronic inflammatory signaling. Antitumor immunity plays an emerging part in cancer therapy, and extensive efforts have led to the development of immune checkpoint inhibitors overcoming immune suppressive signals in tumors. Here, we review the current understanding of the molecular mechanisms underlying DNA damage-triggered immune responses, including cytosolic DNA sensing via the cGAS/STING pathway. We highlight the implications of DDR components for therapeutic outcomes of immune checkpoint inhibitors or their use as biomarkers. Finally, we discuss the rationale for novel combinations of DDR inhibitors with antagonists of immune checkpoints and current hindrances limiting their broader therapeutic applications.
Collapse
Affiliation(s)
- Domenic Pilger
- Wellcome Trust/Cancer Research UK Gurdon Institute, Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Leonard W Seymour
- Department of Oncology, University of Oxford, Oxford, Oxford OX3 7DQ, United Kingdom
| | - Stephen P Jackson
- Wellcome Trust/Cancer Research UK Gurdon Institute, Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| |
Collapse
|
122
|
Franzin R, Stasi A, Ranieri E, Netti GS, Cantaluppi V, Gesualdo L, Stallone G, Castellano G. Targeting Premature Renal Aging: from Molecular Mechanisms of Cellular Senescence to Senolytic Trials. Front Pharmacol 2021; 12:630419. [PMID: 33995028 PMCID: PMC8117359 DOI: 10.3389/fphar.2021.630419] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/11/2021] [Indexed: 01/10/2023] Open
Abstract
The biological process of renal aging is characterized by progressive structural and functional deterioration of the kidney leading to end-stage renal disease, requiring renal replacement therapy. Since the discovery of pivotal mechanisms of senescence such as cell cycle arrest, apoptosis inhibition, and the development of a senescence-associated secretory phenotype (SASP), efforts in the understanding of how senescent cells participate in renal physiological and pathological aging have grown exponentially. This has been encouraged by both preclinical studies in animal models with senescent cell clearance or genetic depletion as well as due to evidence coming from the clinical oncologic experience. This review considers the molecular mechanism and pathways that trigger premature renal aging from mitochondrial dysfunction, epigenetic modifications to autophagy, DNA damage repair (DDR), and the involvement of extracellular vesicles. We also discuss the different pharmaceutical approaches to selectively target senescent cells (namely, senolytics) or the development of systemic SASP (called senomorphics) in basic models of CKD and clinical trials. Finally, an overview will be provided on the potential opportunities for their use in renal transplantation during ex vivo machine perfusion to improve the quality of the graft.
Collapse
Affiliation(s)
- Rossana Franzin
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Alessandra Stasi
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Elena Ranieri
- Clinical Pathology, Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Stefano Netti
- Clinical Pathology, Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine and Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, Italy
| |
Collapse
|
123
|
Jimeno S, Balestra FR, Huertas P. The Emerging Role of RNA Modifications in DNA Double-Strand Break Repair. Front Mol Biosci 2021; 8:664872. [PMID: 33996910 PMCID: PMC8116738 DOI: 10.3389/fmolb.2021.664872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/08/2021] [Indexed: 11/14/2022] Open
Abstract
The correct repair of DNA double-strand breaks is essential for maintaining the stability of the genome, thus ensuring the survival and fitness of any living organism. Indeed, the repair of these lesions is a complicated affair, in which several pathways compete for the DNA ends in a complex balance. Thus, the fine-tuning of the DNA double-strand break repair pathway choice relies on the different regulatory layers that respond to environmental cues. Among those different tiers of regulation, RNA modifications have just emerged as a promising field.
Collapse
Affiliation(s)
- Sonia Jimeno
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Fernando R. Balestra
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Pablo Huertas
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
124
|
Long Q, Liu Z, Gullerova M. Sweet Melody or Jazz? Transcription Around DNA Double-Strand Breaks. Front Mol Biosci 2021; 8:655786. [PMID: 33959637 PMCID: PMC8096065 DOI: 10.3389/fmolb.2021.655786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
Genomic integrity is continuously threatened by thousands of endogenous and exogenous damaging factors. To preserve genome stability, cells developed comprehensive DNA damage response (DDR) pathways that mediate the recognition of damaged DNA lesions, the activation of signaling cascades, and the execution of DNA repair. Transcription has been understood to pose a threat to genome stability in the presence of DNA breaks. Interestingly, accumulating evidence in recent years shows that the transient transcriptional activation at DNA double-strand break (DSB) sites is required for efficient repair, while the rest of the genome exhibits temporary transcription silencing. This genomic shut down is a result of multiple signaling cascades involved in the maintenance of DNA/RNA homeostasis, chromatin stability, and genome fidelity. The regulation of transcription of protein-coding genes and non-coding RNAs has been extensively studied; however, the exact regulatory mechanisms of transcription at DSBs remain enigmatic. These complex processes involve many players such as transcription-associated protein complexes, including kinases, transcription factors, chromatin remodeling complexes, and helicases. The damage-derived transcripts themselves also play an essential role in DDR regulation. In this review, we summarize the current findings on the regulation of transcription at DSBs and discussed the roles of various accessory proteins in these processes and consequently in DDR.
Collapse
Affiliation(s)
| | | | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
125
|
Gómez-González B, Sessa G, Carreira A, Aguilera A. A new interaction between BRCA2 and DDX5 promotes the repair of DNA breaks at transcribed chromatin. Mol Cell Oncol 2021; 8:1910474. [PMID: 34027046 DOI: 10.1080/23723556.2021.1910474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In a recent report, we have revealed a new interaction between the BRCA2 DNA repair associated protein (BRCA2) and the DEAD-box helicase 5 (DDX5) at DNA breaks that promotes unwinding DNA-RNA hybrids within transcribed chromatin and favors repair. Interestingly, BRCA2-DDX5 interaction is impaired in cells expressing the BRCA2T2 07A missense variant found in breast cancer patients.
Collapse
Affiliation(s)
- Belen Gómez-González
- Centro Andaluz De Biología Molecular Y Medicina Regenerativa (CABIMER), Universidad De Sevilla-CSIC, Seville, Spain.,Departamento De Genética, Facultad De Biología, University of Seville, Seville, Spain
| | - Gaetana Sessa
- Cnrs UMR3348, Institut Curie, Université PSL, Orsay, France.,Cnrs UMR3348, Université Paris-Saclay, Orsay, France
| | - Aura Carreira
- Cnrs UMR3348, Institut Curie, Université PSL, Orsay, France.,Cnrs UMR3348, Université Paris-Saclay, Orsay, France
| | - Andrés Aguilera
- Centro Andaluz De Biología Molecular Y Medicina Regenerativa (CABIMER), Universidad De Sevilla-CSIC, Seville, Spain.,Departamento De Genética, Facultad De Biología, University of Seville, Seville, Spain
| |
Collapse
|
126
|
R-loops as Janus-faced modulators of DNA repair. Nat Cell Biol 2021; 23:305-313. [PMID: 33837288 DOI: 10.1038/s41556-021-00663-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/05/2021] [Indexed: 02/01/2023]
Abstract
R-loops are non-B DNA structures with intriguing dual consequences for gene expression and genome stability. In addition to their recognized roles in triggering DNA double-strand breaks (DSBs), R-loops have recently been demonstrated to accumulate in cis to DSBs, especially those induced in transcriptionally active loci. In this Review, we discuss whether R-loops actively participate in DSB repair or are detrimental by-products that must be removed to avoid genome instability.
Collapse
|
127
|
Nelson CB, Alturki TM, Luxton JJ, Taylor LE, Maranon DG, Muraki K, Murnane JP, Bailey SM. Telomeric Double Strand Breaks in G1 Human Cells Facilitate Formation of 5' C-Rich Overhangs and Recruitment of TERRA. Front Genet 2021; 12:644803. [PMID: 33841503 PMCID: PMC8027502 DOI: 10.3389/fgene.2021.644803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Telomeres, repetitive nucleoprotein complexes that protect chromosomal termini and prevent them from activating inappropriate DNA damage responses (DDRs), shorten with cell division and thus with aging. Here, we characterized the human cellular response to targeted telomeric double-strand breaks (DSBs) in telomerase-positive and telomerase-independent alternative lengthening of telomere (ALT) cells, specifically in G1 phase. Telomeric DSBs in human G1 cells elicited early signatures of a DDR; however, localization of 53BP1, an important regulator of resection at broken ends, was not observed at telomeric break sites. Consistent with this finding and previously reported repression of classical non-homologous end-joining (c-NHEJ) at telomeres, evidence for c-NHEJ was also lacking. Likewise, no evidence of homologous recombination (HR)-dependent repair of telomeric DSBs in G1 was observed. Rather, and supportive of rapid truncation events, telomeric DSBs in G1 human cells facilitated formation of extensive tracks of resected 5′ C-rich telomeric single-stranded (ss)DNA, a previously proposed marker of the recombination-dependent ALT pathway. Indeed, induction of telomeric DSBs in human ALT cells resulted in significant increases in 5′ C-rich (ss)telomeric DNA in G1, which rather than RPA, was bound by the complementary telomeric RNA, TERRA, presumably to protect these exposed ends so that they persist into S/G2 for telomerase-mediated or HR-dependent elongation, while also circumventing conventional repair pathways. Results demonstrate the remarkable adaptability of telomeres, and thus they have important implications for persistent telomeric DNA damage in normal human G1/G0 cells (e.g., lymphocytes), as well as for therapeutically relevant targets to improve treatment of ALT-positive tumors.
Collapse
Affiliation(s)
- Christopher B Nelson
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States.,Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, United States
| | - Taghreed M Alturki
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States.,Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, United States
| | - Jared J Luxton
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States.,Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, United States
| | - Lynn E Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - David G Maranon
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Keiko Muraki
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States
| | - John P Murnane
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States
| | - Susan M Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States.,Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
128
|
Cabrini M, Roncador M, Galbiati A, Cipolla L, Maffia A, Iannelli F, Sabbioneda S, d'Adda di Fagagna F, Francia S. DROSHA is recruited to DNA damage sites by the MRN complex to promote non-homologous end joining. J Cell Sci 2021; 134:jcs.249706. [PMID: 33558311 PMCID: PMC8015226 DOI: 10.1242/jcs.249706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/23/2021] [Indexed: 11/20/2022] Open
Abstract
The DNA damage response (DDR) is the signaling cascade that recognizes DNA double-strand breaks (DSBs) and promotes their resolution via the DNA repair pathways of non-homologous end joining (NHEJ) or homologous recombination (HR). We and others have shown that DDR activation requires DROSHA; however, whether DROSHA exerts its functions by associating with damage sites, what controls its recruitment, and how DROSHA influences DNA repair remains poorly understood. Here, we show that DROSHA associates with DSBs independently of transcription. Neither H2AX, nor ATM or DNA-PK kinase activities are required for recruitment of DROSHA to break sites. Rather, DROSHA interacts with RAD50, and inhibition of the MRN complex by mirin treatment abolishes this interaction. MRN complex inactivation by RAD50 knockdown or mirin treatment prevents DROSHA recruitment to DSBs and, as a consequence, also prevents 53BP1 (also known as TP53BP1) recruitment. During DNA repair, DROSHA inactivation reduces NHEJ and boosts HR frequency. Indeed, DROSHA knockdown also increases the association of downstream HR factors such as RAD51 to DNA ends. Overall, our results demonstrate that DROSHA is recruited at DSBs by the MRN complex and directs DNA repair towards NHEJ.
Collapse
Affiliation(s)
- Matteo Cabrini
- Istituto di Genetica Molecolare, CNR - Consiglio Nazionale delle Ricerche, Pavia 27100, Italy.,IFOM Foundation - The FIRC Institute of Molecular Oncology Foundation, Milan 20139, Italy
| | - Marco Roncador
- Istituto di Genetica Molecolare, CNR - Consiglio Nazionale delle Ricerche, Pavia 27100, Italy
| | - Alessandro Galbiati
- IFOM Foundation - The FIRC Institute of Molecular Oncology Foundation, Milan 20139, Italy
| | - Lina Cipolla
- Istituto di Genetica Molecolare, CNR - Consiglio Nazionale delle Ricerche, Pavia 27100, Italy
| | - Antonio Maffia
- Istituto di Genetica Molecolare, CNR - Consiglio Nazionale delle Ricerche, Pavia 27100, Italy
| | - Fabio Iannelli
- IFOM Foundation - The FIRC Institute of Molecular Oncology Foundation, Milan 20139, Italy
| | - Simone Sabbioneda
- Istituto di Genetica Molecolare, CNR - Consiglio Nazionale delle Ricerche, Pavia 27100, Italy
| | - Fabrizio d'Adda di Fagagna
- Istituto di Genetica Molecolare, CNR - Consiglio Nazionale delle Ricerche, Pavia 27100, Italy .,IFOM Foundation - The FIRC Institute of Molecular Oncology Foundation, Milan 20139, Italy
| | - Sofia Francia
- Istituto di Genetica Molecolare, CNR - Consiglio Nazionale delle Ricerche, Pavia 27100, Italy .,IFOM Foundation - The FIRC Institute of Molecular Oncology Foundation, Milan 20139, Italy
| |
Collapse
|
129
|
Sessa G, Gómez-González B, Silva S, Pérez-Calero C, Beaurepere R, Barroso S, Martineau S, Martin C, Ehlén Å, Martínez JS, Lombard B, Loew D, Vagner S, Aguilera A, Carreira A. BRCA2 promotes DNA-RNA hybrid resolution by DDX5 helicase at DNA breaks to facilitate their repair‡. EMBO J 2021; 40:e106018. [PMID: 33634895 DOI: 10.15252/embj.2020106018] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
The BRCA2 tumor suppressor is a DNA double-strand break (DSB) repair factor essential for maintaining genome integrity. BRCA2-deficient cells spontaneously accumulate DNA-RNA hybrids, a known source of genome instability. However, the specific role of BRCA2 on these structures remains poorly understood. Here we identified the DEAD-box RNA helicase DDX5 as a BRCA2-interacting protein. DDX5 associates with DNA-RNA hybrids that form in the vicinity of DSBs, and this association is enhanced by BRCA2. Notably, BRCA2 stimulates the DNA-RNA hybrid-unwinding activity of DDX5 helicase. An impaired BRCA2-DDX5 interaction, as observed in cells expressing the breast cancer variant BRCA2-T207A, reduces the association of DDX5 with DNA-RNA hybrids, decreases the number of RPA foci, and alters the kinetics of appearance of RAD51 foci upon irradiation. Our findings are consistent with DNA-RNA hybrids constituting an impediment for the repair of DSBs by homologous recombination and reveal BRCA2 and DDX5 as active players in their removal.
Collapse
Affiliation(s)
- Gaetana Sessa
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France.,Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Belén Gómez-González
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, University of Seville-CSIC, Seville, Spain.,Departamento de Genética, Facultad de Biología, University of Seville, Seville, Spain
| | - Sonia Silva
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, University of Seville-CSIC, Seville, Spain.,Departamento de Genética, Facultad de Biología, University of Seville, Seville, Spain
| | - Carmen Pérez-Calero
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, University of Seville-CSIC, Seville, Spain.,Departamento de Genética, Facultad de Biología, University of Seville, Seville, Spain
| | - Romane Beaurepere
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France.,Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Sonia Barroso
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, University of Seville-CSIC, Seville, Spain.,Departamento de Genética, Facultad de Biología, University of Seville, Seville, Spain
| | - Sylvain Martineau
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France.,Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Charlotte Martin
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France.,Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Åsa Ehlén
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France.,Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Juan S Martínez
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France.,Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Bérangère Lombard
- Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, Paris, France
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, Paris, France
| | - Stephan Vagner
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France.,Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Andrés Aguilera
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, University of Seville-CSIC, Seville, Spain.,Departamento de Genética, Facultad de Biología, University of Seville, Seville, Spain
| | - Aura Carreira
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France.,Université Paris-Saclay, CNRS UMR3348, Orsay, France
| |
Collapse
|
130
|
de Polo A, Labbé DP. Diet-Dependent Metabolic Regulation of DNA Double-Strand Break Repair in Cancer: More Choices on the Menu. Cancer Prev Res (Phila) 2021; 14:403-414. [PMID: 33509805 DOI: 10.1158/1940-6207.capr-20-0470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/27/2020] [Accepted: 01/21/2021] [Indexed: 11/16/2022]
Abstract
Despite several epidemiologic and preclinical studies supporting the role of diet in cancer progression, the complexity of the diet-cancer link makes it challenging to deconvolute the underlying mechanisms, which remain scantly elucidated. This review focuses on genomic instability as one of the cancer hallmarks affected by diet-dependent metabolic alterations. We discuss how altered dietary intake of metabolites of the one-carbon metabolism, including methionine, folate, and vitamins B and C, can impact the methylation processes and thereby tumorigenesis. We present the concept that the protumorigenic effect of certain diets, such as the Western diet, is in part due to a diet-induced erosion of the DNA repair capacity caused by altered epigenetic and epitranscriptomic landscapes, while the protective effect of other dietary patterns, such as the Mediterranean diet, can be partly explained by their ability to sustain a proficient DNA repair. In particular, considering that diet-dependent alterations of the one-carbon metabolism can impact the rate of methylation processes, changes in dietary patterns can affect the activity of writers and erasers of histone and RNA methyl marks and consequently impair their role in ensuring a proficient DNA damage repair.
Collapse
Affiliation(s)
- Anna de Polo
- Division of Urology, Department of Surgery, McGill University and Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - David P Labbé
- Division of Urology, Department of Surgery, McGill University and Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|
131
|
Rinaldi C, Pizzul P, Longhese MP, Bonetti D. Sensing R-Loop-Associated DNA Damage to Safeguard Genome Stability. Front Cell Dev Biol 2021; 8:618157. [PMID: 33505970 PMCID: PMC7829580 DOI: 10.3389/fcell.2020.618157] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
DNA transcription and replication are two essential physiological processes that can turn into a threat for genome integrity when they compete for the same DNA substrate. During transcription, the nascent RNA strongly binds the template DNA strand, leading to the formation of a peculiar RNA-DNA hybrid structure that displaces the non-template single-stranded DNA. This three-stranded nucleic acid transition is called R-loop. Although a programed formation of R-loops plays important physiological functions, these structures can turn into sources of DNA damage and genome instability when their homeostasis is altered. Indeed, both R-loop level and distribution in the genome are tightly controlled, and the list of factors involved in these regulatory mechanisms is continuously growing. Over the last years, our knowledge of R-loop homeostasis regulation (formation, stabilization, and resolution) has definitely increased. However, how R-loops affect genome stability and how the cellular response to their unscheduled formation is orchestrated are still not fully understood. In this review, we will report and discuss recent findings about these questions and we will focus on the role of ATM- and Rad3-related (ATR) and Ataxia-telangiectasia-mutated (ATM) kinases in the activation of an R-loop-dependent DNA damage response.
Collapse
Affiliation(s)
- Carlo Rinaldi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Paolo Pizzul
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Diego Bonetti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| |
Collapse
|
132
|
Sharma S, Anand R, Zhang X, Francia S, Michelini F, Galbiati A, Williams H, Ronato DA, Masson JY, Rothenberg E, Cejka P, d'Adda di Fagagna F. MRE11-RAD50-NBS1 Complex Is Sufficient to Promote Transcription by RNA Polymerase II at Double-Strand Breaks by Melting DNA Ends. Cell Rep 2021; 34:108565. [PMID: 33406426 PMCID: PMC7788559 DOI: 10.1016/j.celrep.2020.108565] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/19/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022] Open
Abstract
The MRE11-RAD50-NBS1 (MRN) complex supports the synthesis of damage-induced long non-coding RNA (dilncRNA) by RNA polymerase II (RNAPII) from DNA double-strand breaks (DSBs) by an unknown mechanism. Here, we show that recombinant human MRN and native RNAPII are sufficient to reconstitute a minimal functional transcriptional apparatus at DSBs. MRN recruits and stabilizes RNAPII at DSBs. Unexpectedly, transcription is promoted independently from MRN nuclease activities. Rather, transcription depends on the ability of MRN to melt DNA ends, as shown by the use of MRN mutants and specific allosteric inhibitors. Single-molecule FRET assays with wild-type and mutant MRN show a tight correlation between the ability to melt DNA ends and to promote transcription. The addition of RPA enhances MRN-mediated transcription, and unpaired DNA ends allow MRN-independent transcription by RNAPII. These results support a model in which MRN generates single-strand DNA ends that favor the initiation of transcription by RNAPII.
Collapse
Affiliation(s)
- Sheetal Sharma
- IFOM-The FIRC Institute of Molecular Oncology, Milan 20139, Italy; Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Roopesh Anand
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Bellinzona 6500, Switzerland
| | - Xuzhu Zhang
- NYU Langone Medical Center, 450 East 29th Street, New York, NY, USA
| | - Sofia Francia
- IFOM-The FIRC Institute of Molecular Oncology, Milan 20139, Italy; Istituto di Genetica Molecolare, CNR-Consiglio Nazionale delle Ricerche, Pavia 2700, Italy
| | - Flavia Michelini
- IFOM-The FIRC Institute of Molecular Oncology, Milan 20139, Italy
| | | | | | - Daryl A Ronato
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada; Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec City, QC G1R 2J6, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada; Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec City, QC G1R 2J6, Canada
| | - Eli Rothenberg
- NYU Langone Medical Center, 450 East 29th Street, New York, NY, USA
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Bellinzona 6500, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich 8093, Switzerland.
| | - Fabrizio d'Adda di Fagagna
- IFOM-The FIRC Institute of Molecular Oncology, Milan 20139, Italy; Istituto di Genetica Molecolare, CNR-Consiglio Nazionale delle Ricerche, Pavia 2700, Italy.
| |
Collapse
|
133
|
Regulation of DNA break repair by RNA. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:23-33. [PMID: 33385412 DOI: 10.1016/j.pbiomolbio.2020.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/25/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022]
Abstract
Genomic stability is critical for cell survival and its effective repair when damaged is a vital process for preserving genetic information. Failure to correctly repair the genome can lead to the accumulation of mutations that ultimately drives carcinogenesis. Life has evolved sophisticated surveillance, repair pathways, and mechanisms to recognize and mend genomic lesions to preserve its integrity. Many of these pathways involve a cascade of protein effectors that act to identify the type of damage, such as double-strand (ds) DNA breaks, propagate the damage signal, and recruit an array of other protein factors to resolve the damage without loss of genetic information. It is now becoming increasingly clear that there are a number of RNA processing factors, such as the transcriptional machinery, and microRNA biogenesis components, as well as RNA itself, that facilitate the repair of DNA damage. Here, some of the recent work unravelling the role of RNA in the DNA Damage Response (DDR), in particular the dsDNA break repair pathway, will be reviewed.
Collapse
|
134
|
Super-Resolution Imaging of Homologous Recombination Repair at Collapsed Replication Forks. Methods Mol Biol 2021; 2153:355-363. [PMID: 32840791 DOI: 10.1007/978-1-0716-0644-5_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Single-molecule super-resolution microscopy (SRM) combines single-molecule detection with spatial resolutions tenfold improved over conventional confocal microscopy. These two key advantages make it possible to visualize individual DNA replication and damage events within the cellular context of fixed cells. This in turn engenders the ability to decipher variations between individual replicative and damage species within a single nucleus, elucidating different subpopulations of stress and repair events. Here, we describe the protocol for combining SRM with novel labeling and damage assays to characterize DNA double-strand break (DSB) induction at stressed replication forks (RFs) and subsequent repair by homologous recombination (HR). These assays enable spatiotemporal mapping of DNA damage response and repair proteins to establish their in vivo function and interactions, as well as detailed characterization of specific dysfunctions in HR caused by drugs or mutations of interest.
Collapse
|
135
|
Detection of Telomeric DNA:RNA Hybrids Using TeloDRIP-qPCR. Int J Mol Sci 2020; 21:ijms21249774. [PMID: 33371452 PMCID: PMC7767442 DOI: 10.3390/ijms21249774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022] Open
Abstract
Because of their intrinsic characteristics, telomeres are genomic loci that pose significant problems during the replication of the genome. In particular, it has been observed that telomeres that are maintained in cancer cells by the alternative mechanism of the lengthening of telomeres (ALT) harbor higher levels of replicative stress compared with telomerase-positive cancer cells. R-loops are three-stranded structures formed by a DNA:RNA hybrid and a displaced ssDNA. Emerging evidence suggests that controlling the levels of R-loops at ALT telomeres is critical for telomere maintenance. In fact, on the one hand, they favor telomere recombination, but on the other, they are a source of detrimental replicative stress. DRIP (DNA:RNA immunoprecipitation) is the main technique used for the detection of R-loops, and it is based on the use of the S9.6 antibody, which recognizes preferentially DNA:RNA hybrids in a sequence-independent manner. The detection of DNA:RNA hybrids in repetitive sequences such as telomeres requires some additional precautions as a result of their repetitive nature. Here, we share an optimized protocol for the detection of telomeric DNA:RNA hybrids, and we demonstrate its application in an ALT and in a telomerase-positive cell line. We demonstrate that ALT telomeres bear higher levels of DNA:RNA hybrids, and we propose this method as a reliable way to detect them in telomeres.
Collapse
|
136
|
Prados-Carvajal R, Rodriguez-Real G, Gutierrez-Pozo G, Huertas P. CtIP -mediated alternative mRNA splicing finetunes the DNA damage response. RNA (NEW YORK, N.Y.) 2020; 27:rna.078519.120. [PMID: 33298529 PMCID: PMC7901839 DOI: 10.1261/rna.078519.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
In order to survive to the exposure of DNA damaging agents, cells activate a complex response that coordinates the cellular metabolism, cell cycle progression and DNA repair. Among many other events, recent evidence has described global changes in mRNA splicing in cells treated with genotoxic agents. Here, we explore further this DNA damage-dependent alternative splicing. Indeed, we show that both the splicing factor SF3B2 and the repair protein CtIP contribute to the global pattern of splicing both in cells treated or not to DNA damaging agents. Additionally, we focus on a specific DNA damage- and CtIP-dependent alternative splicing event of the helicase PIF1 and explore its relevance for the survival of cells upon exposure to ionizing radiation. Indeed, we described how the nuclear, active form of PIF1 is substituted by a splicing variant, named vPIF1, in a fashion that requires both the presence of DNA damage and CtIP. Interestingly, timely expression of vPIF1 is required for optimal survival to exposure to DNA damaging agents, but early expression of this isoform delays early events of the DNA damage response. On the contrary, expression of the full length PIF1 facilitates those early events, but increases the sensitivity to DNA damaging agents if the expression is maintained long-term.
Collapse
|
137
|
Lee SY, Kim JJ, Miller KM. Emerging roles of RNA modifications in genome integrity. Brief Funct Genomics 2020; 20:106-112. [PMID: 33279952 DOI: 10.1093/bfgp/elaa022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
Post-translational modifications of proteins are well-established participants in DNA damage response (DDR) pathways, which function in the maintenance of genome integrity. Emerging evidence is starting to reveal the involvement of modifications on RNA in the DDR. RNA modifications are known regulators of gene expression but how and if they participate in DNA repair and genome maintenance has been poorly understood. Here, we review several studies that have now established RNA modifications as key components of DNA damage responses. RNA modifying enzymes and the binding proteins that recognize these modifications localize to and participate in the repair of UV-induced and DNA double-strand break lesions. RNA modifications have a profound effect on DNA-RNA hybrids (R-loops) at DNA damage sites, a structure known to be involved in DNA repair and genome stability. Given the importance of the DDR in suppressing mutations and human diseases such as neurodegeneration, immunodeficiencies, cancer and aging, RNA modification pathways may be involved in human diseases not solely through their roles in gene expression but also by their ability to impact DNA repair and genome stability.
Collapse
Affiliation(s)
- Seo Yun Lee
- Miller laboratory at the University of Texas at Austin
| | - Jae Jin Kim
- Miller laboratory at the University of Texas at Austin
| | | |
Collapse
|
138
|
Vågbø CB, Slupphaug G. RNA in DNA repair. DNA Repair (Amst) 2020; 95:102927. [DOI: 10.1016/j.dnarep.2020.102927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022]
|
139
|
Rzeszutek I, Betlej G. The Role of Small Noncoding RNA in DNA Double-Strand Break Repair. Int J Mol Sci 2020; 21:ijms21218039. [PMID: 33126669 PMCID: PMC7663326 DOI: 10.3390/ijms21218039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 02/01/2023] Open
Abstract
DNA damage is a common phenomenon promoted through a variety of exogenous and endogenous factors. The DNA damage response (DDR) pathway involves a wide range of proteins, and as was indicated, small noncoding RNAs (sncRNAs). These are double-strand break-induced RNAs (diRNAs) and DNA damage response small RNA (DDRNA). Moreover, RNA binding proteins (RBPs) and RNA modifications have also been identified to modulate diRNA and DDRNA function in the DDR process. Several theories have been formulated regarding the synthesis and function of these sncRNAs during DNA repair; nevertheless, these pathways’ molecular details remain unclear. Here, we review the current knowledge regarding the mechanisms of diRNA and DDRNA biosynthesis and discuss the role of sncRNAs in maintaining genome stability.
Collapse
Affiliation(s)
- Iwona Rzeszutek
- Institute of Biology and Biotechnology, Department of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
- Correspondence: ; Tel.: +48-17-851-86-20; Fax: +48-17-851-87-64
| | - Gabriela Betlej
- Institute of Physical Culture Studies, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland;
| |
Collapse
|
140
|
Ketley RF, Gullerova M. Jack of all trades? The versatility of RNA in DNA double-strand break repair. Essays Biochem 2020; 64:721-735. [PMID: 32618336 PMCID: PMC7592198 DOI: 10.1042/ebc20200008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022]
Abstract
The mechanisms by which RNA acts in the DNA damage response (DDR), specifically in the repair of DNA double-strand breaks (DSBs), are emerging as multifaceted and complex. Different RNA species, including but not limited to; microRNA (miRNA), long non-coding RNA (lncRNA), RNA:DNA hybrid structures, the recently identified damage-induced lncRNA (dilncRNA), damage-responsive transcripts (DARTs), and DNA damage-dependent small RNAs (DDRNAs), have been shown to play integral roles in the DSB response. The diverse properties of these RNAs, such as sequence, structure, and binding partners, enable them to fulfil a variety of functions in different cellular contexts. Additionally, RNA can be modified post-transcriptionally, a process which is regulated in response to cellular stressors such as DNA damage. Many of these mechanisms are not yet understood and the literature contradictory, reflecting the complexity and expansive nature of the roles of RNA in the DDR. However, it is clear that RNA is pivotal in ensuring the maintenance of genome integrity. In this review, we will discuss and summarise recent evidence which highlights the roles of these various RNAs in preserving genomic integrity, with a particular focus on the emerging role of RNA in the DSB repair response.
Collapse
Affiliation(s)
- Ruth F Ketley
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, United Kingdom
| | - Monika Gullerova
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
141
|
Gómez-González B, Aguilera A. Origin matters: spontaneous DNA-RNA hybrids do not form in trans as a source of genome instability. Curr Genet 2020; 67:93-97. [PMID: 33095299 DOI: 10.1007/s00294-020-01117-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 12/30/2022]
Abstract
Multiple exogenous and endogenous genotoxic agents threaten the integrity of the genome, but one major source of spontaneous DNA damage is the formation of unscheduled DNA-RNA hybrids. These can be genetically detected by their ability to induce recombination. The origin of spontaneous hybrids has been mainly attributed to the nascent RNA formed co-transcriptionally in cis invading its own DNA template. However, it was unclear whether hybrids could also be spontaneously generated by RNA produced in a different locus (in trans). Using new genetic systems in the yeast Saccharomyces cerevisiae, we recently tested whether hybrids could be formed in trans and compromise genome integrity. Whereas we detected recombinogenic DNA-RNA hybrids in cis and in a Rad51-independent manner, we found no evidence for recombinogenic DNA-RNA hybrids to be formed with RNAs produced in trans. Here, we further discuss the implications in the field for the origin of genetic instability and the threats coming from RNAs.
Collapse
Affiliation(s)
- Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC, Seville, Spain. .,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
142
|
The molecular basis and disease relevance of non-homologous DNA end joining. Nat Rev Mol Cell Biol 2020; 21:765-781. [PMID: 33077885 DOI: 10.1038/s41580-020-00297-8] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 12/26/2022]
Abstract
Non-homologous DNA end joining (NHEJ) is the predominant repair mechanism of any type of DNA double-strand break (DSB) during most of the cell cycle and is essential for the development of antigen receptors. Defects in NHEJ result in sensitivity to ionizing radiation and loss of lymphocytes. The most critical step of NHEJ is synapsis, or the juxtaposition of the two DNA ends of a DSB, because all subsequent steps rely on it. Recent findings show that, like the end processing step, synapsis can be achieved through several mechanisms. In this Review, we first discuss repair pathway choice between NHEJ and other DSB repair pathways. We then integrate recent insights into the mechanisms of NHEJ synapsis with updates on other steps of NHEJ, such as DNA end processing and ligation. Finally, we discuss NHEJ-related human diseases, including inherited disorders and neoplasia, which arise from rare failures at different NHEJ steps.
Collapse
|
143
|
Pessina F, Gioia U, Brandi O, Farina S, Ceccon M, Francia S, d'Adda di Fagagna F. DNA Damage Triggers a New Phase in Neurodegeneration. Trends Genet 2020; 37:337-354. [PMID: 33020022 DOI: 10.1016/j.tig.2020.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
Subcellular compartmentalization contributes to the organization of a plethora of molecular events occurring within cells. This can be achieved in membraneless organelles generated through liquid-liquid phase separation (LLPS), a demixing process that separates and concentrates cellular reactions. RNA is often a critical factor in mediating LLPS. Recent evidence indicates that DNA damage response foci are membraneless structures formed via LLPS and modulated by noncoding transcripts synthesized at DNA damage sites. Neurodegeneration is often associated with DNA damage, and dysfunctional LLPS events can lead to the formation of toxic aggregates. In this review, we discuss those gene products involved in neurodegeneration that undergo LLPS and their involvement in the DNA damage response.
Collapse
Affiliation(s)
- Fabio Pessina
- IFOM Foundation - FIRC Institute of Molecular Oncology Foundation, 20139 Milan, Italy
| | - Ubaldo Gioia
- IFOM Foundation - FIRC Institute of Molecular Oncology Foundation, 20139 Milan, Italy
| | - Ornella Brandi
- Istituto di Genetica Molecolare 'Luigi Luca Cavalli-Sforza' CNR - Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Stefania Farina
- Istituto di Genetica Molecolare 'Luigi Luca Cavalli-Sforza' CNR - Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy; University School for Advanced Studies IUSS, 27100 Pavia, Italy
| | - Marta Ceccon
- IFOM Foundation - FIRC Institute of Molecular Oncology Foundation, 20139 Milan, Italy
| | - Sofia Francia
- IFOM Foundation - FIRC Institute of Molecular Oncology Foundation, 20139 Milan, Italy; Istituto di Genetica Molecolare 'Luigi Luca Cavalli-Sforza' CNR - Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy.
| | - Fabrizio d'Adda di Fagagna
- IFOM Foundation - FIRC Institute of Molecular Oncology Foundation, 20139 Milan, Italy; Istituto di Genetica Molecolare 'Luigi Luca Cavalli-Sforza' CNR - Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy.
| |
Collapse
|
144
|
Dueva R, Iliakis G. Replication protein A: a multifunctional protein with roles in DNA replication, repair and beyond. NAR Cancer 2020; 2:zcaa022. [PMID: 34316690 PMCID: PMC8210275 DOI: 10.1093/narcan/zcaa022] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Single-stranded DNA (ssDNA) forms continuously during DNA replication and is an important intermediate during recombination-mediated repair of damaged DNA. Replication protein A (RPA) is the major eukaryotic ssDNA-binding protein. As such, RPA protects the transiently formed ssDNA from nucleolytic degradation and serves as a physical platform for the recruitment of DNA damage response factors. Prominent and well-studied RPA-interacting partners are the tumor suppressor protein p53, the RAD51 recombinase and the ATR-interacting proteins ATRIP and ETAA1. RPA interactions are also documented with the helicases BLM, WRN and SMARCAL1/HARP, as well as the nucleotide excision repair proteins XPA, XPG and XPF–ERCC1. Besides its well-studied roles in DNA replication (restart) and repair, accumulating evidence shows that RPA is engaged in DNA activities in a broader biological context, including nucleosome assembly on nascent chromatin, regulation of gene expression, telomere maintenance and numerous other aspects of nucleic acid metabolism. In addition, novel RPA inhibitors show promising effects in cancer treatment, as single agents or in combination with chemotherapeutics. Since the biochemical properties of RPA and its roles in DNA repair have been extensively reviewed, here we focus on recent discoveries describing several non-canonical functions.
Collapse
Affiliation(s)
- Rositsa Dueva
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| |
Collapse
|
145
|
Yu Z, Mersaoui SY, Guitton-Sert L, Coulombe Y, Song J, Masson JY, Richard S. DDX5 resolves R-loops at DNA double-strand breaks to promote DNA repair and avoid chromosomal deletions. NAR Cancer 2020; 2:zcaa028. [PMID: 33015627 PMCID: PMC7520851 DOI: 10.1093/narcan/zcaa028] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/25/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
R-loops are three-stranded structures consisting of a DNA/RNA hybrid and a displaced DNA strand. The regulatory factors required to process this fundamental genetic structure near double-strand DNA breaks (DSBs) are not well understood. We previously reported that cellular depletion of the ATP-dependent DEAD box RNA helicase DDX5 increases R-loops genome-wide causing genomic instability. In this study, we define a pivotal role for DDX5 in clearing R-loops at or near DSBs enabling proper DNA repair to avoid aberrations such as chromosomal deletions. Remarkably, using the non-homologous end joining reporter gene (EJ5-GFP), we show that DDX5-deficient U2OS cells exhibited asymmetric end deletions on the side of the DSBs where there is overlap with a transcribed gene. Cross-linking and immunoprecipitation showed that DDX5 bound RNA transcripts near DSBs and required its helicase domain and the presence of DDX5 near DSBs was also shown by chromatin immunoprecipitation. DDX5 was excluded from DSBs in a transcription- and ATM activation-dependent manner. Using DNA/RNA immunoprecipitation, we show DDX5-deficient cells had increased R-loops near DSBs. Finally, DDX5 deficiency led to delayed exonuclease 1 and replication protein A recruitment to laser irradiation-induced DNA damage sites, resulting in homologous recombination repair defects. Our findings define a role for DDX5 in facilitating the clearance of RNA transcripts overlapping DSBs to ensure proper DNA repair.
Collapse
Affiliation(s)
- Zhenbao Yu
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montréal, Québec H3T 1E2, Canada
| | - Sofiane Y Mersaoui
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montréal, Québec H3T 1E2, Canada
| | - Laure Guitton-Sert
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Axis, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, 9 McMahon, Québec City, Québec G1R 3S3, Canada
| | - Yan Coulombe
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Axis, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, 9 McMahon, Québec City, Québec G1R 3S3, Canada
| | - Jingwen Song
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montréal, Québec H3T 1E2, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Axis, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, 9 McMahon, Québec City, Québec G1R 3S3, Canada
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montréal, Québec H3T 1E2, Canada
| |
Collapse
|
146
|
|
147
|
Lafuente-Barquero J, García-Rubio ML, Martin-Alonso MS, Gómez-González B, Aguilera A. Harmful DNA:RNA hybrids are formed in cis and in a Rad51-independent manner. eLife 2020; 9:56674. [PMID: 32749214 PMCID: PMC7431130 DOI: 10.7554/elife.56674] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022] Open
Abstract
DNA:RNA hybrids constitute a well-known source of recombinogenic DNA damage. The current literature is in agreement with DNA:RNA hybrids being produced co-transcriptionally by the invasion of the nascent RNA molecule produced in cis with its DNA template. However, it has also been suggested that recombinogenic DNA:RNA hybrids could be facilitated by the invasion of RNA molecules produced in trans in a Rad51-mediated reaction. Here, we tested the possibility that such DNA:RNA hybrids constitute a source of recombinogenic DNA damage taking advantage of Rad51-independent single-strand annealing (SSA) assays in the yeast Saccharomyces cerevisiae. For this, we used new constructs designed to induce expression of mRNA transcripts in trans with respect to the SSA system. We show that unscheduled and recombinogenic DNA:RNA hybrids that trigger the SSA event are formed in cis during transcription and in a Rad51-independent manner. We found no evidence that such hybrids form in trans and in a Rad51-dependent manner.
Collapse
Affiliation(s)
- Juan Lafuente-Barquero
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Maria Luisa García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Marta San Martin-Alonso
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
148
|
Zhang C, Chen L, Peng D, Jiang A, He Y, Zeng Y, Xie C, Zhou H, Luo X, Liu H, Chen L, Ren J, Wang W, Zhao Y. METTL3 and N6-Methyladenosine Promote Homologous Recombination-Mediated Repair of DSBs by Modulating DNA-RNA Hybrid Accumulation. Mol Cell 2020; 79:425-442.e7. [PMID: 32615088 DOI: 10.1016/j.molcel.2020.06.017] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/15/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Abstract
Double-strand breaks (DSBs) are the most deleterious DNA lesions, which, if left unrepaired, may lead to genome instability or cell death. Here, we report that, in response to DSBs, the RNA methyltransferase METTL3 is activated by ATM-mediated phosphorylation at S43. Phosphorylated METTL3 is then localized to DNA damage sites, where it methylates the N6 position of adenosine (m6A) in DNA damage-associated RNAs, which recruits the m6A reader protein YTHDC1 for protection. In this way, the METTL3-m6A-YTHDC1 axis modulates accumulation of DNA-RNA hybrids at DSBs sites, which then recruit RAD51 and BRCA1 for homologous recombination (HR)-mediated repair. METTL3-deficient cells display defective HR, accumulation of unrepaired DSBs, and genome instability. Accordingly, depletion of METTL3 significantly enhances the sensitivity of cancer cells and murine xenografts to DNA damage-based therapy. These findings uncover the function of METTL3 and YTHDC1 in HR-mediated DSB repair, which may have implications for cancer therapy.
Collapse
Affiliation(s)
- Canfeng Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Liping Chen
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Di Peng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510006, China
| | - Ao Jiang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yunru He
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yanru Zeng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510006, China
| | - Chen Xie
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haoxian Zhou
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaotong Luo
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510006, China
| | - Haiying Liu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Liang Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jian Ren
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510006, China
| | - Wengong Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Yong Zhao
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510006, China.
| |
Collapse
|
149
|
Cocco S, Piezzo M, Calabrese A, Cianniello D, Caputo R, Di Lauro V, Fusco G, di Gioia G, Licenziato M, de Laurentiis M. Biomarkers in Triple-Negative Breast Cancer: State-of-the-Art and Future Perspectives. Int J Mol Sci 2020; 21:E4579. [PMID: 32605126 PMCID: PMC7369987 DOI: 10.3390/ijms21134579] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous group of tumors characterized by aggressive behavior, high risk of distant recurrence, and poor survival. Chemotherapy is still the main therapeutic approach for this subgroup of patients, therefore, progress in the treatment of TNBC remains an important challenge. Data derived from molecular technologies have identified TNBCs with different gene expression and mutation profiles that may help developing targeted therapies. So far, however, only a few of these have shown to improve the prognosis and outcomes of TNBC patients. Robust predictive biomarkers to accelerate clinical progress are needed. Herein, we review prognostic and predictive biomarkers in TNBC, discuss the current evidence supporting their use, and look at the future of this research field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Michelino de Laurentiis
- Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 53, 80131 Napoli NA, Italy; (S.C.); (M.P.); (A.C.); (D.C.); (R.C.); (V.D.L.); (G.F.); (G.d.G.); (M.L.)
| |
Collapse
|
150
|
Álvarez-Quilón A, Wojtaszek JL, Mathieu MC, Patel T, Appel CD, Hustedt N, Rossi SE, Wallace BD, Setiaputra D, Adam S, Ohashi Y, Melo H, Cho T, Gervais C, Muñoz IM, Grazzini E, Young JTF, Rouse J, Zinda M, Williams RS, Durocher D. Endogenous DNA 3' Blocks Are Vulnerabilities for BRCA1 and BRCA2 Deficiency and Are Reversed by the APE2 Nuclease. Mol Cell 2020; 78:1152-1165.e8. [PMID: 32516598 PMCID: PMC7340272 DOI: 10.1016/j.molcel.2020.05.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/18/2020] [Accepted: 05/13/2020] [Indexed: 02/08/2023]
Abstract
The APEX2 gene encodes APE2, a nuclease related to APE1, the apurinic/apyrimidinic endonuclease acting in base excision repair. Loss of APE2 is lethal in cells with mutated BRCA1 or BRCA2, making APE2 a prime target for homologous recombination-defective cancers. However, because the function of APE2 in DNA repair is poorly understood, it is unclear why BRCA-deficient cells require APE2 for viability. Here we present the genetic interaction profiles of APE2, APE1, and TDP1 deficiency coupled to biochemical and structural dissection of APE2. We conclude that the main role of APE2 is to reverse blocked 3' DNA ends, problematic lesions that preclude DNA synthesis. Our work also suggests that TOP1 processing of genomic ribonucleotides is the main source of 3'-blocking lesions relevant to APEX2-BRCA1/2 synthetic lethality. The exquisite sensitivity of BRCA-deficient cells to 3' blocks indicates that they represent a tractable vulnerability in homologous recombination-deficient tumor cells.
Collapse
Affiliation(s)
- Alejandro Álvarez-Quilón
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Jessica L Wojtaszek
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Marie-Claude Mathieu
- Repare Therapeutics, 7210 Frederick-Banting, Suite 100, St-Laurent, QC H4S 2A1, Canada
| | - Tejas Patel
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - C Denise Appel
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Nicole Hustedt
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Silvia Emma Rossi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Bret D Wallace
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Dheva Setiaputra
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Salomé Adam
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Yota Ohashi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Henrique Melo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Tiffany Cho
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Christian Gervais
- National Research Council Canada Human Health Therapeutics Research Center, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada
| | - Ivan M Muñoz
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Eric Grazzini
- National Research Council Canada Human Health Therapeutics Research Center, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada
| | - Jordan T F Young
- Repare Therapeutics, 7210 Frederick-Banting, Suite 100, St-Laurent, QC H4S 2A1, Canada
| | - John Rouse
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Michael Zinda
- Repare Therapeutics, 7210 Frederick-Banting, Suite 100, St-Laurent, QC H4S 2A1, Canada
| | - R Scott Williams
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|