101
|
Xue Y, Shui G, Wenk MR. TPS1 drug design for rice blast disease in magnaporthe oryzae. SPRINGERPLUS 2014; 3:18. [PMID: 24478940 PMCID: PMC3901853 DOI: 10.1186/2193-1801-3-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/19/2013] [Indexed: 11/10/2022]
Abstract
Magnaporthe oryzae (M. oryzae) is a fungal pathogen and the causal agent of rice blast disease. Previous lipidomics analysis of M. oryzae demonstrated that trehalose, a carbohydrate common to various fungi and algae, is thought to be involved in the possible conversion of glycogen into triacylglycerides for energy, an important step in the pathogenesis of M. oryzae. A key enzyme responsible for trehalose synthesis is trehalose-6-phosphate synthase 1 (Tps1). Therefore, we modeled the structure of Tps1 and sought to screen a chemical database in silico for possible inhibitors of the enzyme. Based on homologous alignment and sequence analysis, we first modeled the structure of Tps1 to determine the potential active site of the enzyme and its conformation. Using this model, we then undertook a docking study to determine the potential interaction that would manifest between Tsp1 and potential chemical inhibitors. Of the 400,000 chemicals screened in the Molecular Libraries Small Molecule Repository, we identified 45 potential candidates. The best candidate (Compound 24789937) was chosen and subjected to various structural optimization techniques to improve the suitability of the potential chemical inhibitors at the docking site of Tps1. From these modified versions of Compound 24789937, one lead compound (Lead 25) was shown to have the best binding affinity to Tps1 and good water solubility as compared with the ideal template compound and the other 44 potential candidates. Molecular dynamics simulation further confirmed the strength of the Tps1-Lead 25 complex and indicated the potential for Lead 25 to be used as an inhibitor of Tps1 in the control of M. oryzae-mediated rice blast disease.
Collapse
Affiliation(s)
- Yangkui Xue
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore, 117456 Singapore
| | - Guanghou Shui
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing, 100101 China
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore, 117456 Singapore
| |
Collapse
|
102
|
Fernandez J, Marroquin-Guzman M, Wilson RA. Mechanisms of nutrient acquisition and utilization during fungal infections of leaves. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:155-74. [PMID: 24848414 DOI: 10.1146/annurev-phyto-102313-050135] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Foliar fungal pathogens challenge global food security, but how they optimize growth and development during infection is understudied. Despite adopting several lifestyles to facilitate nutrient acquisition from colonized cells, little is known about the genetic underpinnings governing pathogen adaption to host-derived nutrients. Homologs of common global and pathway-specific gene regulatory elements are likely to be involved, but their contribution to pathogenicity, and how they are connected to broader genetic networks, is largely unspecified. Here, we focus on carbon and nitrogen metabolism in foliar pathogens and consider what is known, and what is not known, about fungal exploitation of host nutrient and ask how common metabolic regulators have been co-opted to the plant-pathogenic lifestyle as well as how nutrients are utilized to drive infection.
Collapse
Affiliation(s)
- Jessie Fernandez
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583; , ,
| | | | | |
Collapse
|
103
|
Fernandez J, Wilson RA. Cells in cells: morphogenetic and metabolic strategies conditioning rice infection by the blast fungus Magnaporthe oryzae. PROTOPLASMA 2014; 251:37-47. [PMID: 23990109 DOI: 10.1007/s00709-013-0541-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 08/13/2013] [Indexed: 06/02/2023]
Abstract
The rice blast fungus Magnaporthe oryzae is a global food security threat due to its destruction of cultivated rice. Of the world's rice harvest, 10-30 % is lost each year to this pathogen, and changing climates are likely to favor its spread into new areas. Insights into how the fungus might be contained could come from the wealth of molecular and cellular studies that have been undertaken in order to shed light on the biological underpinnings of blast disease, aspects of which we review herein. Infection begins when a three-celled spore lands on the surface of a leaf, germinates, and develops the specialized infection structure called the appressorium. The mature appressorium develops a high internal turgor that acts on a thin penetration peg, forcing it through the rice cuticle and into the underlying epidermal cells. Primary then invasive hyphae (IH) elaborate from the peg and grow asymptomatically from one living rice cell to another for the first few days of infection before host cells begin to die and characteristic necrotic lesions form on the surface of the leaf, from which spores are produced to continue the life cycle. To gain new insights into the biology of rice blast disease, we argue that, conceptually, the infection process can be viewed as two discrete phases occurring in markedly different environments and requiring distinct biochemical pathways and morphogenetic regulation: outside the host cell, where the appressorium develops in a nutrient-free environment, and inside the host cell, where filamentous growth occurs in a glucose-rich, nitrogen-poor environment, at least from the perspective of the fungus. Here, we review the physiological and metabolic changes that occur in M. oryzae as it transitions from the surface to the interior of the host, thus enabling us to draw lessons about the strategies that allow M. oryzae cells to thrive in rice cells.
Collapse
Affiliation(s)
- Jessie Fernandez
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | | |
Collapse
|
104
|
Song XS, Li HP, Zhang JB, Song B, Huang T, Du XM, Gong AD, Liu YK, Feng YN, Agboola RS, Liao YC. Trehalose 6-phosphate phosphatase is required for development, virulence and mycotoxin biosynthesis apart from trehalose biosynthesis in Fusarium graminearum. Fungal Genet Biol 2013; 63:24-41. [PMID: 24291007 DOI: 10.1016/j.fgb.2013.11.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 12/11/2022]
Abstract
Trehalose 6-phosphate synthase (TPS1) and trehalose 6-phosphate phosphatase (TPS2) are required for trehalose biosynthesis in yeast and filamentous fungi, including Fusarium graminearum. Three null mutants Δtps1, Δtps2 and Δtps1-Δtps2, each carrying either a single deletion of TPS1 or TPS2 or a double deletion of TPS1-TPS2, were generated from a toxigenic F. graminearum strain and were not able to synthesize trehalose. In contrast to its reported function in yeasts and filamentous fungi, TPS1 appeared dispensable for development and virulence. However, deletion of TPS2 abolished sporulation and sexual reproduction; it also altered cell polarity and ultrastructure of the cell wall in association with reduced chitin biosynthesis. The cell polarity alteration was exhibited as reduced apical growth and increased lateral growth and branching with increased hyphal and cell wall widths. Moreover, the TPS2-deficient strain displayed abnormal septum development and nucleus distribution in its conidia and vegetative hyphae. The Δtps2 mutant also had 62% lower mycelial growth on potato dextrose agar and 99% lower virulence on wheat compared with the wild-type. The Δtps1, Δtps2 and Δtps1-Δtps2 mutants synthesized over 3.08-, 7.09- and 2.47-fold less mycotoxins, respectively, on rice culture compared with the wild-type. Comparative transcriptome analysis revealed that the Δtps1, Δtps2 and Δtps1-Δtps2 mutants had 486, 1885 and 146 genotype-specific genes, respectively, with significantly changed expression profiles compared with the wild-type. Further dissection of this pathway will provide new insights into regulation of fungal development, virulence and trichothecene biosynthesis.
Collapse
Affiliation(s)
- Xiu-Shi Song
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - He-Ping Li
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jing-Bo Zhang
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Bo Song
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Tao Huang
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xiao-Min Du
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - An-Dong Gong
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yi-Ke Liu
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yan-Ni Feng
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Rebecca S Agboola
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yu-Cai Liao
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center of Plant Gene Research (Wuhan), Wuhan 430070, People's Republic of China.
| |
Collapse
|
105
|
Badaruddin M, Holcombe LJ, Wilson RA, Wang ZY, Kershaw MJ, Talbot NJ. Glycogen metabolic genes are involved in trehalose-6-phosphate synthase-mediated regulation of pathogenicity by the rice blast fungus Magnaporthe oryzae. PLoS Pathog 2013; 9:e1003604. [PMID: 24098112 PMCID: PMC3789717 DOI: 10.1371/journal.ppat.1003604] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 07/24/2013] [Indexed: 01/05/2023] Open
Abstract
The filamentous fungus Magnaporthe oryzae is the causal agent of rice blast disease. Here we show that glycogen metabolic genes play an important role in plant infection by M. oryzae. Targeted deletion of AGL1 and GPH1, which encode amyloglucosidase and glycogen phosphorylase, respectively, prevented mobilisation of glycogen stores during appressorium development and caused a significant reduction in the ability of M. oryzae to cause rice blast disease. By contrast, targeted mutation of GSN1, which encodes glycogen synthase, significantly reduced the synthesis of intracellular glycogen, but had no effect on fungal pathogenicity. We found that loss of AGL1 and GPH1 led to a reduction in expression of TPS1 and TPS3, which encode components of the trehalose-6-phosphate synthase complex, that acts as a genetic switch in M. oryzae. Tps1 responds to glucose-6-phosphate levels and the balance of NADP/NADPH to regulate virulence-associated gene expression, in association with Nmr transcriptional inhibitors. We show that deletion of the NMR3 transcriptional inhibitor gene partially restores virulence to a Δagl1Δgph1 mutant, suggesting that glycogen metabolic genes are necessary for operation of the NADPH-dependent genetic switch in M. oryzae.
Collapse
Affiliation(s)
- Muhammad Badaruddin
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, Devon, United Kingdom
| | - Lucy J. Holcombe
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, Devon, United Kingdom
| | - Richard A. Wilson
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, Devon, United Kingdom
| | - Zheng-Yi Wang
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, Devon, United Kingdom
| | - Michael J. Kershaw
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, Devon, United Kingdom
| | - Nicholas J. Talbot
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, Devon, United Kingdom
- * E-mail:
| |
Collapse
|
106
|
Gummer JPA, Trengove RD, Oliver RP, Solomon PS. Dissecting the role of G-protein signalling in primary metabolism in the wheat pathogen Stagonospora nodorum. Microbiology (Reading) 2013; 159:1972-1985. [DOI: 10.1099/mic.0.067009-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Joel P. A. Gummer
- Metabolomics Australia, Murdoch University, Perth 6150, WA, Australia
- Separation Science and Metabolomics Laboratory, Murdoch University, Perth 6150, WA, Australia
| | - Robert D. Trengove
- Metabolomics Australia, Murdoch University, Perth 6150, WA, Australia
- Separation Science and Metabolomics Laboratory, Murdoch University, Perth 6150, WA, Australia
| | - Richard P. Oliver
- Australian Centre for Necrotrophic Fungal Pathogens, Department of Environment and Agriculture, Curtin University, Perth 6102, WA, Australia
| | - Peter S. Solomon
- Division of Plant Sciences, Research School of Biology, Australian National University, ACT 0200, Australia
| |
Collapse
|
107
|
Nitrogen source-dependent capsule induction in human-pathogenic cryptococcus species. EUKARYOTIC CELL 2013; 12:1439-50. [PMID: 23975889 DOI: 10.1128/ec.00169-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cryptococcus neoformans and C. gattii cause meningoencephalitis and are an increasing human health threat. These pathogenic Cryptococcus species are neurotropic and persist in the cerebrospinal fluid (CSF) of the mammalian host during infection. In order to survive in the host, pathogenic fungi must procure nutrients, such as carbon and nitrogen, from the CSF. To enhance our understanding of nutrient acquisition during central nervous system infection by Cryptococcus species, we examined the utilization of nitrogen sources available in CSF. We screened for the growth and capsule production of 817 global environmental and clinical isolates on various sources of nitrogen. Both environmental and clinical strains grew robustly on uric acid, Casamino Acids, creatinine, and asparagine as sole nitrogen sources. Urea induced the greatest magnitude of capsule induction. This induction was greater in Cryptococcus gattii than in C. neoformans. We confirmed the ability of nonpreferred nitrogen sources to increase capsule production in pathogenic species of Cryptococcus. Since urea is metabolized to ammonia and CO(2) (a known signal for capsule induction), we examined urea metabolism mutants for their transcriptional response to urea regarding capsule production. The transcriptional profile of C. neoformans under urea-supplemented conditions revealed both similar and unique responses to other capsule-inducing conditions, including both intra- and extracellular urea utilization. As one of the most abundant nitrogen sources in the CSF, the ability of Cryptococcus to import urea and induce capsule production may substantially aid this yeast's survival and propagation in the host.
Collapse
|
108
|
|
109
|
Carillo P, Feil R, Gibon Y, Satoh-Nagasawa N, Jackson D, Bläsing OE, Stitt M, Lunn JE. A fluorometric assay for trehalose in the picomole range. PLANT METHODS 2013; 9:21. [PMID: 23786766 PMCID: PMC3698175 DOI: 10.1186/1746-4811-9-21] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/13/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND Trehalose is a non-reducing disaccharide that is used as an osmolyte, transport sugar, carbon reserve and stress protectant in a wide range of organisms. In plants, trehalose 6-phosphate (Tre6P), the intermediate of trehalose biosynthesis, is thought to be a signal of sucrose status. Trehalose itself may play a role in pathogenic and symbiotic plant-microbe interactions, in responses to abiotic stress and in developmental signalling, but its precise functions are unknown. A major obstacle to investigating its function is the technical difficulty of measuring the very low levels of trehalose usually found in plant tissues, as most of the established trehalose assays lack sufficient specificity and/or sensitivity. RESULTS A kinetic assay for trehalose was established using recombinant Escherichia coli cytoplasmic trehalase (treF), which was shown to be highly specific for trehalose. Hydrolysis of trehalose to glucose is monitored fluorometrically and the trehalose content of the tissue extract is determined from an internal calibration curve. The assay is linear for 0.2-40 pmol trehalose, and recoveries of trehalose were ≥88%. A. thaliana Col-0 rosettes contain about 20-30 nmol g-1FW of trehalose, increasing to about 50-60 nmol g-1FW in plants grown at 8°C. Trehalose is not correlated with sucrose content, whereas a strong correlation between Tre6P and sucrose was confirmed. The trehalose contents of ear inflorescence primordia from the maize ramosa3 mutant and wild type plants were 6.6±2.6 nmol g-1FW and 19.0±12.7 nmol g-1FW, respectively. The trehalose:Tre6P ratios in the ramosa3 and wild-type primordia were 2.43±0.85 and 6.16±3.45, respectively. CONCLUSION The fluorometric assay is highly specific for trehalose and sensitive enough to measure the trehalose content of very small amounts of plant tissue. Chilling induced a 2-fold accumulation of trehalose in A. thaliana rosettes, but the levels were too low to make a substantial quantitative contribution to osmoregulation. Trehalose is unlikely to function as a signal of sucrose status. The abnormal inflorescence branching phenotype of the maize ramosa3 mutant might be linked to a decrease in trehalose levels in the inflorescence primordia or a downward shift in the trehalose:Tre6P ratio.
Collapse
Affiliation(s)
- Petronia Carillo
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Via Vivaldi 43, I-81100, Caserta, Italy
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Yves Gibon
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- INRA Bordeaux, University of Bordeaux, UMR1332 Fruit Biology and Pathology, F-33883, Villenave d’Ornon, France
| | - Namiko Satoh-Nagasawa
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- Laboratory of Plant Genetics and Breeding, Department of Biological Production, Faculty of Bioresource Sciences, Kaidobata-nishi 241-438, Shimo-Shinjyo Nakano, Akita City 010-0195, Japan
| | - David Jackson
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Oliver E Bläsing
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Metanomics GmbH, Tegeler Weg 33, Berlin, 10589, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| |
Collapse
|
110
|
Impact of temperature stress and validamycin A on compatible solutes and fumonisin production in F. verticillioides: role of trehalose-6-phosphate synthase. Fungal Genet Biol 2013; 57:1-10. [PMID: 23751979 DOI: 10.1016/j.fgb.2013.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 05/31/2013] [Accepted: 06/02/2013] [Indexed: 12/21/2022]
Abstract
Fusarium verticillioides is a pathogen of maize that causes root, stalk and ear rot and produces fumonisins, toxic secondary metabolites associated with disease in livestock and humans. Environmental stresses such as heat and drought influence disease severity and toxin production, but the effects of abiotic stress on compatible solute production by F. verticillioides have not been fully characterized. We found that decreasing the growth temperature leads to a long-term reduction in polyol levels, whereas increasing the temperature leads to a transient increase in polyols. The effects of temperature shifts on trehalose levels are opposite the effects on polyols and more dramatic. Treatment with validamycin A, a trehalose analog with antifungal activity, leads to a rapid reduction in trehalose levels, despite its known role as a trehalase inhibitor. Mutant strains lacking TPS1, which encodes a putative trehalose-6-phosphate synthase, have altered growth characteristics, do not produce detectable amounts of trehalose under any condition tested, and accumulate glycogen at levels significantly higher than wild-type F. verticillioides. TPS1 mutants also produce significantly less fumonisin than wild type and are also less pathogenic than wild type on maize. These data link trehalose biosynthesis, secondary metabolism, and disease, and suggest that trehalose metabolic pathways may be a viable target for the control of Fusarium diseases and fumonisin contamination of maize.
Collapse
|
111
|
O'Hara LE, Paul MJ, Wingler A. How do sugars regulate plant growth and development? New insight into the role of trehalose-6-phosphate. MOLECULAR PLANT 2013; 6:261-74. [PMID: 23100484 DOI: 10.1093/mp/sss120] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plant growth and development are tightly controlled in response to environmental conditions that influence the availability of photosynthetic carbon in the form of sucrose. Trehalose-6-phosphate (T6P), the precursor of trehalose in the biosynthetic pathway, is an important signaling metabolite that is involved in the regulation of plant growth and development in response to carbon availability. In addition to the plant's own pathway for trehalose synthesis, formation of T6P or trehalose by pathogens can result in the reprogramming of plant metabolism and development. Developmental processes that are regulated by T6P range from embryo development to leaf senescence. Some of these processes are regulated in interaction with phytohormones, such as auxin. A key interacting factor of T6P signaling in response to the environment is the protein kinase sucrose non-fermenting related kinase-1 (SnRK1), whose catalytic activity is inhibited by T6P. SnRK1 is most likely involved in the adjustment of metabolism and growth in response to starvation. The transcription factor bZIP11 has recently been identified as a new player in the T6P/SnRK1 regulatory pathway. By inhibiting SnRK1, T6P promotes biosynthetic reactions. This regulation has important consequences for crop production, for example, in the developing wheat grain and during the growth of potato tubers.
Collapse
Affiliation(s)
- Liam E O'Hara
- Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | |
Collapse
|
112
|
|
113
|
Towards defining nutrient conditions encountered by the rice blast fungus during host infection. PLoS One 2012; 7:e47392. [PMID: 23071797 PMCID: PMC3468542 DOI: 10.1371/journal.pone.0047392] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 09/13/2012] [Indexed: 11/29/2022] Open
Abstract
Fungal diseases cause enormous crop losses, but defining the nutrient conditions encountered by the pathogen remains elusive. Here, we generated a mutant strain of the devastating rice pathogen Magnaporthe oryzae impaired for de novo methionine biosynthesis. The resulting methionine-requiring strain grew strongly on synthetic minimal media supplemented with methionine, aspartate or complex mixtures of partially digested proteins, but could not establish disease in rice leaves. Live-cell-imaging showed the mutant could produce normal appressoria and enter host cells but failed to develop, indicating the availability or accessibility of aspartate and methionine is limited in the plant. This is the first report to demonstrate the utility of combining biochemical genetics, plate growth tests and live-cell-imaging to indicate what nutrients might not be readily available to the fungal pathogen in rice host cells.
Collapse
|
114
|
Fernandez J, Wilson RA. Why no feeding frenzy? Mechanisms of nutrient acquisition and utilization during infection by the rice blast fungus Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1286-93. [PMID: 22947213 DOI: 10.1094/mpmi-12-11-0326] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Magnaporthe oryzae is a devastating pathogen of rice and wheat. It is a hemibiotroph that exhibits symptomless biotrophic growth for the first 4 to 5 days of infection of susceptible cultivars before becoming necrotrophic. Here, we review recent advances in our understanding of how M. oryzae is able to grow, acquire nutrients, and interact with the plant cell during infection. In particular, we describe direct mechanisms (such as the integration of carbon and nitrogen metabolism by trehalose-6-phosphate synthase 1) and indirect mechanisms (such as the suppression of host responses) that allow M. oryzae to utilize available host nutrient. We contrast the ability of M. oryzae to voraciously metabolize a wide range of carbon and nitrogen sources in vitro with the carefully orchestrated development it displays during the biotrophic phase of in planta growth and ask how the two observations can be reconciled. We also look at how nutrient acquisition and effector biology might be linked in order to facilitate rapid colonization of the plant host.
Collapse
Affiliation(s)
- J Fernandez
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | |
Collapse
|
115
|
Role of macroautophagy in nutrient homeostasis during fungal development and pathogenesis. Cells 2012; 1:449-63. [PMID: 24710485 PMCID: PMC3901100 DOI: 10.3390/cells1030449] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/07/2012] [Accepted: 07/17/2012] [Indexed: 11/29/2022] Open
Abstract
Macroautophagy is a non-selective, bulk degradation process conserved in eukaryotes. Response to starvation stress and/or regulation of nutrient breakdown/utilization is the major intracellular function of macroautophagy. Recent studies have revealed requirement for autophagy in diverse functions such as nutrient homeostasis, organelle degradation and programmed cell death in filamentous fungal pathogens, for proper morphogenesis and differentiation during critical steps of infection. In this review, we aim to summarize the physiological functions of autophagy in fungal virulence, with an emphasis on nutrient homeostasis in opportunistic human fungal pathogens and in the rice-blast fungus, Magnaporthe oryzae. We briefly summarize the role of autophagy on the host side: for resistance to, or subversion by, the pathogens.
Collapse
|
116
|
Progress on nitrogen regulation gene expression of plant pathogenic fungi under nitrogen starvation. YI CHUAN = HEREDITAS 2012; 34:848-56. [DOI: 10.3724/sp.j.1005.2012.00848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
117
|
Gummer JPA, Trengove RD, Oliver RP, Solomon PS. A comparative analysis of the heterotrimeric G-protein Gα, Gβ and Gγ subunits in the wheat pathogen Stagonospora nodorum. BMC Microbiol 2012; 12:131. [PMID: 22759704 PMCID: PMC3492189 DOI: 10.1186/1471-2180-12-131] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/07/2012] [Indexed: 11/25/2022] Open
Abstract
Background It has been well established that the Gα subunit of the heterotrimeric G-protein in the wheat pathogen Stagonospora nodorum is required for a variety of phenotypes including pathogenicity, melanisation and asexual differentiation. The roles though of the Gγ and Gβ subunits though were unclear. The objective of this study was to identify and understand the role of these subunits and assess their requirement for pathogenicity and development. Results G-protein Gγ and Gβ subunits, named Gga1 and Gba1 respectively, were identified in the Stagonospora nodorum genome by comparative analysis with known fungal orthologues. A reverse genetics technique was used to study the role of these and revealed that the mutant strains displayed altered in vitro growth including a differential response to a variety of exogenous carbon sources. Pathogenicity assays showed that Stagonospora nodorum strains lacking Gba1 were essentially non-pathogenic whilst Gga1-impaired strains displayed significantly slower growth in planta. Subsequent sporulation assays showed that like the previously described Gα subunit mutants, both Gba1 and Gga1 were required for asexual sporulation with neither mutant strain being able to differentiate either pycnidia nor pycnidiospores under normal growth conditions. Continued incubation at 4°C was found to complement the mutation in each of the G-protein subunits with nearly wild-type levels of pycnidia recovered. Conclusion This study provides further evidence on the significance of cAMP-dependent signal transduction for many aspects of fungal development and pathogenicity. The observation that cold temperatures can complement the G-protein sporulation defect now provides an ideal tool by which asexual differentiation can now be dissected.
Collapse
Affiliation(s)
- Joel P A Gummer
- Separation Science Laboratory, Murdoch University, Perth 6150WA, Australia
| | | | | | | |
Collapse
|
118
|
Fernandez J, Wright JD, Hartline D, Quispe CF, Madayiputhiya N, Wilson RA. Principles of carbon catabolite repression in the rice blast fungus: Tps1, Nmr1-3, and a MATE-family pump regulate glucose metabolism during infection. PLoS Genet 2012; 8:e1002673. [PMID: 22570632 PMCID: PMC3342947 DOI: 10.1371/journal.pgen.1002673] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 03/12/2012] [Indexed: 12/14/2022] Open
Abstract
Understanding the genetic pathways that regulate how pathogenic fungi respond to their environment is paramount to developing effective mitigation strategies against disease. Carbon catabolite repression (CCR) is a global regulatory mechanism found in a wide range of microbial organisms that ensures the preferential utilization of glucose over less favourable carbon sources, but little is known about the components of CCR in filamentous fungi. Here we report three new mediators of CCR in the devastating rice blast fungus Magnaporthe oryzae: the sugar sensor Tps1, the Nmr1-3 inhibitor proteins, and the multidrug and toxin extrusion (MATE)-family pump, Mdt1. Using simple plate tests coupled with transcriptional analysis, we show that Tps1, in response to glucose-6-phosphate sensing, triggers CCR via the inactivation of Nmr1-3. In addition, by dissecting the CCR pathway using Agrobacterium tumefaciens-mediated mutagenesis, we also show that Mdt1 is an additional and previously unknown regulator of glucose metabolism. Mdt1 regulates glucose assimilation downstream of Tps1 and is necessary for nutrient utilization, sporulation, and pathogenicity. This is the first functional characterization of a MATE-family protein in filamentous fungi and the first description of a MATE protein in genetic regulation or plant pathogenicity. Perturbing CCR in Δtps1 and MDT1 disruption strains thus results in physiological defects that impact pathogenesis, possibly through the early expression of cell wall-degrading enzymes. Taken together, the importance of discovering three new regulators of carbon metabolism lies in understanding how M. oryzae and other pathogenic fungi respond to nutrient availability and control development during infection.
Collapse
Affiliation(s)
- Jessie Fernandez
- Department of Plant Pathology, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
| | - Janet D. Wright
- Department of Plant Pathology, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
| | - David Hartline
- Department of Plant Pathology, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
| | - Cristian F. Quispe
- Department of Plant Pathology, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
| | - Nandakumar Madayiputhiya
- Proteomic and Metabolomic Core Facility, Redox Biology Center, Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
| | - Richard A. Wilson
- Department of Plant Pathology, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
| |
Collapse
|
119
|
Schluepmann H, Berke L, Sanchez-Perez GF. Metabolism control over growth: a case for trehalose-6-phosphate in plants. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3379-90. [PMID: 22058405 DOI: 10.1093/jxb/err311] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
How plants relate their requirements for energy with the reducing power necessary to fuel growth is not understood. The activated glucose forms and NADPH are key precursors in pathways yielding, respectively, energy and reducing power for anabolic metabolism. Moreover, they are substrates or allosteric regulators of trehalose-phosphate synthase (TPS1) in fungi and probably also in plants. TPS1 synthesizes the signalling metabolite trehalose-6-phosphate (T6P) and, therefore, has the potential to relate reducing power with energy metabolism to fuel growth. A working model is discussed where trehalose-6-phosphate (T6P) inhibition of SnRK1 is part of a growth-regulating loop in young and metabolically active heterotrophic plant tissues. SnRK1 is the Snf1 Related Kinase 1 and the plant homologue of the AMP-dependent protein kinase of animals, a central energy gauge. T6P accumulation in response to high sucrose levels in a cell inhibits SnRK1 activity, thus promoting anabolic processes and growth. When T6P levels drop due to low glucose-6-phosphate, uridine-diphosphoglucose, and altered NADPH or due to restricted TPS1 activity, active SnRK1 promotes catabolic processes required to respond to energy and carbon deprivation. The model explains why too little or too much T6P has been found to be growth inhibitory: Arabidopsis thaliana embryos and seedlings without TPS1 are growth arrested and Arabidopsis seedlings accumulating T6P on a trehalose medium are growth arrested. Finally, the insight gained with respect to the possible role of T6P metabolism, where it is known to alter developmental and environmental responses of plants, is discussed.
Collapse
Affiliation(s)
- Henriette Schluepmann
- Molecular Plant Physiology, Utrecht University, Padualaan 8, Utrecht, The Netherlands.
| | | | | |
Collapse
|
120
|
Oliver RP, Friesen TL, Faris JD, Solomon PS. Stagonospora nodorum: from pathology to genomics and host resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2012; 50:23-43. [PMID: 22559071 DOI: 10.1146/annurev-phyto-081211-173019] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Stagonospora nodorum is a major necrotrophic pathogen of wheat that causes the diseases S. nodorum leaf and glume blotch. A series of tools and resources, including functional genomics, a genome sequence, proteomics and metabolomics, host-mapping populations, and a worldwide collection of isolates, have enabled the dissection of pathogenicity mechanisms. Metabolic and signaling genes required for pathogenicity have been defined. Interaction with the host is dominated by interplay of fungal effectors that induce necrosis on wheat lines carrying specific sensitivity loci. As such, the pathogen has emerged as a model for the Pleosporales group of pathogens.
Collapse
Affiliation(s)
- Richard P Oliver
- Australian Center for Necrotrophic Fungal Pathogens, Curtin University, Perth WA 6845, Australia.
| | | | | | | |
Collapse
|
121
|
Franceschetti M, Bueno E, Wilson RA, Tucker SL, Gómez-Mena C, Calder G, Sesma A. Fungal virulence and development is regulated by alternative pre-mRNA 3'end processing in Magnaporthe oryzae. PLoS Pathog 2011; 7:e1002441. [PMID: 22194688 PMCID: PMC3240610 DOI: 10.1371/journal.ppat.1002441] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/01/2011] [Indexed: 12/21/2022] Open
Abstract
RNA-binding proteins play a central role in post-transcriptional mechanisms that control gene expression. Identification of novel RNA-binding proteins in fungi is essential to unravel post-transcriptional networks and cellular processes that confer identity to the fungal kingdom. Here, we carried out the functional characterisation of the filamentous fungus-specific RNA-binding protein RBP35 required for full virulence and development in the rice blast fungus. RBP35 contains an N-terminal RNA recognition motif (RRM) and six Arg-Gly-Gly tripeptide repeats. Immunoblots identified two RBP35 protein isoforms that show a steady-state nuclear localisation and bind RNA in vitro. RBP35 coimmunoprecipitates in vivo with Cleavage Factor I (CFI) 25 kDa, a highly conserved protein involved in polyA site recognition and cleavage of pre-mRNAs. Several targets of RBP35 have been identified using transcriptomics including 14-3-3 pre-mRNA, an important integrator of environmental signals. In Magnaporthe oryzae, RBP35 is not essential for viability but regulates the length of 3′UTRs of transcripts with developmental and virulence-associated functions. The Δrbp35 mutant is affected in the TOR (target of rapamycin) signaling pathway showing significant changes in nitrogen metabolism and protein secretion. The lack of clear RBP35 orthologues in yeast, plants and animals indicates that RBP35 is a novel auxiliary protein of the polyadenylation machinery of filamentous fungi. Our data demonstrate that RBP35 is the fungal equivalent of metazoan CFI 68 kDa and suggest the existence of 3′end processing mechanisms exclusive to the fungal kingdom. The rice blast fungus Magnaporthe oryzae is one of the most damaging diseases of cultivated rice worldwide and an emerging disease on wheat, impacting on global food security. We identify a M. oryzae virulence-deficient mutant defective in the production of a RNA-binding protein (called RBP35). Clear orthologues of RBP35 are absent in yeast, plants and metazoans. We find two RBP35 protein isoforms that localise in the nucleus and bind RNA. Notably, we demonstrate that RBP35 interacts in vivo with a highly conserved protein component of the eukaryotic polyadenylation machinery. We show that RBP35 present different diffusional properties in nuclei of distinct fungal structures, and consequently different protein/nucleic acid interactions. Further, we find that RBP35 regulates the length of 3′UTRs of transcripts with developmental and virulence-associated functions. We prove that the Δrbp35 mutant is affected in the TOR (target of rapamycin) signaling pathway showing significant changes in nitrogen metabolism and protein secretion. Nothing it is known about pre-mRNA 3′ end processing in filamentous fungi and our study suggest that their polyadenylation machinery differs from yeast and higher organisms. This study can provide new insights into the evolution of the pre-mRNA maturation and the regulation of gene expression in eukaryotes.
Collapse
Affiliation(s)
| | - Emilio Bueno
- Disease & Stress Biology Department, John Innes Centre, Norwich, United Kingdom
| | - Richard A. Wilson
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Sara L. Tucker
- Disease & Stress Biology Department, John Innes Centre, Norwich, United Kingdom
| | | | - Grant Calder
- Cell & Developmental Biology Department, John Innes Centre, Norwich, United Kingdom
| | - Ane Sesma
- Disease & Stress Biology Department, John Innes Centre, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
122
|
Vereshchagina OA, Memorskaya AS, Tereshina VM. Effect of trehalose on the viability of sporangiospores of the mucorous fungus Blakeslea trispora. Microbiology (Reading) 2011. [DOI: 10.1134/s0026261711060269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
123
|
The function of MoGlk1 in integration of glucose and ammonium utilization in Magnaporthe oryzae. PLoS One 2011; 6:e22809. [PMID: 21818394 PMCID: PMC3144931 DOI: 10.1371/journal.pone.0022809] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 07/02/2011] [Indexed: 11/19/2022] Open
Abstract
Hexokinases are conserved proteins functioning in glucose sensing and signaling. The rice blast fungus Magnaporthe oryzae contains several hexokinases, including MoHxk1 (hexokinase) and MoGlk1 (glucokinase) encoded respectively by MoHXK1 and MoGLK1 genes. The heterologous expression of MoGlk1 and MoHxk1 in Saccharomyces cerevisiae confirmed their conserved functions. Disruption of MoHXK1 resulted in growth reduction in medium containing fructose as the sole carbon source, whereas disruption of MoGLK1 did not cause the similar defect. However, the ΔMoglk1 mutant displayed decreased proton extrusion and a lower biomass in the presence of ammonium, suggesting a decline in the utilization of ammonium. Additionally, the MoGLK1 allele lacking catalytic activity restored growth to the ΔMoglk1 mutant. Moreover, the expression of MoPMA1 encoding a plasma membrane H+-ATPase decreased in the ΔMoglk1 mutant that can be suppressed by glucose and G-6-P. Thus, MoGlk1, but not MoHxk1, regulates ammonium utilization through a mechanism that is independent from its catalytic activity.
Collapse
|
124
|
Kim H, Smith JE, Ridenour JB, Woloshuk CP, Bluhm BH. HXK1 regulates carbon catabolism, sporulation, fumonisin B₁ production and pathogenesis in Fusarium verticillioides. MICROBIOLOGY-SGM 2011; 157:2658-2669. [PMID: 21719539 DOI: 10.1099/mic.0.052506-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Fusarium verticillioides, a ubiquitous pathogen of maize, virulence and mycotoxigenesis are regulated in response to the types and amounts of carbohydrates present in maize kernels. In this study, we investigated the role of a putative hexokinase-encoding gene (HXK1) in growth, development and pathogenesis. A deletion mutant (Δhxk1) of HXK1 was not able to grow when supplied with fructose as the sole carbon source, and growth was impaired when glucose, sucrose or maltotriose was provided. Additionally, the Δhxk1 mutant produced unusual swollen hyphae when provided with fructose, but not glucose, as the sole carbon source. Moreover, the Δhxk1 mutant was impaired in fructose uptake, although glucose uptake was unaffected. On maize kernels, the Δhxk1 mutant was substantially less virulent than the wild-type, but virulence on maize stalks was not impaired, possibly indicating a metabolic response to tissue-specific differences in plant carbohydrate content. Finally, disruption of HXK1 had a pronounced effect on fungal metabolites produced during colonization of maize kernels; the Δhxk1 mutant produced approximately 50 % less trehalose and 80 % less fumonisin B₁ (FB₁) than the wild-type. The reduction in trehalose biosynthesis likely explains observations of increased sensitivity to osmotic stress in the Δhxk1 mutant. In summary, this study links early events in carbohydrate sensing and glycolysis to virulence and secondary metabolism in F. verticillioides, and thus provides a new foothold from which the genetic regulatory networks that underlie pathogenesis and mycotoxigenesis can be unravelled and defined.
Collapse
Affiliation(s)
- Hun Kim
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA.,Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jonathon E Smith
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - John B Ridenour
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Charles P Woloshuk
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Burton H Bluhm
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
125
|
Fernandez J, Wilson RA. The sugar sensor, trehalose-6-phosphate synthase (Tps1), regulates primary and secondary metabolism during infection by the rice blast fungus: WillMagnaporthe oryzae's“sweet tooth” become its “Achilles’ heel”? Mycology 2011. [DOI: 10.1080/21501203.2011.563431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Jessie Fernandez
- a Department of Plant Pathology , University of Nebraska-Lincoln , 406I Plant Sciences Hall, Lincoln, NE 68583-0722, USA
| | - Richard A. Wilson
- a Department of Plant Pathology , University of Nebraska-Lincoln , 406I Plant Sciences Hall, Lincoln, NE 68583-0722, USA
| |
Collapse
|
126
|
Galhano R, Talbot NJ. The biology of blast: Understanding how Magnaporthe oryzae invades rice plants. FUNGAL BIOL REV 2011. [DOI: 10.1016/j.fbr.2011.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
127
|
Ceccaroli P, Buffalini M, Saltarelli R, Barbieri E, Polidori E, Ottonello S, Kohler A, Tisserant E, Martin F, Stocchi V. Genomic profiling of carbohydrate metabolism in the ectomycorrhizal fungus Tuber melanosporum. THE NEW PHYTOLOGIST 2011; 189:751-764. [PMID: 21039570 DOI: 10.1111/j.1469-8137.2010.03520.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
• Primary carbohydrate metabolism plays a special role related to carbon/nitrogen exchange, as well as metabolic support of fruiting body development, in ectomycorrhizal macrofungi. In this study, we used information retrieved from the recently sequenced Tuber melanosporum genome, together with transcriptome analysis data and targeted validation experiments, to construct the first genome-wide catalogue of the proteins supporting carbohydrate metabolism in a plant-symbiotic ascomycete. • More than 100 genes coding for enzymes of the glycolysis, pentose phosphate, tricarboxylic acid, glyoxylate and methylcitrate pathways, glycogen, trehalose and mannitol metabolism and cell wall precursor were annotated. Transcriptional regulation of these pathways in different stages of the T. melanosporum lifecycle was investigated using whole-genome oligoarray expression data together with real-time reverse transcription-polymerase chain reaction analysis of selected genes. • The most significant results were the identification of methylcitrate cycle genes and of an acid invertase, the first enzyme of this kind to be described in a plant-symbiotic filamentous fungus. • A subset of transcripts coding for trehalose, glyoxylate and methylcitrate enzymes was up-regulated in fruiting bodies, whereas genes involved in mannitol and glycogen metabolism were preferentially expressed in mycelia and ectomycorrhizas, respectively. These data indicate a high degree of lifecycle stage specialization for particular branches of carbohydrate metabolism in T. melanosporum.
Collapse
Affiliation(s)
- P Ceccaroli
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino 'Carlo Bo', via Saffi, 2, 61029 Urbino, Italy
| | - M Buffalini
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino 'Carlo Bo', via Saffi, 2, 61029 Urbino, Italy
| | - R Saltarelli
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino 'Carlo Bo', via Saffi, 2, 61029 Urbino, Italy
| | - E Barbieri
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino 'Carlo Bo', via Saffi, 2, 61029 Urbino, Italy
| | - E Polidori
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino 'Carlo Bo', via Saffi, 2, 61029 Urbino, Italy
| | - S Ottonello
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Viale G.P. Usberti 23/A, 43100 Parma, Italy
| | - A Kohler
- INRA, UMR 1136, INRA-Nancy Université, Interactions Arbres/Microorganismes, 54280 Champenoux, France
| | - E Tisserant
- INRA, UMR 1136, INRA-Nancy Université, Interactions Arbres/Microorganismes, 54280 Champenoux, France
| | - F Martin
- INRA, UMR 1136, INRA-Nancy Université, Interactions Arbres/Microorganismes, 54280 Champenoux, France
| | - V Stocchi
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino 'Carlo Bo', via Saffi, 2, 61029 Urbino, Italy
| |
Collapse
|
128
|
Kim H, Woloshuk CP. Functional characterization of fst1 in Fusarium verticillioides during colonization of maize kernels. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:18-24. [PMID: 20854112 DOI: 10.1094/mpmi-03-10-0074] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The putative hexose transporter gene fst1 in Fusarium verticillioides was identified previously by microarray analysis as a gene that was more highly expressed during colonization of autoclaved maize endosperm than germ. In contrast to a previous study, in which disruption of fst1 did not affect growth of the pathogen on autoclaved maize kernels, in the current study, we demonstrated that disruption of fst1 delayed growth and symptom development on wounded maize ears. Characterization of the fst1 promoter revealed that regulation of fst1 expression was similar to that of fumonisin biosynthetic (fum) genes; expression was highest during growth on endosperm tissue and repressed by elevated concentrations of ammonium in the growth medium. With a fluorescent tag attached to FST1, the protein localized transiently to the periphery of the cells near the plasma membrane and in vacuole-like structures, suggesting that membrane-localized FST1 was internalized and degraded in vacuoles. Expression of fst1 in a yeast strain lacking hexose transporter genes did not complement the yeast mutation, suggesting that FST1 does not transport glucose, fructose, or mannose. The results indicate a functional role for FST1 in pathogenesis during the colonization of living kernels.
Collapse
Affiliation(s)
- Hun Kim
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
129
|
Wilson RA, Gibson RP, Quispe CF, Littlechild JA, Talbot NJ. An NADPH-dependent genetic switch regulates plant infection by the rice blast fungus. Proc Natl Acad Sci U S A 2010; 107:21902-7. [PMID: 21115813 PMCID: PMC3003025 DOI: 10.1073/pnas.1006839107] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To cause rice blast disease, the fungus Magnaporthe oryzae breaches the tough outer cuticle of the rice leaf by using specialized infection structures called appressoria. These cells allow the fungus to invade the host plant and proliferate rapidly within leaf tissue. Here, we show that a unique NADPH-dependent genetic switch regulates plant infection in response to the changing nutritional and redox conditions encountered by the pathogen. The biosynthetic enzyme trehalose-6-phosphate synthase (Tps1) integrates control of glucose-6-phosphate metabolism and nitrogen source utilization by regulating the oxidative pentose phosphate pathway, the generation of NADPH, and the activity of nitrate reductase. We report that Tps1 directly binds to NADPH and, thereby, regulates a set of related transcriptional corepressors, comprising three proteins, Nmr1, Nmr2, and Nmr3, which can each bind NADP. Targeted deletion of any of the Nmr-encoding genes partially suppresses the nonpathogenic phenotype of a Δtps1 mutant. Tps1-dependent Nmr corepressors control the expression of a set of virulence-associated genes that are derepressed during appressorium-mediated plant infection. When considered together, these results suggest that initiation of rice blast disease by M. oryzae requires a regulatory mechanism involving an NADPH sensor protein, Tps1, a set of NADP-dependent transcriptional corepressors, and the nonconsuming interconversion of NADPH and NADP acting as signal transducer.
Collapse
Affiliation(s)
- Richard A. Wilson
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom; and
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583-0722
| | - Robert P. Gibson
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom; and
| | - Cristian F. Quispe
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583-0722
| | | | - Nicholas J. Talbot
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom; and
| |
Collapse
|
130
|
Lowe RGT, Allwood JW, Galster AM, Urban M, Daudi A, Canning G, Ward JL, Beale MH, Hammond-Kosack KE. A combined ¹H nuclear magnetic resonance and electrospray ionization-mass spectrometry analysis to understand the basal metabolism of plant-pathogenic Fusarium spp. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1605-18. [PMID: 20718668 DOI: 10.1094/mpmi-04-10-0092] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Many ascomycete Fusarium spp. are plant pathogens that cause disease on both cereal and noncereal hosts. Infection of wheat ears by Fusarium graminearum and F. culmorum typically results in bleaching and a subsequent reduction in grain yield. Also, a large proportion of the harvested grain can be spoiled when the colonizing Fusarium mycelia produce trichothecene mycotoxins, such as deoxynivalenol (DON). In this study, we have explored the intracellular polar metabolome of Fusarium spp. in both toxin-producing and nonproducing conditions in vitro. Four Fusarium spp., including nine well-characterized wild-type field isolates now used routinely in laboratory experimentation, were explored. A metabolic "triple-fingerprint" was recorded using (1)H nuclear magnetic resonance and direct-injection electrospray ionization-mass spectroscopy in both positive- and negative-ionization modes. These combined metabolomic analyses revealed that this technique is sufficient to resolve different wild-type isolates and different growth conditions. Principal components analysis was able to resolve the four species explored-F. graminearum, F. culmorum, F. pseudograminearum, and F. venenatum-as well as individual isolate differences from the same species. The external nutritional environment was found to have a far greater influence on the metabolome than the genotype of the organism. Conserved responses to DON-inducing medium were evident and included increased abundance of key compatible solutes, such as glycerol and mannitol. In addition, the concentration of γ-aminobutyric acid was elevated, indicating that the cellular nitrogen status may be affected by growth on DON-inducing medium.
Collapse
Affiliation(s)
- Rohan G T Lowe
- Centre for Sustainable Pest and Disease Management, Department of Plant Pathology and Microbiology, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Borges CL, Bailão AM, Báo SN, Pereira M, Parente JA, de Almeida Soares CM. Genes potentially relevant in the parasitic phase of the fungal pathogen Paracoccidioides brasiliensis. Mycopathologia 2010; 171:1-9. [PMID: 20669049 DOI: 10.1007/s11046-010-9349-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 07/13/2010] [Indexed: 11/26/2022]
Abstract
Paracoccidioides brasiliensis, a fungal pathogen of humans, switches from a filamentous spore-forming mold in the soil to a pathogenic budding-yeast in the human host. Dimorphism is regulated mainly by the temperature of incubation. Representational difference analysis (RDA) was performed between yeast cells of isolate Pb01 and from isolate Pb4940, the last growing as mycelia at the host temperature. Transcripts exhibiting increased expression during development of the yeast parasitic phase comprised those involved mainly in response to stress, transcriptional regulation and nitrogen metabolism. In this way, the isolate Pb01 increased the expression of a variety of transcripts encoding cell rescue proteins such as the heat shock protein HSP30, alpha-trehalose-phosphate synthase and DDR48 stress protein, suggesting the relevance of the defense mechanism against oxidative/heat shock stress in the fungal yeast phase. Other differentially expressed genes between the two isolates included those coding for cell wall/membrane-related proteins, suggesting the relevance of the fungal surface and it's remodeling to the dimorphism. We provide a set of novel yeast preferentially expressed genes and demonstrate the effectiveness of RDA for studying P. brasiliensis dimorphism.
Collapse
Affiliation(s)
- Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, 74001-970, Brazil
| | | | | | | | | | | |
Collapse
|
132
|
Ding SL, Liu W, Iliuk A, Ribot C, Vallet J, Tao A, Wang Y, Lebrun MH, Xu JR. The tig1 histone deacetylase complex regulates infectious growth in the rice blast fungus Magnaporthe oryzae. THE PLANT CELL 2010; 22:2495-508. [PMID: 20675574 PMCID: PMC2929099 DOI: 10.1105/tpc.110.074302] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Magnaporthe oryzae is the most damaging fungal pathogen of rice (Oryza sativa). In this study, we characterized the TIG1 transducin beta-like gene required for infectious growth and its interacting genes that are required for plant infection in this model phytopathogenic fungus. Tig1 homologs in yeast and mammalian cells are part of a conserved histone deacetylase (HDAC) transcriptional corepressor complex. The tig1 deletion mutant was nonpathogenic and defective in conidiogenesis. It had an increased sensitivity to oxidative stress and failed to develop invasive hyphae in plant cells. Using affinity purification and coimmunoprecipitation assays, we identified several Tig1-associated proteins, including two HDACs that are homologous to components of the yeast Set3 complex. Functional analyses revealed that TIG1, SET3, SNT1, and HOS2 were core components of the Tig1 complex in M. oryzae. The set3, snt1, and hos2 deletion mutants displayed similar defects as those observed in the tig1 mutant, but deletion of HST1 or HOS4 had no detectable phenotypes. Deletion of any of these core components of the Tig1 complex resulted in a significant reduction in HDAC activities. Our results showed that TIG1, like its putative yeast and mammalian orthologs, is one component of a conserved HDAC complex that is required for infectious growth and conidiogenesis in M. oryzae and highlighted that chromatin modification is an essential regulatory mechanism during plant infection.
Collapse
Affiliation(s)
- Sheng-Li Ding
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Wende Liu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Anton Iliuk
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Cecile Ribot
- Université Lyon-1, Centre National de la Recherche Scientifique, Bayer CropScience, 69263 Lyon Cedex 09, France
| | - Julie Vallet
- Université Lyon-1, Centre National de la Recherche Scientifique, Bayer CropScience, 69263 Lyon Cedex 09, France
| | - Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Yang Wang
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Marc-Henri Lebrun
- Université Lyon-1, Centre National de la Recherche Scientifique, Bayer CropScience, 69263 Lyon Cedex 09, France
- Institut National de la Recherche Agronomique, 78850 Thiverval-Grignon, France
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Address correspondence to
| |
Collapse
|
133
|
Fernandez O, Béthencourt L, Quero A, Sangwan RS, Clément C. Trehalose and plant stress responses: friend or foe? TRENDS IN PLANT SCIENCE 2010; 15:409-17. [PMID: 20494608 DOI: 10.1016/j.tplants.2010.04.004] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 04/06/2010] [Accepted: 04/22/2010] [Indexed: 05/18/2023]
Abstract
The disaccharide trehalose is involved in stress response in many organisms. However, in plants, its precise role remains unclear, although some data indicate that trehalose has a protective role during abiotic stresses. By contrast, some trehalose metabolism mutants exhibit growth aberrations, revealing potential negative effects on plant physiology. Contradictory effects also appear under biotic stress conditions. Specifically, trehalose is essential for the infectivity of several pathogens but at the same time elicits plant defense. Here, we argue that trehalose should not be regarded only as a protective sugar but rather like a double-faced molecule and that further investigation is required to elucidate its exact role in stress tolerance in plants.
Collapse
Affiliation(s)
- Olivier Fernandez
- Université de Reims Champagne Ardenne, Unité de Recherche Vignes et Vins de Champagne - Stress et Environnement (EA 2069), UFR Sciences Exactes et Naturelles, BP 1039, 51687 Reims Cedex 2, France
| | | | | | | | | |
Collapse
|
134
|
Puttikamonkul S, Willger SD, Grahl N, Perfect JR, Movahed N, Bothner B, Park S, Paderu P, Perlin DS, Cramer RA. Trehalose 6-phosphate phosphatase is required for cell wall integrity and fungal virulence but not trehalose biosynthesis in the human fungal pathogen Aspergillus fumigatus. Mol Microbiol 2010; 77:891-911. [PMID: 20545865 DOI: 10.1111/j.1365-2958.2010.07254.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The trehalose biosynthesis pathway is critical for virulence in human and plant fungal pathogens. In this study, we tested the hypothesis that trehalose 6-phosphate phosphatase (T6PP) is required for Aspergillus fumigatus virulence. A mutant of the A. fumigatus T6PP, OrlA, displayed severe morphological defects related to asexual reproduction when grown on glucose (1%) minimal media. These defects could be rescued by addition of osmotic stabilizers, reduction in incubation temperature or increase in glucose levels (> 4%). Subsequent examination of the mutant with cell wall perturbing agents revealed a link between cell wall biosynthesis and trehalose 6-phosphate (T6P) levels. As expected, high levels of T6P accumulated in the absence of OrlA resulting in depletion of free inorganic phosphate and inhibition of hexokinase activity. Surprisingly, trehalose production persisted in the absence of OrlA. Further analyses revealed that A. fumigatus contains two trehalose phosphorylases that may be responsible for trehalose production in the absence of OrlA. Despite a normal growth rate under in vitro growth conditions, the orlA mutant was virtually avirulent in two distinct murine models of invasive pulmonary aspergillosis. Our results suggest that further study of this pathway will lead to new insights into regulation of fungal cell wall biosynthesis and virulence.
Collapse
Affiliation(s)
- Srisombat Puttikamonkul
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59718, USA.Department of Medicine, Duke University Medical Center, Durham, NC 27713, USA.Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59718, USA.Public Health Research Institute, International Center for Public Health, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - Sven D Willger
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59718, USA.Department of Medicine, Duke University Medical Center, Durham, NC 27713, USA.Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59718, USA.Public Health Research Institute, International Center for Public Health, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - Nora Grahl
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59718, USA.Department of Medicine, Duke University Medical Center, Durham, NC 27713, USA.Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59718, USA.Public Health Research Institute, International Center for Public Health, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - John R Perfect
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59718, USA.Department of Medicine, Duke University Medical Center, Durham, NC 27713, USA.Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59718, USA.Public Health Research Institute, International Center for Public Health, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - Navid Movahed
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59718, USA.Department of Medicine, Duke University Medical Center, Durham, NC 27713, USA.Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59718, USA.Public Health Research Institute, International Center for Public Health, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - Brian Bothner
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59718, USA.Department of Medicine, Duke University Medical Center, Durham, NC 27713, USA.Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59718, USA.Public Health Research Institute, International Center for Public Health, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - Steven Park
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59718, USA.Department of Medicine, Duke University Medical Center, Durham, NC 27713, USA.Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59718, USA.Public Health Research Institute, International Center for Public Health, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - Padmaja Paderu
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59718, USA.Department of Medicine, Duke University Medical Center, Durham, NC 27713, USA.Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59718, USA.Public Health Research Institute, International Center for Public Health, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - David S Perlin
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59718, USA.Department of Medicine, Duke University Medical Center, Durham, NC 27713, USA.Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59718, USA.Public Health Research Institute, International Center for Public Health, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - Robert A Cramer
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59718, USA.Department of Medicine, Duke University Medical Center, Durham, NC 27713, USA.Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59718, USA.Public Health Research Institute, International Center for Public Health, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| |
Collapse
|
135
|
Vandesteene L, Ramon M, Le Roy K, Van Dijck P, Rolland F. A single active trehalose-6-P synthase (TPS) and a family of putative regulatory TPS-like proteins in Arabidopsis. MOLECULAR PLANT 2010; 3:406-19. [PMID: 20100798 DOI: 10.1093/mp/ssp114] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Higher plants typically do not produce trehalose in large amounts, but their genome sequences reveal large families of putative trehalose metabolism enzymes. An important regulatory role in plant growth and development is also emerging for the metabolic intermediate trehalose-6-P (T6P). Here, we present an update on Arabidopsis trehalose metabolism and a resource for further detailed analyses. In addition, we provide evidence that Arabidopsis encodes a single trehalose-6-P synthase (TPS) next to a family of catalytically inactive TPS-like proteins that might fulfill specific regulatory functions in actively growing tissues.
Collapse
Affiliation(s)
- Lies Vandesteene
- Laboratory of Functional Biology, Plant Metabolic Signaling Group, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31-bus 2438, B-3001 Heverlee, Belgium
| | | | | | | | | |
Collapse
|
136
|
Wilson RA, Talbot NJ. Fungal physiology - a future perspective. MICROBIOLOGY-SGM 2009; 155:3810-3815. [PMID: 19850622 DOI: 10.1099/mic.0.035436-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The study of fungal physiology is set to change dramatically in the next few years as highly scalable technologies are deployed allowing accurate measurement and identification of metabolites, proteins and transcripts within cells. The advent of next-generation DNA-sequencing technologies will also provide genome sequence information from large numbers of industrially relevant and pathogenic fungal species, and allow comparative genome analysis between strains and populations of fungi. When coupled with advances in gene functional analysis, protein-protein interaction studies, live cell imaging and mathematical modelling, this promises a step-change in our understanding of how fungal cells operate as integrated dynamic living systems.
Collapse
Affiliation(s)
- Richard A Wilson
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68588-0660, USA
| | | |
Collapse
|
137
|
Avonce N, Wuyts J, Verschooten K, Vandesteene L, Van Dijck P. The Cytophaga hutchinsonii ChTPSP: First Characterized Bifunctional TPS–TPP Protein as Putative Ancestor of All Eukaryotic Trehalose Biosynthesis Proteins. Mol Biol Evol 2009; 27:359-69. [DOI: 10.1093/molbev/msp241] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
138
|
The trehalose synthesis pathway is an integral part of the virulence composite for Cryptococcus gattii. Infect Immun 2009; 77:4584-96. [PMID: 19651856 DOI: 10.1128/iai.00565-09] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The trehalose pathway is essential for stress tolerance and virulence in fungi. We investigated the importance of this pathway for virulence of the pathogenic yeast Cryptococcus gattii using the highly virulent Vancouver Island, Canada, outbreak strain R265. Three genes putatively involved in trehalose biosynthesis, TPS1 (trehalose-6-phosphate [T6P] synthase) and TPS2 (T6P phosphatase), and degradation, NTH1 (neutral trehalose), were deleted in this strain, creating the R265tps1 Delta, R265tps2 Delta, and R265nth1 Delta mutants. As in Cryptococcus neoformans, cellular trehalose was reduced in the R265tps1 Delta and R265tps2 Delta mutants, which could not grow and died, respectively, at 37 degrees C on yeast extract-peptone-dextrose agar, suggesting that T6P accumulation in R265tps2 Delta is directly toxic. Characterizations of the cryptococcal hexokinases and trehalose mutants support their linkage to the control of glycolysis in this species. However, unlike C. neoformans, the C. gattii R265tps1 Delta mutant demonstrated, in addition, defects in melanin and capsule production, supporting an influence of T6P on these virulence pathways. Attenuated virulence of the R265tps1 Delta mutant was not due solely to its 37 degrees C growth defect, as shown in worm studies and confirmed by suppressor mutants. Furthermore, an intact trehalose pathway controls protein secretion, mating, and cell wall integrity in C. gattii. Thus, the trehalose synthesis pathway plays a central role in the virulence composites of C. gattii through multiple mechanisms. Deletion of NTH1 had no effect on virulence, but inactivation of the synthesis genes, TPS1 and TPS2, has profound effects on survival of C. gattii in the invertebrate and mammalian hosts. These results highlight the central importance of this pathway in the virulence composites of both pathogenic cryptococcal species.
Collapse
|
139
|
Wilson RA, Talbot NJ. Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat Rev Microbiol 2009; 7:185-95. [PMID: 19219052 DOI: 10.1038/nrmicro2032] [Citation(s) in RCA: 656] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The filamentous fungus Magnaporthe oryzae causes rice blast, the most serious disease of cultivated rice. Cellular differentiation of M. oryzae forms an infection structure called the appressorium, which generates enormous cellular turgor that is sufficient to rupture the plant cuticle. Here, we show how functional genomics approaches are providing new insight into the genetic control of plant infection by M. oryzae. We also look ahead to the key questions that need to be addressed to provide a better understanding of the molecular processes that lead to plant disease and the prospects for sustainable control of rice blast.
Collapse
Affiliation(s)
- Richard A Wilson
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, United Kingdom
| | | |
Collapse
|
140
|
Trehalose biosynthesis is involved in sporulation of Stagonospora nodorum. Fungal Genet Biol 2009; 46:381-9. [PMID: 19233304 DOI: 10.1016/j.fgb.2009.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 01/30/2009] [Accepted: 02/08/2009] [Indexed: 11/21/2022]
Abstract
Stagonospora nodorum is a necrotrophic fungal pathogen that is the causal agent of leaf and glume blotch on wheat. S. nodorum is a polycyclic pathogen, whereby rain-splashed pycnidiospores attach to and colonise wheat tissue and subsequently sporulate again within 2-3weeks. As several cycles of infection are needed for a damaging infection, asexual sporulation is a critical phase of its infection cycle. A non-targeted metabolomics screen for sporulation-associated metabolites identified that trehalose accumulated significantly in concert with asexual sporulation both in vitro and in planta. A reverse-genetics approach was used to investigate the role of trehalose in asexual sporulation. Trehalose biosynthesis was disrupted by deletion of the gene Tps1, encoding a trehalose 6-phosphate synthase, resulting in almost total loss of trehalose during in vitro growth and in planta. In addition, lesion development and pycnidia formation were also significantly reduced in tps1 mutants. Reintroduction of the Tps1 gene restored trehalose biosynthesis, pathogenicity and sporulation to wild-type levels. Microscopic examination of tps1 infected wheat leaves showed that pycnidial formation often halted at an early stage of development. Further examination of the tps1 phenotype revealed that tps1 pycnidiospores exhibited a reduced germination rate while under heat stress, and tps1 mutants had a reduced growth rate while under oxidative stress. This study confirms a link between trehalose biosynthesis and pathogen fitness in S.nodorum.
Collapse
|
141
|
Meng S, Brown DE, Ebbole DJ, Torto-Alalibo T, Oh YY, Deng J, Mitchell TK, Dean RA. Gene Ontology annotation of the rice blast fungus, Magnaporthe oryzae. BMC Microbiol 2009; 9 Suppl 1:S8. [PMID: 19278556 PMCID: PMC2654668 DOI: 10.1186/1471-2180-9-s1-s8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Magnaporthe oryzae, the causal agent of blast disease of rice, is the most destructive disease of rice worldwide. The genome of this fungal pathogen has been sequenced and an automated annotation has recently been updated to Version 6 . However, a comprehensive manual curation remains to be performed. Gene Ontology (GO) annotation is a valuable means of assigning functional information using standardized vocabulary. We report an overview of the GO annotation for Version 5 of M. oryzae genome assembly. Methods A similarity-based (i.e., computational) GO annotation with manual review was conducted, which was then integrated with a literature-based GO annotation with computational assistance. For similarity-based GO annotation a stringent reciprocal best hits method was used to identify similarity between predicted proteins of M. oryzae and GO proteins from multiple organisms with published associations to GO terms. Significant alignment pairs were manually reviewed. Functional assignments were further cross-validated with manually reviewed data, conserved domains, or data determined by wet lab experiments. Additionally, biological appropriateness of the functional assignments was manually checked. Results In total, 6,286 proteins received GO term assignment via the homology-based annotation, including 2,870 hypothetical proteins. Literature-based experimental evidence, such as microarray, MPSS, T-DNA insertion mutation, or gene knockout mutation, resulted in 2,810 proteins being annotated with GO terms. Of these, 1,673 proteins were annotated with new terms developed for Plant-Associated Microbe Gene Ontology (PAMGO). In addition, 67 experiment-determined secreted proteins were annotated with PAMGO terms. Integration of the two data sets resulted in 7,412 proteins (57%) being annotated with 1,957 distinct and specific GO terms. Unannotated proteins were assigned to the 3 root terms. The Version 5 GO annotation is publically queryable via the GO site . Additionally, the genome of M. oryzae is constantly being refined and updated as new information is incorporated. For the latest GO annotation of Version 6 genome, please visit our website . The preliminary GO annotation of Version 6 genome is placed at a local MySql database that is publically queryable via a user-friendly interface Adhoc Query System. Conclusion Our analysis provides comprehensive and robust GO annotations of the M. oryzae genome assemblies that will be solid foundations for further functional interrogation of M. oryzae.
Collapse
Affiliation(s)
- Shaowu Meng
- Center for Integrated Fungal Research, North Carolina State University, Raleigh NC 27695, USA.
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Dulermo T, Rascle C, Chinnici G, Gout E, Bligny R, Cotton P. Dynamic carbon transfer during pathogenesis of sunflower by the necrotrophic fungus Botrytis cinerea: from plant hexoses to mannitol. THE NEW PHYTOLOGIST 2009; 183:1149-1162. [PMID: 19500266 DOI: 10.1111/j.1469-8137.2009.02890.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The main steps for carbon acquisition and conversion by Botrytis cinerea during pathogenesis of sunflower cotyledon were investigated here. A sequential view of soluble carbon metabolites detected by NMR spectroscopy during infection is presented. Disappearance of plant hexoses and their conversion to fungal metabolites were investigated by expression analysis of an extended gene family of hexose transporters (Bchxts) and of the mannitol pathway, using quantitative PCR. In order to analyse the main fungal metabolic routes used by B. cinerea in real time, we performed, for the first time, in vivo NMR analyses during plant infection. During infection, B. cinerea converts plant hexoses into mannitol. Expression analysis of the sugar porter gene family suggested predominance for transcription induced upon low glucose conditions and regulated according to the developmental phase. Allocation of plant hexoses by the pathogen revealed a conversion to mannitol, trehalose and glycogen for glucose and a preponderant transformation of fructose to mannitol by a more efficient metabolic pathway. Uptake of plant hexoses by B. cinerea is based on a multigenic flexible hexose uptake system. Their conversion into mannitol, enabled by two simultaneously expressed pathways, generates a dynamic intracellular carbon pool.
Collapse
Affiliation(s)
- Thierry Dulermo
- Génomique Fonctionnelle des Champignons Pathogènes des Plantes, UMR Microbiologie, Adaptation & Pathogénie, Université de Lyon, Lyon, F-69003, France; Université Lyon1-CNRS-INSA-BayerCropScience, 10 rue Raphaël Dubois, Bât Lwoff, Villeurbanne, F-69621, France
| | - Christine Rascle
- Génomique Fonctionnelle des Champignons Pathogènes des Plantes, UMR Microbiologie, Adaptation & Pathogénie, Université de Lyon, Lyon, F-69003, France; Université Lyon1-CNRS-INSA-BayerCropScience, 10 rue Raphaël Dubois, Bât Lwoff, Villeurbanne, F-69621, France
| | - Gaetan Chinnici
- Génomique Fonctionnelle des Champignons Pathogènes des Plantes, UMR Microbiologie, Adaptation & Pathogénie, Université de Lyon, Lyon, F-69003, France; Université Lyon1-CNRS-INSA-BayerCropScience, 10 rue Raphaël Dubois, Bât Lwoff, Villeurbanne, F-69621, France
| | - Elisabeth Gout
- UMR 5168 Réponse & Dynamique Cellulaires, Laboratoire de Physiologie Cellulaire Végétale, Université Joseph Fourier-CEA-CNRS-INRA, 17 rue des Martyrs, Grenoble F-38054, France
| | - Richard Bligny
- UMR 5168 Réponse & Dynamique Cellulaires, Laboratoire de Physiologie Cellulaire Végétale, Université Joseph Fourier-CEA-CNRS-INRA, 17 rue des Martyrs, Grenoble F-38054, France
| | - Pascale Cotton
- Génomique Fonctionnelle des Champignons Pathogènes des Plantes, UMR Microbiologie, Adaptation & Pathogénie, Université de Lyon, Lyon, F-69003, France; Université Lyon1-CNRS-INSA-BayerCropScience, 10 rue Raphaël Dubois, Bât Lwoff, Villeurbanne, F-69621, France
| |
Collapse
|
143
|
Cernadas RA, Camillo LR, Benedetti CE. Transcriptional analysis of the sweet orange interaction with the citrus canker pathogens Xanthomonas axonopodis pv. citri and Xanthomonas axonopodis pv. aurantifolii. MOLECULAR PLANT PATHOLOGY 2008; 9:609-31. [PMID: 19018992 PMCID: PMC6640372 DOI: 10.1111/j.1364-3703.2008.00486.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Xanthomonas axonopodis pv. citri (Xac) and Xanthomonas axonopodis pv. aurantifolii pathotype C (Xaa) are responsible for citrus canker disease; however, while Xac causes canker on all citrus varieties, Xaa is restricted to Mexican lime, and in sweet oranges it triggers a defence response. To gain insights into the differential pathogenicity exhibited by Xac and Xaa and to survey the early molecular events leading to canker development, a detailed transcriptional analysis of sweet orange plants infected with the pathogens was performed. Using differential display, suppressed subtractive hybridization and microarrays, we identified changes in transcript levels in approximately 2.0% of the approximately 32,000 citrus genes examined. Genes with altered expression in response to Xac/Xaa surveyed at 6 and 48 h post-infection (hpi) were associated with cell-wall modifications, cell division and expansion, vesicle trafficking, disease resistance, carbon and nitrogen metabolism, and responses to hormones auxin, gibberellin and ethylene. Most of the genes that were commonly modulated by Xac and Xaa were associated with basal defences triggered by pathogen-associated molecular patterns, including those involved in reactive oxygen species production and lignification. Significantly, we detected clear changes in the transcriptional profiles of defence, cell-wall, vesicle trafficking and cell growth-related genes in Xac-infected leaves between 6 and 48 hpi. This is consistent with the notion that Xac suppresses host defences early during infection and simultaneously changes the physiological status of the host cells, reprogramming them for division and growth. Notably, brefeldin A, an inhibitor of vesicle trafficking, retarded canker development. In contrast, Xaa triggered a mitogen-activated protein kinase signalling pathway involving WRKY and ethylene-responsive transcriptional factors known to activate downstream defence genes.
Collapse
Affiliation(s)
- Raúl Andrés Cernadas
- Center for Molecular and Structural Biology, Brazilian Synchrotron Light Laboratory, Campinas, SP, 13083-970, Brazil
| | | | | |
Collapse
|
144
|
Berger H, Basheer A, Böck S, Reyes-Dominguez Y, Dalik T, Altmann F, Strauss J. Dissecting individual steps of nitrogen transcription factor cooperation in the Aspergillus nidulans nitrate cluster. Mol Microbiol 2008; 69:1385-98. [PMID: 18673441 DOI: 10.1111/j.1365-2958.2008.06359.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
SUMMARY In the ascomycete fungus Aspergillus nidulans, the transcriptional activation of nitrate assimilating genes (niiA, niaD) depends on the cooperativity between a general nitrogen status-sensing regulator (the GATA factor AreA) and a pathway-specific activator (the Zn-cluster regulator NirA). Because nitrate assimilation leads to intracellular ammonium formation, it is difficult to determine the individual contributions of NirA and AreA in this complex activation/inactivation process. In an attempt to find a suitable marker for the nitrogen status sensed by AreA, we determined the intracellular free amino acid levels on different nitrogen growth conditions. We show that the amount of glutamine (Gln) inversely correlates with all known AreA activities. We find that AreA mediates chromatin remodelling by increasing histone H3 acetylation, a process triggered by transcriptional activation and, independently of transcription, by nitrogen starvation. NirA also participates in the chromatin opening process during nitrate induction but its function is not related to histone acetylation. This chromatin remodelling function of NirA is dispensable only in nitrogen-starved cells, conditions that lead to elevated AreA chromatin occupancy and histone H3 hyperacetylation. Continuous nitrate assimilation leads to self-nitrogen metabolite repression but nitrate-activated NirA is partially compensating for lowered AreA activities under these conditions.
Collapse
Affiliation(s)
- Harald Berger
- Fungal Genomics Unit, Austrian Research Centers, Tech Gate Vienna, Donau-City-Strasse 1, 1220 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
145
|
Suárez R, Wong A, Ramírez M, Barraza A, Orozco MDC, Cevallos MA, Lara M, Hernández G, Iturriaga G. Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:958-66. [PMID: 18533836 DOI: 10.1094/mpmi-21-7-0958] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Improving stress tolerance and yield in crops are major goals for agriculture. Here, we show a new strategy to increase drought tolerance and yield in legumes by overexpressing trehalose-6-phosphate synthase in the symbiotic bacterium Rhizobium etli. Phaseolus vulgaris (common beans) plants inoculated with R. etli overexpressing trehalose-6-phosphate synthase gene had more nodules with increased nitrogenase activity and higher biomass compared with plants inoculated with wild-type R. etli. In contrast, plants inoculated with an R. etli mutant in trehalose-6-phosphate synthase gene had fewer nodules and less nitrogenase activity and biomass. Three-week-old plants subjected to drought stress fully recovered whereas plants inoculated with a wild-type or mutant strain wilted and died. The yield of bean plants inoculated with R. etli overexpressing trehalose-6-phosphate synthase gene and grown with constant irrigation increased more than 50%. Macroarray analysis of 7,200 expressed sequence tags from nodules of plants inoculated with the strain overexpressing trehalose-6-phosphate synthase gene revealed upregulation of genes involved in stress tolerance and carbon and nitrogen metabolism, suggesting a signaling mechanism for trehalose. Thus, trehalose metabolism in rhizobia is key for signaling plant growth, yield, and adaptation to abiotic stress, and its manipulation has a major agronomical impact on leguminous plants.
Collapse
Affiliation(s)
- Ramón Suárez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca Mor. 62209, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Abstract
Trehalose metabolism and signaling is an area of emerging significance. In less than a decade our views on the importance of trehalose metabolism and its role in plants have gone through something of a revolution. An obscure curiosity has become an indispensable regulatory system. Mutant and transgenic plants of trehalose synthesis display wide-ranging and unprecedented phenotypes for the perturbation of a metabolic pathway. Molecular physiology and genomics have provided a glimpse of trehalose biology that had not been possible with conventional techniques, largely because the products of the synthetic pathway, trehalose 6-phosphate (T6P) and trehalose, are in trace abundance and difficult to measure in most plants. A consensus is emerging that T6P plays a central role in the coordination of metabolism with development. The discovery of trehalose metabolism has been one of the most exciting developments in plant metabolism and plant science in recent years. The field is fast moving and this review highlights the most recent insights.
Collapse
Affiliation(s)
- Matthew J Paul
- Center for Crop Genetic Improvement, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom.
| | | | | | | |
Collapse
|
147
|
Travers AA. Priming the nucleosome: a role for HMGB proteins? EMBO Rep 2003; 4:131-6. [PMID: 12612600 PMCID: PMC1315838 DOI: 10.1038/sj.embor.embor741] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2002] [Accepted: 12/20/2002] [Indexed: 11/09/2022] Open
Abstract
The high-mobility-group B (HMGB) chromosomal proteins are characterized by the HMG box, a DNA-binding domain that both introduces a tight bend into DNA and binds preferentially to a variety of distorted DNA structures. The HMGB proteins seem to act primarily as architectural facilitators in the manipulation of nucleoprotein complexes; for example, in the assembly of complexes involved in recombination and transcription. Recent genetic and biochemical evidence suggests that these proteins can facilitate nucleosome remodelling. One mechanism by which HMGB proteins could prime the nucleosome for migration is to loosen the wrapped DNA and so enhance accessibility to chromatin-remodelling complexes and possibly also to transcription factors. By constraining a tight loop of untwisted DNA at the edge of a nucleosome, an HMGB protein could induce movements in the contacts between certain core histones that would result in an overall change in nucleosome structure.
Collapse
Affiliation(s)
- Andrew A Travers
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| |
Collapse
|