101
|
Yu Y, Zhou J, Li X, Goto K, Min X, Nishino K, Cui J, Wu L, Sakakibara J, Shu Y, Dong X, Li L, Yoneshima Y, Zhou C, Li X, Zhang Y, Huang D, Zang A, Zhang W, Wang X, Zhang L, Bai C, Fang J, Cao L, Zhao Y, Yu Y, Shi M, Zhong D, Li F, Li M, Wu Q, Zhou J, Sun M, Lu S. Gumarontinib in patients with non-small-cell lung cancer harbouring MET exon 14 skipping mutations: a multicentre, single-arm, open-label, phase 1b/2 trial. EClinicalMedicine 2023; 59:101952. [PMID: 37096188 PMCID: PMC10121392 DOI: 10.1016/j.eclinm.2023.101952] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 04/26/2023] Open
Abstract
Background Approximately 3-4% of patients with non-small-cell lung cancer (NSCLC) have MET exon 14 (METex14) skipping mutations. We report primary results from the phase 2 stage of a phase 1b/2 study of gumarontinib, a selective, potent, oral MET inhibitor, in patients with METex14 skipping mutation-positive (METex14-positive) NSCLC. Methods The single-arm, multicentre, open-label, phase 2 stage of the GLORY study was conducted at 42 centres across China and Japan. Adults with locally advanced or metastatic METex14-positive NSCLC received oral gumarontinib 300 mg once daily in continuous 21-day cycles until disease progression, intolerable toxicity, or withdrawal of consent. Eligible patients had failed one or two prior lines of therapy (not including a MET inhibitor), were ineligible for/refused chemotherapy, and had no genetic alterations targetable with standard therapies. The primary endpoint was objective response rate in patients with a valid baseline tumour assessment, by blinded independent review. The study was registered at ClinicalTrials.gov (NCT04270591). Findings Between Aug 2, 2019 and Apr 28, 2021, 84 patients were enrolled and received gumarontinib (median follow-up 13.5 months [IQR 8.7-17.1]), at data cut-off (Apr 28, 2022) five patients whose METex14 status could not be confirmed by a central laboratory were excluded from the efficacy analysis. The objective response rate was 66% (95% CI 54-76) overall (n = 79), 71% (95% CI 55-83) in treatment-naïve patients (n = 44), and 60% (95% CI 42-76) in previously-treated patients (n = 35). The most common treatment-related adverse events (any grade) were oedema (67/84 patients, 80%) and hypoalbuminuria (32/84, 38%). Grade ≥3 treatment-emergent adverse events occurred in 45 (54%) patients. Treatment-related adverse events leading to permanent discontinuation occurred in 8% (7/84) of patients. Interpretation Gumarontinib monotherapy had durable antitumour activity with manageable toxicity in patients with locally advanced or metastatic METex14-positive NSCLC when used in first line or later. Funding Haihe Biopharma Co., Ltd. Supported in part by grants from the National Science and Technology Major Project of China for "Clinical Research of Gumarontinib, a highly selective MET inhibitor" (2018ZX09711002-011-003); the National Natural Science Foundation of China (82030045 to S.L. and 82172633 to YF.Y); Shanghai Municipal Science & Technology Commission Research Project (19411950500 to S.L.); Shanghai Shenkang Action Plan (16CR3005A to S.L.) and Shanghai Chest Hospital Project of Collaborative Innovation (YJXT20190105 to S.L.).
Collapse
Affiliation(s)
- Yongfeng Yu
- Department of Medical Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianya Zhou
- Respiratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingya Li
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Koichi Goto
- Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Xuhong Min
- Radiology Intervention Department, Anhui Chest Hospital, Hefei, China
| | - Kazumi Nishino
- Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Jiuwei Cui
- Oncology Department, The First Bethune Hospital of Jilin University, Changchun, China
| | - Lin Wu
- Second Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha, China
| | - Jun Sakakibara
- Respiratory Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Yongqian Shu
- Oncology Department, Jiangsu Province Hospital, Nanjing, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Li
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yasuto Yoneshima
- Respiratory Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Chengzhi Zhou
- Oncology, The First Affiliate Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoling Li
- Thoracic Medicine, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yiping Zhang
- Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Dingzhi Huang
- Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Aimin Zang
- Medical Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Wei Zhang
- Pneumology Department/Institute Office, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiuwen Wang
- Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Chong Bai
- Pneumology Department, Changhai Hospital of Shanghai, Shanghai, China
| | - Jian Fang
- Thoracic Oncology Second Department, Beijing Cancer Hospital, Beijing, China
| | - Lejie Cao
- Pneumology Department, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Yanqiu Zhao
- Respiratory Department of Internal Medicine, Henan Cancer Hospital, Zhengzhou, China
| | - Yan Yu
- The Third Ward of Respiratory Medicine Department, Harbin Medical University Cancer Hospital, Harbin, China
| | - Meiqi Shi
- Oncology Department, Jiangsu Cancer Hospital, Nanjing, China
| | - Diansheng Zhong
- Internal Medicine-Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Fugen Li
- Clinical Science Department, Haihe Biopharma Co., Ltd, Shanghai, China
| | - Meng Li
- Biostatistic and Data Science, Haihe Biopharma Co., Ltd, Shanghai, China
| | - Qiuxia Wu
- Clinical Science Department, Haihe Biopharma Co., Ltd, Shanghai, China
| | - Jun Zhou
- Clinical Science Department, Haihe Biopharma Co., Ltd, Shanghai, China
| | - Minghui Sun
- Clinical Science Department, Haihe Biopharma Co., Ltd, Shanghai, China
| | - Shun Lu
- Department of Medical Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Corresponding author. Department of Medical Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, Huaihai West Road, Shanghai 200030, China.
| |
Collapse
|
102
|
Leone GM, Candido S, Lavoro A, Vivarelli S, Gattuso G, Calina D, Libra M, Falzone L. Clinical Relevance of Targeted Therapy and Immune-Checkpoint Inhibition in Lung Cancer. Pharmaceutics 2023; 15:1252. [PMID: 37111737 PMCID: PMC10142433 DOI: 10.3390/pharmaceutics15041252] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Lung cancer (LC) represents the second most diagnosed tumor and the malignancy with the highest mortality rate. In recent years, tremendous progress has been made in the treatment of this tumor thanks to the discovery, testing, and clinical approval of novel therapeutic approaches. Firstly, targeted therapies aimed at inhibiting specific mutated tyrosine kinases or downstream factors were approved in clinical practice. Secondly, immunotherapy inducing the reactivation of the immune system to efficiently eliminate LC cells has been approved. This review describes in depth both current and ongoing clinical studies, which allowed the approval of targeted therapies and immune-checkpoint inhibitors as standard of care for LC. Moreover, the present advantages and pitfalls of new therapeutic approaches will be discussed. Finally, the acquired importance of human microbiota as a novel source of LC biomarkers, as well as therapeutic targets to improve the efficacy of available therapies, was analyzed. Therapy against LC is increasingly becoming holistic, taking into consideration not only the genetic landscape of the tumor, but also the immune background and other individual variables, such as patient-specific gut microbial composition. On these bases, in the future, the research milestones reached will allow clinicians to treat LC patients with tailored approaches.
Collapse
Affiliation(s)
- Gian Marco Leone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Silvia Vivarelli
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, 98125 Messina, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy;
| |
Collapse
|
103
|
Brea E, Rotow J. Targeted Therapy for Non–Small Cell Lung Cancer. Hematol Oncol Clin North Am 2023; 37:575-594. [PMID: 37024384 DOI: 10.1016/j.hoc.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
This article provides an updated review of the management of oncogene-driven non-small cell lung cancer. The use of targeted therapies for lung cancer driven by EGFR, ALK, ROS1, RET, NTRK, HER2, BRAF, MET, and KRAS are discussed, both in the first-line setting and in the setting of acquired resistance.
Collapse
Affiliation(s)
- Elliott Brea
- Department of Medical Oncology, Dana-Farber Cancer Institute, SM353, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Julia Rotow
- Dana-Farber Cancer Institute, 450 Brookline Avenue, DA1240, Boston, MA 02215, USA.
| |
Collapse
|
104
|
Markham JF, Fellowes AP, Green T, Leal JL, Legaie R, Cullerne D, Morris T, John T, Solomon B, Fox SB. Predicting response to immune checkpoint blockade in NSCLC with tumour-only RNA-seq. Br J Cancer 2023; 128:1148-1154. [PMID: 36572732 PMCID: PMC10006283 DOI: 10.1038/s41416-022-02105-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Targeted RNA sequencing (RNA-seq) from FFPE specimens is used clinically in cancer for its ability to estimate gene expression and to detect fusions. Using a cohort of NSCLC patients, we sought to determine whether targeted RNA-seq could be used to measure tumour mutational burden (TMB) and the expression of immune-cell-restricted genes from FFPE specimens and whether these could predict response to immune checkpoint blockade. METHODS Using The Cancer Genome Atlas LUAD dataset, we developed a method for determining TMB from tumour-only RNA-seq and showed a correlation with DNA sequencing derived TMB calculated from tumour/normal sample pairs (Spearman correlation = 0.79, 95% CI [0.73, 0.83]. We applied this method to targeted sequencing data from our patient cohort and validated these results against TMB estimates obtained using an orthogonal assay (Spearman correlation = 0.49, 95% CI [0.24, 0.68]). RESULTS We observed that the RNA measure of TMB was significantly higher in responders to immune blockade treatment (P = 0.028) and that it was predictive of response (AUC = 0.640 with 95% CI [0.493, 0.786]). By contrast, the expression of immune-cell-restricted genes was uncorrelated with patient outcome. CONCLUSION TMB calculated from targeted RNA sequencing has a similar diagnostic ability to TMB generated from targeted DNA sequencing.
Collapse
Affiliation(s)
- John F Markham
- Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia
- Department of Pathology, Peter MacCallum Cancer Centre, Parkville, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew P Fellowes
- Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia.
- Department of Pathology, Peter MacCallum Cancer Centre, Parkville, VIC, Australia.
| | - Thomas Green
- Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia
- Department of Pathology, Peter MacCallum Cancer Centre, Parkville, VIC, Australia
| | - Jose Luis Leal
- Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Roxane Legaie
- Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia
- Department of Pathology, Peter MacCallum Cancer Centre, Parkville, VIC, Australia
| | - Darren Cullerne
- Murdoch Children's Research Institute, Flemington Road, Parkville, VIC, 3052, Australia
| | - Tessa Morris
- Southern Blood and Cancer Service, Te Whatu Ora Southern, Dunedin, New Zealand
- Mercy Cancer Care, Mercy Hospital, Dunedin, New Zealand
| | - Tom John
- Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Ben Solomon
- Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen B Fox
- Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia
- Department of Pathology, Peter MacCallum Cancer Centre, Parkville, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
105
|
Harada G, Yang SR, Cocco E, Drilon A. Rare molecular subtypes of lung cancer. Nat Rev Clin Oncol 2023; 20:229-249. [PMID: 36806787 PMCID: PMC10413877 DOI: 10.1038/s41571-023-00733-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2023] [Indexed: 02/22/2023]
Abstract
Oncogenes that occur in ≤5% of non-small-cell lung cancers have been defined as 'rare'; nonetheless, this frequency can correspond to a substantial number of patients diagnosed annually. Within rare oncogenes, less commonly identified alterations (such as HRAS, NRAS, RIT1, ARAF, RAF1 and MAP2K1 mutations, or ERBB family, LTK and RASGRF1 fusions) can share certain structural or oncogenic features with more commonly recognized alterations (such as KRAS, BRAF, MET and ERBB family mutations, or ALK, RET and ROS1 fusions). Over the past 5 years, a surge in the identification of rare-oncogene-driven lung cancers has challenged the boundaries of traditional clinical grade diagnostic assays and profiling algorithms. In tandem, the number of approved targeted therapies for patients with rare molecular subtypes of lung cancer has risen dramatically. Rational drug design has iteratively improved the quality of small-molecule therapeutic agents and introduced a wave of antibody-based therapeutics, expanding the list of actionable de novo and resistance alterations in lung cancer. Getting additional molecularly tailored therapeutics approved for rare-oncogene-driven lung cancers in a larger range of countries will require ongoing stakeholder cooperation. Patient advocates, health-care agencies, investigators and companies with an interest in diagnostics, therapeutics and real-world evidence have already taken steps to surmount the challenges associated with research into low-frequency drivers.
Collapse
Affiliation(s)
- Guilherme Harada
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Soo-Ryum Yang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emiliano Cocco
- Department of Biochemistry and Molecular Biology/Sylvester Comprehensive Cancer Center, University of Miami/Miller School of Medicine, Miami, FL, USA.
| | - Alexander Drilon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
106
|
Xia Y, Jin R, Li M, Lan F, Zhu H, Yu Y, Miao D, Wang Q, Zhou Y, Selvaggi G, Ying S, Zhang J, Shen H, Le X, Li W. Potent antitumor activity of ensartinib in MET exon 14 skipping-mutated non-small cell lung cancer. Cancer Lett 2023; 561:216140. [PMID: 36948240 DOI: 10.1016/j.canlet.2023.216140] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 03/24/2023]
Abstract
Met proto-oncogene exon 14 skipping (METex14) mutations are targetable driver genes in approximately 3% of non-small-cell lung cancers (NSCLCs). Ensartinib, a type Ia MET inhibitor, is a multi-kinase inhibitor that has been approved for ALK-positive NSCLCs. Ensartinib was administered for compassionate use (cohort 1) and in a phase II clinical trial (cohort 2) to patients with METex14 mutant NSCLCs, with ORR as a primary endpoint. Molecular simulation was conducted to evaluate ensartinib c-MET interaction, and cell lines, patient-derived organoids (PDOs), and xenograft models were used to test the effectiveness of ensartinib. Among 29 evaluable patients, the ORR and DCR of ensartinib were 67% and 94% in cohort 1, and 73% and 91% in cohort 2. The median DoR was 6.8 months and median PFS was 6.1 months in the total population. Rash was the most common drug-related adverse event, and peripheral edema of any grade was reported in only 9% patients. Molecular simulations indicated favorable binding of ensartinib to c-MET. The kinase assay demonstrated an IC50 of 7.9 nM of ensartinib against METex14 protein. In vitro, Hs746T (METex14 mutation) and EBC-1 (MET amplification) cells were sensitive to ensartinib, with IC50 of 31 and 44 nM, respectively. Ensartinib exhibited comparable inhibitory effects on cell migration as crizotinib and tepotinib in both cell types. In vivo, ensartinib suppressed the growth of Hs746T cells. Ensartinib also potently inhibited the viability of PDOs. Overall, Ensartinib exhibited substantial antitumor effects against METex14 mutant NSCLCs in preclinical and clinical trials, with relatively low peripheral edema rates.
Collapse
Affiliation(s)
- Yang Xia
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Rui Jin
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Miao Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Fen Lan
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hao Zhu
- Department of Respiratory and Critical Care Medicine, Wuyi First People's Hospital, Jinhua, Zhejiang, China
| | - Yinghui Yu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Da Miao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiyuan Wang
- Department of Radiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Zhou
- Xcovery Holdings Inc, Palm Beach Gardens, FL, USA
| | | | - Songmin Ying
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Xiuning Le
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA.
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
107
|
At the crossroads of immunotherapy for oncogene-addicted subsets of NSCLC. Nat Rev Clin Oncol 2023; 20:143-159. [PMID: 36639452 DOI: 10.1038/s41571-022-00718-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/15/2023]
Abstract
Non-small-cell lung cancer (NSCLC) has become a paradigm of precision medicine, with the discovery of numerous disease subtypes defined by specific oncogenic driver mutations leading to the development of a range of molecularly targeted therapies. Over the past decade, rapid progress has also been made in the development of immune-checkpoint inhibitors (ICIs), especially antagonistic antibodies targeting the PD-L1-PD-1 axis, for the treatment of NSCLC. Although many of the major oncogenic drivers of NSCLC are associated with intrinsic resistance to ICIs, patients with certain oncogene-driven subtypes of the disease that are highly responsive to specific targeted therapies might also derive benefit from immunotherapy. However, the development of effective immunotherapy approaches for oncogene-addicted NSCLC has been challenged by a lack of predictive biomarkers for patient selection and limited knowledge of how ICIs and oncogene-directed targeted therapies should be combined. Therefore, whether ICIs alone or with chemotherapy or even in combination with molecularly targeted agents would offer comparable benefit in the context of selected oncogenic driver alterations to that observed in the general unselected NSCLC population remains an open question. In this Review, we discuss the effects of oncogenic driver mutations on the efficacy of ICIs and the immune tumour microenvironment as well as the potential vulnerabilities that could be exploited to overcome the challenges of immunotherapy for oncogene-addicted NSCLC.
Collapse
|
108
|
Sakamoto M, Patil T. MET alterations in advanced non-small cell lung cancer. Lung Cancer 2023; 178:254-268. [PMID: 36924573 DOI: 10.1016/j.lungcan.2023.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/23/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023]
Abstract
Targeting the MET pathway in advanced NSCLC has been of particular interest due to its role as both a primary oncogenic driver and secondary oncogenic driver of acquired resistance. Activation of the MET pathway can occur through several mechanisms, which can complicate the diagnostic and treatment approach. Recently, several MET-directed therapies have been developed with promising results. In this narrative review, we summarize the biology and mechanism of MET as a clinically relevant driver mutation, distinct MET alterations including diagnostic challenges, significance in the setting of acquired resistance, and novel treatment strategies in advanced NSCLC.
Collapse
Affiliation(s)
- Mandy Sakamoto
- Department of Medicine, Division of Medical Oncology, United States
| | - Tejas Patil
- Department of Medicine, Division of Medical Oncology, United States.
| |
Collapse
|
109
|
Sun R, Wang Z, Zhao J, Ren P, Ma J, Guo Y. Optimized Detection of Unknown MET Exon 14 Skipping Mutations in Routine Testing for Patients With Non-Small-Cell Lung Cancer. JCO Precis Oncol 2023; 7:e2200482. [PMID: 36848606 DOI: 10.1200/po.22.00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
PURPOSE MET exon 14 (METex14) skipping is an actionable biomarker in non-small-cell lung cancer. However, MET variants are highly complex and diverse, and not all variants lead to exon 14 skipping. Assessing the skipping effect of unknown variants is still a key issue in molecular diagnosis. MATERIALS AND METHODS We retrospectively collected MET variants around exon 14 from 4,233 patients with non-small-cell lung cancer who underwent next-generation sequencing testing using DNA, as well as two published data sets. RESULTS Among the 4,233 patients, 44 unique variants including 29 novel variants (65.9%) were discovered from 53 patients. Notably, 31 samples (58.5%) failed RNA verification. Using RNA verification, nine novel skipping variants and five nonskipping variants were confirmed. We further used SpliceAI with the delta score cutoff of 0.315 to aid the classification of novel variants (sensitivity = 98.88% and specificity = 100%). When applied to the reported variants, we also found three wrongly classified nonskipping variants. Finally, an optimized knowledge-based interpretation procedure for clinical routine was built according to the mutation type and location, and five more skipping mutations from the 13 unknown variants were determined, which improved the population determination rate to 0.92%. CONCLUSION This study discovered more METex14 skipping variants and optimized an innovative approach that could be adapted for the interpretation of infrequent or novel METex14 variants timely without experimental validation.
Collapse
Affiliation(s)
- Rui Sun
- Department of Molecular Pathology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.,Henan Key Laboratory of Molecular Pathology, Zhengzhou, Henan Province, China
| | - Zhizhong Wang
- Department of Molecular Pathology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.,Henan Key Laboratory of Molecular Pathology, Zhengzhou, Henan Province, China
| | - Jiuzhou Zhao
- Department of Molecular Pathology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.,Henan Key Laboratory of Molecular Pathology, Zhengzhou, Henan Province, China
| | - Pengfei Ren
- Department of Molecular Pathology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jie Ma
- Department of Molecular Pathology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yongjun Guo
- Department of Molecular Pathology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.,Henan Key Laboratory of Molecular Pathology, Zhengzhou, Henan Province, China
| |
Collapse
|
110
|
Berges N, Klug JH, Eicher A, Loehr J, Schwarz D, Bomke J, Leuthner B, Perrin D, Schadt O. Differences in Sustained Cellular Effects of MET inhibitors Are Driven by Prolonged Target Engagement and Lysosomal Retention. Mol Pharmacol 2023; 103:77-88. [PMID: 36400432 DOI: 10.1124/molpharm.122.000590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022] Open
Abstract
Intracellular distribution of drug compounds is dependent on physicochemical characteristics and may have a significant bearing on the extent of target occupancy and, ultimately, drug efficacy. We assessed differences in the physicochemical profiles of MET inhibitors capmatinib, crizotinib, savolitinib, and tepotinib and their effects on cell viability and MET phosphorylation under steady-state and washout conditions (to mimic an open organic system) in a human lung cancer cell line. To examine the differences of the underlying molecular mechanisms at the receptor level, we investigated the residence time at the kinase domain and the cellular target engagement. We found that the ranking of the drugs for cell viability was different under steady-state and washout conditions and that under washout conditions, tepotinib displayed the most potent inhibition of phosphorylated MET. Postwashout effects were correlated with the partitioning of the drug into acidic subcellular compartments such as lysosomes, and the tested MET inhibitors were grouped according to their ability to access lysosomes (crizotinib and tepotinib) or not (capmatinib and savolitinib). Reversible lysosomal retention may represent a valuable intracellular storage mechanism for MET inhibitors, enabling prolonged receptor occupancy in dynamic, open-physiologic systems and may act as a local drug reservoir. The use of washout conditions to simulate open systems and investigate intracellular drug distribution is a useful characterization step that deserves further investigation. SIGNIFICANCE STATEMENT: Generally, determination of potency and receptor occupancy is performed under steady-state conditions. In vivo conditions are more complex due to concentration differences between compartments and equilibrium processes. Experiments under steady state cannot explore effects such as sustained target inhibition. This study has shown that differences between MET inhibitors are observable by applying washout conditions to in vitro assays. This important finding applies to most compound classes and may inspire readers to rethink their assay designs in the future.
Collapse
Affiliation(s)
- Nina Berges
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | | | - Anna Eicher
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Jennifer Loehr
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Daniel Schwarz
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Joerg Bomke
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | | | | | - Oliver Schadt
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| |
Collapse
|
111
|
Ortega MA, Pekarek L, Navarro F, Fraile-Martínez O, García-Montero C, Álvarez-Mon MÁ, Diez-Pedrero R, Boyano-Adánez MDC, Guijarro LG, Barrena-Blázquez S, Gómez-Lahoz AM, Haro S, Arroyo M, Monserrat J, Saez MA, Alvarez-Mon M. Updated Views in Targeted Therapy in the Patient with Non-Small Cell Lung Cancer. J Pers Med 2023; 13:jpm13020167. [PMID: 36836402 PMCID: PMC9959016 DOI: 10.3390/jpm13020167] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most frequent form of lung cancer and represents a set of histological entities that have an ominous long-term prognosis, for example, adenocarcinoma, squamous carcinoma and large cell carcinoma. Both small cell and non-small cell lung cancer are the main causes of oncological death and the oncological diseases with the highest incidence worldwide. With regard to clinical approaches for NSCLC, several advances have been achieved in diagnosis and treatment; the analysis of different molecular markers has led to the development of new targeted therapies that have improved the prognosis for selected patients. Despite this, most patients are diagnosed in an advanced stage, presenting a limited life expectancy with an ominous short-term prognosis. Numerous molecular alterations have been described in recent years, allowing for the development of therapies directed against specific therapeutic targets. The correct identification of the expression of different molecular markers has allowed for the individualization of treatment throughout the disease course, expanding the available therapeutic arsenal. The purpose of this article is to summarize the main characteristics of NSCLC and the advances that have occurred in the use of targeted therapies, thus explaining the limitations that have been observed in the management of this disease.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcalá de Henares, Spain
- Ramon and Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Prince of Asturias University Hospital, 28806 Alcalá de Henares, Spain
- Correspondence:
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcalá de Henares, Spain
- Ramon and Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain
| | - Fátima Navarro
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcalá de Henares, Spain
- Ramon and Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Oncology Service, Prince of Asturias University Hospital, 28806 Alcalá de Henares, Spain
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcalá de Henares, Spain
- Ramon and Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcalá de Henares, Spain
- Ramon and Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Ángel Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcalá de Henares, Spain
- Ramon and Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Raúl Diez-Pedrero
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Teaching Hospital, 28805 Alcalá de Henares, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - María del Carmen Boyano-Adánez
- Unit of Biochemistry and Molecular Biology, Department of Systems Biology, University of Alcalá, 28871 Alcalá de Henares, Spain
| | - Luis G. Guijarro
- Ramon and Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of Systems Biology, University of Alcalá, 28871 Alcalá de Henares, Spain
| | - Silvestra Barrena-Blázquez
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Teaching Hospital, 28805 Alcalá de Henares, Spain
| | - Ana M. Gómez-Lahoz
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcalá de Henares, Spain
- Ramon and Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Sergio Haro
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcalá de Henares, Spain
- Ramon and Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Mónica Arroyo
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcalá de Henares, Spain
- Ramon and Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcalá de Henares, Spain
- Ramon and Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcalá de Henares, Spain
- Ramon and Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Teaching Hospital, 28805 Alcalá de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcalá de Henares, Spain
- Ramon and Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| |
Collapse
|
112
|
Chung EK, Yong SH, Lee EH, Kim EY, Chang YS, Lee SH. New Targeted Therapy for Non-Small Cell Lung Cancer. Tuberc Respir Dis (Seoul) 2023; 86:1-13. [PMID: 36196556 PMCID: PMC9816494 DOI: 10.4046/trd.2022.0066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/27/2022] [Accepted: 10/03/2022] [Indexed: 01/13/2023] Open
Abstract
Lung cancer ranks first in cancer mortality in Korea and cancer incidence in Korean men. More than half of Korean lung cancer patients undergo chemotherapy, including adjuvant therapy. Cytotoxic agents, targeted therapy, and immune checkpoint inhibitors are used in chemotherapy according to the biopsy and genetic test results. Among chemotherapy, the one that has developed rapidly is targeted therapy. The National Comprehensive Cancer Network (NCCN) guidelines have been updated recently for targeted therapy of multiple gene mutations, and targeted therapy is used not only for chemotherapy but also for adjuvant therapy. While previously targeted therapies have been developed for common genetic mutations, recently targeted therapies have been developed to overcome uncommon mutations or drug resistance that have occurred since previous targeted therapy. Therefore, this study describes recent, rapidly developing targeted therapies.
Collapse
Affiliation(s)
- Eun Ki Chung
- Division of Pulmonary, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Hyun Yong
- Division of Pulmonary, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Hye Lee
- Division of Pulmonary, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Young Kim
- Division of Pulmonary, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Soo Chang
- Division of Pulmonary, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Hoon Lee
- Division of Pulmonary, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
113
|
Shi Y, Qiu Z, Ding Y, Chen Y, Zhang A, Jin W. Pulmonary embolism and bradycardia in a NSCLC patient treated with crizotinib for a rare mutation. J Oncol Pharm Pract 2023; 29:211-217. [PMID: 35466809 DOI: 10.1177/10781552221091595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Lung cancer is a major global health problem because of its high incidence and mortality. Targeted therapies have transformed treatment of driver-mutated metastatic non-small cell lung cancer (NSCLC). Nevertheless, recent studies demonstrated that cardiovascular disease (CVD) was the second leading cause of mortality in cancer survivors now, management of patients' cardiovascular health during the course of anticancer therapy has become a great challenge faced by the oncologists. Anticancer related cardiovascular (CV) complications are not limited to traditional chemotherapy, but are also increasingly recognized in targeted therapy. CASE REPORT We present a case of pulmonary embolism (PE) and bradycardia in a 91-year-old NSCLC patient treated with crizotinib for a rare MET Y1003S mutation. To our knowledge, this is the second report to show antitumor response of crizotinib in lung cancer patients with such a rare mutation. However, the patient complained chest tightness and shortness of breath after a month of standard dose crizotinib therapy. Non-invasive examination revealed new onset bradycardia and PE. MANAGEMENT & OUTCOME Such clinical manifestations were associated with targeted therapy-related CV toxicity, on which the emerging discipline cardio-oncology focused, and a multidisciplinary investigation and treatment was conducted. DISCUSSION This case highlights the CV adverse events of novel therapies and the current challenges to be tackled in cardio-oncology.
Collapse
Affiliation(s)
- Yunjing Shi
- Department of Cardiovascular Medicine, 66281Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Zeping Qiu
- Department of Cardiovascular Medicine, 66281Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Yongjie Ding
- Department of Pulmonary and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Yanjia Chen
- Department of Cardiovascular Medicine, 66281Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Andi Zhang
- Department of Cardiovascular Medicine, 66281Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Wei Jin
- Department of Cardiovascular Medicine, 66281Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
114
|
[Research Progresses in the Treatment of NSCLC with MET Gene Variants: A Riview]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:877-887. [PMID: 36617474 PMCID: PMC9845091 DOI: 10.3779/j.issn.1009-3419.2022.101.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mesenchymal-epithelial transition factor (MET) has long been considered as the most crucial and promising driver gene in the occurrence and development of non-small cell lung cancer (NSCLC), except for epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), and c-ROS oncogene 1 receptor tyrosine kinase (ROS1). In recent years, therapeutic drugs targeting MET have been continuously developed and applied in clinical practice. First, the curative effect of NSCLC patients with MET exon 14 skipping mutations has been further improved. In addition, when MET amplification occurs after resistance to EGFR tyrosine kinase inhibitors (EGFR-TKIs) in patients with advanced EGFR-mutant NSCLC, the combination of MET-TKIs and EGFR-TKIs has brought significant survival benefits and many other advances. This article reviews the treatment progress of NSCLC patients with different types of MET variants under different circumstances, which provides reference for the selection of clinical treatment strategies.
.
Collapse
|
115
|
Lo A, McSharry M, Berger AH. Oncogenic KRAS alters splicing factor phosphorylation and alternative splicing in lung cancer. BMC Cancer 2022; 22:1315. [PMID: 36522653 PMCID: PMC9756471 DOI: 10.1186/s12885-022-10311-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Alternative RNA splicing is widely dysregulated in cancers including lung adenocarcinoma, where aberrant splicing events are frequently caused by somatic splice site mutations or somatic mutations of splicing factor genes. However, the majority of mis-splicing in cancers is unexplained by these known mechanisms. We hypothesize that the aberrant Ras signaling characteristic of lung cancers plays a role in promoting the alternative splicing observed in tumors. METHODS We recently performed transcriptome and proteome profiling of human lung epithelial cells ectopically expressing oncogenic KRAS and another cancer-associated Ras GTPase, RIT1. Unbiased analysis of phosphoproteome data identified altered splicing factor phosphorylation in KRAS-mutant cells, so we performed differential alternative splicing analysis using rMATS to identify significantly altered isoforms in lung epithelial cells. To determine whether these isoforms were uniquely regulated by KRAS, we performed a large-scale splicing screen in which we generated over 300 unique RNA sequencing profiles of isogenic A549 lung adenocarcinoma cells ectopically expressing 75 different wild-type or variant alleles across 28 genes implicated in lung cancer. RESULTS Mass spectrometry data showed widespread downregulation of splicing factor phosphorylation in lung epithelial cells expressing mutant KRAS compared to cells expressing wild-type KRAS. We observed alternative splicing in the same cells, with 2196 and 2416 skipped exon events in KRASG12V and KRASQ61H cells, respectively, 997 of which were shared (p < 0.001 by hypergeometric test). In the high-throughput splicing screen, mutant KRAS induced the greatest number of differential alternative splicing events, second only to the RNA binding protein RBM45 and its variant RBM45M126I. We identified ten high confidence cassette exon events across multiple KRAS variants and cell lines. These included differential splicing of the Myc Associated Zinc Finger (MAZ). As MAZ regulates expression of KRAS, this splice variant may be a mechanism for the cell to modulate wild-type KRAS levels in the presence of oncogenic KRAS. CONCLUSION Proteomic and transcriptomic profiling of lung epithelial cells uncovered splicing factor phosphorylation and mRNA splicing events regulated by oncogenic KRAS. These data suggest that in addition to widespread transcriptional changes, the Ras signaling pathway can promote post-transcriptional splicing changes that may contribute to oncogenic processes.
Collapse
Affiliation(s)
- April Lo
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Maria McSharry
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Alice H Berger
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Herbold Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
116
|
Gürbüz M, Kiliçkap S, Bilici A, Karadurmuş N, Sezer A, Şendur MAN, Paydaş S, Artaç M, Fulden Yumuk P, Gürsoy P, Uysal M, Şenol Coşkun H, Tatli AM, Selçukbiricik F, Dişel U, Köksoy EB, Güven DC, Uğrakli M, Akkuş E, Yücel Ş, Erol C, Karakaya S, Şakalar T, Khanmammadov N, Paksoy N, Demirkazik A. Crizotinib efficacy and safety in patients with advanced NSCLC harboring MET alterations: A real-life data of Turkish Oncology Group. Medicine (Baltimore) 2022; 101:e32368. [PMID: 36550824 PMCID: PMC9771320 DOI: 10.1097/md.0000000000032368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Crizotinib is a multikinase inhibitor, effective in non-small cell lung cancer (NSCLC) harboring mesenchymal-epidermal transition (MET) alterations. Although small prospective studies showed efficacy and safety of crizotinib in NSCLC with MET alterations, there is limited real-life data. Aim of this study is to investigate real-life efficacy and safety of crizotinib in patients with advanced NSCLC harboring MET alterations. This was a retrospective, multicenter (17 centers) study of Turkish Oncology Group. Patients' demographic, histological data, treatment, response rates, survival outcomes, and toxicity data were collected. Outcomes were presented for the study population and compared between MET alteration types. Total of 62 patients were included with a median age of 58.5 (range, 26-78). Major histological type was adenocarcinoma, and 3 patients (4.8%) had sarcomatoid component. The most common MET analyzing method was next generation sequencing (90.3%). MET amplification and mutation frequencies were 53.2% (n = 33) and 46.8% (n = 29), respectively. Overall response rate and disease control rate were 56.5% and 74.2% in whole study population, respectively. Median progression free survival (PFS) was 7.2 months (95% confidence interval [CI]: 3.8-10.5), and median overall survival (OS) was 18.7 months (95% CI: 13.7-23.7), regardless of treatment line. Median PFS was 6.1 months (95% CI: 5.6-6.4) for patients with MET amplification, whereas 14.3 months (95% CI: 6.7-21.7) for patients with MET mutation (P = .217). Median PFS was significantly longer in patients who have never smoked (P = .040), have good performance score (P < .001), and responded to the treatment (P < .001). OS was significantly longer in patients with MET mutation (25.6 months, 95% CI: 15.9-35.3) compared to the patients with MET amplification (11.0 months; 95% CI: 5.2-16.8) (P = .049). In never-smokers, median OS was longer than smoker patients (25.6 months [95% CI: 11.8-39.3] vs 16.5 months [95% CI: 9.3-23.6]; P = .049). The most common adverse effects were fatigue (50%), peripheral edema (21%), nausea (29%) and diarrhea (19.4%). Grade 3 or 4 adverse effects were observed in 6.5% of the patients. This real-life data confirms efficacy and safety of crizotinib in the treatment of advanced NSCLC harboring MET alteration.
Collapse
Affiliation(s)
- Mustafa Gürbüz
- Ankara University Faculty of Medicine, Department of Medical Oncology, Ankara, Turkey
- * Correspondence: Mustafa Gürbüz, Ankara University Faculty of Medicine, Department of Medical Oncology, Ankara 06100, Turkey (e-mail: ; )
| | - Saadettin Kiliçkap
- İstinye University Faculty of Medicine, Liv Ankara Hospital, Department of Medical Oncology, Ankara, Turkey
| | - Ahmet Bilici
- İstanbul Medipol University Faculty of Medicine, Department of Medical Oncology, Istanbul, Turkey
| | - Nuri Karadurmuş
- University of Health Sciences, Department of Medical Oncology, Gülhane Training and Research Hospital, Ankara, Turkey
| | - Ahmet Sezer
- Başkent University Faculty of Medicine, Department of Medical Oncology, Adana, Turkey
| | - Mehmet Ali Nahit Şendur
- Yildirim Beyazit University Faculty of Medicine, Department of Medical Oncology, Ankara, Turkey
| | - Semra Paydaş
- Çukurova University Faculty of Medicine, Department of Medical Oncology, Adana, Turkey
| | - Mehmet Artaç
- Necmettin Erbakan University, Meram Faculty of Medicine, Department of Medical Oncology, Konya, Turkey
| | | | - Pinar Gürsoy
- Ege University Faculty of Medicine, Department of Medical Oncology, İzmir, Turkey
| | - Mükremin Uysal
- Medstar Antalya Hospital, Department of Medical Oncology, Antalya, Turkey
| | - Hasan Şenol Coşkun
- Akdeniz University Faculty of Medicine, Department of Medical Oncology, Antalya, Turkey
| | - Ali Murat Tatli
- Akdeniz University Faculty of Medicine, Department of Medical Oncology, Antalya, Turkey
| | | | - Umut Dişel
- Acibadem Adana Hospital, Department of Medical Oncology, Adana, Turkey
| | - Elif Berna Köksoy
- Ankara University Faculty of Medicine, Department of Medical Oncology, Ankara, Turkey
| | - Deniz Can Güven
- Hacettepe University Faculty of Medicine, Department of Medical Oncology, Ankara, Turkey
| | - Muzaffer Uğrakli
- Necmettin Erbakan University, Meram Faculty of Medicine, Department of Medical Oncology, Konya, Turkey
| | - Erman Akkuş
- Ankara University Faculty of Medicine, Department of Internal Medicine, Ankara, Turkey
| | - Şebnem Yücel
- Yildirim Beyazit University Faculty of Medicine, Department of Medical Oncology, Ankara, Turkey
| | - Cihan Erol
- Yildirim Beyazit University Faculty of Medicine, Department of Medical Oncology, Ankara, Turkey
| | - Serdar Karakaya
- Atatürk Chest Diseases and Thoracic Surgery Training and Research Hospital, Department of Medical Oncology, Ankara, Turkey
| | - Teoman Şakalar
- Necip Fazil City Hospital, Department of Medical Oncology, Kahramanmaraş, Turkey
| | - Nijat Khanmammadov
- İstanbul University Faculty of Medicine, Department of Medical Oncology, Istanbul, Turkey
| | - Nail Paksoy
- Tekirdağ Dr. İsmail Fehmi Cumalioğlu City Hospital, Department of Medical Oncology, Tekirdağ, Turkey
| | - Ahmet Demirkazik
- Ankara University Faculty of Medicine, Department of Medical Oncology, Ankara, Turkey
| |
Collapse
|
117
|
Wang Z, Xing Y, Li B, Li X, Liu B, Wang Y. Molecular pathways, resistance mechanisms and targeted interventions in non-small-cell lung cancer. MOLECULAR BIOMEDICINE 2022; 3:42. [PMID: 36508072 PMCID: PMC9743956 DOI: 10.1186/s43556-022-00107-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/03/2022] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. The discovery of tyrosine kinase inhibitors effectively targeting EGFR mutations in lung cancer patients in 2004 represented the beginning of the precision medicine era for this refractory disease. This great progress benefits from the identification of driver gene mutations, and after that, conventional and new technologies such as NGS further illustrated part of the complex molecular pathways of NSCLC. More targetable driver gene mutation identification in NSCLC patients greatly promoted the development of targeted therapy and provided great help for patient outcomes including significantly improved survival time and quality of life. Herein, we review the literature and ongoing clinical trials of NSCLC targeted therapy to address the molecular pathways and targeted intervention progress in NSCLC. In addition, the mutations in EGFR gene, ALK rearrangements, and KRAS mutations in the main sections, and the less common molecular alterations in MET, HER2, BRAF, ROS1, RET, and NTRK are discussed. The main resistance mechanisms of each targeted oncogene are highlighted to demonstrate the current dilemma of targeted therapy in NSCLC. Moreover, we discuss potential therapies to overcome the challenges of drug resistance. In this review, we manage to display the current landscape of targetable therapeutic patterns in NSCLC in this era of precision medicine.
Collapse
Affiliation(s)
- Zixi Wang
- grid.412901.f0000 0004 1770 1022Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yurou Xing
- grid.412901.f0000 0004 1770 1022Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Bingjie Li
- grid.412901.f0000 0004 1770 1022Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Xiaoyu Li
- grid.412901.f0000 0004 1770 1022Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022State Key Laboratory Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Bin Liu
- grid.54549.390000 0004 0369 4060Department of Medical Oncology, School of Medicine, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan China
| | - Yongsheng Wang
- grid.412901.f0000 0004 1770 1022Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022State Key Laboratory Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| |
Collapse
|
118
|
Zhu X, Lu Y, Lu S. Landscape of Savolitinib Development for the Treatment of Non-Small Cell Lung Cancer with MET Alteration-A Narrative Review. Cancers (Basel) 2022; 14:cancers14246122. [PMID: 36551608 PMCID: PMC9776447 DOI: 10.3390/cancers14246122] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is increasingly being treated with targeted therapies. Savolitinib (Orpathys®) is highly selective mesenchymal epithelial transition (MET)-tyrosine kinase inhibitor (TKI), which is conditionally approved in China for advanced NSCLC with MET exon 14 skipping mutations (METex14). This article summarizes the clinical development of savolitinib, as a monotherapy in NSCLC with METex14 mutation and in combination with epidermal growth factor receptor (EGFR) inhibitor in post EGFR-TKI resistance NSCLC due to MET-based acquired resistance. Preclinical models demonstrated anti-tumor activities in MET-driven cancer cell line and xenograft tumor models. The Phase Ia/Ib study established an optimized, recommended phase II dose in Chinese NSCLC patients, while TATTON study of savolitinib plus osimertinib in patients with EGFR mutant, MET-amplified and TKI-progressed NSCLC showed beneficial efficacy with acceptable safety profile. In a pivotal phase II study, Chinese patients with pulmonary sarcomatoid carcinoma, brain metastasis and other NSCLC subtype positive for METex14 mutation showed notable responses and acceptable safety profile with savolitinib. Currently, results from ongoing clinical trials are eagerly anticipated to confirm the efficacious and safety benefits of savolitinib as monotherapy and in combination with EGFR-TKI in acquired resistance setting in advanced NSCLC and its subtypes with MET alterations.
Collapse
Affiliation(s)
- Xiaokuan Zhu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yao Lu
- AstraZeneca China, Shanghai 201200, China
| | - Shun Lu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
- Correspondence:
| |
Collapse
|
119
|
Moiseenko F, Bogdanov A, Egorenkov V, Volkov N, Moiseyenko V. Management and Treatment of Non-small Cell Lung Cancer with MET Alteration and Mechanisms of Resistance. Curr Treat Options Oncol 2022; 23:1664-1698. [PMID: 36269457 DOI: 10.1007/s11864-022-01019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 01/30/2023]
Abstract
OPINION STATEMENT MET-driven tumors are a heterogenous group of non-small cell lung cancers (NSCLC) with activating mutations. Pathologic activation of MET can be achieved with increased number of gene copies overexpression, or decreased protein degradation through several mechanisms, including mutations, amplifications, or fusions. Besides its role as primary driver, MET activation might also mediate resistance to kinase inhibitors in NSCLC with various other actionable alterations. While checkpoint inhibitors have modest efficacy in MET-driven tumors, several approaches of targeted blockade are available. Among them the most promising are small tyrosine kinase inhibitors, antibody-drug conjugates, and bispecific antibodies. Unfortunately, resistance is virtually inevitable. Resistance to small kinase inhibitors might be mediated by kinase domain mutations or activation of shunting cascades. Various resistance mechanisms might be present in one patient, making it overcoming an unresolved problem.
Collapse
Affiliation(s)
- Fedor Moiseenko
- Saint-Petersburg City Cancer Center, Leningradskay 68a, Lit.A, Pesochny, St. Petersburg, 197758, Russia. .,N.N. Petrov National Medical Research Center of Oncology, Ministry of Public Health of the Russian Federation, 68, Leningradskaya st., Pesochny, St. Petersburg, 197758, Russia. .,State Budget Institution of Higher Education "North-Western State Medical University named after I.I Mechnikov" under the Ministry of Public Health of the Russian Federation, 41, Kirochnaya str, Saint Petersburg, 191015, Russia.
| | - Alexey Bogdanov
- Saint-Petersburg City Cancer Center, Leningradskay 68a, Lit.A, Pesochny, St. Petersburg, 197758, Russia
| | - Vitaliy Egorenkov
- Saint-Petersburg City Cancer Center, Leningradskay 68a, Lit.A, Pesochny, St. Petersburg, 197758, Russia
| | - Nikita Volkov
- Saint-Petersburg City Cancer Center, Leningradskay 68a, Lit.A, Pesochny, St. Petersburg, 197758, Russia
| | - Vladimir Moiseyenko
- Saint-Petersburg City Cancer Center, Leningradskay 68a, Lit.A, Pesochny, St. Petersburg, 197758, Russia
| |
Collapse
|
120
|
Ahn MJ, Mendoza MJL, Pavlakis N, Kato T, Soo RA, Kim DW, Liam CK, Hsia TC, Lee CK, Reungwetwattana T, Geater S, Chan OSH, Prasongsook N, Solomon BJ, Nguyen TTH, Kozuki T, Yang JCH, Wu YL, Mok TSK, Tan DSW, Yatabe Y. Asian Thoracic Oncology Research Group (ATORG) Expert Consensus Statement on MET Alterations in NSCLC: Diagnostic and Therapeutic Considerations. Clin Lung Cancer 2022; 23:670-685. [PMID: 36151006 DOI: 10.1016/j.cllc.2022.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023]
Abstract
Non-small cell lung cancer (NSCLC) is a heterogeneous disease, with many oncogenic driver mutations, including de novo mutations in the Mesenchymal Epithelial Transition (MET) gene (specifically in Exon 14 [ex14]), that lead to tumourigenesis. Acquired alterations in the MET gene, specifically MET amplification is also associated with the development of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) resistance in patients with EGFR-mutant NSCLC. Although MET has become an actionable biomarker with the availability of MET-specific inhibitors in selected countries, there is differential accessibility to diagnostic platforms and targeted therapies across countries in Asia-Pacific (APAC). The Asian Thoracic Oncology Research Group (ATORG), an interdisciplinary group of experts from Australia, Hong Kong, Japan, Korea, Mainland China, Malaysia, the Philippines, Singapore, Taiwan, Thailand and Vietnam, discussed testing for MET alterations and considerations for using MET-specific inhibitors at a consensus meeting in January 2022, and in subsequent offline consultation. Consensus recommendations are provided by the ATORG group to address the unmet need for standardised approaches to diagnosing MET alterations in NSCLC and for using these therapies. MET inhibitors may be considered for first-line or second or subsequent lines of treatment for patients with advanced and metastatic NSCLC harbouring MET ex14 skipping mutations; MET ex14 testing is preferred within multi-gene panels for detecting targetable driver mutations in NSCLC. For patients with EGFR-mutant NSCLC and MET amplification leading to EGFR TKI resistance, enrolment in combination trials of EGFR TKIs and MET inhibitors is encouraged.
Collapse
Affiliation(s)
- Myung-Ju Ahn
- Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | - Nick Pavlakis
- Department of Medical Oncology, Royal North Shore Hospital, University of Sydney, Sydney, NSW, Australia
| | - Terufumi Kato
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Ross A Soo
- Department of Haematology-Oncology, National University Cancer Institute Singapore, Singapore
| | - Dong-Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Hospital, Seoul, Republic of Korea
| | - Chong Kin Liam
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Te-Chun Hsia
- Department of Respiratory Therapy, China Medical University, Taichung, Taiwan; Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chee Khoon Lee
- National Health and Medical Research Council Clinical Trials Centre, The University of Sydney, Sydney, NSW, Australia
| | - Thanyanan Reungwetwattana
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sarayut Geater
- Division of Internal Medicine, Faculty of Medicine, Songklanagarind Hospital, Prince of Songkla University, Songkhla, Thailand
| | - Oscar Siu Hong Chan
- Department of Clinical Oncology, Hong Kong Integrated Oncology Centre, Hong Kong SAR, China
| | - Naiyarat Prasongsook
- Division of Medical Oncology, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| | - Benjamin J Solomon
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Toshiyuki Kozuki
- Department of Thoracic Oncology and Medicine, National Hospital Organization Shikoku Cancer Center, Matsuyama, Ehime, Japan
| | - James Chih-Hsin Yang
- Department of Medical Oncology, National Taiwan University Cancer Center and National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tony Shu Kam Mok
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
121
|
Mushtaq R, Cortot AB, Gautschi O, Mazieres J, Camidge DR. PD-1/PD-L1 inhibitor activity in patients with gene-rearrangement positive non-small cell lung cancer-an IMMUNOTARGET case series. Transl Lung Cancer Res 2022; 11:2412-2417. [PMID: 36636412 PMCID: PMC9830270 DOI: 10.21037/tlcr-22-329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022]
Abstract
Background Prior IMMUNOTARGET registry data had suggested that responses to immune [anti PD(L)1] monotherapy in gene-arranged non-small cell lung cancer (NSCLC) were rare or absent, depending on the specific oncogene. Methods IMMUNOTARGET sites reporting prior registry data or new individual cases of gene rearranged NSCLC seeming to benefit from immune monotherapy were explored in detail looking to both validate their diagnosis of a functional gene rearrangement and to look for features potentially differentiating them from other such cases associated with low response rates. Results Five cases of NSCLC with a gene rearrangement with reported responses or prolonged stabilization from immune monotherapy were identified in total. All had little or no prior smoking history and had programmed death-ligand 1 (PD-L1) values ranging from zero to 100%. A confirmed rearrangement partner was reported in only 2 of the cases (CD74-ROS1 and KIF5B-RET), however in one of the other three cases [analplastic lymophoma kinase (ALK)], significant benefit from a relevant prior targeted therapy was noted, also consistent with the rearrangement status being correctly assigned. Conclusions Not all driver oncogene subtypes of NSCLC are equally responsive to immune monotherapy, however even among patients with well-validated gene rearranged NSCLC which has traditionally been considered immune hyporesponsive, objective responses can occur. Additional explorations of the features associated with and underlying the immune hypo-responsiveness of most, but not all, cases of gene-rearranged NSCLC are required.
Collapse
Affiliation(s)
- Rao Mushtaq
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Alexis B. Cortot
- Université de Lille, CHU Lille, Thoracic Oncology Department, Centre National de la Recherche Scientifique, INSERM, Institut Pasteur de Lille, UMR9020-UMR-S 1277-Canther, Lille, France
| | | | - Julien Mazieres
- Thoracic Oncology Department, Toulouse University Hospital, Larrey Hospital, Chemin de Pouvourville, Toulouse, France
| | - D. Ross Camidge
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
122
|
Laktionov KK, Artamonova EV, Borisova TN, Breder VV, Bychkov IM, Vladimirova LI, Volkov NM, Ergnian SM, Zhabina AS, Kononets PV, Kuzminov AE, Levchenko EV, Malikhova OA, Marinov DT, Miller SV, Moiseenko FV, Mochal’nikova VV, Novikov SN, Pikin OV, Reutova EV, Rodionov EO, Sakaeva DD, Sarantseva KA, Semenova AI, Smolin AV, Sotnikov VM, Tuzikov SA, Turkin IN, Tyurin IE, Chkhikvadze VD, Kolbanov KI, Chernykh MV, Chernichenko AV, Fedenko AA, Filonenko EV, Nevol’skikh AA, Ivanov SA, Khailova ZV, Gevorkian TG, Butenko AV, Gil’mutdinova IR, Gridneva IV, Eremushkin MA, Zernova MA, Kasparov BS, Kovlen DV, Kondrat’eva KO, Konchugova TV, Korotkova SB, Krutov AA, Obukhova OA, Ponomarenko GN, Semiglazova TI, Stepanova AM, Khulamkhanova MM. Malignant neoplasm of the bronchi and lung: Russian clinical guidelines. JOURNAL OF MODERN ONCOLOGY 2022. [DOI: 10.26442/18151434.2022.3.201848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
удалить
Collapse
|
123
|
Rivas S, Marín A, Samtani S, González-Feliú E, Armisén R. MET Signaling Pathways, Resistance Mechanisms, and Opportunities for Target Therapies. Int J Mol Sci 2022; 23:ijms232213898. [PMID: 36430388 PMCID: PMC9697723 DOI: 10.3390/ijms232213898] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The MET gene, known as MET proto-oncogene receptor tyrosine kinase, was first identified to induce tumor cell migration, invasion, and proliferation/survival through canonical RAS-CDC42-PAK-Rho kinase, RAS-MAPK, PI3K-AKT-mTOR, and β-catenin signaling pathways, and its driver mutations, such as MET gene amplification (METamp) and the exon 14 skipping alterations (METex14), activate cell transformation, cancer progression, and worse patient prognosis, principally in lung cancer through the overactivation of their own oncogenic and MET parallel signaling pathways. Because of this, MET driver alterations have become of interest in lung adenocarcinomas since the FDA approval of target therapies for METamp and METex14 in 2020. However, after using MET target therapies, tumor cells develop adaptative changes, favoring tumor resistance to drugs, the main current challenge to precision medicine. Here, we review a link between the resistance mechanism and MET signaling pathways, which is not only limited to MET. The resistance impacts MET parallel tyrosine kinase receptors and signals shared hubs. Therefore, this information could be relevant in the patient's mutational profile evaluation before the first target therapy prescription and follow-up to reduce the risk of drug resistance. However, to develop a resistance mechanism to a MET inhibitor, patients must have access to the drugs. For instance, none of the FDA approved MET inhibitors are registered as such in Chile and other developing countries. Constant cross-feeding between basic and clinical research will thus be required to meet future challenges imposed by the acquired resistance to targeted therapies.
Collapse
Affiliation(s)
- Solange Rivas
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7550000, Chile
| | - Arnaldo Marín
- Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Suraj Samtani
- Departamento de Oncología Médica, Clínica Las Condes, Santiago 7550000, Chile
- Hospital Félix Bulnes, Santiago 9080000, Chile
| | - Evelin González-Feliú
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7550000, Chile
| | - Ricardo Armisén
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7550000, Chile
- Correspondence:
| |
Collapse
|
124
|
Pathmanathan S, Yao Z, Coelho P, Valla R, Drecun L, Benz C, Snider J, Saraon P, Grozavu I, Kotlyar M, Jurisica I, Park M, Stagljar I. B cell linker protein (BLNK) is a regulator of Met receptor signaling and trafficking in non-small cell lung cancer. iScience 2022; 25:105419. [DOI: 10.1016/j.isci.2022.105419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/16/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
|
125
|
Lai GGY, Guo R, Drilon A, Shao Weng Tan D. Refining patient selection of MET-activated non-small cell lung cancer through biomarker precision. Cancer Treat Rev 2022; 110:102444. [PMID: 36108503 PMCID: PMC10961969 DOI: 10.1016/j.ctrv.2022.102444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 12/12/2022]
Abstract
Dysregulated MET signaling plays an important role in lung oncogenesis, tumor growth and invasiveness. It may occur through various mechanisms, such as MET overexpression or gene amplification or mutation, all of which can be detected by specific methods. The utility of MET overexpression as a biomarker remains unclear due to discrepancies in its occurrence and non-standardized cut-off thresholds. MET exon 14 skipping mutation (METex14) was established as a strong predictor of response to selective MET tyrosine kinase inhibitors (TKIs), and clinical trial results in patients with non-small cell lung cancer (NSCLC) harboring METex14 led to the approval of capmatinib and tepotinib by regulatory agencies worldwide. MET amplification is an emerging biomarker, with clinical data indicating an association between MET gene copy number and response to MET-TKIs. Additionally, MET amplification represents an important mechanism of resistance to TKIs in oncogene-driven NSCLC. The identification of molecular alterations for which targeted therapies are available is important, and high-throughput next-generation sequencing techniques can provide information on multiple genes at the same time, helping to provide valuable predictive information for oncogene-driven cancers. This review summarizes the current methods used for the detection of METex14, MET amplification and MET overexpression, and discusses the evidence for the use of MET-TKIs in patients with NSCLC with MET dysregulation. We discuss the practical challenges that impact the use of METex14 in the clinic and the evidence gaps that need to be addressed to validate additional genomic markers for MET-dependent cancers.
Collapse
Affiliation(s)
- Gillianne G Y Lai
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Robin Guo
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Alexander Drilon
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | | |
Collapse
|
126
|
Frost H, Graham DM, Carter L, O'Regan P, Landers D, Freitas A. Patient attrition in Molecular Tumour Boards: a systematic review. Br J Cancer 2022; 127:1557-1564. [PMID: 35941175 PMCID: PMC9553981 DOI: 10.1038/s41416-022-01922-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Molecular Tumour Boards (MTBs) were created with the purpose of supporting clinical decision-making within precision medicine. Though in use globally, reporting on these meetings often focuses on the small percentages of patients that receive treatment via this process and are less likely to report on, and assess, patients who do not receive treatment. METHODS A literature review was performed to understand patient attrition within MTBs and barriers to patients receiving treatment. A total of 51 papers were reviewed spanning a 6-year period from 11 different countries. RESULTS In total, 20% of patients received treatment through the MTB process. Of those that did not receive treatment, the main reasons were no mutations identified (27%), no actionable mutations (22%) and clinical deterioration (15%). However, data were often incomplete due to inconsistent reporting of MTBs with only 55% reporting on patients having no mutations, 55% reporting on the presence of actionable mutations with no treatment options and 59% reporting on clinical deterioration. DISCUSSION As patient attrition in MTBs is an issue which is very rarely alluded to in reporting, more transparent reporting is needed to understand barriers to treatment and integration of new technologies is required to process increasing omic and treatment data.
Collapse
Affiliation(s)
- Hannah Frost
- Digital Experimental Cancer Medicine Team, Cancer Research UK Manchester Institute Cancer Biomarker Centre, Manchester, UK.
- Department of Computer Science, University of Manchester, Manchester, UK.
| | - Donna M Graham
- Digital Experimental Cancer Medicine Team, Cancer Research UK Manchester Institute Cancer Biomarker Centre, Manchester, UK
- Experimental Cancer Medicine Team, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Louise Carter
- Experimental Cancer Medicine Team, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Paul O'Regan
- Digital Experimental Cancer Medicine Team, Cancer Research UK Manchester Institute Cancer Biomarker Centre, Manchester, UK
| | - Dónal Landers
- Digital Experimental Cancer Medicine Team, Cancer Research UK Manchester Institute Cancer Biomarker Centre, Manchester, UK
| | - André Freitas
- Digital Experimental Cancer Medicine Team, Cancer Research UK Manchester Institute Cancer Biomarker Centre, Manchester, UK
- Department of Computer Science, University of Manchester, Manchester, UK
- Idiap Research Institute, Martigny, Switzerland
| |
Collapse
|
127
|
Yu Y, Ren Y, Fang J, Cao L, Liang Z, Guo Q, Han S, Ji Z, Wang Y, Sun Y, Chen Y, Li X, Xu H, Zhou J, Jiang L, Cheng Y, Han Z, Shi J, Chen G, Ma R, Fan Y, Sun S, Jiao L, Jia X, Wang L, Lu P, Xu Q, Luo X, Su W, Lu S. Circulating tumour DNA biomarkers in savolitinib-treated patients with non-small cell lung cancer harbouring MET exon 14 skipping alterations: a post hoc analysis of a pivotal phase 2 study. Ther Adv Med Oncol 2022; 14:17588359221133546. [PMID: 36339926 PMCID: PMC9629582 DOI: 10.1177/17588359221133546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022] Open
Abstract
Background Savolitinib, a selective MET inhibitor, showed efficacy in patients with non-small cell lung cancer (NSCLC), including pulmonary sarcomatoid carcinoma (PSC), harbouring MET exon 14 skipping alteration (METex14). Objective To analyse post hoc, the association between circulating tumour DNA (ctDNA) biomarkers and clinical outcomes, including resistance, with savolitinib. Design A multicentre, single-arm, open-label phase 2 study. Methods All enrolled patients with baseline plasma samples were included. Outcomes were objective response rate (ORR), progression-free survival (PFS) and overall survival (OS) by baseline METex14 and post-treatment clearance, coexisting gene alterations at baseline and disease progression. Results Among 66 patients with baseline ctDNA sequencing, 46 (70%) had detectable METex14. Frequent coexisting baseline gene alterations included TP53 and POT1 mutations. Patients with detectable baseline METex14 exhibited worse PFS [hazard ratio (HR), 1.77; 95% confidence interval (CI), 0.88-3.57; p = 0.108] and OS (HR, 3.26; 95% CI, 1.35-7.89; p = 0.006) than those without, despite showing a numerically higher ORR. Among 24 patients with baseline detectable METex14 and evaluable postbaseline samples, 13 achieved METex14 clearance post-treatment. Median time to first clearance was 1.3 months (range, 0.7-1.5). METex14 post-treatment clearance was associated with better ORR (92.3%; 95% CI, 64.0-99.8 versus 36.4%; 95% CI, 10.9-69.2; p = 0.0078), PFS (HR, 0.44; 95% CI, 0.2-1.3; p = 0.1225) and OS (HR, 0.31; 95% CI, 0.1-1.0; p = 0.0397) versus non-clearance. Among 22 patients with disease progression, 10 acquired pathway alterations (e.g. in RAS/RAF and PI3K/PTEN) alone or with secondary MET mutations (D1228H/N and Y1230C/H/S). Conclusion ctDNA biomarkers may allow for longitudinal monitoring of clinical outcomes with savolitinib in patients with METex14-positive PSC and other NSCLC subtypes. Specifically, undetectable baseline METex14 or post-treatment clearance may predict favourable clinical outcomes, while secondary MET mutations and other acquired gene alterations may explain resistance to savolitinib. Registration The trial was registered with ClinicalTrials.gov (NCT02897479) on 13 September 2016.
Collapse
Affiliation(s)
- Yongfeng Yu
- Department of Medical Oncology, Shanghai Chest
Hospital, Shanghai Jiaotong University, Shanghai, China
| | | | - Jian Fang
- Peking University Cancer Hospital and
Institute, Beijing, China
| | - Lejie Cao
- Anhui Provincial Hospital, The First Affiliated
Hospital of University of Science and Technology of China, Hefei,
China
| | - Zongan Liang
- West China Hospital of Sichuan University,
Chengdu, China
| | - Qisen Guo
- Shandong Cancer Hospital Affiliated to Shandong
University, Jinan, China
| | - Sen Han
- Peking University Cancer Hospital and
Institute, Beijing, China
| | - Zimei Ji
- Anhui Provincial Hospital, The First Affiliated
Hospital of University of Science and Technology of China, Hefei,
China
| | - Ye Wang
- West China Hospital of Sichuan University,
Chengdu, China
| | - Yulan Sun
- Shandong Cancer Hospital Affiliated to
Shandong University, Jinan, China
| | - Yuan Chen
- Tongji Hospital, Huazhong University of
Science and Technology, Wuhan, China
| | - Xingya Li
- The First Affiliated Hospital of Zhengzhou
University, Zhengzhou, China
| | - Hua Xu
- The Second Affiliated Hospital of Nanchang
University, Nanchang, China
| | - Jianying Zhou
- The First Affiliated Hospital of Zhejiang
University, Hangzhou, China
| | - Liyan Jiang
- Department of Medical Oncology, Shanghai Chest
Hospital, Shanghai Jiaotong University, Shanghai, China
| | | | - Zhigang Han
- The Affiliated Cancer Hospital of Xinjiang
Medical University, Urumqi, China
| | | | - Gongyan Chen
- Cancer Hospital of Harbin Medical University,
Harbin, China
| | - Rui Ma
- Liaoning Cancer Hospital, Shenyang,
China
| | - Yun Fan
- Zhejiang Cancer Hospital, Hangzhou,
China
| | | | | | | | | | | | | | | | | | - Shun Lu
- Department of Medical Oncology, Shanghai Lung
Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, No.
241, Huaihai West Road, Shanghai 200030, China
| |
Collapse
|
128
|
Xu L, Wang F, Luo F. MET-targeted therapies for the treatment of non-small-cell lung cancer: A systematic review and meta-analysis. Front Oncol 2022; 12:1013299. [PMID: 36387098 PMCID: PMC9646943 DOI: 10.3389/fonc.2022.1013299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/17/2022] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Dysregulation of the mesenchymal epithelial transition (MET) pathway contributes to poor clinical outcomes in patients with non-small cell lung cancer (NSCLC). Numerous clinical trials are currently investigating several therapies based on modulation of the MET pathway. OBJECTIVES This study aimed to systematically evaluate the activity and safety of MET inhibitors in patients with NSCLC. METHODS We searched PubMed, Embase, and the Cochrane Library from inception to June 02, 2022. The objective response rate (ORR) and disease control rate (DCR) were extracted as the main outcomes and pooled using the weighted mean proportion with fixed- or random-effects models in cases of significant heterogeneity (I 2>50%). Safety analysis was performed based on adverse events reported in all studies. RESULTS Eleven studies (882 patients) were included in the meta-analysis. The pooled ORR was 28.1% (95% confidence interval [CI], 0.223-0.354), while the pooled DCR was 69.1% (95% CI, 0.631-0.756). ORRs were higher for tepotinib (44.7% [95% CI, 0.365-0.530]) and savolitinib (42.9% [95% CI, 0.311-0.553]) than for other types of MET inhibitors. Patients with NSCLC with exon 14 skipping exhibited higher ORRs (39.3% (95% CI, 0.296-0.522)) and DCRs (77.8% (95% CI, 0.714-0.847)) than those with MET protein overexpression or amplification. Intracranial response rate and intracranial disease control rates were 40.1% (95% CI, 0.289-0.556) and 95.4% (95% CI, 0.892-0.100), respectively. Adverse events were mild (grade 1 to 2) in 87.2% of patients. Common adverse events above grade 3 included lower extremity edema (3.5% [95% CI, 0.027-0.044]), alanine aminotransferase (ALT) elevation (2.4% [95% CI, 0.014-0.033]), and lipase elevation (2.2% [95% CI, 0.016-0.031]). CONCLUSION MET inhibitors, which exhibited a satisfactory safety profile in the current study, may become a new standard of care for addressing MET dysregulation in patients with advanced or metastatic NSCLC, and even in those with brain metastases, particularly tepotinib, savolitinib and capmatinib. Further randomized trials are required to establish standard predictive biomarkers for MET therapies and to compare the effects of different MET inhibitors in NSCLC with MET dysregulation.
Collapse
Affiliation(s)
- Linrui Xu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Faping Wang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fengming Luo
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
129
|
Michaels E, Bestvina CM. Meeting an un-MET need: Targeting MET in non-small cell lung cancer. Front Oncol 2022; 12:1004198. [PMID: 36338701 PMCID: PMC9634070 DOI: 10.3389/fonc.2022.1004198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
The MET pathway can be activated by MET exon 14 skipping mutations, gene amplification, or overexpression. Mutations within this pathway carry a poor prognosis for patients with non-small cell lung cancer (NSCLC). MET exon 14 skipping mutations occur in 3-4% of patients with NSCLC, while MET amplifications are found in 1-6% of patients. The most effective method for detection of MET amplification is fluorescent in situ hybridization (FISH) and of MET exon 14 skipping mutations is RNA-based next generation sequencing (NGS). Immunohistochemistry (IHC) is an alternative method of diagnosis but is not as reliable. Early studies of MET tyrosine kinase inhibitors (TKIs) demonstrated limited clinical benefit. However, newer selective MET TKIs, such as capmatinib and tepotinib, have improved efficacy. Both drugs have an acceptable safety profile with the most common treatment-related adverse event being peripheral edema. One of the most frequent resistance mechanisms to EGFR inhibition with osimertinib is MET amplification. There is interest in combining EGFR inhibition plus MET inhibition in an attempt to target this resistance mechanism. Additional ways of targeting MET alterations are currently under investigation, including the bi-specific antibody amivantamab. Additional research is needed to further understand resistance mechanisms to MET inhibition. There is limited research into the efficacy of immune checkpoint inhibition for MET-altered NSCLC, though some data suggests decreased efficacy compared with wild-type patients and increased toxicity associated with the combination of immunotherapy and MET TKIs. Future directions for research will include combination clinical trials and understanding rational combinations for MET alterations.
Collapse
Affiliation(s)
- Elena Michaels
- Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Christine M. Bestvina
- Department of Medicine, University of Chicago Comprehensive Cancer Center, Chicago, IL, United States
| |
Collapse
|
130
|
Xu Y, Gu L, Li Y, Zhao R, Jian H, Xie W, Liu L, Wu H, Ren F, Han Y, Lu S. Integrative genomic analysis of drug resistance in MET exon 14 skipping lung cancer using patient-derived xenograft models. Front Oncol 2022; 12:1024818. [PMID: 36338758 PMCID: PMC9634635 DOI: 10.3389/fonc.2022.1024818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) driven by MET exon 14 skipping (METex14) occurs in 3-4% of NSCLC cases and defines a subset of patients with distinct characteristics. While MET targeted therapy has led to strong clinical results in METex14 patients, acquired drug resistance seemed to be unavoidable during treatment. Limited information is available regarding acquired resistance during MET targeted therapy, nor has there been any report on such patient-derived xenografts (PDXs) model facilitating the research. Methods We describe a patient case harboring METex14 who exhibited drug resistance after treatment with crizotinib. Subcutaneous xenografts were generated from pretreatment and post-resistance patient specimens. PDX mice were then treated with MET inhibitors (crizotinib and tepotinib) and EGFR-MET bispecific antibodies (EMB-01 and amivantamab) to evaluate their drug response in vivo. DNA and RNA sequencing analysis was performed on patient tumor specimens and matching xenografts. Results PDXs preserved most of the histological and molecular profiles of the parental tumors. Drug resistance to MET targeted therapy was confirmed in PDX models through in vivo drug analysis. Newly acquired MET D1228H mutations and EGFR amplificated were detected in patient-resistant tumor specimens. Although the mutations were not detected in the PDX, EGFR overexpression was observed in RNA sequencing analysis indicating possible off-target resistance through the EGFR bypass signaling pathway. As expected, EGFR-MET bispecific antibodies overcome drug resistant in the PDX model. Conclusions We detected a novel MET splice site deletion mutation that could lead to METex14. We also established and characterized a pair of METex14 NSCLC PDXs, including the first crizotinib resistant METex14 PDX. And dual inhibition of MET and EGFR might be a therapeutic strategy for EGFR-driven drug resistance METex14 lung cancer.
Collapse
Affiliation(s)
- Yunhua Xu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Linping Gu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingqi Li
- GenomiCare Biotechnology (Shanghai) Co., Ltd., Shanghai, China
| | - Ruiying Zhao
- Department of Pathology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Jian
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhui Xie
- Department of Nuclear Medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huiwen Wu
- Department of Nutrition, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Ren
- EpimAb Biotherapeutics Co., Ltd., Shanghai, China
| | - Yuchen Han
- Department of Pathology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shun Lu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
131
|
Chen P, Liu Y, Wen Y, Zhou C. Non-small cell lung cancer in China. Cancer Commun (Lond) 2022; 42:937-970. [PMID: 36075878 PMCID: PMC9558689 DOI: 10.1002/cac2.12359] [Citation(s) in RCA: 312] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/21/2022] [Accepted: 08/24/2022] [Indexed: 04/08/2023] Open
Abstract
In China, lung cancer is a primary cancer type with high incidence and mortality. Risk factors for lung cancer include tobacco use, family history, radiation exposure, and the presence of chronic lung diseases. Most early-stage non-small cell lung cancer (NSCLC) patients miss the optimal timing for treatment due to the lack of clinical presentations. Population-based nationwide screening programs are of significant help in increasing the early detection and survival rates of NSCLC in China. The understanding of molecular carcinogenesis and the identification of oncogenic drivers dramatically facilitate the development of targeted therapy for NSCLC, thus prolonging survival in patients with positive drivers. In the exploration of immune escape mechanisms, programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitor monotherapy and PD-1/PD-L1 inhibitor plus chemotherapy have become a standard of care for advanced NSCLC in China. In the Chinese Society of Clinical Oncology's guidelines for NSCLC, maintenance immunotherapy is recommended for locally advanced NSCLC after chemoradiotherapy. Adjuvant immunotherapy and neoadjuvant chemoimmunotherapy will be approved for resectable NSCLC. In this review, we summarized recent advances in NSCLC in China in terms of epidemiology, biology, molecular pathology, pathogenesis, screening, diagnosis, targeted therapy, and immunotherapy.
Collapse
Affiliation(s)
- Peixin Chen
- School of MedicineTongji UniversityShanghai200092P. R. China
- Department of Medical OncologyShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| | - Yunhuan Liu
- Department of Respiratory and Critical Care MedicineHuadong HospitalFudan UniversityShanghai200040P. R. China
| | - Yaokai Wen
- School of MedicineTongji UniversityShanghai200092P. R. China
- Department of Medical OncologyShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| | - Caicun Zhou
- School of MedicineTongji UniversityShanghai200092P. R. China
- Department of Medical OncologyShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| |
Collapse
|
132
|
Dempke WCM, Reuther S, Hamid Z, Thoennissen NH. Oncogene alterations in non-small cell lung cancer-have we MET a new target? Transl Lung Cancer Res 2022; 11:1977-1981. [PMID: 36386451 PMCID: PMC9641042 DOI: 10.21037/tlcr-22-648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/09/2022] [Indexed: 01/24/2023]
Affiliation(s)
- Wolfram C. M. Dempke
- University of Munich, Medical Clinic III, Campus Grosshadern, Munich, Germany;,Cord Blood Centre, Bratislava, Slovakia
| | - Susanne Reuther
- University of Munich, Medical Clinic III, Campus Grosshadern, Munich, Germany
| | | | - Nils H. Thoennissen
- University of Munich, Medical Clinic III, Campus Grosshadern, Munich, Germany;,Cord Blood Centre, Bratislava, Slovakia
| |
Collapse
|
133
|
Remon J, Hendriks LE, Mountzios G, García-Campelo R, Saw SP, Uprety D, Recondo G, Villacampa G, Reck M. MET alterations in NSCLC—Current Perspectives and Future Challenges. J Thorac Oncol 2022; 18:419-435. [PMID: 36441095 DOI: 10.1016/j.jtho.2022.10.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022]
Abstract
Targeted therapies have revolutionized the treatment and improved the outcome for oncogene-driven NSCLC and an increasing number of oncogenic driver therapies have become available. For MET-dysregulated NSCLC (especially MET exon 14 skipping mutations and MET-amplifications, which is one of the most common bypass mechanisms of resistance in oncogene-addicted NSCLC), several anti-MET-targeted therapies have been approved recently (MET exon 14 skipping mutation) and multiple others are in development. In this narrative review, we summarize the role of MET as an oncogenic driver in NSCLC, discuss the different testing methods for exon 14 skipping mutations, gene amplification, and protein overexpression, and review the existing data and ongoing clinical trials regarding targeted therapies in MET-altered NSCLC. As immunotherapy with or without chemotherapy has become the standard of care for advanced NSCLC, immunotherapy data for MET-dysregulated NSCLC are put into perspective. Finally, we discuss future challenges in this rapidly evolving landscape.
Collapse
|
134
|
Gong C, Xiong H, Qin K, Wang J, Cheng Y, Zhao J, Zhang J. MET alterations in advanced pulmonary sarcomatoid carcinoma. Front Oncol 2022; 12:1017026. [PMID: 36212500 PMCID: PMC9539670 DOI: 10.3389/fonc.2022.1017026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
Pulmonary sarcomatoid carcinoma (PSC) is a rare subset of NSCLC that accounts for about 0.5-1% of all primary lung carcinoma, and its malignant biological behavior is more aggressive than other pathological types of lung cancer. Recent studies have reported a variety of gene mutations associated with the occurrence, development and treatment of PSC, especially the mesenchymal-epithelial transition (MET) proto-oncogene alterations, including the exon 14 (METex14) skipping mutations as well as the amplification and overexpression of MET gene, which are associated with molecularly targeted therapy for PSC. METex14 skipping mutation is the most common and well-studied mutation type, occurring in about 22-31.8% of PSC patients, while the prevalence of MET amplification is reported as 4.8-13.6% and MET ovexpression is about 20.2%. Molecular pathology tests, including IHC and NGS, are valuable in determining the prognosis of patients with PSC and helping to determine the treatment. The existing clinical data have confirmed the efficacy of MET-TKI in PSC patients with MET alteration, among which the clinical study of Savolitinib has enrolled the largest proportion of PSC patients and achieved relatively good efficacy, but more clinical researches are still needed. The multi-disciplinary team may maximize the optimal treatment options for patients with the advanced PSC.
Collapse
|
135
|
Mutational Landscape and Expression of PD-L1 in Patients with Non-Small Cell Lung Cancer Harboring Genomic Alterations of the MET gene. Target Oncol 2022; 17:683-694. [PMID: 36136211 PMCID: PMC9684265 DOI: 10.1007/s11523-022-00918-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2022] [Indexed: 11/29/2022]
Abstract
Background Mesenchymal-to-epithelial transition (MET) exon 14 skipping mutations and MET gene amplification occur in 3–5% of non-small cell lung cancer (NSCLC) patients. Tyrosine kinase inhibitors (TKIs) targeting MET alterations have shown promising results in these patients. Objective The aim of this study was to describe the genomic profile, PD-L1 expression and clinicopathological features of MET dysregulated NSCLC. Patients and Methods We identified 188 patients with advanced-stage NSCLC with data on MET expression by immunohistochemistry (IHC). IHC for PD-L1 expression was performed in 131 patient samples, and next-generation sequencing (NGS) analysis was performed in 109 patient samples. Results MET exon 14 skipping alterations were identified in 16 (14.7%) samples, MET amplifications with cut-off ≥4 copy number variations were identified in 11 (10.1%) samples, and an oncogenic MET mutation (MET p.D1228N) was identified in 1 (0.9%) sample. 12/15 tumors (80.0%) harboring MET exon 14 alterations and 7/11 (63.6%) MET-amplified tumors expressed PD-L1 in ≥1% of tumor cells. Tumors harboring MET exon 14 skipping alterations expressed PD-L1 more frequently than MET wild-type IHC-positive tumors (p = 0.045). Twenty-five percent of MET exon 14-altered cases and 33% of MET-amplified cases harbored potentially targetable oncogenic co-mutations in KRAS, BRAF, and EGFR. The most frequent co-occurring mutations in all MET-altered tumors were TP53, KRAS, BRAF, and CDK4. Conclusions We demonstrated that MET exon 14 skipping alterations and MET amplification are not mutually exclusive to other oncogenic co-mutations, and report the association of genomic MET alterations with PD-L1 expression. Since genomic MET alterations are emerging targets requiring upfront treatment, optimal understanding of the co-mutational landscape for this patient population is needed. Supplementary Information The online version contains supplementary material available at 10.1007/s11523-022-00918-6.
Collapse
|
136
|
Buszka K, Ntzifa A, Owecka B, Kamińska P, Kolecka-Bednarczyk A, Zabel M, Nowicki M, Lianidou E, Budna-Tukan J. Liquid Biopsy Analysis as a Tool for TKI-Based Treatment in Non-Small Cell Lung Cancer. Cells 2022; 11:2871. [PMID: 36139444 PMCID: PMC9497234 DOI: 10.3390/cells11182871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
The treatment of non-small cell lung cancer (NSCLC) has recently evolved with the introduction of targeted therapy based on the use of tyrosine kinase inhibitors (TKIs) in patients with certain gene alterations, including EGFR, ALK, ROS1, BRAF, and MET genes. Molecular targeted therapy based on TKIs has improved clinical outcomes in a large number of NSCLC patients with advanced disease, enabling significantly longer progression-free survival (PFS). Liquid biopsy is an increasingly popular diagnostic tool for treating TKI-based NSCLC. The studies presented in this article show that detection and analysis based on liquid biopsy elements such as circulating tumor cells (CTCs), cell-free DNA (cfDNA), exosomes, and/or tumor-educated platelets (TEPs) can contribute to the appropriate selection and monitoring of targeted therapy in NSCLC patients as complementary to invasive tissue biopsy. The detection of these elements, combined with their molecular analysis (using, e.g., digital PCR (dPCR), next generation sequencing (NGS), shallow whole genome sequencing (sWGS)), enables the detection of mutations, which are required for the TKI treatment. Despite such promising results obtained by many research teams, it is still necessary to carry out prospective studies on a larger group of patients in order to validate these methods before their application in clinical practice.
Collapse
Affiliation(s)
- Karolina Buszka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Aliki Ntzifa
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Barbara Owecka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Paula Kamińska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Agata Kolecka-Bednarczyk
- Department of Immunology, Chair of Pathomorphology and Clinical Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| |
Collapse
|
137
|
Management of Peripheral Edema in Patients with MET Exon 14-Mutated Non-small Cell Lung Cancer Treated with Small Molecule MET Inhibitors. Target Oncol 2022; 17:597-604. [PMID: 36087188 PMCID: PMC9512730 DOI: 10.1007/s11523-022-00912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 11/03/2022]
Abstract
Small molecule mesenchymal-epithelial transition (MET) inhibitors, such as crizotinib, capmatinib, and tepotinib, are treatment options for metastatic non-small cell lung cancer (NSCLC) in adult patients whose tumors have a mutation that leads to MET exon 14 skipping. In clinical trials, these MET inhibitors were associated with a high incidence of peripheral edema, although this was generally mild-to-moderate in severity. There is limited information about the mechanism involved in MET inhibitor-induced peripheral edema. Perturbation of hepatocyte growth factor (HGF)/MET signaling may disrupt the permeability balance in the vascular endothelium and thus promote edema development. Another potential mechanism is through effects on renal function, although this is unlikely to be the primary mechanism. Because edema is common in cancer patients and may not necessarily be caused by the cancer treatment, or other conditions that have similar symptoms to peripheral edema, a thorough assessment is required to ascertain the underlying cause. Before starting MET-inhibitor therapy, patients should be educated about the possibility of developing peripheral edema. Patient limb volume should be measured before initiating treatment, to aid assessment if symptoms develop. Since the exact mechanism of MET inhibitor-induced edema is unknown, management is empiric, with common approaches including compression stockings, specific exercises, massage, limb elevation, and/or diuretic treatment. Although not usually required, discontinuation of MET inhibitor treatment generally resolves peripheral edema. Early diagnosis and management, as well as patient information and education, are vital to decrease the clinical burden associated with edema, and to reinforce capmatinib treatment adherence.
Collapse
|
138
|
Sun Z, Xia B, Zhang M, Xu S, Ma Y, Zhang X. Case report: Prompt response to radiotherapy and chemotherapy combined with crizotinib in gingival sarcomatoid squamous cell carcinoma with MET 14 mutation. Front Oncol 2022; 12:1006516. [PMID: 36147925 PMCID: PMC9486213 DOI: 10.3389/fonc.2022.1006516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAs a kind of squamous cell carcinoma of head and neck (HNSCC), gingival sarcomatoid squamous cell carcinoma (GSSCC) is a rare biphasic malignant neoplasm. To date, surgical resection was often utilized for gingival squamous cell carcinoma (GSCC), while for patients with advanced gingival carcinoma who cannot tolerate surgery, radiotherapy and chemotherapy can be regarded as a treatment strategy. Many molecular-targeted drugs were investigated and approved for the treatment of malignant diseases, including hematologic diseases and solid tumors. Although targeted therapies such as EGFR inhibitors have shown therapeutic efficacy in HNSCC, there are still some patients who cannot benefit from it. New therapeutic targets and strategies should be further explored.Case presentationAn 83-year-old woman was referred to our hospital with left lower gingival mass for more than 1 month in June 2021. Pathologic diagnosis is sarcomatoid squamous cell carcinoma. Due to the large tumor at the time of diagnosis and poor quality of life, the patient was intolerant to surgery, so she was given radiotherapy (RT) combined with concurrent chemotherapy (CT) with albumin bound paclitaxel. According to next-generation sequencing (NGS) results (MET exon 14 skipping mutation-positive), she was treated with crizotinib, a tyrosine kinase inhibitor that targets MET. Through the comprehensive treatment, the patient’s condition promptly improved, clinical complete remission (CR) was achieved in 2 months, and 9-month progression-free survival (PFS) was obtained. She finally died from non-cancer-related diseases.ConclusionHere we report the treatment of a GSSCC patient with MET mutation, who responded to crizotinib promptly and positively. It provides a new reference for understanding MET abnormalities in GSSCC and offers a new idea for the targeted treatment of gingival carcinoma.
Collapse
Affiliation(s)
- Zhenhua Sun
- Department of Radiation Oncology, Hebei General Hospital, Shijiazhuang, China
- Graduate School of North China University of Science and Technology, Tangshan, China
| | - Bingjie Xia
- Department of Radiation Oncology, Hebei General Hospital, Shijiazhuang, China
- Graduate School of Hebei North University, Zhangjiakou, China
| | - Ming Zhang
- Department of Radiation Oncology, Hebei General Hospital, Shijiazhuang, China
- *Correspondence: Ming Zhang,
| | - Shuai Xu
- Department of Radiation Oncology, Hebei General Hospital, Shijiazhuang, China
- Graduate School of Hebei North University, Zhangjiakou, China
| | - Yingqian Ma
- Department of Radiation Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Xianbo Zhang
- Department of Radiation Oncology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
139
|
Benjamin DJ, Haslam A, Gill J, Prasad V. Targeted therapy in lung cancer: Are we closing the gap in years of life lost? Cancer Med 2022; 11:3417-3424. [PMID: 35315222 PMCID: PMC9487872 DOI: 10.1002/cam4.4703] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Patients with non-small cell lung cancer (NSCLC) that harbor driver mutations are associated with a cancer diagnosis at a younger age. While targeted therapies provide deep remissions and durable benefit in a subset of patients, it is unclear whether targeted therapies bridge the gap in years of life lost (YLL) in these younger NSCLC patients with targetable mutations in comparison to generally older NSCLC patients without actionable driver mutations. MATERIALS AND METHODS Retrospective cross-sectional study using landmark trials leading to the approval of targeted therapies in NSCLC with actionable mutations. We evaluated all targeted therapies as well as chemotherapy and IO regimens for the treatment of NSCLC through FDA Oncology Announcements and NCCN Guidelines for NSCLC (version 4.2021). RESULTS We estimated the YLL for each driver mutation, cumulative median duration of response (DOR) with targeted therapies by mutation type, and percentage of estimated improvement in YLL from NSCLC targeted therapies. The median ages at diagnosis (in years) for patients whose tumors express targetable mutations were: 47.6 (NTRK); 52.0 (ALK); 62.0 (HER2); 57.0 (ROS1); 61.4 (RET); 63.0 (BRAF); 69.0 (EGFR); and 72.0 (MET). For comparison, the median age at diagnosis for patients without driver mutations, regardless of PD-L1 status was 71 years. The median DOR (in years) for patients whose tumors express the same mutations include: 0.9 (NTRK); 3.9 (ALK); 0.6 (HER2); 6.2 (ROS1); 2.2 (RET); 1.5 (BRAF); 3.1 (EGFR); and 2.4 (MET). The median DOR for patients without driver mutations was 1.2 years. The cumulative estimated survival time (years; median age at diagnosis plus the median DOR or OS) for patients whose tumors express targetable mutations were: 48.5 (NTRK); 55.9 (ALK); 62.6 (HER2); 63.2 (ROS1); 63.6 (RET); 64.5 (BRAF); 72.1 (EGFR); and 74.4 (MET). The cumulative estimated survival time for patients without driver mutations, regardless of PD-L1 status, was 72.2 years of age. We calculated the number of years NSCLC is diagnosed earlier in patients with targetable mutations as follows: 23.4 (NTRK), 19 (ALK), 14 (ROS1), 11 (EGFR), 9.6 (RET), 9 (HER2), and 8 (BRAF). The percent difference (%) ameliorated in YLL by mutation type is as follows: 44.3 (ROS1), 28.2 (EGFR), 22.9 (RET), 20.5 (ALK), 18.8 (BRAF), 6.4 (HER2), and 3.7 (NTRK). CONCLUSION Although targeted therapies have paved the way for significant progress toward providing a survival benefit to many young patients with advanced NSCLC with actionable mutations, it is evident that these therapies still leave a wide gap in the YLL in these younger patients compared to generally older individuals with advanced NSCLC without targetable mutations.
Collapse
Affiliation(s)
- David J. Benjamin
- Division of Hematology/Oncology, Department of MedicineUniversity of California, IrvineOrangeCaliforniaUSA
| | - Alyson Haslam
- Department of Epidemiology and BiostatisticsUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Jenny Gill
- Department of Epidemiology and BiostatisticsUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Vinay Prasad
- Department of Epidemiology and BiostatisticsUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
140
|
Kim SY, Yin J, Bohlman S, Walker P, Dacic S, Kim C, Khan H, Liu SV, Ma PC, Nagasaka M, Reckamp KL, Abraham J, Uprety D, Wang F, Xiu J, Zhang J, Cheng H, Halmos B. Characterization of MET Exon 14 Skipping Alterations (in NSCLC) and Identification of Potential Therapeutic Targets Using Whole Transcriptome Sequencing. JTO Clin Res Rep 2022; 3:100381. [PMID: 36082279 PMCID: PMC9445394 DOI: 10.1016/j.jtocrr.2022.100381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Genomic alterations in the juxtamembrane exon 14 splice sites in NSCLC lead to increased MET stability and oncogenesis. We present the largest cohort study of MET Exon 14 (METex14) using whole transcriptome sequencing. Methods A total of 21,582 NSCLC tumor samples underwent complete genomic profiling with next-generation sequencing of DNA (592 Gene Panel, NextSeq, whole exome sequencing, NovaSeq) and RNA (NovaSeq, whole transcriptome sequencing). Clinicopathologic information including programmed death-ligand 1 and tumor mutational burden were collected and RNA expression for mutation subtypes and MET amplification were quantified. Immunogenic signatures and potential pathways of invasion were characterized using single-sample gene set enrichment analysis and mRNA gene signatures. Results A total of 533tumors (2.47%) with METex14 were identified. The most common alterations were point mutations (49.5%) at donor splice sites. Most alterations translated to increased MET expression, with MET co-amplification resulting in synergistic increase in expression (q < 0.05). Common coalterations were amplifications of MDM2 (19.0% versus 1.8% wild-type [WT]), HMGA2 (13.2% versus 0.98% WT), and CDK4 (10.0% versus 1.5% WT) (q < 0.05). High programmed death-ligand 1 > 50% (52.5% versus 27.3% WT, q < 0.0001) and lower proportion of high tumor mutational burden (>10 mutations per megabase, 8.3% versus 36.7% WT, p < 0.0001) were associated with METex14, which were also enriched in both immunogenic signatures and immunosuppressive checkpoints. Pathways associated with METex14 included angiogenesis and apical junction pathways (q < 0.05). Conclusions METex14 splicing alterations and MET co-amplification translated to higher and synergistic MET expression at the transcriptomic level. High frequencies of MDM2 and CDK4 co-amplifications and association with multiple immunosuppressive checkpoints and angiogenic pathways provide insight into potential actionable targets for combination strategies in METex14 NSCLC.
Collapse
Affiliation(s)
- So Yeon Kim
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein Cancer Center, Bronx, New York
- Yale School of Medicine, New Haven, Connecticut
| | - Jun Yin
- Caris Life Sciences, Phoenix, Arizona
| | - Stephen Bohlman
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein Cancer Center, Bronx, New York
| | | | - Sanja Dacic
- Yale School of Medicine, New Haven, Connecticut
| | - Chul Kim
- Georgetown Lombardi Comprehensive Cancer Center, Washington, District of Columbia
| | - Hina Khan
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Stephen V. Liu
- Georgetown Lombardi Comprehensive Cancer Center, Washington, District of Columbia
| | | | | | | | | | | | - Feng Wang
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein Cancer Center, Bronx, New York
| | | | | | - Haiying Cheng
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein Cancer Center, Bronx, New York
| | - Balazs Halmos
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein Cancer Center, Bronx, New York
- Corresponding author. Address for correspondence: Balazs Halmos, MD, Montefiore Medical Center, Albert Einstein Cancer Center, Bronx, New York.
| |
Collapse
|
141
|
Ai X, Yu Y, Zhao J, Sheng W, Bai J, Fan Z, Liu X, Ji W, Chen R, Lu S. Comprehensive analysis of MET mutations in NSCLC patients in a real-world setting. Ther Adv Med Oncol 2022; 14:17588359221112474. [PMID: 35860830 PMCID: PMC9290171 DOI: 10.1177/17588359221112474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Aberrant mesenchymal–epithelial transition/hepatocyte growth factor (MET/HGF) regulation presented in a wide variety of human cancers. MET exon 14 skipping, copy number gain (CNG), and kinase domain mutations/arrangements were associated with increased MET activity, and considered to be oncogenic drivers of non-small cell lung cancers (NSCLCs). Methods: We retrospectively analyzed 564 patients with MET alterations. MET alterations were classified into structural mutations or small mutations. MET CNG, exon 14 skipping, gain of function (GOF) mutations, and kinase domain rearrangement were defined as actionable mutations. Results: Six hundred thirty-two MET mutations were identified including 199 CNG, 117 exon 14 skipping, 12 GOF mutations, and 2 actionable fusions. Higher percentage of MET structural alterations (CNG + fusion) were detected in advanced NSCLC patients. Moreover, MET CNG was enriched while exon 14 skipping was rare in epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI)-treated advanced NSCLC patients. Ten of the 12 MET GOF mutations were also in EGFR-TKI-treated patients. Fifteen (68.1%) of the 22 patients treated with crizotinib or savolitinib had a partial response. Interestingly, one patient had a great response to savolitinib with a novel MET exon 14 skipping mutation identified after failure of immune-checkpoint inhibitor. Conclusions: Half of the MET alterations were actionable mutations. MET CNG, exon 14 skipping and GOF mutations had different distribution in different clinical scenario but all defined a molecular subgroup of NSCLCs for which MET inhibition was active.
Collapse
Affiliation(s)
- Xinghao Ai
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yongfeng Yu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department I of Thoracic Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Wang Sheng
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jing Bai
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zaiwen Fan
- Department of Medical Oncology, Air Force Medical Center, PLA, Beijing, China
| | - Xuemei Liu
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxiang Ji
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Rongrong Chen
- Geneplus-Beijing, Floor 9, Building 6, Medical Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241, Huaihai West Road, Shanghai 200032, China
| |
Collapse
|
142
|
Vokes EE. 2022 Presidential Address: Advancing Equitable Cancer Care Through Innovation. J Clin Oncol 2022; 40:2859-2862. [PMID: 35797507 DOI: 10.1200/jco.22.01305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
143
|
López-Castro R, García-Peña T, Mielgo-Rubio X, Riudavets M, Teixidó C, Vilariño N, Couñago F, Mezquita L. Targeting molecular alterations in non-small-cell lung cancer: what's next? Per Med 2022; 19:341-359. [PMID: 35748237 DOI: 10.2217/pme-2021-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/05/2022] [Indexed: 11/21/2022]
Abstract
In recent years, major advances have been achieved in our understanding of non-small-cell lung cancer (NSCLC) with oncogenic driver alterations and in the specific treatment of these with tyrosine kinase inhibitors. Currently, state-of-the-art management of patients with NSCLC (particularly adenocarcinoma or non-adenocarcinoma but with mild tobacco exposure) consists of the determination of EGFR, ALK, ROS1 and BRAF status, as they have US FDA and EMA approved targeted therapies. The increase in molecular knowledge of NSCLC and the development of drugs against other targets has settled new therapeutic indications. In this review we have incorporated the development around MET, KRAS and NTRK in the diagnosis of NSCLC given the therapeutic potential that they represent, as well as the drugs approved for these indications.
Collapse
Affiliation(s)
- Rafael López-Castro
- Medical Oncology Department, Hospital Clínico Universitario de Valladolid, Valladolid, 47003, Spain
| | - Tania García-Peña
- Medical Oncology Department, Hospital Clínico Universitario de Valladolid, Valladolid, 47003, Spain
| | - Xabier Mielgo-Rubio
- Medical Oncology Department, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, 28922, Spain
| | - Mariona Riudavets
- Medical Oncology Department, Gustave Roussy Cancer Campus, Villejuif, 94805, France
| | - Cristina Teixidó
- Thoracic Tumors Unit, Pathology Department, Hospital Clinic of Barcelona, Barcelona, 08036, Spain
| | - Noelia Vilariño
- Medical Oncology Department, Catalan Institute of Oncology, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid, Pozuelo de Alarcón, Madrid, 28223, Spain
- Department of Radiation Oncology, Hospital La Luz, Madrid, 28003, Spain
- Medicine Department, School of Biomedical Sciences, Universidad Europea, Villaviciosa de Odón, Madrid, 28670, Spain
| | - Laura Mezquita
- Thoracic Tumors Unit, Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, 08036, Spain
| |
Collapse
|
144
|
Henry NL, Somerfield MR, Dayao Z, Elias A, Kalinsky K, McShane LM, Moy B, Park BH, Shanahan KM, Sharma P, Shatsky R, Stringer-Reasor E, Telli M, Turner NC, DeMichele A. Biomarkers for Systemic Therapy in Metastatic Breast Cancer: ASCO Guideline Update. J Clin Oncol 2022; 40:3205-3221. [PMID: 35759724 DOI: 10.1200/jco.22.01063] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE To update the ASCO biomarkers to guide systemic therapy for metastatic breast cancer (MBC) guideline. METHODS An Expert Panel conducted a systematic review to identify randomized clinical trials and prospective-retrospective studies from January 2015 to January 2022. RESULTS The search identified 19 studies informing the evidence base. RECOMMENDATIONS Candidates for a regimen with a phosphatidylinositol 3-kinase inhibitor and hormonal therapy should undergo testing for PIK3CA mutations using next-generation sequencing of tumor tissue or circulating tumor DNA (ctDNA) in plasma to determine eligibility for alpelisib plus fulvestrant. If no mutation is found in ctDNA, testing in tumor tissue, if available, should be used. Patients who are candidates for poly (ADP-ribose) polymerase (PARP) inhibitor therapy should undergo testing for germline BRCA1 and BRCA2 pathogenic or likely pathogenic mutations to determine eligibility for a PARP inhibitor. There is insufficient evidence for or against testing for a germline PALB2 pathogenic variant to determine eligibility for PARP inhibitor therapy in the metastatic setting. Candidates for immune checkpoint inhibitor therapy should undergo testing for expression of programmed cell death ligand-1 in the tumor and immune cells to determine eligibility for treatment with pembrolizumab plus chemotherapy. Candidates for an immune checkpoint inhibitor should also undergo testing for deficient mismatch repair/microsatellite instability-high to determine eligibility for dostarlimab-gxly or pembrolizumab, as well as testing for tumor mutational burden. Clinicians may test for NTRK fusions to determine eligibility for TRK inhibitors. There are insufficient data to recommend routine testing of tumors for ESR1 mutations, for homologous recombination deficiency, or for TROP2 expression to guide MBC therapy selection. There are insufficient data to recommend routine use of ctDNA or circulating tumor cells to monitor response to therapy among patients with MBC.Additional information can be found at www.asco.org/breast-cancer-guidelines.
Collapse
Affiliation(s)
| | | | | | | | - Kevin Kalinsky
- Winship Cancer Institute at Emory University, Atlanta, GA
| | | | | | - Ben Ho Park
- Vanderbilt-Ingram Cancer Center, Nashville, TN
| | | | | | - Rebecca Shatsky
- University of California, San Diego School of Medicine, La Jolla, CA
| | | | | | | | | |
Collapse
|
145
|
Pascual J, Attard G, Bidard FC, Curigliano G, De Mattos-Arruda L, Diehn M, Italiano A, Lindberg J, Merker JD, Montagut C, Normanno N, Pantel K, Pentheroudakis G, Popat S, Reis-Filho JS, Tie J, Seoane J, Tarazona N, Yoshino T, Turner NC. ESMO recommendations on the use of circulating tumour DNA assays for patients with cancer: a report from the ESMO Precision Medicine Working Group. Ann Oncol 2022; 33:750-768. [PMID: 35809752 DOI: 10.1016/j.annonc.2022.05.520] [Citation(s) in RCA: 307] [Impact Index Per Article: 102.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/16/2022] Open
Abstract
Circulating tumour DNA (ctDNA) assays conducted on plasma are rapidly developing a strong evidence base for use in patients with cancer. The European Society for Medical Oncology convened an expert working group to review the analytical and clinical validity and utility of ctDNA assays. For patients with advanced cancer, validated and adequately sensitive ctDNA assays have utility in identifying actionable mutations to direct targeted therapy, and may be used in routine clinical practice, provided the limitations of the assays are taken into account. Tissue based testing remains the preferred test for many cancer patients, due to limitations of ctDNA assays detecting fusion events and copy number changes, although ctDNA assays may be routinely used when faster results will be clinically important, or when tissue biopsies are not possible or inappropriate. Reflex tumour testing should be considered following a non-informative ctDNA result, due to false negative results with ctDNA testing. In patients treated for early-stage cancers, detection of molecular residual disease (MRD) or molecular relapse (MR), has high evidence of clinical validity in anticipating future relapse in many cancers. MRD/MR detection cannot be recommended in routine clinical practice, as currently there is no evidence for clinical utility in directing treatment. Additional potential applications of ctDNA assays, under research development and not recommended for routine practice, include identifying patients not responding to therapy with early dynamic changes in ctDNA levels, monitoring therapy for the development of resistance mutations prior to clinical progression, and in screening asymptomatic people for cancer. Recommendation for reporting of results, future development of ctDNA assays, and future clinical research are made.
Collapse
Affiliation(s)
- Javier Pascual
- Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Malaga, Spain
| | - Gerhardt Attard
- Urological Cancer Research, University College London, London, UK
| | - François-Clément Bidard
- Department of Medical Oncology, Institut Curie, Paris, France; University of Versailles Saint-Quentin-en-Yvelines (UVSQ)/Paris-Saclay University, Saint Cloud, France
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milano, Milano, Italy; Division of Early Drug Development, European Institute of Oncology, IRCCS, Milano, Italy
| | - Leticia De Mattos-Arruda
- IrsiCaixa, Hospital Universitari Trias i Pujol, Badalona, Spain; Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Maximilian Diehn
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, US
| | - Antoine Italiano
- Early Phase Trials and Sarcoma Units, Institut Bergonie, Bordeaux, France; DITEP, Gustave Roussy, Villejuif, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France
| | - Johan Lindberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
| | - Jason D Merker
- Departments of Pathology and Laboratory Medicine & Genetics, UNC School of Medicine, Chapel Hill, NC, US
| | - Clara Montagut
- Medical Oncology Department, Hospital del Mar-IMIM, CIBERONC, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori, 'Fondazione G. Pascale' - IRCCS, Naples, Italy
| | - Klaus Pantel
- Institute for Tumour Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - George Pentheroudakis
- Scientific and Medical Division, European Society for Medical Oncology, Lugano, Switzerland
| | - Sanjay Popat
- Royal Marsden Hospital, London, UK; Institute of Cancer Research, London, UK
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, US
| | - Jeanne Tie
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; Division of Personalised Oncology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Joan Seoane
- Preclinical and Translational Research Programme, Vall d'Hebron Institute of Oncology (VHIO), ICREA, CIBERONC, Barcelona, Spain,; Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Noelia Tarazona
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; Instituto de Salud Carlos III, CIBERONC, Madrid, Spain
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Nicholas C Turner
- Royal Marsden Hospital, London, UK; Institute of Cancer Research, London, UK
| |
Collapse
|
146
|
Abughanimeh O, Kaur A, El Osta B, Ganti AK. Novel targeted therapies for advanced non-small lung cancer. Semin Oncol 2022; 49:326-336. [PMID: 35414419 DOI: 10.1053/j.seminoncol.2022.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/05/2021] [Accepted: 03/12/2022] [Indexed: 11/11/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer accounting for almost 80%-85% of all lung cancer cases. Unfortunately, more than half of the patients will be diagnosed with advanced disease at the time of presentation, which makes their disease incurable. Historically, the 5 year overall survival for advanced NSCLC was 5%. However, there has been a significant increase in our understanding of the genetic basis of NSCLC, which has led to development of both immunotherapy and targeted therapy agents. This has improved the 5 year overall survival to become within the range of 15%-50% depending on certain mutations and biomarkers. Over the last decade the United States Food and Drug Administration (FDA) has approved almost 20 new targeted therapies and clinical trials are still undergoing to evaluate more novel agents. In this review, we will present recent updates on novel targeted therapies.
Collapse
Affiliation(s)
- Omar Abughanimeh
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center- Fred and Pamela Buffett Cancer Center, Omaha, NE
| | - Anahat Kaur
- Albert Einstein College of Medicine/Jacobi Medical Center, Bronx, NY
| | - Badi El Osta
- Department of Hematology and Oncology, Atlanta VA Health Care System, Decatur, GA; Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Apar Kishor Ganti
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center- Fred and Pamela Buffett Cancer Center, Omaha, NE; Division of Oncology and Hematology, VA Nebraska-Western Iowa Health Care System, Omaha, NE.
| |
Collapse
|
147
|
Li JJ, Zhang X, Sankar N, Espiritu L, Redkar S, Yu GL, Kizilbash SH. MET/HGF Coexpression as a Novel Predictive Biomarker for Response to MET Inhibitor Therapy in a Case of Psammomatous Melanotic Schwannoma. JCO Precis Oncol 2022; 6:e2200096. [PMID: 35675576 DOI: 10.1200/po.22.00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Jenny J Li
- Division of Medical Oncology, Mayo Clinic, Rochester, MN
| | | | | | | | | | | | | |
Collapse
|
148
|
Cerqua M, Botti O, Arigoni M, Gioelli N, Serini G, Calogero R, Boccaccio C, Comoglio PM, Altintas DM. MET∆14 promotes a ligand-dependent, AKT-driven invasive growth. Life Sci Alliance 2022; 5:5/10/e202201409. [PMID: 35636967 PMCID: PMC9152130 DOI: 10.26508/lsa.202201409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/24/2022] Open
Abstract
MET is an oncogene encoding the tyrosine kinase receptor for hepatocyte growth factor (HGF). Upon ligand binding, MET activates multiple signal transducers, including PI3K/AKT, STAT3, and MAPK. When mutated or amplified, MET becomes a "driver" for the onset and progression of cancer. The most frequent mutations in the MET gene affect the splicing sites of exon 14, leading to the deletion of the receptor's juxtamembrane domain (MET∆14). It is currently believed that, as in gene amplification, MET∆14 kinase is constitutively active. Our analysis of MET in carcinoma cell lines showed that MET∆14 strictly depends on HGF for kinase activation. Compared with wt MET, ∆14 is sensitive to lower HGF concentrations, with more sustained kinase response. Using three different models, we have demonstrated that MET∆14 activation leads to robust phosphorylation of AKT, leading to a distinctive transcriptomic signature. Functional studies revealed that ∆14 activation is predominantly responsible for enhanced protection from apoptosis and cellular migration. Thus, the unique HGF-dependent ∆14 oncogenic activity suggests consideration of HGF in the tumour microenvironment to select patients for clinical trials.
Collapse
Affiliation(s)
- Marina Cerqua
- Istituto Fondazione di Oncologia Molecolare - La Fondazione Italiana per la Ricerca sul Cancro (IFOM - FIRC) Institute of Molecular Oncology, Milano, Italy
| | - Orsola Botti
- Istituto Fondazione di Oncologia Molecolare - La Fondazione Italiana per la Ricerca sul Cancro (IFOM - FIRC) Institute of Molecular Oncology, Milano, Italy
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Noemi Gioelli
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Italy.,Department of Oncology, University of Torino School of Medicine, Turin, Italy
| | - Guido Serini
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Italy.,Department of Oncology, University of Torino School of Medicine, Turin, Italy
| | - Raffaele Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Carla Boccaccio
- Laboratory of Cancer Stem Cell Research, Candiolo Cancer Institute, Fondazione Piemontese per Oncologia - Istituti di Ricovero e Cura a Carattere Scientifico (FPO-IRCCS), Turin, Italy.,Department of Oncology, University of Turin Medical School, Turin, Italy
| | - Paolo M Comoglio
- Istituto Fondazione di Oncologia Molecolare - La Fondazione Italiana per la Ricerca sul Cancro (IFOM - FIRC) Institute of Molecular Oncology, Milano, Italy
| | - Dogus M Altintas
- Istituto Fondazione di Oncologia Molecolare - La Fondazione Italiana per la Ricerca sul Cancro (IFOM - FIRC) Institute of Molecular Oncology, Milano, Italy
| |
Collapse
|
149
|
Lee CJ, Modave E, Boeckx B, Kasper B, Aamdal S, Leahy MG, Rutkowski P, Bauer S, Debiec-Rychter M, Sciot R, Lambrechts D, Wozniak A, Schöffski P. Correlation of Immunological and Molecular Profiles with Response to Crizotinib in Alveolar Soft Part Sarcoma: An Exploratory Study Related to the EORTC 90101 "CREATE" Trial. Int J Mol Sci 2022; 23:ijms23105689. [PMID: 35628499 PMCID: PMC9145625 DOI: 10.3390/ijms23105689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
Alveolar soft part sarcoma (ASPS) is a rare subtype of soft tissue sarcoma characterized by an unbalanced translocation, resulting in ASPSCR1-TFE3 fusion that transcriptionally upregulates MET expression. The European Organization for Research and Treatment of Cancer (EORTC) 90101 “CREATE” phase II trial evaluated the MET inhibitor crizotinib in ASPS patients, achieving only limited antitumor activity. We performed a comprehensive molecular analysis of ASPS tissue samples collected in this trial to identify potential biomarkers correlating with treatment outcome. A tissue microarray containing 47 ASPS cases was used for the characterization of the tumor microenvironment using multiplex immunofluorescence. DNA isolated from 34 available tumor samples was analyzed to detect recurrent gene copy number alterations (CNAs) and mutations by low-coverage whole-genome sequencing and whole-exome sequencing. Pathway enrichment analysis was used to identify diseased-associated pathways in ASPS sarcomagenesis. Kaplan–Meier estimates, Cox regression, and the Fisher’s exact test were used to correlate histopathological and molecular findings with clinical data related to crizotinib treatment, aiming to identify potential factors associated with patient outcome. Tumor microenvironment characterization showed the presence of PD-L1 and CTLA-4 in 10 and 2 tumors, respectively, and the absence of PD-1 in all specimens. Apart from CD68, other immunological markers were rarely expressed, suggesting a low level of tumor-infiltrating lymphocytes in ASPS. By CNA analysis, we detected a number of broad and focal alterations. The most common alteration was the loss of chromosomal region 1p36.32 in 44% of cases. The loss of chromosomal regions 1p36.32, 1p33, 1p22.2, and 8p was associated with shorter progression-free survival. Using whole-exome sequencing, 13 cancer-associated genes were found to be mutated in at least three cases. Pathway enrichment analysis identified genetic alterations in NOTCH signaling, chromatin organization, and SUMOylation pathways. NOTCH4 intracellular domain dysregulation was associated with poor outcome, while inactivation of the beta-catenin/TCF complex correlated with improved outcome in patients receiving crizotinib. ASPS is characterized by molecular heterogeneity. We identify genetic aberrations potentially predictive of treatment outcome during crizotinib therapy and provide additional insights into the biology of ASPS, paving the way to improve treatment approaches for this extremely rare malignancy.
Collapse
Affiliation(s)
- Che-Jui Lee
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; (C.-J.L.); (A.W.)
| | - Elodie Modave
- VIB Center for Cancer Biology, VIB and Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (E.M.); (B.B.); (D.L.)
| | - Bram Boeckx
- VIB Center for Cancer Biology, VIB and Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (E.M.); (B.B.); (D.L.)
| | - Bernd Kasper
- Sarcoma Unit, Interdisciplinary Tumor Center, Mannheim University Medical Center, 68167 Mannheim, Germany;
| | - Steinar Aamdal
- Department of Oncology, Oslo University Hospital, 0315 Oslo, Norway;
| | | | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 00-001 Warsaw, Poland;
| | - Sebastian Bauer
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany;
| | - Maria Debiec-Rychter
- Department of Human Genetics, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium;
| | - Raf Sciot
- Department of Pathology, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium;
| | - Diether Lambrechts
- VIB Center for Cancer Biology, VIB and Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (E.M.); (B.B.); (D.L.)
| | - Agnieszka Wozniak
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; (C.-J.L.); (A.W.)
| | - Patrick Schöffski
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; (C.-J.L.); (A.W.)
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium
- Correspondence: ; Tel.: +32-1634-1019
| |
Collapse
|
150
|
Cappello F, Angerilli V, Munari G, Ceccon C, Sabbadin M, Pagni F, Fusco N, Malapelle U, Fassan M. FFPE-Based NGS Approaches into Clinical Practice: The Limits of Glory from a Pathologist Viewpoint. J Pers Med 2022; 12:750. [PMID: 35629172 PMCID: PMC9146170 DOI: 10.3390/jpm12050750] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 01/02/2023] Open
Abstract
The introduction of next-generation sequencing (NGS) in the molecular diagnostic armamentarium is deeply changing pathology practice and laboratory frameworks. NGS allows for the comprehensive molecular characterization of neoplasms, in order to provide the best treatment to oncologic patients. On the other hand, NGS raises technical issues and poses several challenges in terms of education, infrastructures and costs. The aim of this review is to give an overview of the main NGS sequencing platforms that can be used in current molecular diagnostics and gain insights into the clinical applications of NGS in precision oncology. Hence, we also focus on the preanalytical, analytical and interpretative issues raised by the incorporation of NGS in routine pathology diagnostics.
Collapse
Affiliation(s)
- Filippo Cappello
- Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (F.C.); (V.A.); (C.C.)
| | - Valentina Angerilli
- Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (F.C.); (V.A.); (C.C.)
| | - Giada Munari
- Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy; (G.M.); (M.S.)
| | - Carlotta Ceccon
- Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (F.C.); (V.A.); (C.C.)
| | - Marianna Sabbadin
- Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy; (G.M.); (M.S.)
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, University Milan Bicocca, 20900 Milan, Italy;
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy;
| | - Matteo Fassan
- Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (F.C.); (V.A.); (C.C.)
- Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy; (G.M.); (M.S.)
| |
Collapse
|