101
|
Shim WJ, Kim SK, Lee J, Eo S, Kim JS, Sun C. Toward a long-term monitoring program for seawater plastic pollution in the north Pacific Ocean: Review and global comparison. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119911. [PMID: 35987287 DOI: 10.1016/j.envpol.2022.119911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Through a literature survey and meta-data analysis, monitoring methods and contamination levels of marine micro- and macroplastics in seawater were compared between the North Pacific and the world's other ocean basins. The minimum cut-off size in sampling and/or analysis of microplastics was crucial to the comparison of monitoring data. The North Pacific was most actively monitored for microplastics and showed comparatively high levels in the global context, while the Mediterranean Sea was most frequently monitored for macroplastics. Of the 65 extracted mean abundances of microplastics in seawater from the North Pacific, two (3.1%) exceeded the lowest predicted no-effect concentration (PNEC) proposed thus far. However, in the context of business-as-usual conditions, the PNEC exceedance probability may be expected to reach 27.7% in the North Pacific in 2100. The abundance of marine plastics in seawater, which reflects the current pollution status and marine organisms' waterborne exposure levels, is a useful indicator for marine plastic pollution. For regional and global assessments of pollution status across space and time, as well as assessment of ecological risk, two microplastic monitoring approaches are recommended along with their key aspects. Although microplastic pollution is closely linked with macroplastics, the monitoring data available for floating macroplastics and more extent to mesoplastics in most ocean basins are limited. A more specific framework for visual macroplastic survey (e.g. fixed minimum cut-off size, along with survey transect width and length according to survey vessel class) is required to facilitate data comparison. With the implementation of standardised methods, increased efforts are required to gather monitoring data for microplastics and-more importantly-floating macroplastics in seawater worldwide.
Collapse
Affiliation(s)
- Won Joon Shim
- Risk Analysis Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Seung-Kyu Kim
- Department of Marine Science, College of Natural Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; Yellow Sea Institute, Incheon National University, Academy-ro 119, Yeounsu-gu, Incheon 22012, Republic of Korea
| | - Jongsu Lee
- Korea Marine Litter Institute, Our Sea of East Asia Network, Tongyeong 53013, Republic of Korea
| | - Soeun Eo
- Risk Analysis Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ji-Su Kim
- Department of Marine Science, College of Natural Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Chengjun Sun
- Key Laboratory of Marine Eco-environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao 266061, China; Laboratory of Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
102
|
Cai W, Tremblay LA, An L. Enhancing consumption responsibility to address global plastic pollution. MARINE POLLUTION BULLETIN 2022; 183:114089. [PMID: 36087484 DOI: 10.1016/j.marpolbul.2022.114089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Plastic pollution is a global crisis, especially in the marine environment. Excessive consumption and unsound disposal are responsible for the constant accumulation of plastic waste, resulting in plastic litter and microplastic contamination on a global scale. Establishing a new global framework is regarded as a promising tool to address plastic pollution, including marine plastic litter. However, there is a need to raise awareness of the role of consumers at individual and national levels in reducing the use of unnecessary plastics and increasing the recycling of plastic waste. The global framework should incorporate aspects of the importance of consumption responsibility in solutions addressing the issue of plastic pollution.
Collapse
Affiliation(s)
- Wenqian Cai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Technical Center for Soil, Agriculture and Rural Ecology, and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Louis A Tremblay
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Lihui An
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
103
|
Hewins B, Gibson G. Petroleum-based and biodegradable microplastics alter tissue structure and fecundity in the eastern mudsnail ( Ilyanassa obsoleta). CAN J ZOOL 2022. [DOI: 10.1139/cjz-2021-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microplastics are hazardous to aquatic life. Most experiments focus on the effects of a single type of microbead, while in the environment, organisms are exposed to irregularly shaped fragments belonging to several chemical groups. The effects of biodegradable plastics are unknown. We tested the effects of mixed-source (MS) petroleum-based and biodegradable (polylactic acid, PLA) microplastics on the intertidal eastern mudsnail, Ilyanassa obsoleta (Say, 1822), a benthic grazer. MS plastics were collected from local coastal areas (polystyrene, polyethylene, polypropylene, polyvinyl chloride and polyethylene terephthalate, combined) and were tested at three exposures, including one similar to concentrations found locally (2250 particles/kg sediment). Plastics were milled to be similar in size to the biofilm–sediment mix provided to the snails as food (32.94 µm2 for sediment, 137.99 µm2 for MS, and 31.16 µm2 for PLA). Locally relevant exposures of MS microplastics disrupted digestive gland histology, while extreme exposures additionally increased the number of hemocytes and reduced fecundity. Effects of PLA were similar to those of MS microplastics, at the extreme exposure tested here. These results indicate that both petroleum-based and biodegradable microplastics disrupt the structure of the digestive gland and that environmentally relevant exposures induce “hidden” tissue-level changes that are invisible without specialized techniques.
Collapse
Affiliation(s)
- Ben Hewins
- Biology Department, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - Glenys Gibson
- Biology Department, Acadia University, Wolfville, NS B4P 2R6, Canada
| |
Collapse
|
104
|
Ding J, Sun C, Li J, Shi H, Xu X, Ju P, Jiang F, Li F. Microplastics in global bivalve mollusks: A call for protocol standardization. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129490. [PMID: 35792432 DOI: 10.1016/j.jhazmat.2022.129490] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/12/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
A growing body of evidence shows that microplastic pollution is ubiquitous in bivalve mollusks globally and is of particular concern due to its potential impact on human health. However, non-standardized sampling, processing, and analytical techniques increased the difficulty of direct comparisons among existing studies. Based on 61 peer-reviewed papers, we summarized the current knowledge of microplastics in bivalve mollusks globally and provided an in-depth analysis of factors affecting the outcome of microplastic data, with the main focus on the effects of different species and methodologies. We found no significant differences in microplastic abundance among genera from the same family but significant differences among bivalve families, indicating habitats play an important role in microplastic ingestion by bivalve mollusks. This also provided foundational knowledge for using epifaunal and infaunal bivalves to monitor microplastic pollution in water and sediment, respectively. Recommendations for microplastic monitoring protocol in bivalve mollusks were proposed according to the results of this review, covering (i) a sample size of at least 50 bivalves in the study area, (ii) the use of 10 % KOH as the digestion solution, and (iii) the pore size of a filter membrane of < 5 µm. Acknowledging the need for a standard procedure, more efforts towards protocol standardization used in long-term and large-scale microplastic monitoring programs in bivalve mollusks are needed.
Collapse
Affiliation(s)
- Jinfeng Ding
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Eco-environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao 266061, China
| | - Chengjun Sun
- Key Laboratory of Marine Eco-environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao 266061, China; Laboratory of Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jingxi Li
- Key Laboratory of Marine Eco-environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao 266061, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Peng Ju
- Key Laboratory of Marine Eco-environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao 266061, China
| | - Fenghua Jiang
- Key Laboratory of Marine Eco-environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao 266061, China
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
105
|
Glöckler E, Ghosh S, Schulz S. β-Diketiminate and β-Ketoiminate Metal Catalysts for Ring-Opening Polymerization of Cyclic Esters. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2121837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Eduard Glöckler
- Institute for Inorganic Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Swarup Ghosh
- Institute for Inorganic Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Stephan Schulz
- Institute for Inorganic Chemistry, University of Duisburg-Essen, Essen, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg, Germany
| |
Collapse
|
106
|
Windheim J, Colombo L, Battajni NC, Russo L, Cagnotto A, Diomede L, Bigini P, Vismara E, Fiumara F, Gabbrielli S, Gautieri A, Mazzuoli-Weber G, Salmona M, Colnaghi L. Micro- and Nanoplastics’ Effects on Protein Folding and Amyloidosis. Int J Mol Sci 2022; 23:ijms231810329. [PMID: 36142234 PMCID: PMC9499421 DOI: 10.3390/ijms231810329] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/30/2022] Open
Abstract
A significant portion of the world’s plastic is not properly disposed of and, through various processes, is degraded into microscopic particles termed micro- and nanoplastics. Marine and terrestrial faunae, including humans, inevitably get in contact and may inhale and ingest these microscopic plastics which can deposit throughout the body, potentially altering cellular and molecular functions in the nervous and other systems. For instance, at the cellular level, studies in animal models have shown that plastic particles can cross the blood–brain barrier and interact with neurons, and thus affect cognition. At the molecular level, plastics may specifically influence the folding of proteins, induce the formation of aberrant amyloid proteins, and therefore potentially trigger the development of systemic and local amyloidosis. In this review, we discuss the general issue of plastic micro- and nanoparticle generation, with a focus on their effects on protein folding, misfolding, and their possible clinical implications.
Collapse
Affiliation(s)
- Joseph Windheim
- Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Laura Colombo
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Nora C. Battajni
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Luca Russo
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Alfredo Cagnotto
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Paolo Bigini
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Elena Vismara
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, 20156 Milan, Italy
| | - Ferdinando Fiumara
- Rita Levi Montalcini Department of Neuroscience, University of Torino, Corso Raffaello 30, 10125 Torino, Italy
- National Institute of Neuroscience (INN), University of Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Silvia Gabbrielli
- Biomolecular Engineering Lab, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Alfonso Gautieri
- Biomolecular Engineering Lab, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Gemma Mazzuoli-Weber
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Luca Colnaghi
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
- Correspondence: ; Tel.: +39-02-2643-4818
| |
Collapse
|
107
|
Guo Q, Xue R, Zhao J, Zhang Y, van de Kerkhof GT, Zhang K, Li Y, Vignolini S, Song D. Precise Tailoring of Polyester Bottlebrush Amphiphiles toward Eco‐Friendly Photonic Pigments via Interfacial Self‐Assembly. Angew Chem Int Ed Engl 2022; 61:e202206723. [DOI: 10.1002/anie.202206723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Qilin Guo
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Runze Xue
- Institute of Coastal Environmental Pollution Control Key Laboratory of Marine Environment and Ecology Ministry of Education Ocean University of China Qingdao 266100 China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control Key Laboratory of Marine Environment and Ecology Ministry of Education Ocean University of China Qingdao 266100 China
- Laboratory for Marine Ecology and Environmental Science Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 China
| | - Yuxia Zhang
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | | | - Kunyu Zhang
- Advanced Materials Research Center Petrochemical Research Institute PetroChina Company Limited Beijing 102206 China
| | - Yuesheng Li
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Silvia Vignolini
- Department of Chemistry University of Cambridge Cambridge CB2 1EW UK
| | - Dong‐Po Song
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| |
Collapse
|
108
|
Borongan G, NaRanong A. Factors in enhancing environmental governance for marine plastic litter abatement in Manila, the Philippines: A combined structural equation modeling and DPSIR framework. MARINE POLLUTION BULLETIN 2022; 181:113920. [PMID: 35839663 DOI: 10.1016/j.marpolbul.2022.113920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/26/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
This empirical study examines the factors enhancing environmental governance for marine plastic litter abatement in Manila, the Philippines. We use a combined covariance-based hybrid structural equation modeling (SEM) and DPSIR framework, with data collected via an online survey from 456 barangays in Manila, the Philippines. The survey was processed and analyzed using a combined model, validated through interviews and focused group discussions. With Higher-Order Model good internal consistency (0.917) and achieved measures of CFI (0.992), RMSEA (0.036), and SRMR (0.019), the findings revealed that environmental governance (COVID-19 waste), community participation, socio-economic factors, and solution measures have positively affected marine plastic litter (MPL) abatement. Notwithstanding, environmental governance (SWM policies and guidelines) has a negative impact on MPL abatement. There is, however, no link between waste infrastructure and MPL abatement. The findings provide significant perspectives in Manila to enhance environmental governance for MPL abatement. This paper presents policy-actions implications drawn from DPSIR-SEM.
Collapse
Affiliation(s)
- Guilberto Borongan
- National Institute of Development Administration, Bangkapi, Bangkok, Thailand; Asian Institute of Technology, Pathum Thani, Thailand.
| | - Anchana NaRanong
- National Institute of Development Administration, Bangkapi, Bangkok, Thailand
| |
Collapse
|
109
|
Liu Q, Wang F, Hu E, Hong R, Li T, Yuan X, Cheng XB, Cai N, Xiao R, Zhang H. Nickel-iron nanoparticles encapsulated in carbon nanotubes prepared from waste plastics for low-temperature solid oxide fuel cells. iScience 2022; 25:104855. [PMID: 35992054 PMCID: PMC9389253 DOI: 10.1016/j.isci.2022.104855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/17/2022] [Accepted: 07/23/2022] [Indexed: 11/27/2022] Open
Abstract
Low-temperature solid oxide fuel cells (LT-SOFCs) are a promising next-generation fuel cell due to their low cost and rapid start-up, posing a significant challenge to electrode materials with high electrocatalytic activity. Herein, we reported the bimetallic nanoparticles encapsulated in carbon nanotubes (NiFe@CNTs) prepared by carefully controlling catalytic pyrolysis of waste plastics. Results showed that plenty of multi-walled CNTs with outer diameters (14.38 ± 3.84 nm) were observed due to the smallest crystalline size of Ni-Fe alloy nanoparticles. SOFCs with such NiFe@CNTs blended in anode exhibited remarkable performances, reaching a maximum power density of 885 mW cm−2 at 500°C. This could be attributed to the well-dispersed alloy nanoparticles and high graphitization degree of NiFe@CNTs to improve HOR activity. Our strategy could upcycle waste plastics to produce nanocomposites and demonstrate a high-performance LT-SOFCs system, addressing the challenges of sustainable waste management and guaranteeing global energy safety simultaneously. The M@CNTs from the waste plastics were utilized as anode additive of LT-SOFCs The effects of active metal species on the quality of nanocomposite were studied Maximum power density of 885 mW cm−2 at 500°C was obtained with NiFe@CNTs The excellent performances of SOFCs could be attributed to the improved HOR activity
Collapse
Affiliation(s)
- Qingyu Liu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Faze Wang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Enyi Hu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Ru Hong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Tao Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Xiangzhou Yuan
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Xin-Bing Cheng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Ning Cai
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Rui Xiao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Huiyan Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
- Corresponding author
| |
Collapse
|
110
|
Reineccius J, Waniek JJ. First long-term evidence of microplastic pollution in the deep subtropical Northeast Atlantic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119302. [PMID: 35443203 DOI: 10.1016/j.envpol.2022.119302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
No anthropogenic pollutant is more widespread in the aquatic and terrestrial environment than microplastic; however, there are large knowledge gaps regarding its origin, fate, or temporal variations in the oceans. In this study, we analyzed sediment trap material from the deep subtropical Northeast Atlantic (2000 m) in a long-term record (2003-2015) to assess the role of the deep ocean as a potential sink of microplastics. Microplastic particles were identified in all 110 analyzed samples with flux rates of 1.13-3146.81 items d-1 m-2. Calculated microplastic mass fluxes ranged between 0.10 and 1977.96 μg d-1 m-2, representing up to 8% of the particle flux. Between years, the composition of the different polymers changed significantly, dominated by polyethylene, whose amount was correlated with the lithogenic input. The correlation between polyethylene and the lithogenic fraction was attributed to an air transport pathway from northeast Africa and surrounding regions. The second most abundant polymer detected in our study was polyvinyl chloride, which is not correlated with lithogenic or biogenic particle flux fractions. Instead, we observed seasonality for polyvinyl chloride with recurring high fluxes in winter before the plankton bloom and significantly lower amounts in summer. Other polymers identified were polypropylene, polyethylene terephthalate, and lower numbers of polystyrene and polymethyl methacrylate. The average microplastic particle size for all samples and polymers was 88.44 ± 113.46 μm, with polyethylene and polyvinyl chloride having the highest proportion of small particles (<100 μm). Our findings provide first insights into temporal variations of sinking microplastics, which are crucial for understanding the fate of plastic in the oceans.
Collapse
Affiliation(s)
- Janika Reineccius
- Leibniz Institute of Baltic Sea Research, Warnemünde, Seestraße 15, 18119, Rostock, Germany.
| | - Joanna J Waniek
- Leibniz Institute of Baltic Sea Research, Warnemünde, Seestraße 15, 18119, Rostock, Germany
| |
Collapse
|
111
|
Joyce H, Nash R, Kavanagh F, Power T, White J, Frias J. Size dependent egestion of polyester fibres in the Dublin Bay Prawn (Nephrops norvegicus). MARINE POLLUTION BULLETIN 2022; 180:113768. [PMID: 35623217 DOI: 10.1016/j.marpolbul.2022.113768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/19/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) are an extensive global contaminant in the marine environment, known to be ingested by marine organisms. The presence of MPs in the commercially important marine decapod crustacean Nephrops norvegicus (Dublin Bay Prawn) has been documented for the North-East Atlantic and the Mediterranean, however, uncertainties remain about retention times of MPs in the gastrointestinal tract (GIT) of this species. This study aims to investigate the retention times of polyester MP fibres of three sizes (3, 5, and 10 mm in length) and to determine whether the egestion of MP fibres is size and time dependent. Results suggest that MP fibres of different lengths are retained for different periods of time, with larger MP fibres being retained for longer periods (e.g., minimum 96 h for 10 mm fibres). The present study also assesses for the first time, the size dependent relationship of MP fibres under controlled conditions for N. norvegicus.
Collapse
Affiliation(s)
- Haleigh Joyce
- Marine and Freshwater Research Centre (MFRC), Galway-Mayo Institute of Technology (GMIT), Dublin Rd., Galway H91 T8NW, Ireland.
| | - Róisín Nash
- Marine and Freshwater Research Centre (MFRC), Galway-Mayo Institute of Technology (GMIT), Dublin Rd., Galway H91 T8NW, Ireland
| | - Fiona Kavanagh
- Marine and Freshwater Research Centre (MFRC), Galway-Mayo Institute of Technology (GMIT), Dublin Rd., Galway H91 T8NW, Ireland
| | - Thomas Power
- Marine and Freshwater Research Centre (MFRC), Galway-Mayo Institute of Technology (GMIT), Dublin Rd., Galway H91 T8NW, Ireland
| | - Jonathan White
- Marine Institute, Rinville, Oranmore, Galway, H91 R673, Ireland
| | - João Frias
- Marine and Freshwater Research Centre (MFRC), Galway-Mayo Institute of Technology (GMIT), Dublin Rd., Galway H91 T8NW, Ireland
| |
Collapse
|
112
|
Abstract
ConspectusThis Account discusses the evolution of our strategy to conduct environmentally responsible research in the field of polymer chemistry. To contextualize our work, we begin with a broad historical overview of the modern environmental movement, the rise of sustainability as a concept, and how chemistry has responded to these forces, which were often sharply critical of our field. We then trace our own responses, from graduate school onward, chronicling a series of experiences and research projects that molded, challenged, and reshaped how we think about sustainability in polymer science.Since beginning our independent careers in 2004, we have recognized and worked to resolve the tension between designing synthetic polymers for specific desired thermomechanical properties and minimizing environmental impact. In our early years, we were most strongly guided by the 12 Principles of Green Chemistry (12PGC), which had only recently been proposed. The authors' early research agendas had a rather narrow focus on two areas, specifically catalysis and biobased monomers, which we saw as strongly linked to sustainability. Over time, we found these areas to be too narrow in their focus, ignoring important considerations such as the capacity of monomer supply to support scale-up and the impact polymers have at the end of their usage lifetimes. With respect to monomers and catalysts, we consider descriptive metrics that quantify waste production and the toxicity of compounds used during synthesis. In terms of polymer end-of-life, we discuss hydrophobicity as a tool to help understand susceptibility to degradation in the environment as well as some of the concerns with design for degradation, a critical component of 12PGC.Now, after nearly two decades of investigation, we believe that achieving sustainability in polymer science will require us to move beyond the qualitative use of the 12PGC to a portfolio of metrics. We note a heartening increase in the availability and use of such metrics and tools across the field. These include items that provide limited insight but are relatively trivial to integrate into existing workflows such as E factor or the Toxicity Estimation Software Tool. We also appreciate the increased use of Life Cycle Assessment (LCA), which is both dramatically more thorough and difficult to deploy. Finally, we propose the creation of a national LCA center, similar to instrumental core facilities. Such a resource would enable the use of this tool across multiple phases of research and we hope would more effectively guide us to a sustainable future.
Collapse
Affiliation(s)
| | - Robert T Mathers
- Department of Chemistry, Pennsylvania State University, New Kensington, Pennsylvania 15068, United States
| |
Collapse
|
113
|
Halbach M, Vogel M, Tammen JK, Rüdel H, Koschorreck J, Scholz-Böttcher BM. 30 years trends of microplastic pollution: Mass-quantitative analysis of archived mussel samples from the North and Baltic Seas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154179. [PMID: 35231510 DOI: 10.1016/j.scitotenv.2022.154179] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/11/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MP) are ubiquitous throughout the environment as a result of an ongoing, increasing, but also lavish use, of plastics over time and its inherent persistence. In contrast, there are almost no data that allow drawing conclusions about the evolution of plastic pollution in the environment over the past decades. This study investigates the MP load in blue mussels from the North and Baltic Sea archived by the German Environmental Specimen Bank in a time series covering almost 30 years. Samples were enzymatically and chemically oxidative digested for MP extraction and subsequent analyzed mass-quantitatively for nine common polymer clusters by pyrolysis gas chromatography-mass spectrometry. Seven polymer clusters were detected in mussel tissue. Summed MP levels were at ppm levels (<20 μg/g mussel, dry weight). North Sea samples reflected a gradual increase from the 1980s/90s to the 2000s whereas those from Baltic Sea showed consistently higher, rather constant MP levels similar to the North Sea site later than 2000. Polymer composition of both sites stood out by cluster (C) of C-PVC and C-PET at both sites. Mussels from Baltic Sea site had larger C-PE and C-PP proportions. Opposed polymer- and site-specific trends indicated both regional and trans-regional MP sources for different polymer clusters. The MP composition of mussels showed strong similarities with adjacent sediment and water samples. The study introduces a relevant dataset addressing the temporal development of MP pollution. It emphasizes a high indicative potential of environmental MP composition/loads received by mussels but raises the necessity on adequate control materials accompany such kind of studies.
Collapse
Affiliation(s)
- Maurits Halbach
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Miriam Vogel
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Juliane K Tammen
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Heinz Rüdel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (Fraunhofer IME), Schmallenberg, Germany
| | - Jan Koschorreck
- German Environment Agency (Umweltbundesamt), Berlin, Germany
| | - Barbara M Scholz-Böttcher
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.
| |
Collapse
|
114
|
Precise Tailoring of Polyester Bottlebrush Amphiphiles toward Eco‐Friendly Photonic Pigments via Interfacial Self‐Assembly. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
115
|
Peñalver R, Marín C, Arroyo-Manzanares N, Campillo N, Viñas P. Authentication of recycled plastic content in water bottles using volatile fingerprint and chemometrics. CHEMOSPHERE 2022; 297:134156. [PMID: 35240154 DOI: 10.1016/j.chemosphere.2022.134156] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/15/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
The environment is threatened by the continuously increasing volume of plastic residue. Plastic recycling is an interesting alternative to mitigate this problem. However, recycled plastic products may have pollutants from their recycling process, collecting system and/or previous life which may hurt consumers health, thus making it key to authenticate and characterize recycled materials. An innovative non-targeted methodology by means of static headspace gas chromatography-mass spectrometry (SHS-GC-MS) has been developed to measure the volatile organic profile of virgin polyethylene terephthalate (PET) and with diverse content of recycled PET samples. A home-made MS database, with 161 organic compounds characteristics from plastic materials based on the literature, was made. Seventeen of those compounds were found in the studied samples and identified by matching their MS spectra with MS database libraries. These compounds are mainly aldehydes (pentanal, hexanal, heptanal, octanal, nonanal and decanal), and benzene derivatives (styrene, p-xylene, benzaldehyde, methylbenzene, and 1,2-dichlorobenzene) which we found to be the common in the samples of recycled PET. The combination of the dataset consisting in the peak area of the detected species by SHS-GC-MS and the use of chemometrics shown to be a valuable methodology for the discrimination between virgin PET samples and those with different recycled PET content based on their volatile profile. In addition, a novel strategy applying a statistical model based on partial least squares (PLS) regression was proposed, for the first time, to quantify the recycled plastic content in the PET samples.
Collapse
Affiliation(s)
- Rosa Peñalver
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain
| | - Cristina Marín
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain
| | - Natalia Arroyo-Manzanares
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain.
| | - Natalia Campillo
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain
| | - Pilar Viñas
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain
| |
Collapse
|
116
|
Zhao X, Boruah B, Chin KF, Đokić M, Modak JM, Soo HS. Upcycling to Sustainably Reuse Plastics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2100843. [PMID: 34240472 DOI: 10.1002/adma.202100843] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/23/2021] [Indexed: 06/13/2023]
Abstract
Plastics are now indispensable in daily lives. However, the pollution from plastics is also increasingly becoming a serious environmental issue. Recent years have seen more sustainable approaches and technologies, commonly known as upcycling, to transform plastics into value-added materials and chemical feedstocks. In this review, the latest research on upcycling is presented, with a greater focus on the use of renewable energy as well as the more selective methods to repurpose synthetic polymers. First, thermal upcycling approaches are briefly introduced, including the redeployment of plastics for construction uses, 3D printing precursors, and lightweight materials. Then, some of the latest novel strategies to deconstruct condensation polymers to monomers for repolymerization or introduce vulnerable linkers to make the plastics more degradable are discussed. Subsequently, the review will explore the breakthroughs in plastics upcycling by heterogeneous and homogeneous photocatalysis, as well as electrocatalysis, which transform plastics into more versatile fine chemicals and materials while simultaneously mitigating global climate change. In addition, some of the biotechnological advances in the discovery and engineering of microbes that can decompose plastics are also presented. Finally, the current challenges and outlook for future plastics upcycling are discussed to stimulate global cooperation in this field.
Collapse
Affiliation(s)
- Xin Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Bhanupriya Boruah
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- Department of Chemical Engineering, Indian Institute of Science, CV Raman Avenue, Bangalore, Karnataka, 560012, India
| | - Kek Foo Chin
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Miloš Đokić
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jayant M Modak
- Department of Chemical Engineering, Indian Institute of Science, CV Raman Avenue, Bangalore, Karnataka, 560012, India
| | - Han Sen Soo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- Artificial Photosynthesis (Solar Fuels) Laboratory, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
117
|
Li B, Wan H, Cai Y, Peng J, Li B, Jia Q, Yuan X, Wang Y, Zhang P, Hong B, Yang Z. Human activities affect the multidecadal microplastic deposition records in a subtropical urban lake, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153187. [PMID: 35074365 DOI: 10.1016/j.scitotenv.2022.153187] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/25/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Microplastic deposition in subtropical lakes and the influences of human activities remain to be deeply and fully understood. Owing to the intensification of urban construction and population growth, urban lakes serving as significant freshwater resources for sustainable development of the regional economy are becoming degraded, especially due to microplastic pollution. To understand the deposition characteristics of microplastics in lake sediments from the China's subtropical city, six sediment core samples were collected from Xinghu Lake of Guangdong Province. Here, we analyzed the morphological characteristics of microplastics from the perspective of microstructure, and investigated the temporal and spatial distribution patterns of microplastics on the macroscopic scale. The deposition characteristics of microplastics in the past 64 years and the influence of socio-economic factors on the accumulation of microplastics were further clarified through the isotope composition of cesium-137 and lead-210 in the subtropical urban area with intense human activities. The results showed that the microplastic concentration of sediment cores in Xinghu Lake was 523 ± 140 particles/kg. The average sizes of microplastics in the five sub-lakes (i.e., Bohai, Zhongxin, Li, Qinglian, and Xiannü Lakes) of Xinghu Lake were 668, 642, 727, 708 and 646 μm, respectively. There were 25 polymers in sediment cores of Xinghu Lake. Rayon, polypropylene, polyethylene terephthalate and polypropylene-polyethylene copolymer were the main types, and the microplastics have the aging phenomenon or mechanical abrasion. The average deposition rates of sediment and microplastics were 0.6 cm/a and 106 particles/(kg·a) in Xinghu Lake, respectively. Meanwhile, the urban expansion and economic growth, as indicated by the increase in the urban area, population and gross domestic product, all played an essential role in the accelerated accumulation of microplastics in sediment cores of Xinghu Lake.
Collapse
Affiliation(s)
- Bo Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hang Wan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Jinping Peng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bowen Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Qunpo Jia
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xiao Yuan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Yongyang Wang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Pan Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Bin Hong
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Zhifeng Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| |
Collapse
|
118
|
Justino AKS, Ferreira GVB, Schmidt N, Eduardo LN, Fauvelle V, Lenoble V, Sempéré R, Panagiotopoulos C, Mincarone MM, Frédou T, Lucena-Frédou F. The role of mesopelagic fishes as microplastics vectors across the deep-sea layers from the Southwestern Tropical Atlantic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118988. [PMID: 35157937 DOI: 10.1016/j.envpol.2022.118988] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs; <5 mm) are a macro issue recognised worldwide as a threat to biodiversity and ecosystems. Widely distributed in marine ecosystems, MPs have already been found in the deep-sea environment. However, there is little information on ecological mechanisms driving MP uptake by deep-sea species. For the first time, this study generates data on MP contamination in mesopelagic fishes from the Southwestern Tropical Atlantic (SWTA) to help understand the deep-sea contamination patterns. An alkaline digestion protocol was applied to extract MPs from the digestive tract of four mesopelagic fish species: Argyropelecus sladeni, Sternoptyx diaphana (Sternoptychidae), Diaphus brachycephalus, and Hygophum taaningi (Myctophidae). A total of 213 particles were recovered from 170 specimens, and MPs were found in 67% of the specimens. Fibres were the most common shape found in all species, whereas polyamide, polyethylene, and polyethylene terephthalate were the most frequent polymers. The most contaminated species was A. sladeni (93%), and the least contaminated was S. diaphana (45%). Interestingly, individuals caught in the lower mesopelagic zone (500-1000 m depth) were less contaminated with MPs than those captured in the upper mesopelagic layer (200-500 m). Our results highlight significant contamination levels and reveal the influence of mesopelagic fishes on MPs transport in the deep waters of the SWTA.
Collapse
Affiliation(s)
- Anne K S Justino
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura (DEPAQ), Rua Dom Manuel de Medeiros, S/n, 52171-900, Recife, Brazil; Université de Toulon, Aix Marseille Univ., CNRS, IRD, MIO, Toulon, France.
| | - Guilherme V B Ferreira
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura (DEPAQ), Rua Dom Manuel de Medeiros, S/n, 52171-900, Recife, Brazil
| | - Natascha Schmidt
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Leandro N Eduardo
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura (DEPAQ), Rua Dom Manuel de Medeiros, S/n, 52171-900, Recife, Brazil; Institut de Recherche pour le Développement (IRD), MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Vincent Fauvelle
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Véronique Lenoble
- Université de Toulon, Aix Marseille Univ., CNRS, IRD, MIO, Toulon, France
| | - Richard Sempéré
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | | | - Michael M Mincarone
- Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Macaé, RJ, Brazil
| | - Thierry Frédou
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura (DEPAQ), Rua Dom Manuel de Medeiros, S/n, 52171-900, Recife, Brazil
| | - Flávia Lucena-Frédou
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura (DEPAQ), Rua Dom Manuel de Medeiros, S/n, 52171-900, Recife, Brazil
| |
Collapse
|
119
|
Baseline Marine Litter Surveys along Vietnam Coasts Using Citizen Science Approach. SUSTAINABILITY 2022. [DOI: 10.3390/su14094919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Marine litter is a significant threat to the marine environment, human health, and the economy. In this study, beach litter surveys along Vietnamese coasts were conducted in a local context to quantify and characterize marine litter using the modified GESAMP marine litter monitoring guideline. A total of 21,754 items weighing 136,820.2 g was recorded across 14 surveys from September 2020 to January 2021. Plastic was the most abundant type of litter by both quantity (20,744 items) and weight (100,371.2 g). Fishing gear 1 (fishing plastic rope, net pieces, fishing lures and lines, hard plastic floats) and soft plastic fragments were the most frequently observed items (17.65% and 17.24%, respectively). This study not only demonstrates the abundance and composition of marine litter in Vietnam, it also provides valuable information for the implementation of appropriate preventive measures, such as the redesign of collection, reuse, and recycling programs, and informs policy and priorities, with a focus on action and investment in Vietnam. Moreover, insights from this study indicate that citizen science is a useful approach for collecting data on marine litter in Vietnam.
Collapse
|
120
|
Liu Z, Huang Q, Wang H, Zhang S. An enhanced risk assessment framework for microplastics occurring in the Westerscheldt estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153006. [PMID: 35016924 DOI: 10.1016/j.scitotenv.2022.153006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) pollution in the aquatic environment raises considerable concerns. Freshwater system is generally considered as an important source for MPs transformation into the marine environment, however, only limited data on the MPs pollution in global freshwater systems is available at this time. In this study, we explored the abundance, characteristics and distribution of microplastics in the Scheldt River. The investigation results indicated that the abundance of microplastics in sediments (15-413 items/kg dry weight (DW)) was much higher than that in surface water (0-113 items/m3), and small size MPs (less than 500 μm) frequently appeared in sediments. Industrial activities were regarded as the major cause of MP discharging. Risk assessment models with using data of the concentration of MPs, polymer types and toxicity of MPs exposure were developed to assess the risk of MPs pollution in both surface water and sediment of the Westerscheldt estuary. Risk assessment results revealed that MPs exposure have potentially adverse effects on the aquatic ecosystem and human health. MPs tend to be transported from "Hotspots", such as urban or industries area, to remote areas. The risk assessment of MPs serves as a baseline for better understanding the distribution and characteristics of MPs and highlights the need of intensively monitoring to limit MPs release by intensively monitoring. This research provides a perspective on the risk of MPs that could be used in future studies.
Collapse
Affiliation(s)
- Ze Liu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China; College of Resources and Environment, Northwest A&F University, Taicheng Road 3, 712100 Yangling, China.
| | - Qian'en Huang
- College of Resources and Environment, Northwest A&F University, Taicheng Road 3, 712100 Yangling, China
| | - Hao Wang
- LIWET, Department of Green Chemistry and Technology, Ghent University, Campus Kortrijk, Graaf Karel De Goedelaan 5, B-8500 Kortrijk, Belgium; School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Siyu Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium
| |
Collapse
|
121
|
Ngoc Do AT, Ha Y, Kang HJ, Kim JM, Kwon JH. Equilibrium leaching of selected ultraviolet stabilizers from plastic products. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128144. [PMID: 34979390 DOI: 10.1016/j.jhazmat.2021.128144] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/05/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Despite the importance of (micro)plastics in the release of plastic additives, the leaching mechanism of organic plastic additives from various plastic materials is poorly understood. In this study, the equilibrium leaching of five highly hydrophobic ultraviolet (UV) stabilizers (UV326, UV327, UV328, UV329, and UV531) from three plastics (low-density polyethylene (LDPE), polyethylene terephthalate (PET), and polystyrene (PS)), was investigated employing acetonitrile-water cosolvent systems. Their extrapolated water solubilities were in the 0.15-0.54 μg L-1 range, limiting their transport as "dissolved" in water and (micro)plastics are likely those particulate carriers. The equilibrium leaching of UV stabilizers from plastics was better explained by the Flory-Huggins model incorporating the nonideal behavior caused by the size disparity between UV stabilizers and polymer materials and their compatibility. Specifically, leaching of UV stabilizers from LDPE showed a positive deviation from Raoult's law, whereas slight negative deviations were observed in PET and PS. In addition, the equilibrium concentration of the benzotriazoles in LDPE increased linearly with the volume fraction up to only 0.4%. These observations could be explained by the unfavorable interactions of UV stabilizers with polyethylene, indicating that polymer type should be also important when evaluating the fate of hydrophobic additives. Because equilibrium distribution of additives between (micro)plastics and water is crucial for evaluating the fate and transport of hydrophobic plastic additives, further studies on the leaching equilibrium of various additives from different plastic materials are necessary.
Collapse
Affiliation(s)
- Anh T Ngoc Do
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yeonjeong Ha
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyun-Joong Kang
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Knoell Korea, 37 Gukjegeumyung-ro 2-gil, Yeongdeungpo-gu, Seoul 07327, Republic of Korea
| | - Ju Min Kim
- Department of Energy Systems Research and Department of Chemical Engineering, Ajou University, 206 Worldcupro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
122
|
Belhabib D, Le Billon P. Fish crimes in the global oceans. SCIENCE ADVANCES 2022; 8:eabj1927. [PMID: 35319979 PMCID: PMC8942372 DOI: 10.1126/sciadv.abj1927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
This study provides a global assessment of the linkages between observed fisheries-related offenses across the world's oceans between 2000 and 2020. We analyze data from the largest existing repository with 6853 events reporting offenses across 18 fishing-related categories, including illegal fishing, human rights abuses, and smuggling. We find that at least 33% of all recorded offenses are associated with 450 industrial vessels and 20 companies originating from China, the EU, and tax haven jurisdictions. We observe links between various types of offenses for 779 vessels, with such "transversal criminality" involving 2000 offenses and crimes globally. This study demonstrates the ability to identify offenders and patterns of behaviors threatening fisheries sustainability at a global level and countries most vulnerable to transversal criminality. In light of concerns for widespread underreporting and impunity, we call for greater information sharing, interagency cooperation, and stringent enforcement to bring to account major offenders.
Collapse
Affiliation(s)
- Dyhia Belhabib
- Ecotrust Canada, 312 Main St., Vancouver, BC V6A 2T2, Canada
- Nautical Crime Investigation Services, 777, Queens Rd. West, North Vancouver, BC V7N2L4, Canada
| | - Philippe Le Billon
- Department of Geography, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
123
|
Huserbråten MBO, Hattermann T, Broms C, Albretsen J. Trans-polar drift-pathways of riverine European microplastic. Sci Rep 2022; 12:3016. [PMID: 35301340 PMCID: PMC8931020 DOI: 10.1038/s41598-022-07080-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/10/2022] [Indexed: 11/26/2022] Open
Abstract
High concentrations of microplastic particles are reported across the Arctic Ocean–yet no meaningful point sources, suspension timelines, or accumulation areas have been identified. Here we use Lagrangian particle advection simulations to model the transport of buoyant microplastic from northern European rivers to the high Arctic, and compare model results to the flux of sampled synthetic particles across the main entrance to the Arctic Ocean. We report widespread dispersal along the Eurasian continental shelf, across the North Pole, and back into the Nordic Seas; with accumulation zones over the Nansen basin, the Laptev Sea, and the ocean gyres of the Nordic Seas. The equal distribution of sampled synthetic particles across water masses covering a wide time frame of anthropogenic influence suggests a system in full saturation rather than pronounced injection from European sources, through a complex circulation scheme connecting the entire Arctic Mediterranean. This circulation of microplastic through Arctic ecosystems may have large consequences to natural ecosystem health, highlighting an ever-increasing need for better waste management.
Collapse
Affiliation(s)
- Mats B O Huserbråten
- Department of Oceanography and Climate, Institute of Marine Research, Box 1870, 5817, Bergen, Norway.
| | - Tore Hattermann
- Norwegian Polar Institute, Tromsø, Norway.,Energy and Climate Group, Department of Physics and Technology, The Arctic University - University of Tromsø, Tromsø, Norway
| | - Cecilie Broms
- Department of Oceanography and Climate, Institute of Marine Research, Box 1870, 5817, Bergen, Norway
| | - Jon Albretsen
- Department of Oceanography and Climate, Institute of Marine Research, Box 1870, 5817, Bergen, Norway
| |
Collapse
|
124
|
Baxter L, Lucas Z, Walker TR. Evaluating Canada's single-use plastic mitigation policies via brand audit and beach cleanup data to reduce plastic pollution. MARINE POLLUTION BULLETIN 2022; 176:113460. [PMID: 35217426 DOI: 10.1016/j.marpolbul.2022.113460] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/03/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Single-use plastics (SUPs) represent a major threat to marine environments and require proactive policies to reduce consumption and mismanagement. Many SUP management strategies exist to reduce SUP use and mitigate environmental impacts, including extended producer responsibility (EPR), deposit-return schemes, SUP bans or taxes, and public outreach and education. This study analyzed brand audit and beach cleanup data in four densely populated Canadian cities (Vancouver, Toronto, Montréal, Halifax) and a remote island (Sable Island) to determine efficacy of ongoing SUP mitigation measures. Cities were found to have similar litter type proportions, and six brands were found to disproportionally contribute to Canadian SUP litter, comprising 39% of branded litter collected. Results confirm that current Canadian SUP management appears to be insufficient to address leakage of SUPs into the environment. Recommendations to strengthen SUP management strategies and mitigate plastic pollution are recommended to improve future Canadian SUP reduction policies.
Collapse
Affiliation(s)
- Lisa Baxter
- Marine Affairs Program, Dalhousie University, Halifax, Canada.
| | - Zoe Lucas
- Sable Island Institute, P.O. Box 11, Halifax Central, Halifax, Nova Scotia B3J 2L4, Canada
| | - Tony R Walker
- School for Resource and Environmental Studies, Dalhousie University, Halifax, Canada
| |
Collapse
|
125
|
Desclos-Dukes L, Butterworth A, Cogan T. Using a non-invasive technique to identify suspected microplastics in grey seals (Halichoerus grypus) living in the western North Sea. Vet Rec 2022; 190:e1484. [PMID: 35233772 DOI: 10.1002/vetr.1484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/21/2021] [Accepted: 01/26/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Plastic pollution is of growing concern in marine ecosystems worldwide. Specifically, microplastics (<5 mm) may interact with a variety of biota with the potential to cause harm to organism health. Studies investigating microplastics are increasing, yet their occurrence within free-ranging and living marine mammals remains largely unexplored. METHODS By using a protocol involving enzymatic digestion, filtration and microscopic identification, faecal samples collected from a grey seal (Halichoerus grypus) haul-out site in the North Sea were investigated for microplastic presence. RESULTS Altogether, 71 suspected microplastic particles, consisting of both fibres and fragments in a variety of colours and sizes, were identified across 66 analysed faecal subsamples. CONCLUSION The present study indicates that marine mammals are ingesting microplastics and that faecal material can be used to indirectly and non-invasively record microplastic uptake data in pinnipeds. Since the current paper is the first to document potential microplastic exposure among wild, living and free-ranging grey seals of the western North Sea, further research is needed to begin to understand the biological significance of these findings.
Collapse
Affiliation(s)
| | | | - Tristan Cogan
- University of Bristol, Bristol Veterinary School, Langford, Bristol, UK
| |
Collapse
|
126
|
Nguyen XC, Dao DC, Nguyen TT, Tran QB, Huyen Nguyen TT, Tuan TA, Phuong Nguyen KL, Nguyen VT, Nadda AK, Thanh-Nho N, Chung WJ, Chang SW, Nguyen DD. Generation patterns and consumer behavior of single-use plastic towards plastic-free university campuses. CHEMOSPHERE 2022; 291:133059. [PMID: 34838603 DOI: 10.1016/j.chemosphere.2021.133059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/25/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
This study was conducted to estimate the generation of single-use plastics (SUPs) and elucidate consumer behavior towards a plastic-free university. The results show that the consumption rate of plastic bottles was the highest at 1.39 g per student per day (g.s-1.d-1), followed by plastic cups (0.20 g s-1.d-1), and plastic bags (0.14 g s-1.d-1). Approximately 94.41% of students were highly aware of the negative impacts of SUPs. More than four-fifths of the students (82.32%) assumed that they were responsible for the SUP pollution issue, whereas 59.52% considered SUP reduction (or lack thereof) by individuals, governments, and producers/businesses be important factors. Approximately 19.03% of the students supported implementing a high fine, one-tenth agreed for a total ban on SUPs, while nearly one-fifth believed reducing SUP consumption was unnecessary. Strategies for plastic-free universities was initiated by establishing the goal of "plastic-free university" and implementing integrated actions including a ban (plastic cups and bags) awareness-raising, and suitable alternatives.
Collapse
Affiliation(s)
- Xuan Cuong Nguyen
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Dinh Cham Dao
- Institute of Geography, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam
| | - Thi Tinh Nguyen
- Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Quoc Ba Tran
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| | - T Thanh Huyen Nguyen
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Tran Anh Tuan
- Faculty of Environmental Science, University of Sciences, Hue University, Viet Nam
| | - Kieu Lan Phuong Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Viet Nam; Institute for Circular Economy Development, Vietnam National University-Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Van-Truc Nguyen
- Department of Environmental Sciences, Saigon University, Ho Chi Minh City, 700000, Viet Nam
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173234, Himachal Pradesh, India
| | - Nguyen Thanh-Nho
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Viet Nam
| | - W Jin Chung
- Department of Environmental Energy Engineering, Kyonggi University, Suwon, Republic of Korea
| | - S Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, Suwon, Republic of Korea
| | - D Duc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Viet Nam; Department of Environmental Energy Engineering, Kyonggi University, Suwon, Republic of Korea.
| |
Collapse
|
127
|
Uy CA, Johnson DW. Effects of microplastics on the feeding rates of larvae of a coastal fish: direct consumption, trophic transfer, and effects on growth and survival. MARINE BIOLOGY 2022; 169:27. [PMID: 35068587 PMCID: PMC8764328 DOI: 10.1007/s00227-021-04010-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 12/14/2021] [Indexed: 05/28/2023]
Abstract
UNLABELLED Microplastics are now found throughout the world's oceans, and although many organisms ingest microplastics, less is known about how plastics in seawater may affect key processes such as feeding rate, growth, and survival. We used a series of laboratory experiments to test whether microplastics in seawater affected the feeding rates of larvae of the California Grunion, Leuresthes tenuis. In addition, we tested whether trophic transfer of microplastics from zooplankton to larval fish can occur and affect growth and survival of fish. We measured feeding rates of grunion larvae at various concentrations of 75-90 µm and 125-250 µm polyethylene microplastics and under both still water and turbulent conditions. In these experiments, exposure to microplastics had modest effects on feeding rates, though responses may be somewhat complex. Low concentrations of microplastics increased feeding rates compared to the control, but at higher concentrations, feeding rates were indistinguishable from those in the control group, though effects were small compared to natural variation in feeding rates among individual fish. Experiments to test for trophic transfer of microplastics revealed that grunion larvae that were fed brine shrimp exposed to high concentrations of microplastics had lower growth rates and elevated mortality rates. Overall, our results suggest that the direct effects of microplastics on feeding rates of California Grunion during the early larval phase are minor, while the trophic transfer of microplastics from zooplankton to larval fish may have significant effects on their growth and survival. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00227-021-04010-x.
Collapse
Affiliation(s)
- Christine Angelica Uy
- Department of Biological Sciences, California State University, Long Beach, CA 90840 USA
| | - Darren W. Johnson
- Department of Biological Sciences, California State University, Long Beach, CA 90840 USA
| |
Collapse
|
128
|
Tian M, Li X, Kong S, Wu L, Yu J. A modified YOLOv4 detection method for a vision-based underwater garbage cleaning robot. FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING 2022; 23:1217-1228. [PMCID: PMC9399997 DOI: 10.1631/fitee.2100473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/07/2022] [Indexed: 06/15/2023]
Abstract
To tackle the problem of aquatic environment pollution, a vision-based autonomous underwater garbage cleaning robot has been developed in our laboratory. We propose a garbage detection method based on a modified YOLOv4, allowing high-speed and high-precision object detection. Specifically, the YOLOv4 algorithm is chosen as a basic neural network framework to perform object detection. With the purpose of further improvement on the detection accuracy, YOLOv4 is transformed into a four-scale detection method. To improve the detection speed, model pruning is applied to the new model. By virtue of the improved detection methods, the robot can collect garbage autonomously. The detection speed is up to 66.67 frames/s with a mean average precision (mAP) of 95.099%, and experimental results demonstrate that both the detection speed and the accuracy of the improved YOLOv4 are excellent.
Collapse
Affiliation(s)
- Manjun Tian
- First Research Institute of the Ministry of Public Security of PRC, Beijing, 100048 China
- School of Information Engineering, Minzu University of China, Beijing, 100081 China
| | - Xiali Li
- School of Information Engineering, Minzu University of China, Beijing, 100081 China
| | - Shihan Kong
- Department of Advanced Manufacturing and Robotics, College of Engineering, Peking University, Beijing, 100871 China
| | - Licheng Wu
- School of Information Engineering, Minzu University of China, Beijing, 100081 China
| | - Junzhi Yu
- Department of Advanced Manufacturing and Robotics, College of Engineering, Peking University, Beijing, 100871 China
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
| |
Collapse
|
129
|
Tagorti G, Kaya B. Genotoxic effect of microplastics and COVID-19: The hidden threat. CHEMOSPHERE 2022; 286:131898. [PMID: 34411929 DOI: 10.1016/j.chemosphere.2021.131898] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/26/2021] [Accepted: 08/12/2021] [Indexed: 05/10/2023]
Abstract
Microplastics (MPs) are ubiquitous anthropogenic contaminants, and their abundance in the entire ecosystem raises the question of how far is the impact of these MPs on the biota, humans, and the environment. Recent research has overemphasized the occurrence, characterization, and direct toxicity of MPs; however, determining and understanding their genotoxic effect is still limited. Thus, the present review addresses the genotoxic potential of these emerging contaminants in aquatic organisms and in human peripheral lymphocytes and identified the research gaps in this area. Several genotoxic endpoints were implicated, including the frequency of micronuclei (MN), nucleoplasmic bridge (NPB), nuclear buds (NBUD), DNA strand breaks, and the percentage of DNA in the tail (%Tail DNA). In addition, the mechanism of MPs-induced genotoxicity seems to be closely associated with reactive oxygen species (ROS) production, inflammatory responses, and DNA repair interference. However, the gathered information urges the need for more studies that present environmentally relevant conditions. Taken into consideration, the lifestyle changes within the COVID-19 pandemic, we discussed the impact of the pandemic on enhancing the genotoxic potential of MPs whether through increasing human exposure to MPs via inappropriate disposal and overconsumption of plastic-based products or by disrupting the defense system owing to unhealthy food and sleep deprivation as well as stress. Overall, this review provided a reference for the genotoxic effect of MPs, their mechanism of action, as well as the contribution of COVID-19 to increase the genotoxic risk of MPs.
Collapse
Affiliation(s)
- Ghada Tagorti
- Akdeniz University, Faculty of Sciences, Department of Biology, 07058-Campus, Antalya, Turkey
| | - Bülent Kaya
- Akdeniz University, Faculty of Sciences, Department of Biology, 07058-Campus, Antalya, Turkey.
| |
Collapse
|
130
|
Wright LS, Napper IE, Thompson RC. Potential microplastic release from beached fishing gear in Great Britain's region of highest fishing litter density. MARINE POLLUTION BULLETIN 2021; 173:113115. [PMID: 34743074 DOI: 10.1016/j.marpolbul.2021.113115] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 05/14/2023]
Abstract
While land-based sources of marine plastic pollution have gained widespread attention, marine-based sources are less extensively investigated. Here, we provide the first in-depth description of abandoned, lost or otherwise discarded fishing gear (ALDFG) on northern and southern beaches of the English Southwest Peninsula, Great Britain's region of highest ALDFG density. Three distinct categories were recorded: twisted rope (0.28 ± 0.14 m-1, 17%), braided rope (0.56 ± 0.28 m-1, 33%) and filament (0.84 ± 0.41 m-1, 50%), which likely correspond to fishing rope, net and line. Estimating the disintegration of ALDFG from length and filament number suggests that it has the potential to generate 1277 ± 431 microplastic pieces m-1, with fishing rope (44%) and net (49%) as the largest emitters. Importantly, ALDFG was over five times more abundant on the south coast, which is likely attributable to the three times higher fishing intensity in that area.
Collapse
Affiliation(s)
- Luka Seamus Wright
- International Marine Litter Research Unit, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, United Kingdom.
| | - Imogen Ellen Napper
- International Marine Litter Research Unit, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, United Kingdom
| | - Richard C Thompson
- International Marine Litter Research Unit, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, United Kingdom
| |
Collapse
|
131
|
Kylili K, Artusi A, Hadjistassou C. A new paradigm for estimating the prevalence of plastic litter in the marine environment. MARINE POLLUTION BULLETIN 2021; 173:113127. [PMID: 34773771 DOI: 10.1016/j.marpolbul.2021.113127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
The intelligent method proposed herein is formulated on a deep learning technique which can identify, localise and map the shape of plastic debris in the marine environment. Utilising images depicting plastic litter from six beaches in Cyprus, the developed tool pointed to a plastic litter density of 0.035 items/m2. Extrapolated to the entire shorelines of the island, the intelligent approach estimated about 66,000 plastic articles weighting a total of ≈1000 kg. Besides deducing the plastic litter density, the dimensions of all documented plastic litter were determined with the aid of the OpenCV Contours image processing tool. Results revealed that the dominant object length ranged between 10 and 30 cm which is in agreement with the length of common plastic litter often spoiling these coastlines. Concluding, only in-situ visual scan sample surveys and no manual collection means were used to predict the density and the dimensions of the plastic litter.
Collapse
Affiliation(s)
- Kyriaki Kylili
- Department of Engineering, Marine and Carbon Lab, University of Nicosia, 46 Makedonitissas Avenue, 2417 Nicosia, Cyprus
| | - Alessandro Artusi
- DEepCamera MRG, CYENS Centre of Excellence, Constantinou Paleologou 1, Tryfon Building, 1011 Nicosia, Cyprus
| | - Constantinos Hadjistassou
- Department of Engineering, Marine and Carbon Lab, University of Nicosia, 46 Makedonitissas Avenue, 2417 Nicosia, Cyprus.
| |
Collapse
|
132
|
Turroni S, Wright S, Rampelli S, Brigidi P, Zinzani PL, Candela M. Microplastics shape the ecology of the human gastrointestinal intestinal tract. CURRENT OPINION IN TOXICOLOGY 2021. [DOI: 10.1016/j.cotox.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
133
|
Courtene-Jones W, Maddalene T, James MK, Smith NS, Youngblood K, Jambeck JR, Earthrowl S, Delvalle-Borrero D, Penn E, Thompson RC. Source, sea and sink-A holistic approach to understanding plastic pollution in the Southern Caribbean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149098. [PMID: 34303234 DOI: 10.1016/j.scitotenv.2021.149098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Marine plastics are considered to be a major threat to the sustainable use of marine and coastal resources of the Caribbean, on which the region relies heavily for tourism and fishing. To date, little work has quantified plastics within the Caribbean marine environment or examined their potential sources. This study aimed to address this by holistically integrating marine (surface water, subsurface water and sediment) and terrestrial sampling and Lagrangian particle tracking to examine the potential origins, flows and quantities of plastics within the Southern Caribbean. Terrestrial litter and the microplastics identified in marine samples may arise from the maritime and tourism industries, both of which are major contributors to the economies of the Caribbean region. The San Blas islands, Panama had the highest abundance of microplastics at a depth of 25 m, and significantly greater quantities in surface water than recorded in the other countries. Modelling indicated the microplastics likely arose from mainland Panama, which has some of the highest levels of mismanaged waste. Antigua had among the lowest quantities of terrestrial and marine plastics, yet the greatest diversity of polymers. Modelling indicated the majority of the microplastics in Antiguan coastal surface were likely to have originated from the wider North Atlantic Ocean. Ocean currents influence the movements of plastics and thus the relative contributions arising from local and distant sources which become distributed within a country's territorial water. These transboundary movements can undermine local or national legislation aimed at reducing plastic pollution. While this study presents a snapshot of plastic pollution, it contributes towards the void of knowledge regarding marine plastic pollution in the Caribbean Sea and highlights the need for international and interdisciplinary collaborative research and solutions to plastic pollution.
Collapse
Affiliation(s)
- Winnie Courtene-Jones
- International Marine Litter Research Unit, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK.
| | - Taylor Maddalene
- College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Molly K James
- Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK
| | - Natalie S Smith
- International Marine Litter Research Unit, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK
| | | | - Jenna R Jambeck
- College of Engineering, University of Georgia, Athens, GA 30602, USA
| | | | - Denise Delvalle-Borrero
- Laboratorio de Microplásticos, Centro de Investigaciones Hidráulicas e Hidrotécnicas (CIHH), Universidad Tecnológica de Panamá, Panamá, Panama
| | | | - Richard C Thompson
- International Marine Litter Research Unit, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK
| |
Collapse
|
134
|
Pietz O, Augenstein M, Georgakakos CB, Singh K, McDonald M, Walter MT. Macroplastic accumulation in roadside ditches of New York State's Finger Lakes region (USA) across land uses and the COVID-19 pandemic. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113524. [PMID: 34403916 DOI: 10.1016/j.jenvman.2021.113524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/24/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Macroplastics are a ubiquitous and growing environmental contaminant with impacts in both marine and terrestrial systems. Marine sampling has dominated research in this field, despite the terrestrial origins of most plastic debris. Due to the high surface water connectivity facilitated by roadside ditches, these landscape features provide a unique sampling location linking terrestrial and surface water systems. We collected and analyzed macroplastic accumulation by number of pieces, mass, and polymer type in roadside ditches across four land uses, before and during the COVID-19 pandemic in the Finger Lakes Region of New York State. Commercial land use plastic accumulation rate was highest, while forested land use accumulation rates were lowest on a piece basis. Pre-COVID-19 piece accumulation rates were significantly higher than COVID-19 piece accumulation rates across all land uses. Mass accumulation rates followed similar patterns observed in piece accumulation, but the patterns were not always statistically significant. Plastic type 4 (i.e. thin plastic films), especially plastic bags and wrappers, was the most frequently collected type of macroplastic by piece across all land uses within the 1-7 Resin Identification Codes. By mass, the data were distributed less consistently across land uses. Cigarette filters, containing the polymer cellulose acetate, were the most frequently found roadside plastic, but are not within the 1-7 classification system. Our results suggest that policies in place limiting plastic bag usage could substantially reduce roadside plastics but other plastics, such as food wrappers and other single use plastic films, which comprised a large proportion of the plastic debris collected, should also be regulated to further decrease macroplastic pollution.
Collapse
Affiliation(s)
- Olivia Pietz
- Department of Natural Resources and the Environment, Cornell University, United States; Department of Chemistry and Chemical Biology, Cornell University, United States
| | - Mary Augenstein
- Department of Civil and Environmental Engineering, Cornell University, United States
| | | | - Kanishka Singh
- Department of Natural Resources and the Environment, Cornell University, United States
| | - Miles McDonald
- Department of Earth and Atmospheric Sciences, Cornell University, United States
| | - M Todd Walter
- Department of Biological and Environmental Engineering, Cornell University, United States
| |
Collapse
|
135
|
Allen D, Allen S, Le Roux G, Simonneau A, Galop D, Phoenix VR. Temporal Archive of Atmospheric Microplastic Deposition Presented in Ombrotrophic Peat. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2021; 8:954-960. [PMID: 34778488 PMCID: PMC8582260 DOI: 10.1021/acs.estlett.1c00697] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Ombrotrophic peatland-fed solely from atmospheric deposition of nutrients and precipitation-provide unique archives of atmospheric pollution and have been used to illustrate trends and changes in atmospheric trace element composition from the recent decadal to the Holocene period. With the acknowledgment of atmosphere plastic pollution, analysis of ombrotrophic peat presents an opportunity to characterize the historical atmospheric microplastic pollution prevalence. Ombrotrophic peatland is often located in comparatively pristine mountainous and boreal areas, acting as sentinels of environmental change. In this paired site study, a Sphagnum ombrotrophic peat record is used for the first time to identify the trend of atmospheric microplastic pollution. This high altitude, remote location ombrotrophic peat archive pilot study identifies microplastic presence in the atmospheric pollution record, increasing from <5(±1) particles/m2/day in the 1960s to 178(±72) particles/m2/day in 2015-2020 in a trend similar to the European plastic production and waste management. Compared to this catchment's lake sediment archive, the ombrotrophic peat core appears to be effective in collecting and representing atmospheric microplastic deposition in this remote catchment, collecting microplastic particles that are predominantly ≤20 μm. This study suggests that peat records may be a useful tool in assessing the past quantities and trends of atmospheric microplastic.
Collapse
Affiliation(s)
- D. Allen
- Department
of Civil and Environmental Engineering, University of Strathclyde, Glasgow G11XJ, Scotland
- Laboratoire
écologie fonctionnelle et environnement, Université de Toulouse, CNRS, Toulouse 31062, France
| | - S. Allen
- Laboratoire
écologie fonctionnelle et environnement, Université de Toulouse, CNRS, Toulouse 31062, France
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, England
- Department
of Earth and Environmental Sciences, Dalhousie
University, Halifax, NS B3H 4R2, Canada
| | - G. Le Roux
- Laboratoire
écologie fonctionnelle et environnement, Université de Toulouse, CNRS, Toulouse 31062, France
| | - A. Simonneau
- ISTO, Université d’Orléans, CNRS UMR 7327, BRGM, 45100 Orléans, France
| | - D. Galop
- GEODE, Université Toulouse
Jean Jaurès, UMR-CNRS 5602, Toulouse 31062, France
- LabEx
DRIIHM, OHM Pyrénées Haut
Vicdessos, ANR-11-LABX-0010,
INEE-CNRS, Paris 75000, France
| | - V. R. Phoenix
- Department
of Civil and Environmental Engineering, University of Strathclyde, Glasgow G11XJ, Scotland
| |
Collapse
|
136
|
Int-Veen I, Nogueira P, Isigkeit J, Hanel R, Kammann U. Positively buoyant but sinking: Polymer identification and composition of marine litter at the seafloor of the North Sea and Baltic Sea. MARINE POLLUTION BULLETIN 2021; 172:112876. [PMID: 34450407 DOI: 10.1016/j.marpolbul.2021.112876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Different litter types accumulate in all marine environments. Plastics are of special interest because of their high abundance and possible threats to marine organisms. Polymer type is crucial for their distribution and fate in marine environments. Seafloor litter abundance and composition in the Baltic and North Sea were analysed based on three sampling campaigns according to the protocol of ICES International Bottom Trawl Survey. Polymers were identified via attenuated total reflection-Fourier transform infrared spectroscopy. General litter abundances differed significantly between the Baltic and North Sea with 9.6 items/km2 and 70.7 items/km2, respectively. Plastic built the dominating litter group in both seas (62.2% and 91.3%, respectively). Polymer identification revealed clear dominance of polyethylene, polypropylene and polyamide. Most polymers were positively buoyant in seawater (89.5%), thereby excluding polymer density as the main driver of vertical plastic litter transportation. Plastics at the seafloor basically reflected the entirety of polymers entering marine environments.
Collapse
Affiliation(s)
- Ivo Int-Veen
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572 Bremerhaven, Germany.
| | - Pedro Nogueira
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572 Bremerhaven, Germany
| | - Jason Isigkeit
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572 Bremerhaven, Germany
| | - Reinhold Hanel
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572 Bremerhaven, Germany
| | - Ulrike Kammann
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572 Bremerhaven, Germany
| |
Collapse
|
137
|
Maaghloud H, Houssa R, Bellali F, El Bouqdaoui K, Ouansafi S, Loulad S, Fahde A. Microplastic ingestion by Atlantic horse mackerel (Trachurus trachurus) in the North and central Moroccan Atlantic coast between Larache (35°30'N) and Boujdour (26°30'N). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117781. [PMID: 34280740 DOI: 10.1016/j.envpol.2021.117781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Horse mackerel is a semi-pelagic species found in abundance in the Moroccan coasts and occupies the first ranks in the catches landed by the coastal fleet. In this study, we investigated the ingestion of Polyamide, Acrylic and Polystyrene by Atlantic horse mackerel, in the Moroccan Atlantic coastal area located between Larache (35°30'N) and Boujdour (26°30'N). The objective is to map the spatial distribution of horse Mackerel containing microplastics (MPs) in their stomachs and identify hot spot areas. We also aim to verify the most ingested polymer by this fish characterized by significant daily vertical migrations. The results show that the three studied polymers were detected in the stomach contents of more than 73% of studied fishes. The hot spot areas are located more in the northern part where urbanization and fishing activity are important. Polyamide, the densest polymer, is the most abundant (86% of cases), followed by acrylic. These two polymers were found in association in 47% of cases. No correlation between the presence of MPs in the stomach contents and the size of the individual fishes was noted. Interestingly, the group of mature specimens ingested more MPs than the immature group.
Collapse
Affiliation(s)
- Hind Maaghloud
- University Hassan II, Faculty of Sciences Ain Chock, Department of Biology, Health and Environment Laboratory, Casablanca, Morocco; National Institute of Fisheries Research, Casablanca, Morocco.
| | - Rachida Houssa
- National Institute of Fisheries Research, Casablanca, Morocco
| | - Fatima Bellali
- University Sultan Moulay Slimane, Faculty of Sciences and Techniques of Beni Mellal, Department of Biology, Biological Engineering Laboratory, Beni Mellal, Morocco
| | - Karima El Bouqdaoui
- University Hassan II, Faculty of Sciences Ain Chock, Department of Biology, Microbiology, Biotechnology and Environment Laboratory, Casablanca, Morocco
| | - Soukaina Ouansafi
- University Hassan II, Faculty of Sciences Ain Chock, Department of Biology, Health and Environment Laboratory, Casablanca, Morocco
| | - Safia Loulad
- University Hassan II, Faculty of Sciences, Laboratory of Geosciences, Department of Geology, Casablanca, Morocco
| | - Abdelilah Fahde
- University Hassan II, Faculty of Sciences Ain Chock, Department of Biology, Health and Environment Laboratory, Casablanca, Morocco
| |
Collapse
|
138
|
Tudor DT, Williams AT. The effectiveness of legislative and voluntary strategies to prevent ocean plastic pollution: Lessons from the UK and South Pacific. MARINE POLLUTION BULLETIN 2021; 172:112778. [PMID: 34371341 DOI: 10.1016/j.marpolbul.2021.112778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/13/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
The islands of the South Pacific contribute a fraction of the mis-managed plastics in the world's ocean, yet the region is one of the main recipients of its impacts. Based on expert interviews and a review of current strategies to prevent marine plastic pollution in six countries (Australia, New Zealand, Fiji, Tonga, Vanuatu, United Kingdom), this paper identifies several interventions - legislative, financial, voluntary - which governments, organisations and individuals can learn from. Both voluntary and statutory consumer-based behaviour change campaigns are well developed and somewhat successful in several countries. While sub-national policies do not inhibit progress, they are not optimal. Harmonisation across the territories of federal and devolved systems is beneficial, such as container return schemes, levies, and bans. Vanuatu has displayed high ambition, and the challenges in achieving this serve as a case study. A coordinated global strategy with associated legislation aimed at tackling plastic pollution is critical.
Collapse
Affiliation(s)
- David T Tudor
- Winston Churchill Fellow, Pelagos, 50 Belmont Road, Bristol, UK; University of the West of England, Faculty of Environment and Technology, Bristol, UK.
| | - Allan T Williams
- Winston Churchill Fellow, Dept. of Architecture, Computing and Engineering, Trinity St David, University of Wales, Swansea, UK
| |
Collapse
|
139
|
Ukkonen A, Sahimaa O. Weight-based pay-as-you-throw pricing model: Encouraging sorting in households through waste fees. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 135:372-380. [PMID: 34600295 DOI: 10.1016/j.wasman.2021.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/19/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Municipal solid waste is associated with different systemic challenges, such as climate change, resource scarcity, and ocean plastic pollution. European countries are striving towards more circular material use and the European Commission has advocated the use of economic incentives to boost recycling. The pay-as-you-throw (PAYT) scheme is an economic instrument that applies the 'polluter pays' principle by charging for waste according to the actual amount of generated waste. Volume-based PAYT fees have shown to be potentially less effective in waste prevention and recycling than weight-based fees. This paper illustrates how waste management operators can price residual waste with weight-based fees that encourage recycling, are fair with respect to service levels, and cover the current income for municipal waste operators. The result, obtained by forming equations satisfying the above conditions, is a model with a linear, discrete price function, where the price of the residual waste generated by the citizen is a function of the service level. This model encourages efficient source separation through internal subsidies, wherein a citizen can decrease the price of household waste by 32% if they increase the sorting efficiency from a default of 40% to 80% efficiency. The application of the model was illustrated in a case example. The model developed in this study can be used to implement weight-based PAYT schemes locally, thereby supporting the formulation of waste management systems that facilitate waste reduction and recycling.
Collapse
Affiliation(s)
- Aino Ukkonen
- Institute of Transport Economics Norway, Gaustadalléen 21, 0349 Oslo, Norway; Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland.
| | - Olli Sahimaa
- Aalto University School of Business, P.O. Box 31000, FI-00076 Aalto, Finland.
| |
Collapse
|
140
|
Roshanzadeh A, Oyunbaatar NE, Ganjbakhsh SE, Park S, Kim DS, Kanade PP, Lee S, Lee DW, Kim ES. Exposure to nanoplastics impairs collective contractility of neonatal cardiomyocytes under electrical synchronization. Biomaterials 2021; 278:121175. [PMID: 34628193 DOI: 10.1016/j.biomaterials.2021.121175] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/16/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
Nanoplastics are global pollutants that have been increasingly released into the environment following the degradation process of industrial and consumer products. These tiny particles have been reported to adversely affect various organs in the body, including the heart. Since it is probable that the less-developed hearts of newborn offspring are more vulnerable to nanoplastic insult during the infant feeding compared with mature hearts of adults, the acute effects of nanoplastics on the collective contractility of neonatal cardiomyocytes are to be elucidated. Here, we traced the aggregation of nanoplastics on the cell membrane and their internalization into the cytosol of neonatal rat ventricular myocytes (NRVMs) for 60 min in the presence of electrical pulses to synchronize the cardiac contraction in vitro. The time-coursed linkage of collective contraction forces, intracellular Ca2+ concentrations, mitochondrial membrane potentials, extracellular field potentials, and reactive oxygen species levels enabled us to build up the sequence of the cellular events associated with the detrimental effects of nanoplastics with positive surface charges on the immature cardiomyocytes. A significant decrease in intracellular Ca2+ levels and electrophysiological activities of NRVMs resulted in the reduction of contraction forces in the early phase (0-15 min). The further reduction of contraction force in the late phase (30-60 min) was attributed to remarkable decreases in mitochondrial membrane potentials and cellular metabolism. Our multifaceted assessments on the effect of positively surface charged nanoplastics on NRVM may offer better understanding of substantial risks of ever-increasing nanoplastic pollution in the hearts of human infants or adults.
Collapse
Affiliation(s)
- Amir Roshanzadeh
- School of Biological Sciences and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Nomin-Erdene Oyunbaatar
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | | | - Sangwoo Park
- Gwangju Center, Korea Basic Science Institute (KBSI), 49 Dosicheomdansaneopro, Nam-gu, Gwangju, 61751, Republic of Korea
| | - Dong-Su Kim
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Pooja P Kanade
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), 49 Dosicheomdansaneopro, Nam-gu, Gwangju, 61751, Republic of Korea
| | - Dong-Weon Lee
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Center for Next Generation Sensor Research and Development, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Eung-Sam Kim
- School of Biological Sciences and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea; Center for Next Generation Sensor Research and Development, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Biological Sciences and Research Center of Ecomimetics, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
141
|
Zhang F, Xu J, Zhu L, Peng G, Jabeen K, Wang X, Li D. Seasonal distributions of microplastics and estimation of the microplastic load ingested by wild caught fish in the East China Sea. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126456. [PMID: 34186430 DOI: 10.1016/j.jhazmat.2021.126456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Microplastic (MP) pollution in marine environments and organisms has received substantial international attention. However, long-term field studies of MPs are scarce. Here, we assessed the seasonal variation in MP abundance in the Zhoushan fishing ground (ZFG), one of the most abundant and productive fishing grounds worldwide, and analyzed the long-term MP accumulation in fish gastrointestinal tracts from September 2017 to June 2018. The most common MP particles in the ZFG were polyethylene terephthalate and polypropylene. After four seasons of continuous monitoring, we did not find accumulation of MPs in the fish after 10% KOH digestion. In total, 254 MP particles were removed from the gastrointestinal tracts of all fish. The average number of particles per fish was lower than that reported in previous global marine studies. There were significant differences among species. Moreover, this study provides the calculation of the weight of MPs ingested by fish and an estimate of the load of accumulated MPs in fish. According to the estimation, the load of MPs ingested by fish annually was approximately 3 kg in ZFG. These findings provide the long-term evidence of MP contamination in biota from the ZFG. The amounts of MPs ingested by fish require more detailed and improved investigation and estimation in further studies.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, 200062 Shanghai, China; Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, Shanghai 200241, China
| | - Jiayi Xu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, 200062 Shanghai, China; Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, Shanghai 200241, China
| | - Lixin Zhu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, 200062 Shanghai, China; Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, Shanghai 200241, China
| | - Guyu Peng
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Khalida Jabeen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, 200062 Shanghai, China; Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, Shanghai 200241, China
| | - Xiaohui Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, 200062 Shanghai, China; Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, Shanghai 200241, China
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, 200062 Shanghai, China; Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, Shanghai 200241, China.
| |
Collapse
|
142
|
Chen HL, Selvam SB, Ting KN, Gibbins CN. Microplastic pollution in freshwater systems in Southeast Asia: contamination levels, sources, and ecological impacts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54222-54237. [PMID: 34386926 DOI: 10.1007/s11356-021-15826-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Plastics are synthetic polymers known for their outstanding durability and versatility, and have replaced traditional materials in many applications. Unfortunately, their unique traits ensure that they pose a major threat to the environment. While literature on freshwater microplastic contamination has grown over the recent years, research undertaken in rapidly developing countries, where plastic production and use are increasing dramatically, has lagged behind that in other parts of the world. In the South East Asia (SEA) region, basic information on levels of contamination is very limited and, as a consequence, the risk to human and ecological health remains hard to assess. This review synthesises what is currently known about microplastic contamination of freshwater ecosystems in SEA, with a particular focus on Malaysia. The review 1) summarises published studies that have assessed levels of contamination in freshwater systems in SEA, 2) discusses key sources and transport pathways of microplastic in freshwaters, 3) outlines what is known of the impacts of microplastic on freshwater organisms, and 4) identifies key knowledge gaps related to our understanding of the transport, fate and effects of microplastic.
Collapse
Affiliation(s)
- Hui Ling Chen
- School of Environmental and Geographical Sciences, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia.
| | - Sivathass Bannir Selvam
- School of Environmental and Geographical Sciences, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Kang Nee Ting
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Christopher Neil Gibbins
- School of Environmental and Geographical Sciences, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| |
Collapse
|
143
|
Yong MMH, Leistenschneider C, Miranda JA, Paler MK, Legaspi C, Germanov E, Araujo G, Burkhardt-Holm P, Erni-Cassola G. Microplastics in fecal samples of whale sharks ( Rhincodon typus) and from surface water in the Philippines. MICROPLASTICS AND NANOPLASTICS 2021; 1:17. [PMID: 34939039 PMCID: PMC8475362 DOI: 10.1186/s43591-021-00017-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/13/2021] [Indexed: 05/27/2023]
Abstract
Marine plastic abundance has increased over the past 60 years and microplastics (< 5 mm) constitute a primary component of such litter. Filter-feeding megafauna, such as the whale shark, might be particularly affected by microplastic pollution as their feeding mode requires filtration of up to thousands of cubic meters of water. In addition, the habitat range of whale sharks intersects with several recognized microplastic pollution hotspots, among which is the Coral Triangle. Direct evidence for microplastic ingestion in whale sharks however, has not yet been presented. Here we show that whale shark scat collected in the Philippines from 2012 to 2019 contained a mean of 2.8 microplastics g- 1. Contrary to our expectations, the microplastic concentration in the scat remained consistent from 2012 to 2019. Water samples from the study site in 2019 indicated that the local microplastic pollution (5.83 particles m- 3) was higher than in surface waters in other whale shark habitats, but well below other pollution hot-spots found in Southeast Asia and China (range: 100-4100 particles m- 3). With the predicted growth in plastic use, leading to increased plastic marine pollution, whale sharks are expected to become more exposed to this form of pollution. To what extent microplastic ingestion impacts the overall health status of this endangered species remains an open question. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s43591-021-00017-9.
Collapse
Affiliation(s)
- Mila Mi Hua Yong
- Man-Society-Environment (Programme MGU), Department of Environmental Sciences), University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland
| | - Clara Leistenschneider
- Man-Society-Environment (Programme MGU), Department of Environmental Sciences), University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland
| | - Joni Anne Miranda
- Large Marine Vertebrates Research Institute Philippines, 6308 Jagna, Bohol Philippines
| | - Maria Kristina Paler
- Department of Biology, University of San Carlos, Talamban, Cebu City, Philippines
| | - Christine Legaspi
- Large Marine Vertebrates Research Institute Philippines, 6308 Jagna, Bohol Philippines
| | - Elitza Germanov
- Marine Megafauna Foundation, 11260 Donner Pass Road, Unit 256, Truckee, CA 96161 USA
| | - Gonzalo Araujo
- Large Marine Vertebrates Research Institute Philippines, 6308 Jagna, Bohol Philippines
- Marine Research and Conservation Foundation, Somerset, TA4 3SJ UK
| | - Patricia Burkhardt-Holm
- Man-Society-Environment (Programme MGU), Department of Environmental Sciences), University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland
| | - Gabriel Erni-Cassola
- Man-Society-Environment (Programme MGU), Department of Environmental Sciences), University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland
| |
Collapse
|
144
|
A Cloud-Based Framework for Large-Scale Monitoring of Ocean Plastics Using Multi-Spectral Satellite Imagery and Generative Adversarial Network. WATER 2021. [DOI: 10.3390/w13182553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Marine debris is considered a threat to the inhabitants, as well as the marine environments. Accumulation of marine debris, besides climate change factors, including warming water, sea-level rise, and changes in oceans’ chemistry, are causing the potential collapse of the marine environment’s health. Due to the increase of marine debris, including plastics in coastlines, ocean and sea surfaces, and even in deep ocean layers, there is a need for developing new advanced technology for the detection of large-sized marine pollution (with sizes larger than 1 m) using state-of-the-art remote sensing and machine learning tools. Therefore, we developed a cloud-based framework for large-scale marine pollution detection with the integration of Sentinel-2 satellite imagery and advanced machine learning tools on the Sentinel Hub cloud application programming interface (API). Moreover, we evaluated the performance of two shallow machine learning algorithms of random forest (RF) and support vector machine (SVM), as well as the deep learning method of the generative adversarial network-random forest (GAN-RF) for the detection of ocean plastics in the pilot site of Mytilene Island, Greece. Based on the obtained results, the shallow algorithms of RF and SVM achieved an overall accuracy of 88% and 84%, respectively, with available training data of plastic debris. The GAN-RF classifier improved the detection of ocean plastics of the RF method by 8%, achieving an overall accuracy of 96% by generating several synthetic ocean plastic samples.
Collapse
|
145
|
Poto MP, Elvevoll EO, Sundset MA, Eilertsen KE, Morel M, Jensen IJ. Suggestions for a Systematic Regulatory Approach to Ocean Plastics. Foods 2021; 10:foods10092197. [PMID: 34574305 PMCID: PMC8472657 DOI: 10.3390/foods10092197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
The research investigates the problems and maps the solutions to the serious threat that plastics pose to the oceans, food safety, and human health, with more than eight million tons of plastic debris dumped in the sea every year. The aim of this study is to explore how to better improve the regulatory process of ocean plastics by integrating scientific results, regulatory strategies and action plans so as to limit the impact of plastics at sea. Adopting a problem-solving approach and identifying four areas of intervention enable the establishment of a regulatory framework from a multi-actor, multi-issue, and multi-level perspective. The research methodology consists of a two-pronged approach: 1. An analysis of the state-of-the-art definition of plastics, micro-, and nanoplastics (respectively, MPs and NPs), and 2. The identification and discussion of loopholes in the current regulation, suggesting key actions to be taken at a global, regional and national level. In particular, the study proposes a systemic integration of scientific and regulatory advancements towards the construction of an interconnected multi-tiered (MT) plastic governance framework. The milestones reached by the project SECURE at UiT - The Arctic University of Norway provide evidence of the strength of the theory of integration and rights-based approaches. The suggested model holds substantial significance for the fields of environmental protection, food security, food safety, and human health. This proposed MT plastic governance framework allows for the holistic and effective organization of complex information and scenarios concerning plastics regulation. Containing a clear definition of plastics, grounded on the precautionary principle, the MT plastic framework should provide detailed mitigation measures, with a clear indication of rights and duties, and in coordination with an effective reparatory justice system.
Collapse
Affiliation(s)
- Margherita Paola Poto
- Faculty of Law, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway;
- Correspondence:
| | - Edel Oddny Elvevoll
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway; (E.O.E.); (K.-E.E.); (I.-J.J.)
| | - Monica Alterskjær Sundset
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway;
| | - Karl-Erik Eilertsen
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway; (E.O.E.); (K.-E.E.); (I.-J.J.)
| | - Mathilde Morel
- Faculty of Law, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway;
| | - Ida-Johanne Jensen
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway; (E.O.E.); (K.-E.E.); (I.-J.J.)
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, NTNU, N-7491 Trondheim, Norway
| |
Collapse
|
146
|
Sun T, Zhan J, Li F, Ji C, Wu H. Effect of microplastics on aquatic biota: A hormetic perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117206. [PMID: 33971425 DOI: 10.1016/j.envpol.2021.117206] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/06/2021] [Accepted: 04/16/2021] [Indexed: 05/17/2023]
Abstract
As emerging pollutants, microplastics (MPs) have been found globally in various freshwater and marine matrices. This study recompiled 270 endpoints of 3765 individuals from 43 publications, reporting the onset of enhanced biological performance and reduced oxidative stress biomarkers induced by MPs in aquatic organisms at environmentally relevant concentrations (≤1 mg/L, median = 0.1 mg/L). The stimulatory responses of consumption, growth, reproduction and survival ranged from 131% to 144% of the control, with a combined response of 136%. The overall inhibitory response of 9 oxidative stress biomarkers was 71% of the control, and commonly below 75%. The random-effects meta-regression indicated that the extents of MPs-induced responses were independent of habitat, MP composition, morphology, particle size and exposure duration. The results implied that the exposure to MPs at low and high concentrations might induce opposite/non-monotonic responses in aquatic biota. Correspondingly, the hormetic dose response relationships were found at various endpoints, such as reproduction, genotoxicity, immunotoxicity, neurotoxicity and behavioral alteration. Hormesis offers a novel perspective for understanding the dose response mode of aquatic organisms exposed to low and high concentrations of MPs, highlighting the necessity to incorporate the hormetic dose response model into the ecological/environmental risk assessment of MPs.
Collapse
Affiliation(s)
- Tao Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Junfei Zhan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, 266071, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, 266071, PR China.
| |
Collapse
|
147
|
Sridharan S, Kumar M, Singh L, Bolan NS, Saha M. Microplastics as an emerging source of particulate air pollution: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126245. [PMID: 34111744 DOI: 10.1016/j.jhazmat.2021.126245] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/12/2021] [Accepted: 05/25/2021] [Indexed: 05/07/2023]
Abstract
Accumulation of plastic litter exerts pressure on the environment. Microplastics (MPs) pollution has become a universal challenge due to the overexploitation of plastic products and unsystematic dumping of plastic waste. Initial studies on MPs and their implications had been confined to aquatic and terrestrial ecosystems, but recent research has also focused on MPs in the air. Their impacts on urban air quality and atmospheric transport to pristine habitats have emerged to be a serious concern. However, the extent and the significance of impacts of airborne particulate matter (PM) MPs on human health are not clearly understood. Further, the influence of airborne MPs on indoor and outdoor air quality remains unknown. We highlight the human health impacts of airborne PM-MPs with a special focus on the occupational safety of the industry workers, their possible influence on Air Quality Index (AQI), their potential exposure, and accumulation in the canopy/arboreal, above-canopy and atmospheric (aerial) habitats. The present review emphasizes the data limitations and knowledge gaps on the atmospheric transport and contribution of particulate plastics to the worsening of overall urban air quality and throws critical perspectives on whether atmospheric MPs pollution is trivial or an actual matter of concern.
Collapse
Affiliation(s)
- Srinidhi Sridharan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Manish Kumar
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Lal Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Nanthi S Bolan
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, New South Wales, 2308, Australia; Cooperative Research Centre for High-Performance Soils, Callaghan, New South Wales 2308, Australia
| | - Mahua Saha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India.
| |
Collapse
|
148
|
Nanninga GB, Pertzelan A, Kiflawi M, Holzman R, Plakolm I, Manica A. Treatment-level impacts of microplastic exposure may be confounded by variation in individual-level responses in juvenile fish. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126059. [PMID: 34492894 DOI: 10.1016/j.jhazmat.2021.126059] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/12/2021] [Accepted: 05/04/2021] [Indexed: 06/13/2023]
Abstract
Microplastic (MP) pollution is a key global environmental issue and laboratory exposure studies on aquatic biota are proliferating at an exponential rate. However, most research is limited to treatment-level effects, ignoring that there may be substantial within-population variation in responses to anthropogenic stressors. MP exposure experiments often reveal considerable, yet largely overlooked, inter-individual variation in particle uptake within concentration treatments. Here, we investigated to what degree treatment-level responses to MP exposure may be affected by variation in MP ingestion rates in the early life stages of a marine fish, the Gilt-head seabream, Sparus aurata. First, we tested whether MP ingestion variation is repeatable. Second, we assessed to what degree this variation may determine individual-level effects of MP exposure on fitness-related behavioural performance (i.e., escape response). We found that consistent inter-individual variation in MP ingestion was prevalent and led to differential impacts within exposure treatments. Individuals with high MP ingestion rates exhibited markedly inferior escape responses, a result that was partially concealed in treatment-level analyses. Our findings show that the measured response of populations to environmental perturbations could be confounded by variation in individual-level responses and that the explicit integration of MP ingestion variation can reveal cryptic patterns during exposure experiments.
Collapse
Affiliation(s)
- Gerrit B Nanninga
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK; Department of Zoology, University of Cambridge, Downing St, Cambridge CB2 3EJ, UK.
| | - Assaf Pertzelan
- Department of Life Sciences, Ben Gurion University, Beer Sheva, Israel; Interuniversity Institute for Marine Sciences, POB 469, Eilat 88103, Israel
| | - Moshe Kiflawi
- Department of Life Sciences, Ben Gurion University, Beer Sheva, Israel; Interuniversity Institute for Marine Sciences, POB 469, Eilat 88103, Israel
| | - Roi Holzman
- Interuniversity Institute for Marine Sciences, POB 469, Eilat 88103, Israel; School of Zoology, Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Isolde Plakolm
- Interuniversity Institute for Marine Sciences, POB 469, Eilat 88103, Israel
| | - Andrea Manica
- Department of Zoology, University of Cambridge, Downing St, Cambridge CB2 3EJ, UK
| |
Collapse
|
149
|
Gao R, Sun C. A marine bacterial community capable of degrading poly(ethylene terephthalate) and polyethylene. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125928. [PMID: 34489083 DOI: 10.1016/j.jhazmat.2021.125928] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 05/18/2023]
Abstract
Plastic wastes are becoming the most common form of marine debris and present a growing global pollution problem. Here, we used a screening approach on hundreds of plastic waste-associated samples and discovered a marine bacterial community capable of efficiently colonizing and degrading both poly(ethylene terephthalate) (PET) and polyethylene (PE). Using absolute quantitative 16S rRNA sequencing and cultivation methods, we obtained corresponding abundance and purified cultures of three bacterial strains that mediated plastic degradation. We further performed numerous techniques to characterize the efficient degradation of PET and PE by the reconstituted bacterial community containing these three bacteria. Additionally, we used liquid chromatography-mass spectrometry to further demonstrate the degradation of PET and PE films by the reconstituted bacterial community. We conducted transcriptomic methods to investigate the plastic degradation process and potential degradation mechanisms mediated by our reconstituted bacterial community. Lastly, we overexpressed PE degradation enzymes based on transcriptomic results and verified their significant degradation effects on the PE films. Overall, our study establishes a stable marine bacterial community that efficiently degrades PET and PE and provides insights into plastic degradation pathways and their associated biological and mechanistic processes-paving the way for developing microbial products against plastic wastes.
Collapse
Affiliation(s)
- Rongrong Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing, China; Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chaomin Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
150
|
Thiel M, Lorca BB, Bravo L, Hinojosa IA, Meneses HZ. Daily accumulation rates of marine litter on the shores of Rapa Nui (Easter Island) in the South Pacific Ocean. MARINE POLLUTION BULLETIN 2021; 169:112535. [PMID: 34119958 DOI: 10.1016/j.marpolbul.2021.112535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Large amounts of floating litter accumulate in the subtropical gyres, and the shorelines of oceanic islands in the vicinity of these accumulation zones receive large amounts of litter. The dynamics of marine litter arrival were evaluated on a small pocket beach on Rapa Nui (Easter Island) between November 2016 and June 2017 over a total time period of 190 days. Plastics dominated the stranded litter, with the majority of the items showing indications to come from the high seas fisheries operating in the South Pacific. Litter accumulation rates varied between 0 and 1.90 items m-1 day-1, and were highest following days of strong winds from northern directions. The results indicate that the shores of Rapa Nui are exposed to continuous input of plastic litter from the contaminated waters of the subtropical gyre, which is intensified during strong onshore winds.
Collapse
Affiliation(s)
- Martin Thiel
- Facultad Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile; Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI), Coquimbo, Chile; Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile.
| | | | - Luis Bravo
- Facultad Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile; Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI), Coquimbo, Chile
| | - Iván A Hinojosa
- Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI), Coquimbo, Chile; Departamento de Ecología, Facultad de Ciencias, y Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Chile
| | | |
Collapse
|