101
|
Yang L, Angelova Volponi A, Pang Y, Sharpe PT. Mesenchymal Cell Community Effect in Whole Tooth Bioengineering. J Dent Res 2017; 96:186-191. [PMID: 27927885 DOI: 10.1177/0022034516682001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
In vitro expanded cell populations can contribute to bioengineered tooth formation but only as cells that respond to tooth-inductive signals. Since the success of whole tooth bioengineering is predicated on the availability of large numbers of cells, in vitro cell expansion of tooth-inducing cell populations is an essential requirement for further development of this approach. We set out to investigate if the failure of cultured mesenchyme cells to form bioengineered teeth might be rescued by the presence of uncultured cells. To test this, we deployed a cell-mixing approach to evaluate the contributions of cell populations to bioengineered tooth formation. Using genetically labeled cells, we are able to identify the formation of tooth pulp cells and odontoblasts in bioengineered teeth. We show that although cultured embryonic dental mesenchyme cells are unable to induce tooth formation, they can contribute to tooth induction and formation if combined with noncultured cells. Moreover, we show that teeth can form from cell mixtures that include embryonic cells and populations of postnatal dental pulp cells; however, these cells are unable to contribute to the formation of pulp cells or odontoblasts, and at ratios of 1:1, they inhibit tooth formation. These results indicate that although in vitro cell expansion of embryonic tooth mesenchymal cells renders them unable to induce tooth formation, they do not lose their ability to contribute to tooth formation and differentiate into odontoblasts. Postnatal pulp cells, however, lose all tooth-inducing and tooth-forming capacity following in vitro expansion, and at ratios >1:3 postnatal:embryonic cells, they inhibit the ability of embryonic dental mesenchyme cells to induce tooth formation.
Collapse
Affiliation(s)
- L Yang
- 1 Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, London, UK
| | - A Angelova Volponi
- 1 Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, London, UK
| | - Y Pang
- 1 Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, London, UK
| | - P T Sharpe
- 1 Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, London, UK
| |
Collapse
|
102
|
Mapping the milestones in tooth regeneration: Current trends and future research. Med J Armed Forces India 2017; 72:S24-S30. [PMID: 28050065 DOI: 10.1016/j.mjafi.2016.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/10/2016] [Indexed: 11/22/2022] Open
Abstract
Research into finding the perfect replacement for lost dentition is an ever-evolving and rapidly advancing subject involving many scientific disciplines. The present consensus appears to be that regeneration of tooth in morphological and functional form is the ideal answer to lost tooth replacement. This article traces the milestones in this elusive search for the ultimate tooth replacement. The various research developments are highlighted that are aimed at the final goal of being able to "re-grow a natural tooth". Whole tooth regeneration is technically challenging and further research into this field of complex molecular biology, embryology, biomaterials and stem cells is required to answer the unsolved questions. However, the milestones that have been crossed in the attempts at whole tooth regeneration have been remarkable and the future is quite promising. This article highlights the noteworthy research work that is being done in the field of whole tooth regeneration with a view to not only inform the clinicians of the significant developments but also inspire them to actively participate in this rapidly evolving field.
Collapse
|
103
|
Hosseini S, Jahangir S, Eslaminejad MB. Tooth tissue engineering. BIOMATERIALS FOR ORAL AND DENTAL TISSUE ENGINEERING 2017:467-501. [DOI: 10.1016/b978-0-08-100961-1.00027-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
104
|
Regenerative Endodontic Procedures: A Perspective from Stem Cell Niche Biology. J Endod 2017; 43:52-62. [DOI: 10.1016/j.joen.2016.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/19/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022]
|
105
|
Li Z, Chen G, Yang Y, Guo W, Tian W. Bcl11b regulates enamel matrix protein expression and dental epithelial cell differentiation during rat tooth development. Mol Med Rep 2016; 15:297-304. [PMID: 27959403 DOI: 10.3892/mmr.2016.6030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 09/27/2016] [Indexed: 11/05/2022] Open
Abstract
Amelogenesis, beginning with thickened epithelial aggregation and ending with highly mineralized enamel formation, is a process mediated by a complex signaling network that involves several molecules, including growth and transcription factors. During early tooth development, the transcription factor B‑cell CLL/lymphoma 11B (Bcl11b) participates in dental epithelial cell proliferation and differentiation. However, whether it affects the postnatal regulation of enamel matrix protein expression and ameloblast differentiation remains unclear. To clarify the role of Bcl11b in enamel development, the present study initially detected the protein expression levels of Bcl11b during tooth development using immunohistochemistry, from the embryonic lamina stage to the postnatal period, and demonstrated that Bcl11b is predominantly restricted to cervical loop epithelial cells at the cap and bell stages, whereas expression is reduced in ameloblasts. Notably, the expression pattern of Bcl11b during tooth development differed between rats and mice. Knockdown of Bcl11b by specific small interfering RNA attenuated the expression of enamel‑associated genes, including amelogenin, X‑linked (Amelx), ameloblastin (Ambn), enamelin (Enam), kallikrein related peptidase 4 (Klk4), matrix metallopeptidase 20 and Msh homeobox 2 (Msx2). Chromatin immunoprecipitation assay verified that Msx2 was a transcriptional target of Bcl11b. However, overexpression of Msx2 resulted in downregulation of enamel‑associated genes, including Ambn, Amelx, Enam and Klk4. The present study suggested that Bcl11b serves a potentially important role in the regulation of ameloblast differentiation and enamel matrix protein expression. In addition, a complex feedback regulatory network may exist between Bcl11b and Msx2.
Collapse
Affiliation(s)
- Ziyue Li
- National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Guoqing Chen
- National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yaling Yang
- National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Weihua Guo
- National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Weidong Tian
- National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
106
|
Fine tuning of Rac1 and RhoA alters cuspal shapes by remolding the cellular geometry. Sci Rep 2016; 6:37828. [PMID: 27892530 PMCID: PMC5124948 DOI: 10.1038/srep37828] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023] Open
Abstract
The anatomic and functional combinations of cusps and lophs (ridges) define the tooth shape of rodent molars, which distinguishes species. The species-specific cusp patterns result from the spatiotemporal induction of enamel knots (EKs), which require precisely controlled cellular behavior to control the epithelial invagination. Despite the well-defined roles of EK in cusp patterning, the determinants of the ultimate cuspal shapes and involvement of epithelial cellular geometry are unknown. Using two typical tooth patterns, the lophodont in gerbils and the bunodont in mice, we showed that the cuspal shape is determined by the dental epithelium at the cap stage, whereas the cellular geometry in the inner dental epithelium (IDE) is correlated with the cuspal shape. Intriguingly, fine tuning Rac1 and RhoA interconvert cuspal shapes between two species by remolding the cellular geometry. Either inhibition of Rac1 or ectopic expression of RhoA could region-distinctively change the columnar shape of IDE cells in gerbils to drive invagination to produce cusps. Conversely, RhoA reduction in mice inhibited invagination and developed lophs. Furthermore, we found that Rac1 and RhoA modulate the choices of cuspal shape by coordinating adhesion junctions, actin distribution, and fibronectin localization to drive IDE invagination.
Collapse
|
107
|
Nascimento MAB, Nonaka CFW, Barboza CAG, Freitas RDA, Pereira Pinto L, Souza LBD. Immunoexpression of BMP-2 and BMP-4 and their receptors, BMPR-IA and BMPR-II, in ameloblastomas and adenomatoid odontogenic tumors. Arch Oral Biol 2016; 73:223-229. [PMID: 27780042 DOI: 10.1016/j.archoralbio.2016.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 09/23/2016] [Accepted: 10/17/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The present study evaluated the immunohistochemical expression of BMP-2 and BMP-4 and of their receptors (BMPR-IA and BMPR-II) in solid ameloblastoma (SA), unicystic ameloblastoma (UA) and adenomatoid odontogenic tumor (AOT) in order to obtain a better understanding of their role in the development and biological behavior of these tumors. DESIGN This study analyzed these proteins in 30 cases of SA, 10 cases of UA, and 30 cases of AOT. Immunoexpression was evaluated in the parenchyma and stroma by attributing the following scores: 0, no stained cells; 1, ≤10%; 2, >10% and ≤25%; 3, >25% and ≤50%; 4, >50% and ≤75%.; 5, >75% stained cells. RESULTS In SAs, positive correlations were observed between the stromal and parenchymal expression of BMP-2 (p<0.001) and between the stromal expression of BMP-2 and BMP-4 (p=0.020), as well as between the stromal expression of BMPR-II and BMP-4 (p=0.001) and the stromal and parenchymal expression of BMPR-II (p<0.001). In UAs, correlations were detected between the stromal and parenchymal expression of BMP-4 (p=0.035) and between the stromal expression of BMP-4 and BMPR-IA (p=0.022). In AOTs, analysis of immunoexpression in the parenchyma revealed positive correlations between all proteins. CONCLUSION BMPs and their receptors play an important role in the differentiation and development of ameloblastomas and AOTs, but may not explain the different biological behaviors of these lesions. The positive correlation observed in AOTs might be related to the formation of mineralized material in this tumor.
Collapse
Affiliation(s)
| | | | | | | | - Leão Pereira Pinto
- Postgraduate Program in Oral Pathology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Lélia Batista de Souza
- Postgraduate Program in Oral Pathology, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
108
|
Tsai S, Abdelhamid A, Khan MK, Elkarargy A, Widelitz RB, Chuong CM, Wu P. The Molecular Circuit Regulating Tooth Development in Crocodilians. J Dent Res 2016; 95:1501-1510. [PMID: 27872325 DOI: 10.1177/0022034516667724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Alligators have robust regenerative potential for tooth renewal. In contrast, extant mammals can either renew their teeth once (diphyodont dentition, as found in humans) or not at all (monophyodont dentition, present in mice). Previously, the authors used multiple mitotic labeling to map putative stem cells in alligator dental laminae, which contain quiescent odontogenic progenitors. The authors demonstrated that alligator tooth cycle initiation is related to β-catenin/Wnt pathway activity in the dental lamina bulge. However, the molecular circuitry underlying the developmental progression of polyphyodont teeth remains elusive. Here, the authors used transcriptomic analyses to examine the additional molecular pathways related to the process of alligator tooth development. The authors collected juvenile alligator dental laminae at different developmental stages and performed RNA-seq. This data shows that Wnt, bone morphogenetic protein (BMP), and fibroblast growth factor (FGF) pathways are activated at the transition from pre-initiation stage (bud) to initiation stage (cap). Intriguingly, the activation of Wnt ligands, receptors and co-activators accompanies the inactivation of Wnt antagonists. In addition, the authors identified the molecular circuitry at different stages of tooth development. The authors conclude that multiple pathways are associated with specific stages of tooth development in the alligator. This data shows that Wnt pathway activation may play the most important role in the initiation of tooth development. This result may offer insight into ways to modulate the genetic controls involved in mammalian tooth renewal.
Collapse
Affiliation(s)
- S Tsai
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.,Graduate School of Clinical Dentistry, National Taiwan University, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - A Abdelhamid
- Qassim College of Dentistry, Qassim University, Saudi Arabia
| | - M K Khan
- Qassim College of Dentistry, Qassim University, Saudi Arabia
| | - A Elkarargy
- Qassim College of Dentistry, Qassim University, Saudi Arabia
| | - R B Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - C M Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.,Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - P Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
109
|
Jia S, Kwon HJE, Lan Y, Zhou J, Liu H, Jiang R. Bmp4-Msx1 signaling and Osr2 control tooth organogenesis through antagonistic regulation of secreted Wnt antagonists. Dev Biol 2016; 420:110-119. [PMID: 27713059 DOI: 10.1016/j.ydbio.2016.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/01/2016] [Accepted: 10/02/2016] [Indexed: 01/08/2023]
Abstract
Mutations in MSX1 cause craniofacial developmental defects, including tooth agenesis, in humans and mice. Previous studies suggest that Msx1 activates Bmp4 expression in the developing tooth mesenchyme to drive early tooth organogenesis. Whereas Msx1-/- mice exhibit developmental arrest of all tooth germs at the bud stage, mice with neural crest-specific inactivation of Bmp4 (Bmp4ncko/ncko), which lack Bmp4 expression in the developing tooth mesenchyme, showed developmental arrest of only mandibular molars. We recently demonstrated that deletion of Osr2, which encodes a zinc finger transcription factor expressed in a lingual-to-buccal gradient in the developing tooth bud mesenchyme, rescued molar tooth morphogenesis in both Msx1-/- and Bmp4ncko/ncko mice. In this study, through RNA-seq analyses of the developing tooth mesenchyme in mutant and wildtype embryos, we found that Msx1 and Osr2 have opposite effects on expression of several secreted Wnt antagonists in the tooth bud mesenchyme. Remarkably, both Dkk2 and Sfrp2 exhibit Osr2-dependent preferential expression on the lingual side of the tooth bud mesenchyme and expression of both genes was up-regulated and expanded into the tooth bud mesenchyme in Msx1-/- and Bmp4ncko/ncko mutant embryos. We show that pharmacological activation of canonical Wnt signaling by either lithium chloride (LiCl) treatment or by inhibition of DKKs in utero was sufficient to rescue mandibular molar tooth morphogenesis in Bmp4ncko/ncko mice. Furthermore, whereas inhibition of DKKs or inactivation of Sfrp2 alone was insufficient to rescue tooth morphogenesis in Msx1-/- mice, pharmacological inhibition of DKKs in combination with genetic inactivation of Sfrp2 and Sfrp3 rescued maxillary molar morphogenesis in Msx1-/- mice. Together, these data reveal a novel mechanism that the Bmp4-Msx1 pathway and Osr2 control tooth organogenesis through antagonistic regulation of expression of secreted Wnt antagonists.
Collapse
Affiliation(s)
- Shihai Jia
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Hyuk-Jae Edward Kwon
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jing Zhou
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Han Liu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
110
|
Comparison of Stemness and Gene Expression between Gingiva and Dental Follicles in Children. Stem Cells Int 2016; 2016:8596520. [PMID: 27656218 PMCID: PMC5021492 DOI: 10.1155/2016/8596520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/10/2016] [Indexed: 01/09/2023] Open
Abstract
The aim of this study was to compare the differential gene expression and stemness in the human gingiva and dental follicles (DFs) according to their biological characteristics. Gingiva (n = 9) and DFs (n = 9) were collected from 18 children. Comparative gene expression profiles were collected using cDNA microarray. The expression of development, chemotaxis, mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSs) related genes was assessed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Histological analysis was performed using hematoxylin-eosin and immunohistochemical staining. Gingiva had greater expression of genes related to keratinization, ectodermal development, and chemotaxis whereas DFs exhibited higher expression levels of genes related to tooth and embryo development. qRT-PCR analysis showed that the expression levels of iPSc factors including SOX2, KLF4, and C-MYC were 58.5 ± 26.3, 12.4 ± 3.5, and 12.2 ± 1.9 times higher in gingiva and VCAM1 (CD146) and ALCAM (CD166) were 33.5 ± 6.9 and 4.3 ± 0.8 times higher in DFs. Genes related to MSCs markers including CD13, CD34, CD73, CD90, and CD105 were expressed at higher levels in DFs. The results of qRT-PCR and IHC staining supported the microarray analysis results. Interestingly, this study demonstrated transcription factors of iPS cells were expressed at higher levels in the gingiva. Given the minimal surgical discomfort and simple accessibility, gingiva is a good candidate stem cell source in regenerative dentistry.
Collapse
|
111
|
Salvi A, Giacopuzzi E, Bardellini E, Amadori F, Ferrari L, De Petro G, Borsani G, Majorana A. Mutation analysis by direct and whole exome sequencing in familial and sporadic tooth agenesis. Int J Mol Med 2016; 38:1338-1348. [PMID: 27665865 PMCID: PMC5065298 DOI: 10.3892/ijmm.2016.2742] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/25/2016] [Indexed: 12/30/2022] Open
Abstract
Dental agenesis is one of the most common congenital craniofacial abnormalities. Dental agenesis can be classified, relative to the number of missing teeth (excluding third molars), as hypodontia (1 to 5 missing teeth), oligodontia (6 or more missing teeth), or anodontia (lack of all teeth). Tooth agenesis may occur either in association with genetic syndromes, based on the presence of other inherited abnormalities, or as a non-syndromic trait, with both familiar and sporadic cases reported. In this study, we enrolled 16 individuals affected by tooth agenesis, prevalently hypodontia, and we carried out direct Sanger sequencing of paired box 9 (PAX9) and Msh homeobox 1 (MSX1) genes in 9 subjects. Since no mutations were identified, we performed whole exome sequencing (WES) in the members of 5 families to identify causative gene mutations either novel or previously described. Three individuals carried a known homozygous disease mutation in the Wnt family member 10A (WNT10A) gene (rs121908120). Interestingly, two of these individuals were siblings and also carried a heterozygous functional variant in EDAR-associated death domain (EDARADD) (rs114632254), another disease causing gene, generating a combination of genetic variants never described until now. The analysis of exome sequencing data in the members of other 3 families highlighted new candidate genes potentially involved in tooth agenesis and considered suitable for future studies. Overall, our study confirmed the major role played by WNT10A in tooth agenesis and the genetic heterogeneity of this disease. Moreover, as more genes are shown to be involved in tooth agenesis, WES analysis may be an effective approach to search for genetic variants in familiar or sporadic tooth agenesis, at least in more severe clinical manifestations.
Collapse
Affiliation(s)
- Alessandro Salvi
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, I-25123 Brescia, Italy
| | - Edoardo Giacopuzzi
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, I-25123 Brescia, Italy
| | - Elena Bardellini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Dental Clinic, University of Brescia, I-25123 Brescia, Italy
| | - Francesca Amadori
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Dental Clinic, University of Brescia, I-25123 Brescia, Italy
| | - Lia Ferrari
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, I-25123 Brescia, Italy
| | - Giuseppina De Petro
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, I-25123 Brescia, Italy
| | - Giuseppe Borsani
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, I-25123 Brescia, Italy
| | - Alessandra Majorana
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Dental Clinic, University of Brescia, I-25123 Brescia, Italy
| |
Collapse
|
112
|
Machado JP, Philip S, Maldonado E, O'Brien SJ, Johnson WE, Antunes A. Positive Selection Linked with Generation of Novel Mammalian Dentition Patterns. Genome Biol Evol 2016; 8:2748-59. [PMID: 27613398 PMCID: PMC5630915 DOI: 10.1093/gbe/evw200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A diverse group of genes are involved in the tooth development of mammals. Several studies, focused mainly on mice and rats, have provided a detailed depiction of the processes coordinating tooth formation and shape. Here we surveyed 236 tooth-associated genes in 39 mammalian genomes and tested for signatures of selection to assess patterns of molecular adaptation in genes regulating mammalian dentition. Of the 236 genes, 31 (∼13.1%) showed strong signatures of positive selection that may be responsible for the phenotypic diversity observed in mammalian dentition. Mammalian-specific tooth-associated genes had accelerated mutation rates compared with older genes found across all vertebrates. More recently evolved genes had fewer interactions (either genetic or physical), were associated with fewer Gene Ontology terms and had faster evolutionary rates compared with older genes. The introns of these positively selected genes also exhibited accelerated evolutionary rates, which may reflect additional adaptive pressure in the intronic regions that are associated with regulatory processes that influence tooth-gene networks. The positively selected genes were mainly involved in processes like mineralization and structural organization of tooth specific tissues such as enamel and dentin. Of the 236 analyzed genes, 12 mammalian-specific genes (younger genes) provided insights on diversification of mammalian teeth as they have higher evolutionary rates and exhibit different expression profiles compared with older genes. Our results suggest that the evolution and development of mammalian dentition occurred in part through positive selection acting on genes that previously had other functions.
Collapse
Affiliation(s)
- João Paulo Machado
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - Siby Philip
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Emanuel Maldonado
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia Oceanographic Center, Nova Southeastern University, Ft Lauderdale
| | - Warren E Johnson
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, Virginia, USA
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
113
|
Smith EE, Yelick PC. Progress in Bioengineered Whole Tooth Research: From Bench to Dental Patient Chair. ACTA ACUST UNITED AC 2016; 3:302-308. [PMID: 28255531 DOI: 10.1007/s40496-016-0110-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tooth loss is a significant health issue that affects the physiological and social aspects of everyday life. Missing teeth impair simple tasks of chewing and speaking, and can also contribute to reduced self-confidence. An emerging and exciting area of regenerative medicine based dental research focuses on the formation of bioengineered whole tooth replacement therapies that can provide both the function and sensory responsiveness of natural teeth. This area of research aims to enhance the quality of dental and oral health for those suffering from tooth loss. Current approaches use a combination of dental progenitor cells, scaffolds and growth factors to create biologically based replacement teeth to serve as improved alternatives to currently used artificial dental prosthetics. This article is an overview of current progress, challenges, and future clinical applications of bioengineered whole teeth.
Collapse
Affiliation(s)
- Elizabeth E Smith
- Department of Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School Medicine, Department of Orthodontics, Tufts University School of Dental Medicine
| | - Pamela C Yelick
- Director, Division of Craniofacial and Molecular Genetics, Professor, Department of Orthodontics, Tufts University School of Dental Medicine, Department of Biomedical Engineering, Tufts University, Department of Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences Tufts University School of Medicine, 136 Harrison Avenue, M824, Boston MA 02111
| |
Collapse
|
114
|
Innovative Dental Stem Cell-Based Research Approaches: The Future of Dentistry. Stem Cells Int 2016; 2016:7231038. [PMID: 27648076 PMCID: PMC5018320 DOI: 10.1155/2016/7231038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/15/2016] [Accepted: 07/12/2016] [Indexed: 12/30/2022] Open
Abstract
Over the past decade, the dental field has benefited from recent findings in stem cell biology and tissue engineering that led to the elaboration of novel ideas and concepts for the regeneration of dental tissues or entire new teeth. In particular, stem cell-based regenerative approaches are extremely promising since they aim at the full restoration of lost or damaged tissues, ensuring thus their functionality. These therapeutic approaches are already applied with success in clinics for the regeneration of other organs and consist of manipulation of stem cells and their administration to patients. Stem cells have the potential to self-renew and to give rise to a variety of cell types that ensure tissue repair and regeneration throughout life. During the last decades, several adult stem cell populations have been isolated from dental and periodontal tissues, characterized, and tested for their potential applications in regenerative dentistry. Here we briefly present the various stem cell-based treatment approaches and strategies that could be translated in dental practice and revolutionize dentistry.
Collapse
|
115
|
Yadav P, Tahir M, Yadav H, Sureka R, Garg A. Test Tube Tooth: The Next Big Thing. J Clin Diagn Res 2016; 10:ZE01-3. [PMID: 27504430 DOI: 10.7860/jcdr/2016/16809.7901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/26/2015] [Indexed: 11/24/2022]
Abstract
Unlike some vertebrates and fishes, humans do not have the capacity for tooth regeneration after the loss of permanent teeth. Although artificial replacement with removable dentures, fixed prosthesis and implants is possible through advances in the field of prosthetic dentistry, it would be ideal to recreate a third set of natural teeth to replace lost dentition. For many years now, researchers in the field of tissue engineering have been trying to bioengineer dental tissues as well as whole teeth. In order to attain a whole tooth through dental engineering, that has the same or nearly same biological, mechanical and physical properties of a natural tooth, it's necessary to deal with all the cells and tissues which are concerned with the formation, maintenance and repair of the tooth. In this article we review the steps involved in odontogenesis or organogenesis of a tooth and progress in the bioengineering of a whole tooth.
Collapse
Affiliation(s)
- Preeti Yadav
- Prosthodontics, Crown & Bridge & Implantology, Private Practitioner , Gurgaon, Haryana, India
| | - Mohammed Tahir
- Assistant Professor, Department of Prosthodontics, Crown & Bridge & Implantology, Government Dental College & Hospital , Jaipur, Rajasthan, India
| | - Harsh Yadav
- Oral and Maxillofacial Surgery, Private Practitioner, Gurgaon, Haryana, India
| | - Rakshit Sureka
- Senior Lecturer, Department of Prosthodontics, Crown & Bridge & Implantology, Government Dental College & Hospital , Jaipur, Rajasthan, India
| | - Aarti Garg
- Senior Lecturer, Department of Pedodontics and Preventive Dentistry, Jaipur Dental College & Hospital , Jaipur, Rajasthan, India
| |
Collapse
|
116
|
Kang KJ, Ju SM, Jang YJ, Kim J. Indirect co-culture of stem cells from human exfoliated deciduous teeth and oral cells in a microfluidic platform. Tissue Eng Regen Med 2016; 13:428-436. [PMID: 30603424 DOI: 10.1007/s13770-016-0005-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/12/2016] [Accepted: 02/18/2016] [Indexed: 02/07/2023] Open
Abstract
Oral epithelial-mesenchymal interactions play a key role in tooth development and assist differentiation of dental pulp. Many epithelial and mesenchymal factors in the microenvironment influence dental pulp stem cells to differentiate and regenerate. To investigate the interaction between oral cells during differentiation, we designed a microfluidic device system for indirect co-culture. The system has several advantages, such as consumption of low reagent volume, high-throughput treatment of reagents, and faster mineralization analysis. In this study, stem cells from human exfoliated deciduous teeth were treated with media cultured with human gingival fibroblasts or periodontal ligament stem cells. When human exfoliated deciduous teeth was incubated in media cultured in human gingival fibroblasts and human periodontal ligament stem cells under the concentration gradient constructed by the microfluidic system, no remarkable change in human exfoliated deciduous teeth mineralization efficiency was detected. However, osteoblast gene expression levels in human exfoliated deciduous teeth incubated with human gingival fibroblasts media decreased compared to those in human exfoliated deciduous teeth treated with human periodontal ligament stem cells media, suggesting that indirect co-culture of human exfoliated deciduous with human gingival fibroblasts may inhibit osteogenic cytodifferentiation. This microfluidic culture device allows a co-culture system set-up for sequential treatment with co-culture media and differentiation additives and facilitated the mineralization assay in a micro-culture scale.
Collapse
Affiliation(s)
- Kyung-Jung Kang
- 1Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
| | - Seon Min Ju
- 1Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
| | - Young-Joo Jang
- 1Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
- 2Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116 Korea
| | - Jeongyun Kim
- 1Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
- 2Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116 Korea
| |
Collapse
|
117
|
Lu Y, Qian Y, Zhang J, Gong M, Wang Y, Gu N, Ma L, Xu M, Ma J, Zhang W, Pan Y, Wang L. Genetic Variants of BMP2 and Their Association with the Risk of Non-Syndromic Tooth Agenesis. PLoS One 2016; 11:e0158273. [PMID: 27362534 PMCID: PMC4928851 DOI: 10.1371/journal.pone.0158273] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/13/2016] [Indexed: 12/16/2022] Open
Abstract
Non-syndromic tooth agenesis (or non-syndromic congenitally missing tooth) is one of the most common congenital defects in humans affecting the craniofacial function and appearance. Single nucleotide polymorphisms (SNPs) have been associated with an individual’s susceptibility to these anomalies. The aim of the present study was therefore to investigate the roles of the potentially functional SNPs of BMP2 in the occurrence of tooth agenesis. Overall, four potentially functional SNPs of BMP2 (rs15705, rs235768, rs235769 and rs3178250) were selected, and their associations with the susceptibility of tooth agenesis were evaluated in a case-control study of 335 non-syndromic tooth agenesis cases and 444 healthy controls. The SNPs rs15705 and rs3178250 were found to be associated with an individual’s risk of tooth agenesis (P = 0.046 and P = 0.039, respectively). Both SNPs showed an increased risk of mandibular incisor agenesis (rs15705, AA/AC vs. CC = 1.58, 95% CI = [1.06–2.34], P = 0.024; rs3178250, TT/TC vs. CC = 1.60, 95% CI = [1.08–2.37], P = 0.020). Bioinformatics analysis indicated that these two SNPs located at the 3’-untranslated region (3’-UTR) of BMP2 might alter the binding ability of miR-1273d and miR-4639-5p, respectively, which was confirmed by luciferase activity assays in the 293A and COS7 cell lines (P < 0.001 in 293A and P < 0.01 in COS7 for miR-1273d; and P < 0.001 in both cells for miR-4639-5p). Furthermore, BMP2 mRNA expression decreased after transfecting either miR-1273d or miR-4639-5p into these two cell lines (P < 0.01 in 293A and P < 0.001 in COS7 for miR-1273d, and P < 0.01 in both cell lines for miR-4639-5p). Taken together, our findings indicate that rs15705 and rs317250 are associated with the susceptibility of non-syndromic tooth agenesis by possibly affecting miRNAs and mRNA interaction.
Collapse
Affiliation(s)
- Yun Lu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, College of Stomatology, Dalian Medical University, Dalian, China
| | - Yajing Qian
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jinglu Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Orofacial Pain and TMD Research Unit, Institute of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Miao Gong
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yuting Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ning Gu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Lan Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Min Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Weibing Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yongchu Pan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- * E-mail: (LW); (YCP)
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- * E-mail: (LW); (YCP)
| |
Collapse
|
118
|
Structural and Morphometric Comparison of Lower Incisors in PACAP-Deficient and Wild-Type Mice. J Mol Neurosci 2016; 59:300-8. [PMID: 27154515 DOI: 10.1007/s12031-016-0765-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with widespread distribution. PACAP plays an important role in the development of the nervous system, it has a trophic and protective effect, and it is also implicated in the regulation of various physiological functions. Teeth are originated from the mesenchyme of the neural crest and the ectoderm of the first branchial arch, suggesting similarities with the development of the nervous system. Earlier PACAP-immunoreactive fibers have been found in the odontoblastic and subodontoblastic layers of the dental pulp. Our previous examinations have shown that PACAP deficiency causes alterations in the morphology and structure of the developing molars of 7-day-old mice. In our present study, morphometric and structural comparison was performed on the incisors of 1-year-old wild-type and PACAP-deficient mice. Hard tissue density measurements and morphometric comparison were carried out on the mandibles and the lower incisors with micro-CT. For structural examination, Raman microscopy was applied on frontal thin sections of the mandible. With micro-CT morphometrical measurements, the size of the incisors and the relative volume of the pulp to dentin were significantly smaller in the PACAP-deficient group compared to the wild-type animals. The density of calcium hydroxyapatite in the dentin was reduced in the PACAP-deficient mice. No structural differences could be observed in the enamel with Raman microscopy. Significant differences were found in the dentin of PACAP-deficient mice with Raman microscopy, where increased carbonate/phosphate ratio indicates higher intracrystalline disordering. The evaluation of amide III bands in the dentin revealed higher structural diversity in wild-type mice. Based upon our present and previous results, it is obvious that PACAP plays an important role in tooth development with the regulation of morphogenesis, dentin, and enamel mineralization. Further studies are required to clarify the molecular background of the effects of PACAP on tooth development.
Collapse
|
119
|
Nicolescu MI. Regenerative Perspective in Modern Dentistry. Dent J (Basel) 2016; 4:dj4020010. [PMID: 29563452 PMCID: PMC5851266 DOI: 10.3390/dj4020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/16/2016] [Accepted: 04/21/2016] [Indexed: 12/02/2022] Open
Abstract
This review aims to trace the contour lines of regenerative dentistry, to offer an introductory overview on this emerging field to both dental students and practitioners. The crystallized depiction of the concept is a translational approach, connecting dental academics to scientific research and clinical utility. Therefore, this review begins by presenting the general features of regenerative medicine, and then gradually introduces the specific aspects of major dental subdomains, highlighting the progress achieved during the last years by scientific research and, in some cases, which has already been translated into clinical results. The distinct characteristics of stem cells and their microenvironment, together with their diversity in the oral cavity, are put into the context of research and clinical use. Examples of regenerative studies regarding endodontic and periodontal compartments, as well as hard (alveolar bone) and soft (salivary glands) related tissues, are presented to make the reader further acquainted with the topic. Instead of providing a conclusion, we will emphasize the importance for all dental community members, from young students to experienced dentists, of an early awareness rising regarding biomedical research progress in general and regenerative dentistry in particular.
Collapse
Affiliation(s)
- Mihnea Ioan Nicolescu
- Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Histology and Cytology Division, Bucharest, 8 Eroilor Sanitari Blvd., RO-050474, Romania.
- Victor Babeș National Institute of Pathology, Radiobiology Laboratory, Bucharest, Romania.
| |
Collapse
|
120
|
Zheng Y, Cai J, Hutchins AP, Jia L, Liu P, Yang D, Chen S, Ge L, Pei D, Wei S. Remission for Loss of Odontogenic Potential in a New Micromilieu In Vitro. PLoS One 2016; 11:e0152893. [PMID: 27050091 PMCID: PMC4822848 DOI: 10.1371/journal.pone.0152893] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/21/2016] [Indexed: 12/29/2022] Open
Abstract
During embryonic organogenesis, the odontogenic potential resides in dental mesenchyme from the bud stage until birth. Mouse dental mesenchymal cells (mDMCs) isolated from the inductive dental mesenchyme of developing molars are frequently used in the context of tooth development and regeneration. We wondered if and how the odontogenic potential could be retained when mDMCs were cultured in vitro. In the present study, we undertook to test the odontogenic potential of cultured mDMCs and attempted to maintain the potential during culturing. We found that cultured mDMCs could retain the odontogenic potential for 24 h with a ratio of 60% for tooth formation, but mDMCs were incapable of supporting tooth formation after more than 24 h in culture. This loss of odontogenic potential was accompanied by widespread transcriptomic alteration and, specifically, the downregulation of some dental mesenchyme-specific genes, such as Pax9, Msx1, and Pdgfrα. To prolong the odontogenic potential of mDMCs in vitro, we then cultured mDMCs in a serum-free medium with Knockout Serum Replacement (KSR) and growth factors (fibroblastic growth factor 2 and epidermal growth factor). In this new micromilieu, mDMCs could maintain the odontogenic potential for 48 h with tooth formation ratio of 50%. Moreover, mDMCs cultured in KSR-supplemented medium gave rise to tooth-like structures when recombined with non-dental second-arch epithelium. Among the supplements, KSR is essential for the survival and adhesion of mDMCs, and both Egf and Fgf2 induced the expression of certain dental mesenchyme-related genes. Taken together, our results demonstrated that the transcriptomic changes responded to the alteration of odontogenic potential in cultured mDMCs and a new micromilieu partly retained this potential in vitro, providing insight into the long-term maintenance of odontogenic potential in mDMCs.
Collapse
Affiliation(s)
- Yunfei Zheng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
- Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, P.R. China
| | - Jinglei Cai
- Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, P.R. China
| | - Andrew Paul Hutchins
- Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, P.R. China
| | - Lingfei Jia
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Pengfei Liu
- Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, P.R. China
| | - Dandan Yang
- Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, P.R. China
| | - Shubin Chen
- Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, P.R. China
| | - Lihong Ge
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Duanqing Pei
- Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, P.R. China
- * E-mail: (DQP); (SCW)
| | - Shicheng Wei
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
- * E-mail: (DQP); (SCW)
| |
Collapse
|
121
|
Papp T, Polyak A, Papp K, Meszar Z, Zakany R, Meszar-Katona E, Tünde PT, Ham CH, Felszeghy S. Modification of tooth development by heat shock protein 60. Int J Oral Sci 2016; 8:24-31. [PMID: 27025262 PMCID: PMC4822183 DOI: 10.1038/ijos.2015.53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2015] [Indexed: 12/13/2022] Open
Abstract
Although several heat shock proteins have been investigated in relation to tooth development, no available information is available about the spatial and temporal expression pattern of heat shock protein 60 (Hsp 60). To characterize Hsp 60 expression in the structures of the developing tooth germ, we used Western blotting, immunohistochemistry and in situ hybridization. Hsp 60 was present in high amounts in the inner and outer enamel epithelia, enamel knot (EK) and stratum intermedium (SI). Hsp 60 also appeared in odontoblasts beginning in the bell stage. To obtain data on the possible effect of Hsp 60 on isolated lower incisors from mice, we performed in vitro culturing. To investigate the effect of exogenous Hsp 60 on the cell cycle during culturing, we used the 5-bromo-2-deoxyuridine (BrdU) incorporation test on dental cells. Exogenously administered Hsp 60 caused bluntness at the apical part of the 16.5-day-old tooth germs, but it did not influence the proliferation rate of dental cells. We identified the expression of Hsp 60 in the developing tooth germ, which was present in high concentrations in the inner and outer enamel epithelia, EK, SI and odontoblasts. High concentration of exogenous Hsp 60 can cause abnormal morphology of the tooth germ, but it did not influence the proliferation rate of the dental cells. Our results suggest that increased levels of Hsp 60 may cause abnormalities in the morphological development of the tooth germ and support the data on the significance of Hsp during the developmental processes.
Collapse
Affiliation(s)
- Tamas Papp
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Angela Polyak
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztina Papp
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Meszar
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Roza Zakany
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eva Meszar-Katona
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Palne Terdik Tünde
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Chang Hwa Ham
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Scoliosis Research Institute, Korea University Guro Hospital, Seoul, Korea
| | - Szabolcs Felszeghy
- Department of Oral Anatomy, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
122
|
Mounir MMF, Matar MA, Lei Y, Snead ML. Recombinant Amelogenin Protein Induces Apical Closure and Pulp Regeneration in Open-apex, Nonvital Permanent Canine Teeth. J Endod 2016; 42:402-12. [PMID: 26709200 PMCID: PMC4766029 DOI: 10.1016/j.joen.2015.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 11/02/2015] [Accepted: 11/05/2015] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Recombinant DNA-produced amelogenin protein was compared with calcium hydroxide in a study of immature apex closure conducted in 24 young mongrel dogs. METHODS Root canals of maxillary and mandibular right premolars (n = 240) were instrumented and left open for 14 days. Canals were cleansed, irrigated, and split equally for treatment with recombinant mouse amelogenin (n = 120) or calcium hydroxide (n = 120). RESULTS After 1, 3, and 6 months, the animals were sacrificed and the treated teeth recovered for histologic assessment and immunodetection of protein markers associated with odontogenic cells. After 1 month, amelogenin-treated canals revealed calcified tissue formed at the apical foramen and a pulp chamber containing soft connective tissue and hard tissue; amelogenin-treated canals assessed after 3- and 6-month intervals further included apical tissue functionally attached to bone by a periodontal ligament. In contrast, calcified apical tissue was poorly formed in the calcium hydroxide group, and soft connective tissue within the pulp chamber was not observed. CONCLUSIONS The findings from this experimental strategy suggest recombinant amelogenin protein can signal cells to enhance apex formation in nonvital immature teeth and promote soft connective tissue regeneration.
Collapse
Affiliation(s)
- Maha M F Mounir
- Faculty of Dentistry, King Abdulaziz University (KAU), Jamaa District, Jeddah, Kingdom of Saudi Arabia; Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | | | - Yaping Lei
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of USC, The University of Southern California, Los Angeles, California
| | - Malcolm L Snead
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of USC, The University of Southern California, Los Angeles, California.
| |
Collapse
|
123
|
Vogel P, Read RW, Hansen GM, Powell DR, Kantaputra PN, Zambrowicz B, Brommage R. Dentin Dysplasia in Notum Knockout Mice. Vet Pathol 2016; 53:853-62. [DOI: 10.1177/0300985815626778] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Secreted WNT proteins control cell differentiation and proliferation in many tissues, and NOTUM is a secreted enzyme that modulates WNT morphogens by removing a palmitoleoylate moiety that is essential for their activity. To better understand the role this enzyme in development, the authors produced NOTUM-deficient mice by targeted insertional disruption of the Notum gene. The authors discovered a critical role for NOTUM in dentin morphogenesis suggesting that increased WNT activity can disrupt odontoblast differentiation and orientation in both incisor and molar teeth. Although molars in Notum-/- mice had normal-shaped crowns and normal mantle dentin, the defective crown dentin resulted in enamel prone to fracture during mastication and made teeth more susceptible to endodontal inflammation and necrosis. The dentin dysplasia and short roots contributed to tooth hypermobility and to the spread of periodontal inflammation, which often progressed to periapical abscess formation. The additional incidental finding of renal agenesis in some Notum -/- mice indicated that NOTUM also has a role in kidney development, with undiagnosed bilateral renal agenesis most likely responsible for the observed decreased perinatal viability of Notum-/- mice. The findings support a significant role for NOTUM in modulating WNT signaling pathways that have pleiotropic effects on tooth and kidney development.
Collapse
Affiliation(s)
- P. Vogel
- Department of Pathology, Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
| | - R. W. Read
- Department of Pathology, Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
| | - G. M. Hansen
- Molecular Genetics, Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
| | - D. R. Powell
- Metabolism, Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
| | - P. N. Kantaputra
- Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
- The Center of Excellence in Medical Genetics Research, Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - B. Zambrowicz
- Molecular Genetics, Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
| | - R. Brommage
- Metabolism, Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
| |
Collapse
|
124
|
Li L, Tang Q, Jung HS. The Grooved Rodent Incisor Recapitulates Rudimentary Teeth Characteristics of Ancestral Mammals. J Dent Res 2016; 95:923-30. [DOI: 10.1177/0022034516633153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is known from the paleontology studies of eutherian mammals that incisor numbers were reduced during evolution. The evolutionary lost incisors may remain as vestigial structures at embryonic stages. The recapitulation of the incisor patterns among mammalian species will potentially uncover the mechanisms underlying the phenotypic transition of incisors during evolution. Here, we showed that a minute tooth formed in the presumptive groove region of the gerbil upper incisor at the early developmental stages, during which multiple epithelial swellings and Shh transcription domains spatiotemporally appeared in the dental epithelium, suggests the existence of vestigial dental primordia. Interestingly, when we trimmed the surrounding mesenchyme from incisor tooth germs at or before the bud stage prior to ex vivo culture, the explants developed different incisor phenotypes ranging from triplicated incisors, duplicated incisors, to Lagomorpha-like incisors, corresponding to the incisor patterns in the eutherian mammals. These results imply that the phenotypic transition of incisors during evolution, as well as the achievement of ultimate incisors in adults, arose from differential integrations of primordia. However, when the incisor tooth germ was trimmed at the cap stage, a grooved incisor developed similar to the normal condition. Furthermore, the incisor tooth germ developed a small but smooth incisor after the additional removal of the minute tooth and a lateral rudiment. These results suggest that multiple dental primordia integrated before the cap stage, with the labial primordia contributing to the labial face of the functional incisor. The minute tooth that occupied the boundary of the 2 labial primordia might be implicated in the groove formation. This study sheds light on how rudiments incorporate into functional organs and aids the understanding of incisor evolution.
Collapse
Affiliation(s)
- L. Li
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Q. Tang
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - H.-S. Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
- Oral Biosciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
125
|
Su Y, Fan Z, Wu X, Li Y, Wang F, Zhang C, Wang J, Du J, Wang S. Genome-wide DNA methylation profile of developing deciduous tooth germ in miniature pigs. BMC Genomics 2016; 17:134. [PMID: 26911717 PMCID: PMC4766650 DOI: 10.1186/s12864-016-2485-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/17/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND DNA methylation is an important epigenetic modification critical to the regulation of gene expression during development. To date, little is known about the role of DNA methylation in tooth development in large animal models. Thus, we carried out a comparative genomic analysis of genome-wide DNA methylation profiles in E50 and E60 tooth germ from miniature pigs using methylated DNA immunoprecipitation-sequencing (MeDIP-seq). RESULTS We observed different DNA methylation patterns during the different developmental stages of pig tooth germ. A total of 2469 differentially methylated genes were identified. Functional analysis identified several signaling pathways and 104 genes that may be potential key regulators of pig tooth development from E50 to E60. CONCLUSIONS The present study provided a comprehensive analysis of the global DNA methylation pattern of tooth germ in miniature pigs and identified candidate genes that potentially regulate tooth development from E50 to E60.
Collapse
Affiliation(s)
- Yingying Su
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No.4, Beijing, 100050, China.
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No.4, Beijing, 100050, China.
| | - Xiaoshan Wu
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No.4, Beijing, 100050, China.
| | - Yang Li
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No.4, Beijing, 100050, China.
| | - Fu Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No.4, Beijing, 100050, China.
| | - Chunmei Zhang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No.4, Beijing, 100050, China.
| | - Jinsong Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No.4, Beijing, 100050, China.
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, You An Men Wai Xi Tou Tiao No.10, Beijing, 100069, China.
| | - Jie Du
- Department of Physiology and Pathophysiology, Beijing An Zhen Hospital the Key Laboratory of Remodeling-Related Cardiovascular Diseases, School of Basic Medical Sciences, Capital Medical University, You An Men Wai Xi Tou Tiao No.10, Beijing, 100069, China.
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No.4, Beijing, 100050, China.
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, You An Men Wai Xi Tou Tiao No.10, Beijing, 100069, China.
| |
Collapse
|
126
|
Rasch LJ, Martin KJ, Cooper RL, Metscher BD, Underwood CJ, Fraser GJ. An ancient dental gene set governs development and continuous regeneration of teeth in sharks. Dev Biol 2016; 415:347-370. [PMID: 26845577 DOI: 10.1016/j.ydbio.2016.01.038] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/11/2016] [Accepted: 01/29/2016] [Indexed: 12/20/2022]
Abstract
The evolution of oral teeth is considered a major contributor to the overall success of jawed vertebrates. This is especially apparent in cartilaginous fishes including sharks and rays, which develop elaborate arrays of highly specialized teeth, organized in rows and retain the capacity for life-long regeneration. Perpetual regeneration of oral teeth has been either lost or highly reduced in many other lineages including important developmental model species, so cartilaginous fishes are uniquely suited for deep comparative analyses of tooth development and regeneration. Additionally, sharks and rays can offer crucial insights into the characters of the dentition in the ancestor of all jawed vertebrates. Despite this, tooth development and regeneration in chondrichthyans is poorly understood and remains virtually uncharacterized from a developmental genetic standpoint. Using the emerging chondrichthyan model, the catshark (Scyliorhinus spp.), we characterized the expression of genes homologous to those known to be expressed during stages of early dental competence, tooth initiation, morphogenesis, and regeneration in bony vertebrates. We have found that expression patterns of several genes from Hh, Wnt/β-catenin, Bmp and Fgf signalling pathways indicate deep conservation over ~450 million years of tooth development and regeneration. We describe how these genes participate in the initial emergence of the shark dentition and how they are redeployed during regeneration of successive tooth generations. We suggest that at the dawn of the vertebrate lineage, teeth (i) were most likely continuously regenerative structures, and (ii) utilised a core set of genes from members of key developmental signalling pathways that were instrumental in creating a dental legacy redeployed throughout vertebrate evolution. These data lay the foundation for further experimental investigations utilizing the unique regenerative capacity of chondrichthyan models to answer evolutionary, developmental, and regenerative biological questions that are impossible to explore in classical models.
Collapse
Affiliation(s)
- Liam J Rasch
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Kyle J Martin
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Rory L Cooper
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Brian D Metscher
- Department of Theoretical Biology, University of Vienna, Vienna A-1090, Austria
| | - Charlie J Underwood
- Department of Earth and Planetary Sciences, Birkbeck, University of London, London WC1E 7HX, United Kingdom
| | - Gareth J Fraser
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.
| |
Collapse
|
127
|
Influence of metabolic-linked early life factors on the eruption timing of the first primary tooth. Clin Oral Investig 2015; 20:1871-1879. [PMID: 26620731 DOI: 10.1007/s00784-015-1670-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 11/18/2015] [Indexed: 01/22/2023]
Abstract
AIM Early eruption of permanent teeth has been associated with childhood obesity and diabetes mellitus, suggesting links between tooth eruption and metabolic conditions. This longitudinal study aimed to identify pre-, peri- and postnatal factors with metabolic consequences during infancy that may affect the eruption timing of the first primary tooth (ETFT) in children from an ethnically heterogeneous population residing within the same community. MATERIAL AND METHODS Participants were recruited (n = 1033) through the GUSTO (Growing Up in Singapore Towards healthy Outcomes) birth cohort (n = 1237). Oral examinations were performed at 3-month intervals from 6 to 18 months of age. Crude and adjusted analyses, with generalized linear modelling, were conducted to link ETFT to potential determinants occurring during pregnancy, delivery/birth and early infancy. RESULTS Overall mean eruption age of the first primary tooth was 8.5 (SD 2.6) months. Earlier tooth eruption was significantly associated with infant's rate of weight gain during the first 3 months of life and increased maternal childbearing age. Compared to their Chinese counterparts, Malay and Indian children experienced significantly delayed tooth eruption by 1.2 and 1.7 months, respectively. CONCLUSIONS Infant weight gain from birth to 3 months, ethnicity and maternal childbearing age were significant determinants of first tooth eruption timing. Early life influences can affect primary tooth development, possibly via metabolic pathways. CLINICAL RELEVANCE Timing of tooth eruption is linked to general growth and metabolic function. Therefore, it has potential in forecasting oral and systemic conditions such as caries and obesity.
Collapse
|
128
|
Raj Y, Sekhar MSM, Shylaja S, Bhavani SN, Ramanand OV, Patha S, Reddy SK, Rani AS. Evaluation of the Nature of Collagen Fibers in KCOT, Dentigerous Cyst and Ameloblastoma using Picrosirius Red Stain - A Comparative Study. J Clin Diagn Res 2015; 9:ZC01-4. [PMID: 26673081 DOI: 10.7860/jcdr/2015/14154.6708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/13/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND Reciprocal interaction between dental epithelium and mesenchyme is thought to be crucial for normal odontogenesis. Thus, the mesenchymal influence of the fibrous capsules may play an important role in the maintenance of epithelial expression. Collagen is the major component of the extracellular matrix and possibly there is an alteration in the nature and structure of collagen in various pathological conditions. Studies by polarizing microscopy have also shown that there is a difference in collagen and probably these differences may play a role in their biologic behaviour. AIM The purpose of this study was to evaluate the nature of collagen fibers in keratocystic odontogenic tumour (KCOT), dentigerous cyst (DC), unicystic ameloblastoma (UA) and solid/multicystic ameloblastoma (SMA) and correlating this with their biological behaviour. MATERIALS AND METHODS Five diagnosed cases each of UA, SMA, KCOT and DC were taken and stained using Picrosirius red stain kit and evaluated using a polarizing microscope. STATISTICAL ANALYSIS Chi-square test was used to analyse the results. RESULTS AND CONCLUSION Collagen fibers in dentigerous cysts showed predominant yellowish-red birefringence and fibers in KCOT and ameloblastomas showed a predominantly greenish-yellow birefringence. Hence, our study suggests that the nature and character of collagen fibers may influence the clinical behaviour of the lesion. Since ours is a pilot study, to corroborate our view, studies with larger sample size are required to substantiate the results.
Collapse
Affiliation(s)
- Yukti Raj
- Post Graduate Student, Department of Oral and Maxillofacial Pathology, SVS Institute of Dental Sciences , Mahabubnagar, Telangana, India
| | - Manne Srinivas Muni Sekhar
- Professor and Head, Department of Oral and Maxillofacial Pathology, SVS Institute of Dental Sciences , Mahabubnagar, Telangana, India
| | - Sanjeevareddygari Shylaja
- Professor, Department of Oral and Maxillofacial Pathology, SVS Institute of Dental Sciences , Mahabubnagar, Telangana, India
| | - Sangala Nagendra Bhavani
- Reader, Department of Oral and Maxillofacial Pathology, SVS Institute of Dental Sciences , Mahabubnagar, Telangana, India
| | - Oruganti Venkata Ramanand
- Senior Lecturer, Department of Oral and Maxillofacial Pathology, SVS Institute Of Dental Sciences , Mahabubnagar, Telangana, India
| | - Spandana Patha
- Post Graduate Student, Department of Oral and Maxillofacial Pathology, SVS Institute of Dental Sciences , Mahabubnagar, Telangana, India
| | - Sharath Kumar Reddy
- Post Graduate Student, Department of Oral and Maxillofacial Pathology, SVS Institute of Dental Sciences , Mahabubnagar, Telangana, India
| | - Akula Sandhya Rani
- Post Graduate Student, Department of Oral and Maxillofacial Pathology, SVS Institute of Dental Sciences , Mahabubnagar, Telangana, India
| |
Collapse
|
129
|
Cementoblastic lineage formation in the cross-talk between stem cells of human exfoliated deciduous teeth and epithelial rests of Malassez cells. Clin Oral Investig 2015. [PMID: 26392396 DOI: 10.1007/s.00784-015-1601-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The purpose of this study was to evaluate the synergistic effect of epithelial rests of Malassez cells (ERM) and transforming growth factor-β1 (TGF-β1) on proliferation, cementogenic and osteogenic differentiation of stem cells derived from human exfoliated deciduous teeth (SHED). MATERIALS AND METHODS SHED were co-cultured with ERM with/without TGF-β1. Then, SHED proliferation, morphological appearance, alkaline phosphatase (ALP) activity, mineralization behaviour and gene/protein expression of cemento/osteoblastic phenotype were evaluated. RESULTS TGF-β1 enhanced SHED proliferation when either cultured alone or co-cultured with ERM. ERM induced the cementoblastic differentiation of SHED which was significantly accelerated when treated with TGF-β1. This activity was demonstrated by high ALP activity, strong mineral deposition and upregulation of cementum/bone-related gene and protein expressions (i.e. ALP, collagen type I, bone sialoprotein, osteocalcin and cementum attachment protein). CONCLUSIONS ERM were able to induce SHED differentiation along the cemento/osteoblastic lineage that was triggered in the presence of TGF-β1. CLINICAL RELEVANCE The cemento/osteoblastic differentiation capability of SHED possesses a therapeutic potential in endodontic and periodontal tissue engineering.
Collapse
|
130
|
Cementoblastic lineage formation in the cross-talk between stem cells of human exfoliated deciduous teeth and epithelial rests of Malassez cells. Clin Oral Investig 2015; 20:1181-91. [PMID: 26392396 DOI: 10.1007/s00784-015-1601-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/11/2015] [Indexed: 01/05/2023]
Abstract
OBJECTIVES The purpose of this study was to evaluate the synergistic effect of epithelial rests of Malassez cells (ERM) and transforming growth factor-β1 (TGF-β1) on proliferation, cementogenic and osteogenic differentiation of stem cells derived from human exfoliated deciduous teeth (SHED). MATERIALS AND METHODS SHED were co-cultured with ERM with/without TGF-β1. Then, SHED proliferation, morphological appearance, alkaline phosphatase (ALP) activity, mineralization behaviour and gene/protein expression of cemento/osteoblastic phenotype were evaluated. RESULTS TGF-β1 enhanced SHED proliferation when either cultured alone or co-cultured with ERM. ERM induced the cementoblastic differentiation of SHED which was significantly accelerated when treated with TGF-β1. This activity was demonstrated by high ALP activity, strong mineral deposition and upregulation of cementum/bone-related gene and protein expressions (i.e. ALP, collagen type I, bone sialoprotein, osteocalcin and cementum attachment protein). CONCLUSIONS ERM were able to induce SHED differentiation along the cemento/osteoblastic lineage that was triggered in the presence of TGF-β1. CLINICAL RELEVANCE The cemento/osteoblastic differentiation capability of SHED possesses a therapeutic potential in endodontic and periodontal tissue engineering.
Collapse
|
131
|
Huang F, Hu X, Fang C, Liu H, Lin C, Zhang Y, Hu X. Expression profile of critical genes involved in FGF signaling pathway in the developing human primary dentition. Histochem Cell Biol 2015; 144:457-69. [DOI: 10.1007/s00418-015-1358-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2015] [Indexed: 01/24/2023]
|
132
|
Calenic B, Greabu M, Caruntu C, Tanase C, Battino M. Oral keratinocyte stem/progenitor cells: specific markers, molecular signaling pathways and potential uses. Periodontol 2000 2015; 69:68-82. [DOI: 10.1111/prd.12097] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2015] [Indexed: 12/18/2022]
|
133
|
Keller DA, Brennan RJ, Leach KL. Clinical and Nonclinical Adverse Effects of Kinase Inhibitors. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2015. [DOI: 10.1002/9783527673643.ch16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
134
|
Huang Y, Yang Y, Jiang M, Lin M, Li S, Lin Y. Immortalization and characterization of human dental mesenchymal cells. J Dent 2015; 43:576-82. [DOI: 10.1016/j.jdent.2015.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/07/2015] [Accepted: 02/08/2015] [Indexed: 01/15/2023] Open
|
135
|
Bosshardt DD, Stadlinger B, Terheyden H. Cell-to-cell communication--periodontal regeneration. Clin Oral Implants Res 2015; 26:229-39. [PMID: 25639287 DOI: 10.1111/clr.12543] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND Although regenerative treatment options are available, periodontal regeneration is still regarded as insufficient and unpredictable. AIM This review article provides scientific background information on the animated 3D film Cell-to-Cell Communication - Periodontal Regeneration. RESULTS Periodontal regeneration is understood as a recapitulation of embryonic mechanisms. Therefore, a thorough understanding of cellular and molecular mechanisms regulating normal tooth root development is imperative to improve existing and develop new periodontal regenerative therapies. However, compared to tooth crown and earlier stages of tooth development, much less is known about the development of the tooth root. The formation of root cementum is considered the critical element in periodontal regeneration. Therefore, much research in recent years has focused on the origin and differentiation of cementoblasts. Evidence is accumulating that the Hertwig's epithelial root sheath (HERS) has a pivotal role in root formation and cementogenesis. Traditionally, ectomesenchymal cells in the dental follicle were thought to differentiate into cementoblasts. According to an alternative theory, however, cementoblasts originate from the HERS. What happens when the periodontal attachment system is traumatically compromised? Minor mechanical insults to the periodontium may spontaneously heal, and the tissues can structurally and functionally be restored. But what happens to the periodontium in case of periodontitis, an infectious disease, after periodontal treatment? A non-regenerative treatment of periodontitis normally results in periodontal repair (i.e., the formation of a long junctional epithelium) rather than regeneration. Thus, a regenerative treatment is indicated to restore the original architecture and function of the periodontium. Guided tissue regeneration or enamel matrix proteins are such regenerative therapies, but further improvement is required. As remnants of HERS persist as epithelial cell rests of Malassez in the periodontal ligament, these epithelial cells are regarded as a stem cell niche that can give rise to new cementoblasts. Enamel matrix proteins and members of the transforming growth factor beta (TGF-ß) superfamily have been implicated in cementoblast differentiation. CONCLUSION A better knowledge of cell-to-cell communication leading to cementoblast differentiation may be used to develop improved regenerative therapies to reconstitute periodontal tissues that were lost due to periodontitis.
Collapse
Affiliation(s)
- Dieter D Bosshardt
- Robert K. Schenk Laboratory of Oral Histology, University of Bern, Bern, Switzerland; Department of Periodontology, University of Bern, Bern, Switzerland; Department of Oral Surgery and Stomatology, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
136
|
Qin H, Cai J. Axis inhibition protein 2 polymorphisms may be a risk factor for families with isolated oligodontia. Mol Med Rep 2014; 11:1899-904. [PMID: 25377791 DOI: 10.3892/mmr.2014.2900] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 10/20/2014] [Indexed: 11/06/2022] Open
Abstract
The objective of the present study was to search for Msh homeobox 1 (MSX1), paired box gene 9 (PAX9), ectodysplasin‑A (EDA) and axis inhibition protein 2 (AXIN2) variants in a family with isolated oligodontia and analyse the pathogenesis of mutations that result in oligodontia phenotypes. Members of a single family (but of different descent) with oligodontia and unrelated healthy controls were enrolled in our study. Genomic DNA was isolated from blood samples. Mutation analysis was performed by amplifying MSX1, PAX9, EDA and AXIN2 exons as well as their exon‑intron boundaries and sequencing the products. DNA sequencing of the AXIN2 gene revealed three mutations in the two patients with oligodontia: a homozygotic silent mutation c.1365A>G (p.Pro455=) in exon 3, two c.956+16A>G mutations (II‑1: homozygosis; III‑1: heterozygosis) and c.1200+71A>G (homozygosis) in the intron, which possibly contributed to structural and functional changes in proteins. The heterozygotic mutations c.1365A>G and c.1200+71A>G were identified in the proband's mother (II‑2). No mutations were detected in the MSX1, PAX9 and EDA genes of oligodontia patients. The findings suggest that the c.956+16A>G, c.1365A>G and c.1200+71A>G mutations of AXIN2 may be responsible for the oligodontia phenotype in this family, but these findings require further study.
Collapse
Affiliation(s)
- Han Qin
- Department of Stomatology, The First People's Hospital of Lianyungang City, Lianyungang, Jiangsu 222002, P.R. China
| | - Jun Cai
- Department of Anesthesia, The Third People's Hospital of Lianyungang City, Lianyungang, Jiangsu 222006, P.R. China
| |
Collapse
|
137
|
Sharp T, Wang J, Li X, Cao H, Gao S, Moreno M, Amendt BA. A pituitary homeobox 2 (Pitx2):microRNA-200a-3p:β-catenin pathway converts mesenchymal cells to amelogenin-expressing dental epithelial cells. J Biol Chem 2014; 289:27327-27341. [PMID: 25122764 PMCID: PMC4175363 DOI: 10.1074/jbc.m114.575654] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/12/2014] [Indexed: 12/21/2022] Open
Abstract
Pitx2, Wnt/β-catenin signaling, and microRNAs (miRs) play a critical role in the regulation of dental stem cells during embryonic development. In this report, we have identified a Pitx2:β-catenin regulatory pathway involved in epithelial cell differentiation and conversion of mesenchymal cells to amelogenin expressing epithelial cells via miR-200a. Pitx2 and β-catenin are expressed in the labial incisor cervical loop or epithelial stem cell niche, with decreased expression in the differentiating ameloblast cells of the mouse lower incisor. Bioinformatics analyses reveal that miR-200a-3p expression is activated in the pre-ameloblast cells to enhance epithelial cell differentiation. We demonstrate that Pitx2 activates miR-200a-3p expression and miR-200a-3p reciprocally represses Pitx2 and β-catenin expression. Pitx2 and β-catenin interact to synergistically activate gene expression during odontogenesis and miR-200a-3p attenuates their expression and directs differentiation. To understand how this mechanism controls cell differentiation and cell fate, oral epithelial and odontoblast mesenchymal cells were reprogrammed by a two-step induction method using Pitx2 and miR-200a-3p. Conversion to amelogenin expressing dental epithelial cells involved an up-regulation of the stem cell marker Sox2 and proliferation genes and decreased expression of mesenchymal markers. E-cadherin expression was increased as well as ameloblast specific factors. The combination of Pitx2, a regulator of dental stem cells and miR-200a converts mesenchymal cells to a fully differentiated dental epithelial cell type. This pathway and reprogramming can be used to reprogram mesenchymal or oral epithelial cells to dental epithelial (ameloblast) cells, which can be used in tissue repair and regeneration studies.
Collapse
Affiliation(s)
- Thad Sharp
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Jianbo Wang
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030, and
| | - Xiao Li
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Huojun Cao
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030, and
| | - Shan Gao
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030, and
| | - Myriam Moreno
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Brad A Amendt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242,; Craniofacial Anomalies Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242.
| |
Collapse
|
138
|
Lai WF, Oka K, Jung HS. Advanced functional polymers for regenerative and therapeutic dentistry. Oral Dis 2014; 21:550-7. [PMID: 25098817 DOI: 10.1111/odi.12281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/23/2014] [Accepted: 08/01/2014] [Indexed: 01/16/2023]
Abstract
Use of ceramics and polymers continues to dominate clinical procedures in modern dentistry. Polymers have provided the basis for adhesives, tissue void fillers, and artificial replacements for whole teeth. They have been remarkably effective in the clinic at restoration of major dental functions after damage or loss of teeth. With the rapid development of polymer science, dental materials science has significantly lagged behind in harnessing these advanced polymer products. What they offer is new and unique properties superior to traditional polymers and crucially a range of properties that more closely match natural biomaterials. Therefore, we should pursue more vigorously the benefits of advanced polymers in dentistry. In this review, we highlight how the latest generation of advanced polymers will enhance the application of materials in the dental clinic using numerous promising examples. Polymers have a broad range of applications in modern dentistry. Some major applications are to construct frameworks that mimic the precise structure of tissues, to restore tooth organ function, and to deliver bioactive agents to influence cell behavior from the inside. The future of polymers in dentistry must include all these new enhancements to increase biological and clinical effectiveness beyond what can be achieved with traditional biomaterials.
Collapse
Affiliation(s)
- W-F Lai
- Division in Anatomy and Developmental Biology, Department of Oral Biology, BK21 PLUS Project, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Korea
| | - K Oka
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
| | - H-S Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, BK21 PLUS Project, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Korea.,Oral Biosciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
139
|
Huang Z, Hu X, Lin C, Chen S, Huang F, Zhang Y. Genome-wide analysis of gene expression in human embryonic tooth germ. J Mol Histol 2014; 45:609-17. [DOI: 10.1007/s10735-014-9580-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/11/2014] [Indexed: 10/24/2022]
|
140
|
Dong X, Shen B, Ruan N, Guan Z, Zhang Y, Chen Y, Hu X. Expression patterns of genes critical for BMP signaling pathway in developing human primary tooth germs. Histochem Cell Biol 2014; 142:657-65. [DOI: 10.1007/s00418-014-1241-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2014] [Indexed: 12/23/2022]
|
141
|
Tatullo M, Marrelli M, Shakesheff KM, White LJ. Dental pulp stem cells: function, isolation and applications in regenerative medicine. J Tissue Eng Regen Med 2014; 9:1205-16. [PMID: 24850632 DOI: 10.1002/term.1899] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/16/2013] [Accepted: 03/17/2014] [Indexed: 01/08/2023]
Abstract
Dental pulp stem cells (DPSCs) are a promising source of cells for numerous and varied regenerative medicine applications. Their natural function in the production of odontoblasts to create reparative dentin support applications in dentistry in the regeneration of tooth structures. However, they are also being investigated for the repair of tissues outside of the tooth. The ease of isolation of DPSCs from discarded or removed teeth offers a promising source of autologous cells, and their similarities with bone marrow stromal cells (BMSCs) suggest applications in musculoskeletal regenerative medicine. DPSCs are derived from the neural crest and, therefore, have a different developmental origin to BMSCs. These differences from BMSCs in origin and phenotype are being exploited in neurological and other applications. This review briefly highlights the source and functions of DPSCs and then focuses on in vivo applications across the breadth of regenerative medicine.
Collapse
Affiliation(s)
- Marco Tatullo
- Tecnologica Research Institute, Regenerative Medicine Section, St. E. Fermi, Crotone, Italy
| | | | - Kevin M Shakesheff
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Pharmacy, University of Nottingham, UK
| | - Lisa J White
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Pharmacy, University of Nottingham, UK
| |
Collapse
|
142
|
Evolving marine biomimetics for regenerative dentistry. Mar Drugs 2014; 12:2877-912. [PMID: 24828293 PMCID: PMC4052322 DOI: 10.3390/md12052877] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 12/16/2022] Open
Abstract
New products that help make human tissue and organ regeneration more effective are in high demand and include materials, structures and substrates that drive cell-to-tissue transformations, orchestrate anatomical assembly and tissue integration with biology. Marine organisms are exemplary bioresources that have extensive possibilities in supporting and facilitating development of human tissue substitutes. Such organisms represent a deep and diverse reserve of materials, substrates and structures that can facilitate tissue reconstruction within lab-based cultures. The reason is that they possess sophisticated structures, architectures and biomaterial designs that are still difficult to replicate using synthetic processes, so far. These products offer tantalizing pre-made options that are versatile, adaptable and have many functions for current tissue engineers seeking fresh solutions to the deficiencies in existing dental biomaterials, which lack the intrinsic elements of biofunctioning, structural and mechanical design to regenerate anatomically correct dental tissues both in the culture dish and in vivo.
Collapse
|
143
|
Lai WF, Lee JM, Jung HS. Molecular and engineering approaches to regenerate and repair teeth in mammals. Cell Mol Life Sci 2014; 71:1691-701. [PMID: 24270857 PMCID: PMC11113857 DOI: 10.1007/s00018-013-1518-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/05/2013] [Accepted: 11/07/2013] [Indexed: 12/16/2022]
Abstract
Continuous replacement of teeth throughout the lifespan of an individual is possibly basal for most of the vertebrates including fish and reptiles; however, mammals generally have a limited capacity of tooth renewal. The ability to induce cellular differentiation in adults to replace lost or damaged cells in mammals, or to tissue-engineer organs in vitro, has hence become one of the major goals of regenerative medicine. In this article, we will revisit some of the important signals and tissue interactions that regulate mammalian tooth development, and will offer a synopsis of the latest progress in tooth regeneration and repair via molecular and engineering approaches. It is hoped that this article will not only offer an overview of recent technologies in tooth regeneration and repair but will also stimulate more interdisciplinary research in this field to turn the pursuit of tooth regeneration and repair into practical reality.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Division in Anatomy and Developmental Biology, Department of Oral Biology, BK21 PLUS Project, Oral Science Research Institute, College of Dentistry, Yonsei Center of Biotechnology, Yonsei University, 50 Yonsei-ro Seodaemum-gu, Seoul, 120-752 Korea
| | - Jong-Min Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, BK21 PLUS Project, Oral Science Research Institute, College of Dentistry, Yonsei Center of Biotechnology, Yonsei University, 50 Yonsei-ro Seodaemum-gu, Seoul, 120-752 Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, BK21 PLUS Project, Oral Science Research Institute, College of Dentistry, Yonsei Center of Biotechnology, Yonsei University, 50 Yonsei-ro Seodaemum-gu, Seoul, 120-752 Korea
- Oral Biosciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
144
|
Hu X, Lin C, Shen B, Ruan N, Guan Z, Chen Y, Zhang Y. Conserved odontogenic potential in embryonic dental tissues. J Dent Res 2014; 93:490-5. [PMID: 24554539 DOI: 10.1177/0022034514523988] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Classic tissue recombination studies have demonstrated that, in the early developing mouse tooth germ, the odontogenic potential, known as the tooth-inductive capability, resides initially in the dental epithelium and then shifts to the dental mesenchyme. However, it remains unknown if human embryonic dental tissues also acquire such odontogenic potential. Here we present evidence that human embryonic dental tissues indeed possess similar tooth-inductive capability. We found that human dental epithelium from the cap stage but not the bell stage was able to induce tooth formation when confronted with human embryonic lip mesenchyme. In contrast, human dental mesenchyme from the bell stage but not the cap stage could induce mouse embryonic second-arch epithelium as well as human keratinocyte stem cells, to become enamel-secreting ameloblasts. We showed that neither post-natal human dental pulp stem cells (DPSCs) nor stem cells from human exfoliated deciduous teeth (SHED) possess odontogenic potential or are odontogenic-competent. Our results demonstrate a conservation of odontogenic potential in mouse and human dental tissues during early tooth development, and will have an implication in the future generation of stem-cell-based bioengineered human replacement teeth.
Collapse
Affiliation(s)
- X Hu
- Fujian Key Laboratory of Developmental and Neuro Biology, College of Life Science, Fujian Normal University, Fuzhou, Fujian, 350108, P.R. China
| | | | | | | | | | | | | |
Collapse
|
145
|
Zhang Y, Chen Y. Bioengineering of a human whole tooth: progress and challenge. ACTA ACUST UNITED AC 2014; 3:8. [PMID: 25408887 PMCID: PMC4230350 DOI: 10.1186/2045-9769-3-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 04/25/2014] [Indexed: 12/03/2022]
Abstract
A major challenge in stem cell-based bioengineering of an implantable human tooth is to identify appropriate sources of postnatal stem cells that are odontogenic competent as the epithelial component due to the lack of enamel epithelial cells in adult teeth. In a recent issue (2013, 2:6) of Cell Regeneration, Cai and colleagues reported that epithelial sheets derived from human induced pluripotent stem cells (iPSCs) can functionally substitute for tooth germ epithelium to regenerate tooth-like structures, providing an appealing stem cell source for future human tooth regeneration.
Collapse
Affiliation(s)
- Yanding Zhang
- Fujian Key Laboratory of Developmental and Neuro Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province P.R. China
| | - YiPing Chen
- Fujian Key Laboratory of Developmental and Neuro Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province P.R. China ; Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118 USA
| |
Collapse
|
146
|
Bozorgmehr JEH. The role of self-organization in developmental evolution. Theory Biosci 2014; 133:145-63. [PMID: 24737046 DOI: 10.1007/s12064-014-0200-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 03/06/2014] [Indexed: 01/09/2023]
Abstract
In developmental and evolutionary biology, particular emphasis has been given to the relationship between transcription factors and the cognate cis-regulatory elements of their target genes. These constitute the gene regulatory networks that control expression and are assumed to causally determine the formation of structures and body plans. Comparative analysis has, however, established a broad sequence homology among species that nonetheless display quite different anatomies. Transgenic experiments have also confirmed that many developmentally important elements are, in fact, functionally interchangeable. Although dependent upon the appropriate degree of gene expression, the actual construction of specific structures appears not directly linked to the functions of gene products alone. Instead, the self-formation of complex patterns, due in large part to epigenetic and non-genetic determinants, remains a persisting theme in the study of ontogeny and regenerative medicine. Recent evidence indeed points to the existence of a self-organizing process, operating through a set of intrinsic rules and forces, which imposes coordination and a holistic order upon cells and tissue. This has been repeatedly demonstrated in experiments on regeneration as well as in the autonomous formation of structures in vitro. The process cannot be wholly attributed to the functional outcome of protein-protein interactions or to concentration gradients of diffusible chemicals. This phenomenon is examined here along with some of the methodological and theoretical approaches that are now used in understanding the causal basis for self-organization in development and its evolution.
Collapse
|
147
|
Sun Q, Liu H, Chen Z. The fine tuning role of microRNA-RNA interaction in odontoblast differentiation and disease. Oral Dis 2014; 21:142-8. [DOI: 10.1111/odi.12237] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/26/2014] [Accepted: 03/12/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Q Sun
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM); School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - H Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM); School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Z Chen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM); School and Hospital of Stomatology; Wuhan University; Wuhan China
| |
Collapse
|
148
|
Yuan G, Zhang L, Yang G, Yang J, Wan C, Zhang L, Song G, Chen S, Chen Z. The distribution and ultrastructure of the forming blood capillaries and the effect of apoptosis on vascularization in mouse embryonic molar mesenchyme. Cell Tissue Res 2014; 356:137-45. [PMID: 24477797 DOI: 10.1007/s00441-013-1785-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 12/05/2013] [Indexed: 11/30/2022]
Abstract
Vascularization is essential for organ and tissue development. Teeth develop through interactions between epithelium and mesenchyme. The developing capillaries in the enamel organ, the dental epithelial structure, occur simultaneously by mechanisms of vasculogenesis and angiogenesis at the onset of dentinogenesis. The vascular neoformation in the dental mesenchyme has been reported to start from the cap stage. However, the mechanisms of vascularization in the dental mesenchyme remain unknown. In the hope of understanding the mechanisms of the formation of dental mesenchymal vasculature, mouse lower molar germs from embryonic day (E) 13.5 to E16.5 were processed for immunostaining of CD31 and CD34, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) and transmission electron microscopy (TEM). In addition, the role of apoptosis for the vascularization in dental mesenchyme was examined by in vitro culture of E14.0 lower molars in the presence of the apoptosis inhibitor (z-VAD-fmk) and a subsequent subrenal culture. Our results showed that CD31- and CD34-positive cells progressively entered the central part of the dental papilla from the peridental mesenchyme. For TEM, angioblasts, young capillaries with thick endothelium and endothelial cells containing vacuoles were observed in peripheral dental mesenchyme, suggesting vasculogenesis was taking place. The presence of lateral sprouting, cytoplasmic filopodia and transluminal bridges in the dental papilla suggested angiogenesis was also occurring. Inhibition of apoptosis delayed the angiogenic vascularization of the dental papilla. Therefore, these data demonstrated that molar mesenchyme is progressively vascularized by mechanisms of both vasculogenesis and angiogenesis and apoptosis partially contributes to the vascularization of the dental papilla.
Collapse
Affiliation(s)
- Guohua Yuan
- Key Laboratory of Oral Biomedicine of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, People's Republic of China, 430079
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Muni T, Mrksich M, George A. Self-assembled monolayer facilitates epithelial-mesenchymal interactions mimicking odontogenesis. Connect Tissue Res 2014; 55:26-33. [PMID: 24437602 PMCID: PMC7570439 DOI: 10.3109/03008207.2013.867335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cell-cell interactions are vital for embryonic organ development and normal function of differentiated cells and tissues. In this study we have developed a self-assembled monolayer-based co-culture system to study tooth morphogenesis. Specifically, we designed a 2-D microenvironment present in the dental tissue by creating a well-structured, laterally organized epithelial and mesenchymal cell co-culture system by patterning the cell-attachment substrate. Chemical modifications were used to develop tunable surface patterns to facilitate epithelial-mesenchymal interactions mimicking the developing tooth. Such a design promoted interactions between monolayer's of the 2 cell types and provided signaling cues that resulted in cellular differentiation and mineralized matrix formation. Gene expression analysis showed that these co-cultures mimicked in-vivo conditions than monolayer cultures of a single cell type.
Collapse
Affiliation(s)
- Tanvi Muni
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Milan Mrksich
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Anne George
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
150
|
Novel missense mutations in the AXIN2 gene associated with non-syndromic oligodontia. Arch Oral Biol 2013; 59:349-53. [PMID: 24581859 DOI: 10.1016/j.archoralbio.2013.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Oligodontia, which is the congenital absence of six or more permanent teeth excluding third molars, may contribute to masticatory dysfunction, speech alteration, aesthetic problems and malocclusion. To date, mutations in EDA, AXIN2, MSX1, PAX9, WNT10A, EDAR, EDARADD, NEMO and KRT 17 are known to associate with non-syndromic oligodontia. The aim of the study was to search for AXIN2 mutations in 96 patients with non-syndromic oligodontia. DESIGN We performed mutation analysis of 10 exons of the AXIN2 gene in 96 patients with isolated non-syndromic oligodontia. RESULTS We identified two novel missense mutations (Exon 3 c.923C>T and Exon 11 c.2490G>C) in two patients. One mutation (c.923C>T) results in a Thr308Met substitution and the other mutation (c.2490G>C) results in a Met830Ile substitution. CONCLUSIONS This is the first report indicating that mutations in AXIN2 are responsible for oligodontia in the Chinese population. Our findings indicate that AXIN2 can be regarded as a candidate gene for mutation detection in individuals with non-syndromic oligodontia in the Chinese population.
Collapse
|