101
|
Dupont A, Rauch A, Staessens S, Moussa M, Rosa M, Corseaux D, Jeanpierre E, Goutay J, Caplan M, Varlet P, Lefevre G, Lassalle F, Bauters A, Faure K, Lambert M, Duhamel A, Labreuche J, Garrigue D, De Meyer SF, Staels B, Vincent F, Rousse N, Kipnis E, Lenting P, Poissy J, Susen S. Vascular Endothelial Damage in the Pathogenesis of Organ Injury in Severe COVID-19. Arterioscler Thromb Vasc Biol 2021; 41:1760-1773. [PMID: 33626910 DOI: 10.1161/atvbaha.120.315595] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Annabelle Dupont
- Univ. Lille Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France (A. Dupont, A.R., S. Staessens, M.M., M.R., D.C., E.J., F.L., B.S., F.V., N.R., S. Susen)
| | - Antoine Rauch
- Univ. Lille Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France (A. Dupont, A.R., S. Staessens, M.M., M.R., D.C., E.J., F.L., B.S., F.V., N.R., S. Susen)
| | - Senna Staessens
- Univ. Lille Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France (A. Dupont, A.R., S. Staessens, M.M., M.R., D.C., E.J., F.L., B.S., F.V., N.R., S. Susen)
| | - Mouhamed Moussa
- Univ. Lille Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France (A. Dupont, A.R., S. Staessens, M.M., M.R., D.C., E.J., F.L., B.S., F.V., N.R., S. Susen)
| | - Mickael Rosa
- Univ. Lille Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France (A. Dupont, A.R., S. Staessens, M.M., M.R., D.C., E.J., F.L., B.S., F.V., N.R., S. Susen)
| | - Delphine Corseaux
- Univ. Lille Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France (A. Dupont, A.R., S. Staessens, M.M., M.R., D.C., E.J., F.L., B.S., F.V., N.R., S. Susen)
| | - Emmanuelle Jeanpierre
- Univ. Lille Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France (A. Dupont, A.R., S. Staessens, M.M., M.R., D.C., E.J., F.L., B.S., F.V., N.R., S. Susen)
| | - Julien Goutay
- CHU Lille, Intensive Care Department, Pôle de Réanimation, France (J.G., M.C.)
| | - Morgan Caplan
- CHU Lille, Intensive Care Department, Pôle de Réanimation, France (J.G., M.C.)
| | - Pauline Varlet
- University of Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, France (P.V., G.L.)
| | - Guillaume Lefevre
- University of Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, France (P.V., G.L.)
| | - Fanny Lassalle
- Univ. Lille Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France (A. Dupont, A.R., S. Staessens, M.M., M.R., D.C., E.J., F.L., B.S., F.V., N.R., S. Susen)
| | - Anne Bauters
- CHU Lille, Institut d'Hématologie-Transfusion, France (A.B.)
| | - Karine Faure
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1019-CIIL, France (K.F.)
| | - Marc Lambert
- University of Lille, Inserm, CHU Lille, INSERM U 1167, Institut Pasteur, France (M.L.)
| | - Alain Duhamel
- University of Lille, CHU Lille, ULR 2694 - METRICS: Évaluation des technologies de santé et des pratiques médicales, France (A. Duhamel, J.L.)
| | - Julien Labreuche
- University of Lille, CHU Lille, ULR 2694 - METRICS: Évaluation des technologies de santé et des pratiques médicales, France (A. Duhamel, J.L.)
| | - Delphine Garrigue
- CHU Lille, Surgical Critical Care, Department of Anesthesiology and Critical Care, France (D.G.)
| | - Simon F De Meyer
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Belgium (S.F.D.M.)
| | - Bart Staels
- Univ. Lille Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France (A. Dupont, A.R., S. Staessens, M.M., M.R., D.C., E.J., F.L., B.S., F.V., N.R., S. Susen)
| | - Flavien Vincent
- Univ. Lille Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France (A. Dupont, A.R., S. Staessens, M.M., M.R., D.C., E.J., F.L., B.S., F.V., N.R., S. Susen)
| | - Natacha Rousse
- Univ. Lille Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France (A. Dupont, A.R., S. Staessens, M.M., M.R., D.C., E.J., F.L., B.S., F.V., N.R., S. Susen)
| | - Eric Kipnis
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, France (E.K.)
| | - Peter Lenting
- Inserm, UMR_1176, Université Paris-Saclay, France (P.L.)
| | - Julien Poissy
- University of Lille, Inserm U1285, CHU Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, France (J.P.)
| | - Sophie Susen
- Univ. Lille Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France (A. Dupont, A.R., S. Staessens, M.M., M.R., D.C., E.J., F.L., B.S., F.V., N.R., S. Susen)
| | | |
Collapse
|
102
|
Martínez-Chantar ML, Delgado TC, Beraza N. Revisiting the Role of Natural Killer Cells in Non-Alcoholic Fatty Liver Disease. Front Immunol 2021; 12:640869. [PMID: 33679803 PMCID: PMC7930075 DOI: 10.3389/fimmu.2021.640869] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is the most common form of chronic liver disease. The histological spectrum of NAFLD ranges from simple steatosis to chronic inflammation and liver fibrosis during Non-Alcoholic Steatohepatitis (NASH). The current view is that innate immune mechanisms represent a key element in supporting hepatic inflammation in NASH. Natural Killer (NK) cells are lymphoid cells and a component of the innate immune system known to be involved in NASH progression. Increasing evidence has shed light on the differential function of circulating and tissue-resident NK cells, as well as on the relevance of metabolism and the microenvironment in regulating their activity. Here, we revisit the complex role of NK cells as regulators of NASH progression as well as potential therapeutic approaches based on their modulation.
Collapse
Affiliation(s)
- María Luz Martínez-Chantar
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Spain
| | - Teresa C Delgado
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Spain
| | - Naiara Beraza
- Gut Microbes and Health Institute Strategic Programme, Food Innovation and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
103
|
Govaere O, Cockell S, Tiniakos D, Queen R, Younes R, Vacca M, Alexander L, Ravaioli F, Palmer J, Petta S, Boursier J, Rosso C, Johnson K, Wonders K, Day CP, Ekstedt M, Orešič M, Darlay R, Cordell HJ, Marra F, Vidal-Puig A, Bedossa P, Schattenberg JM, Clément K, Allison M, Bugianesi E, Ratziu V, Daly AK, Anstee QM. Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis. Sci Transl Med 2020; 12:eaba4448. [PMID: 33268509 DOI: 10.1126/scitranslmed.aba4448] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 07/01/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
The mechanisms that drive nonalcoholic fatty liver disease (NAFLD) remain incompletely understood. This large multicenter study characterized the transcriptional changes that occur in liver tissue across the NAFLD spectrum as disease progresses to cirrhosis to identify potential circulating markers. We performed high-throughput RNA sequencing on a discovery cohort comprising histologically characterized NAFLD samples from 206 patients. Unsupervised clustering stratified NAFLD on the basis of disease activity and fibrosis stage with differences in age, aspartate aminotransferase (AST), type 2 diabetes mellitus, and carriage of PNPLA3 rs738409, a genetic variant associated with NAFLD. Relative to early disease, we consistently identified 25 differentially expressed genes as fibrosing steatohepatitis progressed through stages F2 to F4. This 25-gene signature was independently validated by logistic modeling in a separate replication cohort (n = 175), and an integrative analysis with publicly available single-cell RNA sequencing data elucidated the likely relative contribution of specific intrahepatic cell populations. Translating these findings to the protein level, SomaScan analysis in more than 300 NAFLD serum samples confirmed that circulating concentrations of proteins AKR1B10 and GDF15 were strongly associated with disease activity and fibrosis stage. Supporting the biological plausibility of these data, in vitro functional studies determined that endoplasmic reticulum stress up-regulated expression of AKR1B10, GDF15, and PDGFA, whereas GDF15 supplementation tempered the inflammatory response in macrophages upon lipid loading and lipopolysaccharide stimulation. This study provides insights into the pathophysiology of progressive fibrosing steatohepatitis, and proof of principle that transcriptomic changes represent potentially tractable and clinically relevant markers of disease progression.
Collapse
Affiliation(s)
- Olivier Govaere
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Simon Cockell
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Dina Tiniakos
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Pathology, Aretaieio Hospital, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Rachel Queen
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Ramy Younes
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Medical Sciences, Division of Gastro-Hepatology, A.O. Città della Salute e della Scienza di Torino, University of Turin, 10124 Turin, Italy
| | - Michele Vacca
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | | | - Federico Ravaioli
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Jeremy Palmer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Salvatore Petta
- Sezione di Gastroenterologia, Dipartimento Biomedico di Medicina Interna e Specialistica, Università di Palermo, 90133 Palermo, Italy
| | - Jerome Boursier
- Hepatology Department, Angers University Hospital, 49933 Angers, France
| | - Chiara Rosso
- Department of Medical Sciences, Division of Gastro-Hepatology, A.O. Città della Salute e della Scienza di Torino, University of Turin, 10124 Turin, Italy
| | - Katherine Johnson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kristy Wonders
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Christopher P Day
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Mattias Ekstedt
- Department of Health, Medicine and Caring Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Matej Orešič
- School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden
| | - Rebecca Darlay
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Heather J Cordell
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Fabio Marra
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50121 Florence, Italy
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Pierre Bedossa
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Assistance Publique-Hôpitaux de Paris, Hôpital Pitié Salpêtrière, Sorbonne University, ICAN (Institute of Cardiometabolism and Nutrition), 75013 Paris, France
| | | | - Karine Clément
- Nutrition and Obesities: Systemic Approaches, INSERM, Sorbonne University, 75006 Paris, France
| | - Michael Allison
- Liver Unit, Department of Medicine, NIHR Cambridge Biomedical Research Centre, Cambridge University NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastro-Hepatology, A.O. Città della Salute e della Scienza di Torino, University of Turin, 10124 Turin, Italy
| | - Vlad Ratziu
- Assistance Publique-Hôpitaux de Paris, Hôpital Pitié Salpêtrière, Sorbonne University, ICAN (Institute of Cardiometabolism and Nutrition), 75013 Paris, France
| | - Ann K Daly
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Quentin M Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne NE7 7DN, UK
| |
Collapse
|
104
|
Wang J, Zheng J, Ren X, Wang S, Wang G, Hu B, Yang H, Liu H. Integrative analysis of hepatic metabolomic and transcriptomic data reveals potential mechanism of nonalcoholic steatohepatitis in high-fat diet-fed mice. J Diabetes 2020; 13:390-401. [PMID: 33022884 DOI: 10.1111/1753-0407.13120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Due to the complex pathogenesis, the molecular mechanism of nonalcoholic steatohepatitis (NASH) remains unclear. In this study, we aimed to reveal the comprehensive metabolic and signaling pathways in the occurrence of NASH. METHODS C57BL/6 mice were treated with high-fat diet for 4 months to mimic the NASH phenotype. After the treatment, the physiochemical parameters were evaluated, and the liver tissues were prepared for untargeted metabolomic analysis with ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Then, three relevant Gene Expression Omnibus (GEO) datasets were selected for integrative analysis of differentiated messenger RNA and metabolites. RESULTS The levels of phosphatidylethanolamine (PE) (16:1(9Z)/20:4(5Z,8Z,11Z,14Z)), oleic acid, and sphingomyelin (SM) (d18:0/12:0) were significantly increased, and the content of adenosine was severely reduced in NASH mice. The integrated interpretation of transcriptomic and metabolomic data indicated that the glycerophospholipid metabolism and necroptosis signaling were evidently affected in the development of NASH. The high level of SM (d18:0/12:0) may be related to the expression of acid sphingomyelinase (ASMase), and the elevated arachidonic acid was coordinated with the upregulation of cytosol phospholipase A2 (cPLA2) in the necroptosis pathway. CONCLUSIONS In summary, the inflammatory response, necroptosis, and glycerophospholipid may serve as potential targets for mechanistic exploration and clinical practice in the treatment of NASH.
Collapse
Affiliation(s)
- Jinhua Wang
- Jiangsu Province Blood Center, Nanjing, China
| | - Junping Zheng
- College of Life Sciences, Wuchang University of Technology, Wuhan, China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Xianghui Ren
- North China Institute of Computer Technology, Beijing, China
| | - Shaojiang Wang
- North China Institute of Computer Technology, Beijing, China
- Knowledge Engineering Lab, Department of Computer Science and Technology, Tsinghua University, Beijing, China
| | - Guizhou Wang
- School of Economics and Management, University of Chinese Academy of Sciences, Beijing, China
| | - Baifei Hu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Huabing Yang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Hongtao Liu
- College of Life Sciences, Wuchang University of Technology, Wuhan, China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
105
|
Deprince A, Haas JT, Staels B. Dysregulated lipid metabolism links NAFLD to cardiovascular disease. Mol Metab 2020; 42:101092. [PMID: 33010471 PMCID: PMC7600388 DOI: 10.1016/j.molmet.2020.101092] [Citation(s) in RCA: 304] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is rapidly becoming a global health problem. Cardiovascular diseases (CVD) are the most common cause of mortality in NAFLD patients. NAFLD and CVD share several common risk factors including obesity, insulin resistance, and type 2 diabetes (T2D). Atherogenic dyslipidemia, characterized by plasma hypertriglyceridemia, increased small dense low-density lipoprotein (LDL) particles, and decreased high-density lipoprotein cholesterol (HDL-C) levels, is often observed in NAFLD patients. Scope of review In this review, we highlight recent epidemiological studies evaluating the link between NAFLD and CVD risk. We further focus on recent mechanistic insights into the links between NAFLD and altered lipoprotein metabolism. We also discuss current therapeutic strategies for NAFLD and their potential impact on NAFLD-associated CVD risk. Major conclusions Alterations in hepatic lipid and lipoprotein metabolism are major contributing factors to the increased CVD risk in NAFLD patients, and many promising NASH therapies in development also improve dyslipidemia in clinical trials.
Collapse
Affiliation(s)
- Audrey Deprince
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000, Lille, France
| | - Joel T Haas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000, Lille, France.
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000, Lille, France.
| |
Collapse
|
106
|
Azar S, Udi S, Drori A, Hadar R, Nemirovski A, Vemuri KV, Miller M, Sherill-Rofe D, Arad Y, Gur-Wahnon D, Li X, Makriyannis A, Ben-Zvi D, Tabach Y, Ben-Dov IZ, Tam J. Reversal of diet-induced hepatic steatosis by peripheral CB1 receptor blockade in mice is p53/miRNA-22/SIRT1/PPARα dependent. Mol Metab 2020; 42:101087. [PMID: 32987186 PMCID: PMC7563015 DOI: 10.1016/j.molmet.2020.101087] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/03/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The endocannabinoid (eCB) system is increasingly recognized as being crucially important in obesity-related hepatic steatosis. By activating the hepatic cannabinoid-1 receptor (CB1R), eCBs modulate lipogenesis and fatty acid oxidation. However, the underlying molecular mechanisms are largely unknown. METHODS We combined unbiased bioinformatics techniques, mouse genetic manipulations, multiple pharmacological, molecular, and cellular biology approaches, and genomic sequencing to systematically decipher the role of the hepatic CB1R in modulating fat utilization in the liver and explored the downstream molecular mechanisms. RESULTS Using an unbiased normalized phylogenetic profiling analysis, we found that the CB1R evolutionarily coevolves with peroxisome proliferator-activated receptor-alpha (PPARα), a key regulator of hepatic lipid metabolism. In diet-induced obese (DIO) mice, peripheral CB1R blockade (using AM6545) induced the reversal of hepatic steatosis and improved liver injury in WT, but not in PPARα-/- mice. The antisteatotic effect mediated by AM6545 in WT DIO mice was accompanied by increased hepatic expression and activity of PPARα as well as elevated hepatic levels of the PPARα-activating eCB-like molecules oleoylethanolamide and palmitoylethanolamide. Moreover, AM6545 was unable to rescue hepatic steatosis in DIO mice lacking liver sirtuin 1 (SIRT1), an upstream regulator of PPARα. Both of these signaling molecules were modulated by the CB1R as measured in hepatocytes exposed to lipotoxic conditions or treated with CB1R agonists in the absence/presence of AM6545. Furthermore, using microRNA transcriptomic profiling, we found that the CB1R regulated the hepatic expression, acetylation, and transcriptional activity of p53, resulting in the enhanced expression of miR-22, which was found to specifically target SIRT1 and PPARα. CONCLUSIONS We provide strong evidence for a functional role of the p53/miR-22/SIRT1/PPARα signaling pathway in potentially mediating the antisteatotic effect of peripherally restricted CB1R blockade.
Collapse
Affiliation(s)
- Shahar Azar
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shiran Udi
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Drori
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rivka Hadar
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kiran V Vemuri
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Maya Miller
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dana Sherill-Rofe
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yhara Arad
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Devorah Gur-Wahnon
- Laboratory of Medical Transcriptomics, Department of Nephrology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Xiaoling Li
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | | | - Danny Ben-Zvi
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Iddo Z Ben-Dov
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
107
|
Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver? Cell Death Dis 2020; 11:802. [PMID: 32978374 PMCID: PMC7519685 DOI: 10.1038/s41419-020-03003-w] [Citation(s) in RCA: 314] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide. NAFLD stages range from simple steatosis (NAFL) to non-alcoholic steatohepatitis (NASH) which can progress to cirrhosis and hepatocellular carcinoma. One of the crucial events clearly involved in NAFLD progression is the lipotoxicity resulting from an excessive fatty acid (FFA) influx to hepatocytes. Hepatic lipotoxicity occurs when the capacity of the hepatocyte to manage and export FFAs as triglycerides (TGs) is overwhelmed. This review provides succinct insights into the molecular mechanisms responsible for lipotoxicity in NAFLD, including ER and oxidative stress, autophagy, lipoapotosis and inflammation. In addition, we highlight the role of CD36/FAT fatty acid translocase in NAFLD pathogenesis. Up-to-date, it is well known that CD36 increases FFA uptake and, in the liver, it drives hepatosteatosis onset and might contribute to its progression to NASH. Clinical studies have reinforced the significance of CD36 by showing increased content in the liver of NAFLD patients. Interestingly, circulating levels of a soluble form of CD36 (sCD36) are abnormally elevated in NAFLD patients and positively correlate with the histological grade of hepatic steatosis. In fact, the induction of CD36 translocation to the plasma membrane of the hepatocytes may be a determining factor in the physiopathology of hepatic steatosis in NAFLD patients. Given all these data, targeting the fatty acid translocase CD36 or some of its functional regulators may be a promising therapeutic approach for the prevention and treatment of NAFLD.
Collapse
|
108
|
Her Z, Tan JHL, Lim YS, Tan SY, Chan XY, Tan WWS, Liu M, Yong KSM, Lai F, Ceccarello E, Zheng Z, Fan Y, Chang KTE, Sun L, Chang SC, Chin CL, Lee GH, Dan YY, Chan YS, Lim SG, Chan JKY, Chandy KG, Chen Q. CD4 + T Cells Mediate the Development of Liver Fibrosis in High Fat Diet-Induced NAFLD in Humanized Mice. Front Immunol 2020; 11:580968. [PMID: 33013934 PMCID: PMC7516019 DOI: 10.3389/fimmu.2020.580968] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/20/2020] [Indexed: 12/24/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has been on a global rise. While animal models have rendered valuable insights to the pathogenesis of NAFLD, discrepancy with patient data still exists. Since non-alcoholic steatohepatitis (NASH) involves chronic inflammation, and CD4+ T cell infiltration of the liver is characteristic of NASH patients, we established and characterized a humanized mouse model to identify human-specific immune response(s) associated with NAFLD progression. Immunodeficient mice engrafted with human immune cells (HIL mice) were fed with high fat and high calorie (HFHC) or chow diet for 20 weeks. Liver histology and immune profile of HIL mice were analyzed and compared with patient data. HIL mice on HFHC diet developed steatosis, inflammation and fibrosis of the liver. Human CD4+ central and effector memory T cells increased within the liver and in the peripheral blood of our HIL mice, accompanied by marked up-regulation of pro-inflammatory cytokines (IL-17A and IFNγ). In vivo depletion of human CD4+ T cells in HIL mice reduced liver inflammation and fibrosis, but not steatosis. Our results highlight CD4+ memory T cell subsets as important drivers of NAFLD progression from steatosis to fibrosis and provides a humanized mouse model for pre-clinical evaluation of potential therapeutics.
Collapse
Affiliation(s)
- Zhisheng Her
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Joel Heng Loong Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Yee-Siang Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Sue Yee Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Xue Ying Chan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Wilson Wei Sheng Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Min Liu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Kylie Su Mei Yong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Fritz Lai
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Erica Ceccarello
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,Programme in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Zhiqiang Zheng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kenneth Tou En Chang
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Lei Sun
- Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Shih Chieh Chang
- Laboratory of Molecular Physiology, Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chih-Liang Chin
- Translational Biomarkers, Merck Research Laboratories, MSD, Singapore, Singapore
| | - Guan Huei Lee
- Division of Gastroenterology and Hepatology, National University Hospital, National University Health System, Singapore, Singapore
| | - Yock Young Dan
- Division of Gastroenterology and Hepatology, National University Hospital, National University Health System, Singapore, Singapore
| | - Yun-Shen Chan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Seng Gee Lim
- Division of Gastroenterology and Hepatology, National University Hospital, National University Health System, Singapore, Singapore
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore.,Experimental Fetal Medicine Group, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - K George Chandy
- Laboratory of Molecular Physiology, Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
109
|
Remmerie A, Martens L, Thoné T, Castoldi A, Seurinck R, Pavie B, Roels J, Vanneste B, De Prijck S, Vanhockerhout M, Binte Abdul Latib M, Devisscher L, Hoorens A, Bonnardel J, Vandamme N, Kremer A, Borghgraef P, Van Vlierberghe H, Lippens S, Pearce E, Saeys Y, Scott CL. Osteopontin Expression Identifies a Subset of Recruited Macrophages Distinct from Kupffer Cells in the Fatty Liver. Immunity 2020; 53:641-657.e14. [PMID: 32888418 PMCID: PMC7501731 DOI: 10.1016/j.immuni.2020.08.004] [Citation(s) in RCA: 364] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/14/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) represents a spectrum of disease states ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). Hepatic macrophages, specifically Kupffer cells (KCs), are suggested to play important roles in the pathogenesis of MAFLD through their activation, although the exact roles played by these cells remain unclear. Here, we demonstrated that KCs were reduced in MAFLD being replaced by macrophages originating from the bone marrow. Recruited macrophages existed in two subsets with distinct activation states, either closely resembling homeostatic KCs or lipid-associated macrophages (LAMs) from obese adipose tissue. Hepatic LAMs expressed Osteopontin, a biomarker for patients with NASH, linked with the development of fibrosis. Fitting with this, LAMs were found in regions of the liver with reduced numbers of KCs, characterized by increased Desmin expression. Together, our data highlight considerable heterogeneity within the macrophage pool and suggest a need for more specific macrophage targeting strategies in MAFLD. Resident KCs are lost with time in MAFLD Resident KCs are replaced by distinct subsets of bone marrow derived macrophages One subset of recruited macrophages termed hepatic LAMs, express Osteopontin Hepatic LAMs are found in zones characterized by increased Desmin expression
Collapse
Affiliation(s)
- Anneleen Remmerie
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Liesbet Martens
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Tinne Thoné
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Angela Castoldi
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ruth Seurinck
- Data Mining and Modelling for Biomedicine, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Faculty of Science, Ghent University, Ghent, Belgium
| | - Benjamin Pavie
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; VIB BioImaging Core, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Joris Roels
- Data Mining and Modelling for Biomedicine, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Faculty of Science, Ghent University, Ghent, Belgium
| | - Bavo Vanneste
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Sofie De Prijck
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Mathias Vanhockerhout
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Mushida Binte Abdul Latib
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Lindsey Devisscher
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Belgium
| | - Anne Hoorens
- Department of Pathology, Ghent University Hospital, Ghent 9000, Belgium
| | - Johnny Bonnardel
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Niels Vandamme
- Data Mining and Modelling for Biomedicine, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Faculty of Science, Ghent University, Ghent, Belgium
| | - Anna Kremer
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; VIB BioImaging Core, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Peter Borghgraef
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; VIB BioImaging Core, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Hans Van Vlierberghe
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent 9000, Belgium
| | - Saskia Lippens
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; VIB BioImaging Core, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Edward Pearce
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; University of Freiburg, Freiburg, Germany
| | - Yvan Saeys
- Data Mining and Modelling for Biomedicine, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Faculty of Science, Ghent University, Ghent, Belgium
| | - Charlotte L Scott
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium.
| |
Collapse
|
110
|
The role of neutrophils in innate immunity-driven nonalcoholic steatohepatitis: lessons learned and future promise. Hepatol Int 2020; 14:652-666. [PMID: 32880077 DOI: 10.1007/s12072-020-10081-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
The enrichment of innate immune cells and the enhanced inflammation represent the hallmark of non-alcoholic steatohepatitis (NASH), the advanced subtype with a significantly increased risk of progression to end-stage liver diseases within the spectrum of non-alcoholic fatty liver disease. Neutrophils are traditionally recognized as key components in the innate immune system to defend against pathogens. Recently, a growing body of evidence supports neutrophils as emerging key player in mediating the transition from steatosis to NASH, which is largely inspired by the histological findings in human liver biopsy indicating the enhanced infiltration of neutrophils as one of the key histological features of NASH. In this review, we discuss data regarding histological perspectives of hepatic infiltration of neutrophils in NASH. We also highlight the pathophysiological role of neutrophils in promoting metabolic inflammation in the liver through the release of a vast array of granule proteins, the interaction with other pro-inflammatory immune cells, and the formation of neutrophil extracellular traps. Neutrophil granule proteins possess pleiotropic effects on regulating neutrophil biology and functions. A variety of granule proteins (including lipocalin-2, myeloperoxidase, proteinase 3, neutrophil elastase, etc.) produced by neutrophils enhance liver metabolic inflammation, thereby promoting NASH progression by mediating neutrophil-macrophage interaction. Therapeutically, pharmacological inhibitors targeting neutrophil granule proteins hold promise to combat NASH. In addition, this article also summarizes potentials of neutrophils and its derived various granule proteins for the accurate, even non-invasive diagnosis of NASH.
Collapse
|
111
|
Kerr AG, Andersson DP, Rydén M, Arner P, Dahlman I. Long-term changes in adipose tissue gene expression following bariatric surgery. J Intern Med 2020; 288:219-233. [PMID: 32406570 DOI: 10.1111/joim.13066] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Patients undergoing bariatric surgery present long-term metabolic improvements and reduced type 2 diabetes risk, despite long-term weight regain. We hypothesized that part of these protective effects could be linked to altered gene expression in white adipose tissue (WAT). METHODS Transcriptomic profiling by gene microarray was performed in abdominal subcutaneous WAT from women before (n = 50) and two (n = 49) and five (n = 38) years after Roux-en-Y gastric bypass (RYGB) surgery as well as in 28 age-matched nonoperated women. RESULTS In the obese women, the average body weight decrease was 38 kg 2 years postsurgery followed by an 8 kg weight regain between 2 and 5 years. Most of the long-term changes in WAT gene expression occurred during the first 2 years. However, a subset of genes encoding proteins involved in inflammation displayed a continued decrease between baseline, 2 and 5 years, respectively; that is an expression pattern independent of body weight regain. Expression of 71 of these genes correlated with measurements of adipocyte morphology or serum adipokine levels. CONCLUSION The continuous improvement in WAT inflammatory gene expression, despite body weight relapse, may contribute to the sustained effects on adipose morphology after bariatric surgery.
Collapse
Affiliation(s)
- A G Kerr
- From the , Lipid Laboratory, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - D P Andersson
- From the , Lipid Laboratory, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - M Rydén
- From the , Lipid Laboratory, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - P Arner
- From the , Lipid Laboratory, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - I Dahlman
- From the , Lipid Laboratory, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
112
|
Boeckmans J, Natale A, Rombaut M, Buyl K, Cami B, De Boe V, Heymans A, Rogiers V, De Kock J, Vanhaecke T, Rodrigues RM. Human hepatic in vitro models reveal distinct anti-NASH potencies of PPAR agonists. Cell Biol Toxicol 2020; 37:293-311. [PMID: 32613381 DOI: 10.1007/s10565-020-09544-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is a highly prevalent, chronic liver disease characterized by hepatic lipid accumulation, inflammation, and concomitant fibrosis. Up to date, no anti-NASH drugs have been approved. In this study, we reproduced key NASH characteristics in vitro by exposing primary human hepatocytes (PHH), human skin stem cell-derived hepatic cells (hSKP-HPC), HepaRG and HepG2 cell lines, as well as LX-2 cells to multiple factors that play a role in the onset of NASH. The obtained in vitro disease models showed intracellular lipid accumulation, secretion of inflammatory chemokines, induced ATP content, apoptosis, and increased pro-fibrotic gene expression. These cell systems were then used to evaluate the anti-NASH properties of eight peroxisome proliferator-activated receptor (PPAR) agonists (bezafibrate, elafibranor, fenofibrate, lanifibranor, pemafibrate, pioglitazone, rosiglitazone, and saroglitazar). PPAR agonists differently attenuated lipid accumulation, inflammatory chemokine secretion, and pro-fibrotic gene expression.Based on the obtained readouts, a scoring system was developed to grade the anti-NASH potencies. The in vitro scoring system, based on a battery of the most performant models, namely PHH, hSKP-HPC, and LX-2 cultures, showed that elafibranor, followed by saroglitazar and pioglitazone, induced the strongest anti-NASH effects. These data corroborate available clinical data and show the relevance of these in vitro models for the preclinical investigation of anti-NASH compounds.
Collapse
Affiliation(s)
- Joost Boeckmans
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Alessandra Natale
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Matthias Rombaut
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Karolien Buyl
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Brent Cami
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Veerle De Boe
- Department of Urology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Anja Heymans
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Vera Rogiers
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Robim M Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
113
|
Van Herck MA, Vonghia L, Kwanten WJ, Julé Y, Vanwolleghem T, Ebo DG, Michielsen PP, De Man JG, Gama L, De Winter BY, Francque SM. Diet Reversal and Immune Modulation Show Key Role for Liver and Adipose Tissue T Cells in Murine Nonalcoholic Steatohepatitis. Cell Mol Gastroenterol Hepatol 2020; 10:467-490. [PMID: 32360637 PMCID: PMC7365964 DOI: 10.1016/j.jcmgh.2020.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Nonalcoholic steatohepatitis (NASH) is a multisystem condition, implicating liver and adipose tissue. Although the general involvement of the innate and adaptive immune system has been established, we aimed to define the exact role of the functionally diverse T-cell subsets in NASH pathogenesis through diet reversal and immunologic modulation. METHODS Multiple experimental set-ups were used in 8-week-old C57BL/6J mice, including prolonged high-fat high-fructose diet (HFHFD) feeding, diet reversal from HFHFD to control diet, and administration of anti-CD8a and anti-interleukin 17A antibodies. Plasma alanine aminotransferase, glucose, and lipid levels were determined. Liver and adipose tissue were assessed histologically. Cytotoxic T (Tc), regulatory T, T helper (Th) 1, and Th17 cells were characterized in liver and visceral adipose tissue (VAT) via flow cytometry and RNA analysis. RESULTS HFHFD feeding induced the metabolic syndrome and NASH, which coincided with an increase in hepatic Th17, VAT Tc, and VAT Th17 cells, and a decrease in VAT regulatory T cells. Although diet reversal induced a phenotypical metabolic and hepatic normalization, the observed T-cell disruptions persisted. Treatment with anti-CD8a antibodies decreased Tc cell numbers in all investigated tissues and induced a biochemical and histologic attenuation of the HFHFD-induced NASH. Conversely, anti-interleukin 17A antibodies decreased hepatic inflammation without affecting other features of NASH or the metabolic syndrome. CONCLUSIONS HFHFD feeding induces important immune disruptions in multiple hepatic and VAT T-cell subsets, refractory to diet reversal. In particular, VAT Tc cells are critically involved in NASH pathogenesis, linking adipose tissue inflammation to liver disease.
Collapse
Affiliation(s)
- Mikhaïl A Van Herck
- Translational Research in Immunology and Inflammation, Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, Antwerp, Belgium; Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium; Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium.
| | - Luisa Vonghia
- Translational Research in Immunology and Inflammation, Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, Antwerp, Belgium; Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium; Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium.
| | - Wilhelmus J Kwanten
- Translational Research in Immunology and Inflammation, Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, Antwerp, Belgium; Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium; Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | | | - Thomas Vanwolleghem
- Translational Research in Immunology and Inflammation, Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, Antwerp, Belgium; Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium; Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Didier G Ebo
- Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium; Translational Research in Immunology and Inflammation, Immunology-Allergology-Rheumatology, University of Antwerp, Antwerp, Belgium
| | - Peter P Michielsen
- Translational Research in Immunology and Inflammation, Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, Antwerp, Belgium; Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium; Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Joris G De Man
- Translational Research in Immunology and Inflammation, Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, Antwerp, Belgium; Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Lucio Gama
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Benedicte Y De Winter
- Translational Research in Immunology and Inflammation, Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, Antwerp, Belgium; Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Sven M Francque
- Translational Research in Immunology and Inflammation, Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, Antwerp, Belgium; Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium; Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
114
|
Abstract
HCC (hepatocellular carcinoma) is the second leading cause of cancer deaths worldwide, with several etiologic causes, mostly inflammation-associated. Different inflammatory responses in the liver can be triggered by different etiological agents. The inflammatory process can be resolved or be persistent, depending on the etiology and multiple other factors. Chronic inflammation, tissue remodeling, genetic alterations, and modifications in cellular signaling are considered to be key processes promoting immunosuppression. The progressive immunosuppression leads to the inactivation of anti-tumor immunity involved in HCC carcinogenesis and progression. Tumor cellular processes including DNA damage, necrosis, and ER (endoplasmic reticulum) stress can affect both immune-surveillance and cancer-promoting inflammation, supporting a mutual interdependence. Here, we review the current understanding of how chronic liver injury and inflammation is triggered and sustained, and how inflammation is linked to HCC. The identification of many hepatic microenvironmental inflammatory processes and their effector molecules, has resulted in extensive translational work and promising clinical trials of new immunomodulatory agents.
Collapse
|
115
|
Méndez-Sánchez N, Valencia-Rodríguez A, Coronel-Castillo C, Vera-Barajas A, Contreras-Carmona J, Ponciano-Rodríguez G, Zamora-Valdés D. The cellular pathways of liver fibrosis in non-alcoholic steatohepatitis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:400. [PMID: 32355844 PMCID: PMC7186641 DOI: 10.21037/atm.2020.02.184] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/29/2020] [Indexed: 12/12/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is considered the advanced stage of non-alcoholic fatty liver disease (NAFLD). It is characterized by liver steatosis, inflammation and different degrees of fibrosis. Although the exact mechanisms by which fatty liver progresses to NASH are still not well understood, innate and adaptive immune responses seem to be essential key regulators in the establishment, progression, and chronicity of these disease. Diet-induced lipid overload of parenchymal and non-parenchymal liver cells is considered the first step for the development of fatty liver with the consequent organelle dysfunction, cellular stress and liver injury. These will generate the production of pro-inflammatory cytokines, chemokines and damage-associated molecular patterns (DAMPs) that will upregulate the activation of Kupffer cells (KCs) and monocyte-derived macrophages (MMs) favoring the polarization of the tolerogenic environment of the liver to an immunogenic phenotype with the resulting transdifferentiation of hepatic stellate cells (HSCs) into myofibroblasts developing fibrosis. In the long run, dendritic cells (DCs) will activate CD4+ T cells polarizing into the pro-inflammatory lymphocytes Th1 and Th17 worsening the liver damage and inflammation. Therefore, the objective of this review is to discuss in a systematic way the mechanisms known so far of the immune and non-proper immune liver cells in the development and progression of NASH.
Collapse
Affiliation(s)
- Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
- Faculty of Medicine. National Autonomous University of Mexico, Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
116
|
Chen F, Zhou Y, Wu Z, Li Y, Zhou W, Wang Y. Integrated Analysis of Key Genes and Pathways Involved in Nonalcoholic Steatohepatitis Improvement After Roux-en-Y Gastric Bypass Surgery. Front Endocrinol (Lausanne) 2020; 11:611213. [PMID: 33603714 PMCID: PMC7884850 DOI: 10.3389/fendo.2020.611213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND As the incidence of nonalcoholic fatty liver disease (NAFLD) increases globally, nonalcoholic steatohepatitis (NASH) has become the second common cause of liver transplantation for liver diseases. Recent evidence shows that Roux-en-Y gastric bypass (RYGB) surgery obviously alleviates NASH. However, the mechanism underlying RYGB induced NASH improvement is still elusive. METHODS We obtained datasets, including hepatic gene expression data and histologic NASH status, at baseline and 1 year after RYGB surgery. Differentially expressed genes (DEGs) were identified comparing gene expression before and after RYGB surgery in each dataset. Common DEGs were obtained between both datasets and further subjected to functional and pathway enrichment analysis. Protein-protein interaction (PPI) network was constructed, and key modules and hub genes were also identified. RESULTS In the present study, GSE106737 and GSE83452 datasets were included. One hundred thirty common DEGs (29 up-regulated and 101 down-regulated) were identified between GSE106737 and GSE83452 datasets. KEGG analysis showed that mineral absorption, IL-17 signaling pathway, osteoclast differentiation, and TNF signaling pathway were significantly enriched. Based on the PPI network, IGF1, JUN, FOS, LDLR, TYROBP, DUSP1, CXCR4, ATF3, CXCL2, EGR1, SAA1, CTSS, and PPARA were identified as hub genes, and three functional modules were also extracted. CONCLUSION This study identifies the global gene expression change in the liver of NASH patients before and after RYGB surgery in a bioinformatic method. Our findings will contribute to the understanding of molecular biological changes underlying NASH improvement after RYGB surgery.
Collapse
Affiliation(s)
- Fu Chen
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yong Zhou
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhiyuan Wu
- Department of Colorectal and Hernia Minimally Invasive Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunze Li
- Department of Colorectal and Hernia Minimally Invasive Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wenlong Zhou
- Department of General Surgery, The Third Hospital of Shenyang Medical College, Shenyang, China
| | - Yong Wang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Yong Wang,
| |
Collapse
|
117
|
Blencowe M, Karunanayake T, Wier J, Hsu N, Yang X. Network Modeling Approaches and Applications to Unravelling Non-Alcoholic Fatty Liver Disease. Genes (Basel) 2019; 10:E966. [PMID: 31771247 PMCID: PMC6947017 DOI: 10.3390/genes10120966] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a progressive condition of the liver encompassing a range of pathologies including steatosis, non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma. Research into this disease is imperative due to its rapid growth in prevalence, economic burden, and current lack of FDA approved therapies. NAFLD involves a highly complex etiology that calls for multi-tissue multi-omics network approaches to uncover the pathogenic genes and processes, diagnostic biomarkers, and potential therapeutic strategies. In this review, we first present a basic overview of disease pathogenesis, risk factors, and remaining knowledge gaps, followed by discussions of the need and concepts of multi-tissue multi-omics approaches, various network methodologies and application examples in NAFLD research. We highlight the findings that have been uncovered thus far including novel biomarkers, genes, and biological pathways involved in different stages of NAFLD, molecular connections between NAFLD and its comorbidities, mechanisms underpinning sex differences, and druggable targets. Lastly, we outline the future directions of implementing network approaches to further improve our understanding of NAFLD in order to guide diagnosis and therapeutics.
Collapse
Affiliation(s)
- Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA; (M.B.); (T.K.); (J.W.); (N.H.)
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Tilan Karunanayake
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA; (M.B.); (T.K.); (J.W.); (N.H.)
| | - Julian Wier
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA; (M.B.); (T.K.); (J.W.); (N.H.)
| | - Neil Hsu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA; (M.B.); (T.K.); (J.W.); (N.H.)
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA; (M.B.); (T.K.); (J.W.); (N.H.)
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Interdepartmental Program of Bioinformatics, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| |
Collapse
|