101
|
Li X, Xu B, Yang H, Zhu Z. Gut Microbiota, Human Blood Metabolites, and Esophageal Cancer: A Mendelian Randomization Study. Genes (Basel) 2024; 15:729. [PMID: 38927665 PMCID: PMC11203100 DOI: 10.3390/genes15060729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Unbalances in the gut microbiota have been proposed as a possible cause of esophageal cancer (ESCA), yet the exact causal relationship remains unclear. PURPOSE To investigate the potential causal relationship between the gut microbiota and ESCA with Mendelian randomization (MR) analysis. METHODS Genome-wide association studies (GWASs) of 207 gut microbial taxa (5 phyla, 10 classes, 13 orders, 26 families, 48 genera, and 105 species) and 205 gut microbiota metabolic pathways conducted by the Dutch Microbiome Project (DMP) and a FinnGen cohort GWAS of esophageal cancer specified the summary statistics. To investigate the possibility of a mediation effect between the gut microbiota and ESCA, mediation MR analyses were performed for 1091 blood metabolites and 309 metabolite ratios. RESULTS MR analysis indicated that the relative abundance of 10 gut microbial taxa was associated with ESCA but all the 12 gut microbiota metabolic pathways with ESCA indicated no statistically significant association existing. Two blood metabolites and a metabolite ratio were discovered to be mediating factors in the pathway from gut microbiota to ESCA. CONCLUSION This research indicated the potential mediating effects of blood metabolites and offered genetic evidence in favor of a causal correlation between gut microbiota and ESCA.
Collapse
Affiliation(s)
- Xiuzhi Li
- State Key Laboratory of Oncology in South China, Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China;
| | - Bingchen Xu
- State Key Laboratory of Oncology in South China, Department of Minimally Invasive Intervention, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China;
| | - Han Yang
- State Key Laboratory of Oncology in South China, Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China;
| | - Zhihua Zhu
- State Key Laboratory of Oncology in South China, Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
102
|
Nigam M, Devi K, Coutinho HDM, Mishra AP. Exploration of gut microbiome and inflammation: A review on key signalling pathways. Cell Signal 2024; 118:111140. [PMID: 38492625 DOI: 10.1016/j.cellsig.2024.111140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
The gut microbiome, a crucial component of the human system, is a diverse collection of microbes that belong to the gut of human beings as well as other animals. These microbial communities continue to coexist harmoniously with their host organisms and perform various functions that affect the host's general health. Each person's gut microbiota has a unique makeup. The gut microbiota is well acknowledged to have a part in the local as well as systemic inflammation that underlies a number of inflammatory disorders (e.g., atherosclerosis, diabetes mellitus, obesity, and inflammatory bowel disease).The gut microbiota's metabolic products, such as short-chain fatty acids (butyrate, propionate, and acetate) inhibit inflammation by preventing immune system cells like macrophages and neutrophils from producing pro-inflammatory factors, which are triggered by the structural elements of bacteria (like lipopolysaccharide). The review's primary goal is to provide comprehensive and compiled data regarding the contribution of gut microbiota to inflammation and the associated signalling pathways.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India.
| | - Kanchan Devi
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | | | - Abhay Prakash Mishra
- Department of Pharmacology, University of Free State, Bloemfontein 9300, South Africa.
| |
Collapse
|
103
|
Zhang A, Wang J, Hu Y, Qiu Y, Dong C. Polysaccharides play an anti-fibrotic role by regulating intestinal flora: A review of research progress. Int J Biol Macromol 2024; 271:131982. [PMID: 38724335 DOI: 10.1016/j.ijbiomac.2024.131982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 06/20/2024]
Abstract
Fibrosis is a common pathological process affecting multiple organs. It refers to an increase in fibrous connective tissue and a decrease in parenchymal cells in damaged tissues or organs. This may lead to structural damage and functional decline or even organ failure. The incidence of fibrosis is increasing worldwide, and the need for safe and effective therapeutic drugs and treatments is pivotal. The intestinal tract has a complex network of exchanging information with various tissues in the body. It contains a sizeable microbial community of which the homeostasis and metabolites are closely related to fibrosis. Polysaccharides are a class of biomolecules present in natural products; they have potential value as anti-fibrotic prebiotics. Recently, polysaccharides have been found to improve fibrosis in different organs by decreasing inflammation and modulating the immune function and intestinal microbiota. In this paper, we reviewed the progress made in research concerning polysaccharides and organ fibrosis in relation to the intestinal microbiota from the pathogenesis of fibrosis to the relationship between the intestinal flora and fibrosis. Furthermore, we provide ideas and references for future polysaccharide-drug discovery and strategies for the treatment of fibrosis.
Collapse
Affiliation(s)
- Aoying Zhang
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; College of Medicine, Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Jie Wang
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; College of Medicine, Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Yulong Hu
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Yuanhao Qiu
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; College of Medicine, Pingdingshan University, Pingdingshan, Henan 467000, China.
| | - Chunhong Dong
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| |
Collapse
|
104
|
Li Z, Xia Q, Feng J, Chen X, Wang Y, Ren X, Wu S, Yang R, Li J, Liu Y, Lu Y, Chen J. The causal role of gut microbiota in susceptibility of Long COVID: a Mendelian randomization study. Front Microbiol 2024; 15:1404673. [PMID: 38873142 PMCID: PMC11169722 DOI: 10.3389/fmicb.2024.1404673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
Background Long COVID is a major challenge facing the public. Gut microbiota is closely related to Long COVID. However, the causal effects between gut microbiota and Long COVID remains unclear. Methods Using summary statistics from Genome-Wide Association Studies (GWAS), Mendelian randomization (MR) analyses were performed to investigate the relationship between gut microbiota and Long COVID. The primary statistical method employed was Inverse Variance Weighted (IVW). Sensitivity analyses were then conducted to evaluate the reliability of the findings and account for potential confounding variables. Finally, a reverse MR analysis was conducted to examine potential associations between Long COVID and genetically predicted gut microbiota compositions. Results There were 2 positive and 1 negative causal effect between gut microbiota and Long COVID. Meta-analysis results show that genus Parasutterella (OR = 1.145, 95%CI = 1.035 ∼ 1.266, P = 0.008) and genus Oscillospira (OR = 1.425, 95%CI = 1.235 ∼ 1.645, P < 0.001) significantly increased the risk of Long COVID. And genus Eisenbergiella (OR = 0.861, 95%CI = 0.785 ∼ 0.943, P = 0.001) significantly decreased the risk of Long COVID. Neither the pleiotropy nor the heterogeneity was observed. Reverse causal effect does not hold. Conclusion Our research has provided genetic evidence that establishes multiple causal relationships between the gut microbiota and Long COVID, supporting the role of the gut microbiota in Long COVID. It is possible that different taxa play a role in the development of Long COVID. The causal relationships identified in this study require further investigation.
Collapse
Affiliation(s)
- Zuming Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qinghua Xia
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Qingyuan Hospital of Traditional Chinese Medicine, Qingyuan, China
| | - Jieni Feng
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xueru Chen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yushi Wang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaolei Ren
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siyi Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rongyuan Yang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiqiang Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuntao Liu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yue Lu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Jiankun Chen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
105
|
Chen Y, Yang K, Xu M, Zhang Y, Weng X, Luo J, Li Y, Mao YH. Dietary Patterns, Gut Microbiota and Sports Performance in Athletes: A Narrative Review. Nutrients 2024; 16:1634. [PMID: 38892567 PMCID: PMC11175060 DOI: 10.3390/nu16111634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The intestinal tract of humans harbors a dynamic and complex bacterial community known as the gut microbiota, which plays a crucial role in regulating functions such as metabolism and immunity in the human body. Numerous studies conducted in recent decades have also highlighted the significant potential of the gut microbiota in promoting human health. It is widely recognized that training and nutrition strategies are pivotal factors that allow athletes to achieve optimal performance. Consequently, there has been an increasing focus on whether training and dietary patterns influence sports performance through their impact on the gut microbiota. In this review, we aim to present the concept and primary functions of the gut microbiota, explore the relationship between exercise and the gut microbiota, and specifically examine the popular dietary patterns associated with athletes' sports performance while considering their interaction with the gut microbiota. Finally, we discuss the potential mechanisms by which dietary patterns affect sports performance from a nutritional perspective, aiming to elucidate the intricate interplay among dietary patterns, the gut microbiota, and sports performance. We have found that the precise application of specific dietary patterns (ketogenic diet, plant-based diet, high-protein diet, Mediterranean diet, and high intake of carbohydrate) can improve vascular function and reduce the risk of illness in health promotion, etc., as well as promoting recovery and controlling weight with regard to improving sports performance, etc. In conclusion, although it can be inferred that certain aspects of an athlete's ability may benefit from specific dietary patterns mediated by the gut microbiota to some extent, further high-quality clinical studies are warranted to substantiate these claims and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Yonglin Chen
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
| | - Keer Yang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
| | - Mingxin Xu
- The Fifth College of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510500, China;
| | - Yishuo Zhang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
| | - Xiquan Weng
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
| | - Jiaji Luo
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
| | - Yanshuo Li
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
| | - Yu-Heng Mao
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
- Guangdong Key Laboratory of Human Sports Performance Science, Guangzhou 510500, China
| |
Collapse
|
106
|
Xu B, Wang Z, Wang Y, Zhang K, Li J, Zhou L, Li B. Milk-derived Lactobacillus with high production of short-chain fatty acids relieves antibiotic-induced diarrhea in mice. Food Funct 2024; 15:5329-5342. [PMID: 38625681 DOI: 10.1039/d3fo04706g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Antibiotic-associated diarrhea (AAD) is a common side effect during antibiotic treatment, and this has warranted research into alternative protocols. In this study, we investigated the potential therapeutic effects of three cohorts, Lactobacillus plantarum KLDS 1.0386, Lactobacillus acidophilus KLDS 1.0901 and a mixed strain of both, on intestinal inflammation, the intestinal mucosal barrier, and microbial community in mice with ampicillin-induced diarrhea. The results showed that Lactobacillus inhibited the activation of the TLR4/NF-κB signaling pathway, decreased the expression of pro-inflammatory cytokines, increased the expression of anti-inflammatory cytokines in the murine intestine, and alleviated the intestinal barrier damage and inflammation induced by ampicillin. In addition, Lactobacillus ameliorates intestinal epithelial barrier damage by increasing the expression of tight junction proteins and aquaporins. After Lactobacillus treatment, the diversity of gut microbiota increased significantly, and the composition and function of gut microbiota gradually recovered. In the gut microbiota, Bacteroidetes and Escherichia Shigella related to the synthesis of short-chain fatty acids (SCFAs) were significantly affected by ampicillin, while Lactobacillus regulates the cascade of the microbial-SCFA signaling pathway, which greatly promoted the generation of SCFAs. Collectively, Lactobacillus showed better results in treating AAD, especially in mixed strains.
Collapse
Affiliation(s)
- Baofeng Xu
- China School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Zengbo Wang
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Yuqi Wang
- Food College, Northeast Agricultural University, Harbin 150030, China.
- Heilongjiang Jinxiang Biochemical Co., LTD, Harbin 150030, China
| | - Kangyong Zhang
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Jian Li
- China School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Linyi Zhou
- China School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan, 430000, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan, 430000, China
| | - Bailiang Li
- Food College, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
107
|
Olteanu G, Ciucă-Pană MA, Busnatu ȘS, Lupuliasa D, Neacșu SM, Mititelu M, Musuc AM, Ioniță-Mîndrican CB, Boroghină SC. Unraveling the Microbiome-Human Body Axis: A Comprehensive Examination of Therapeutic Strategies, Interactions and Implications. Int J Mol Sci 2024; 25:5561. [PMID: 38791599 PMCID: PMC11122276 DOI: 10.3390/ijms25105561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
This review scrutinizes the intricate interplay between the microbiome and the human body, exploring its multifaceted dimensions and far-reaching implications. The human microbiome, comprising diverse microbial communities inhabiting various anatomical niches, is increasingly recognized as a critical determinant of human health and disease. Through an extensive examination of current research, this review elucidates the dynamic interactions between the microbiome and host physiology across multiple organ systems. Key topics include the establishment and maintenance of microbiota diversity, the influence of host factors on microbial composition, and the bidirectional communication pathways between microbiota and host cells. Furthermore, we delve into the functional implications of microbiome dysbiosis in disease states, emphasizing its role in shaping immune responses, metabolic processes, and neurological functions. Additionally, this review discusses emerging therapeutic strategies aimed at modulating the microbiome to restore host-microbe homeostasis and promote health. Microbiota fecal transplantation represents a groundbreaking therapeutic approach in the management of dysbiosis-related diseases, offering a promising avenue for restoring microbial balance within the gut ecosystem. This innovative therapy involves the transfer of fecal microbiota from a healthy donor to an individual suffering from dysbiosis, aiming to replenish beneficial microbial populations and mitigate pathological imbalances. By synthesizing findings from diverse fields, this review offers valuable insights into the complex relationship between the microbiome and the human body, highlighting avenues for future research and clinical interventions.
Collapse
Affiliation(s)
- Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 020956 Bucharest, Romania;
| | - Maria-Alexandra Ciucă-Pană
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, Bagdasar-Arseni Emergency Hospital, 050474 Bucharest, Romania;
| | - Ștefan Sebastian Busnatu
- Department of Cardio-Thoracic Pathology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (D.L.); (S.M.N.)
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (D.L.); (S.M.N.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 020956 Bucharest, Romania;
| | - Adina Magdalena Musuc
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 060021 Bucharest, Romania
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Steluța Constanța Boroghină
- Department of Complementary Sciences, History of Medicine and Medical Culture, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
108
|
Lin Q, Lin S, Fan Z, Liu J, Ye D, Guo P. A Review of the Mechanisms of Bacterial Colonization of the Mammal Gut. Microorganisms 2024; 12:1026. [PMID: 38792855 PMCID: PMC11124445 DOI: 10.3390/microorganisms12051026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
A healthy animal intestine hosts a diverse population of bacteria in a symbiotic relationship. These bacteria utilize nutrients in the host's intestinal environment for growth and reproduction. In return, they assist the host in digesting and metabolizing nutrients, fortifying the intestinal barrier, defending against potential pathogens, and maintaining gut health. Bacterial colonization is a crucial aspect of this interaction between bacteria and the intestine and involves the attachment of bacteria to intestinal mucus or epithelial cells through nonspecific or specific interactions. This process primarily relies on adhesins. The binding of bacterial adhesins to host receptors is a prerequisite for the long-term colonization of bacteria and serves as the foundation for the pathogenicity of pathogenic bacteria. Intervening in the adhesion and colonization of bacteria in animal intestines may offer an effective approach to treating gastrointestinal diseases and preventing pathogenic infections. Therefore, this paper reviews the situation and mechanisms of bacterial colonization, the colonization characteristics of various bacteria, and the factors influencing bacterial colonization. The aim of this study was to serve as a reference for further research on bacteria-gut interactions and improving animal gut health.
Collapse
Affiliation(s)
- Qingjie Lin
- College of Animal Science, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Fuzhou 350002, China; (Q.L.); (S.L.); (Z.F.)
| | - Shiying Lin
- College of Animal Science, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Fuzhou 350002, China; (Q.L.); (S.L.); (Z.F.)
| | - Zitao Fan
- College of Animal Science, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Fuzhou 350002, China; (Q.L.); (S.L.); (Z.F.)
| | - Jing Liu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China;
| | - Dingcheng Ye
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China;
| | - Pingting Guo
- College of Animal Science, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Fuzhou 350002, China; (Q.L.); (S.L.); (Z.F.)
| |
Collapse
|
109
|
Tsigalou C, Tsolou A, Stavropoulou E, Konstantinidis T, Zafiriou E, Dardiotis E, Tsirogianni A, Bogdanos D. Unraveling the intricate dance of the Mediterranean diet and gut microbiota in autoimmune resilience. Front Nutr 2024; 11:1383040. [PMID: 38818135 PMCID: PMC11137302 DOI: 10.3389/fnut.2024.1383040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024] Open
Abstract
The nutritional habits regulate the gut microbiota and increase risk of an autoimmune disease. Western diet is rich in sugars, meat, and poly-unsaturated fatty acids, which lead to dysbiosis of intestinal microbiota, disruption of gut epithelial barrier and chronic mucosal inflammation. In contrast, the Mediterranean Diet (MedDiet) is abundant in ω3 fatty acids, fruits, and vegetables, possessing anti-inflammatory properties that contribute to the restoration of gut eubiosis. Numerous studies have extensively examined the impact of MedDiet and its components on both health and various disease states. Additionally, specific investigations have explored the correlation between MedDiet, microbiota, and the risk of autoimmune diseases. Furthermore, the MedDiet has been linked to a reduced risk of cardiovascular diseases, playing a pivotal role in lowering mortality rates among individuals with autoimmune diseases and comorbidities. The aim of the present review is to specifically highlight current knowledge regarding possible interactions of MedDiet with the patterns of intestinal microbiota focusing on autoimmunity and a blueprint through dietary modulations for the prevention and management of disease's activity and progression.
Collapse
Affiliation(s)
- Christina Tsigalou
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, University Hospital, Alexandroupolis, Greece
| | - Avgi Tsolou
- Laboratory of Molecular Cell Biology, Cell Cycle and Proteomics, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Elisavet Stavropoulou
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, University Hospital, Alexandroupolis, Greece
| | - Theocharis Konstantinidis
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, University Hospital, Alexandroupolis, Greece
| | - Efterpi Zafiriou
- Department of Dermatology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Efthymios Dardiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Alexandra Tsirogianni
- Department of Immunology-Histocompatibility, Evangelismos General Hospital, Athens, Greece
| | - Dimitrios Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
110
|
Yi C, Zou H, Lin X, Liu S, Wang J, Tian Y, Deng X, Luo J, Li C, Long Y. Zhibai dihuang pill (ZBDH) exhibits therapeutic effects on idiopathic central sexual precocity in rats by modulating the gut microflora. Heliyon 2024; 10:e29723. [PMID: 38707434 PMCID: PMC11066310 DOI: 10.1016/j.heliyon.2024.e29723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024] Open
Abstract
To reveal the role of gut microbiota (GM) in the occurrence and development of idiopathic central precocious puberty (ICPP) using 16S rDNA sequencing and bioinformatics analysis. The Danazol-induced ICPP model was successfully constructed in this study. ZBDH and GnRHa treatments could effectively inhibit ICPP in rats, as manifested by the delayed vaginal opening time, reduced weight, decreased uterine organ coefficient, and decreased uterine wall thickness and corpus luteum number, as well as remarkably reduced serum hormone (LH, FSH, and E2) levels. According to 16S rDNA sequencing analysis results, there was no significant difference in the GM community diversity across different groups; however, the composition of the microbial community and the abundance of the dominant microbial community were dramatically different among groups. ZBDH and GnRHa treatments could effectively reduce the abundance of Muribaculateae and Lactobacillus and promote Prevotella abundance. ZBDH and GnRHa were effective in treating Danazol-induced ICPP model rats. The therapeutic effects of ZBDH and GnRHa could be related to the changes in GM in rats.
Collapse
Affiliation(s)
- Canhong Yi
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Hui Zou
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Xiaojuan Lin
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Shanshan Liu
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Juan Wang
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Yuquan Tian
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Xujing Deng
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Jianhong Luo
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Chan Li
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Yin Long
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| |
Collapse
|
111
|
Li G, Hou Y, Zhang C, Zhou X, Bao F, Yang Y, Chen L, Yu D. Interplay Between Drug-Induced Liver Injury and Gut Microbiota: A Comprehensive Overview. Cell Mol Gastroenterol Hepatol 2024; 18:101355. [PMID: 38729523 PMCID: PMC11260867 DOI: 10.1016/j.jcmgh.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Drug-induced liver injury is a prevalent severe adverse event in clinical settings, leading to increased medical burdens for patients and presenting challenges for the development and commercialization of novel pharmaceuticals. Research has revealed a close association between gut microbiota and drug-induced liver injury in recent years. However, there has yet to be a consensus on the specific mechanism by which gut microbiota is involved in drug-induced liver injury. Gut microbiota may contribute to drug-induced liver injury by increasing intestinal permeability, disrupting intestinal metabolite homeostasis, and promoting inflammation and oxidative stress. Alterations in gut microbiota were found in drug-induced liver injury caused by antibiotics, psychotropic drugs, acetaminophen, antituberculosis drugs, and antithyroid drugs. Specific gut microbiota and their abundance are associated closely with the severity of drug-induced liver injury. Therefore, gut microbiota is expected to be a new target for the treatment of drug-induced liver injury. This review focuses on the association of gut microbiota with common hepatotoxic drugs and the potential mechanisms by which gut microbiota may contribute to the pathogenesis of drug-induced liver injury, providing a more comprehensive reference for the interaction between drug-induced liver injury and gut microbiota.
Collapse
Affiliation(s)
- Guolin Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yifu Hou
- Department of Organ Transplantation, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province and Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Changji Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoshi Zhou
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Furong Bao
- Department of Nursing, Guanghan People's Hospital, Guanghan, China
| | - Yong Yang
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Lu Chen
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Department of Organ Transplantation, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Dongke Yu
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
112
|
Singh A, Luallen RJ. Understanding the factors regulating host-microbiome interactions using Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230059. [PMID: 38497260 PMCID: PMC10945399 DOI: 10.1098/rstb.2023.0059] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/01/2024] [Indexed: 03/19/2024] Open
Abstract
The Human Microbiome Project was a research programme that successfully identified associations between microbial species and healthy or diseased individuals. However, a major challenge identified was the absence of model systems for studying host-microbiome interactions, which would increase our capacity to uncover molecular interactions, understand organ-specificity and discover new microbiome-altering health interventions. Caenorhabditis elegans has been a pioneering model organism for over 70 years but was largely studied in the absence of a microbiome. Recently, ecological sampling of wild nematodes has uncovered a large amount of natural genetic diversity as well as a slew of associated microbiota. The field has now explored the interactions of C. elegans with its associated gut microbiome, a defined and non-random microbial community, highlighting its suitability for dissecting host-microbiome interactions. This core microbiome is being used to study the impact of host genetics, age and stressors on microbiome composition. Furthermore, single microbiome species are being used to dissect molecular interactions between microbes and the animal gut. Being amenable to health altering genetic and non-genetic interventions, C. elegans has emerged as a promising system to generate and test new hypotheses regarding host-microbiome interactions, with the potential to uncover novel paradigms relevant to other systems. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Anupama Singh
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Robert J. Luallen
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
113
|
Sang Y, Zheng K, Zhao Y, Liu Y, Zhu S, Xie X, Shang L, Liu J, Li L. Efficacy and regulatory strategies of gut microbiota in immunotherapy: a narrative review. Transl Cancer Res 2024; 13:2043-2063. [PMID: 38737692 PMCID: PMC11082673 DOI: 10.21037/tcr-24-316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/29/2024] [Indexed: 05/14/2024]
Abstract
Background and Objective With advances in gut microbiome research, it has been recognized that the gut microbiome has an important and far-reaching impact on many human diseases, including cancer. Therefore, more and more researchers are focusing on the treatment of gut flora in tumors. In this article, we present a review of the mechanisms of gut microbes in tumor immunotherapy and related studies to provide reference for further research and insights into the clinical application of gut microbes. Methods Between April 25, 2023, and November 25, 2023, we searched for articles published only in English between 1984 and 2023 using the databases PubMed, American Medical Association and Elsevier ScienceDirect using the keywords "gut microbiology" and "tumor" or "immunotherapy". Key Content and Findings The gastrointestinal tract contains the largest number of microorganisms in the human body. Microorganisms are involved in regulating many physiological activities of the body. Studies have shown that gut microbes and their derivatives are involved in the occurrence and development of a variety of inflammations and tumors, and changes in their abundance and proportion affect the degree of cancer progression and sensitivity to immunotherapy. Gut microbiota-based drug research is ongoing, and some anti-tumor studies have entered the clinical trial stage. Conclusions The abundance and proportion of intestinal microorganisms influence the susceptibility of tumors to tumor immunotherapy. This article reviewed the effects and mechanisms of gut microbes on tumor immunotherapy to further explore the medical value of gut microbes in tumor immunotherapy.
Collapse
Affiliation(s)
- Yaodong Sang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Kexin Zheng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yulong Zhao
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuan Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Siqiang Zhu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaozhou Xie
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Jin Liu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| |
Collapse
|
114
|
Pires L, González-Paramás AM, Heleno SA, Calhelha RC. The Role of Gut Microbiota in the Etiopathogenesis of Multiple Chronic Diseases. Antibiotics (Basel) 2024; 13:392. [PMID: 38786121 PMCID: PMC11117238 DOI: 10.3390/antibiotics13050392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic diseases (CD) may result from a combination of genetic factors, lifestyle and social behaviours, healthcare system influences, community factors, and environmental determinants of health. These risk factors frequently coexist and interact with one another. Ongoing research and a focus on personalized interventions are pivotal strategies for preventing and managing chronic disease outcomes. A wealth of literature suggests the potential involvement of gut microbiota in influencing host metabolism, thereby impacting various risk factors associated with chronic diseases. Dysbiosis, the perturbation of the composition and activity of the gut microbiota, is crucial in the etiopathogenesis of multiple CD. Recent studies indicate that specific microorganism-derived metabolites, including trimethylamine N-oxide, lipopolysaccharide and uremic toxins, contribute to subclinical inflammatory processes implicated in CD. Various factors, including diet, lifestyle, and medications, can alter the taxonomic species or abundance of gut microbiota. Researchers are currently dedicating efforts to understanding how the natural progression of microbiome development in humans affects health outcomes. Simultaneously, there is a focus on enhancing the understanding of microbiome-host molecular interactions. These endeavours ultimately aim to devise practical approaches for rehabilitating dysregulated human microbial ecosystems, intending to restore health and prevent diseases. This review investigates how the gut microbiome contributes to CD and explains ways to modulate it for managing or preventing chronic conditions.
Collapse
Affiliation(s)
- Lara Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (S.A.H.)
- Grupo de Investigación en Polifenoles en Alimentos, Implicaciones en la Calidad y en Salud Humana, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Ana M. González-Paramás
- Grupo de Investigación en Polifenoles en Alimentos, Implicaciones en la Calidad y en Salud Humana, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Sandrina A. Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (S.A.H.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (S.A.H.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
115
|
Loyala JV, Down B, Wong E, Tan B. Treatment of Cachexia in Gastric Cancer: Exploring the Use of Anti-Inflammatory Natural Products and Their Derivatives. Nutrients 2024; 16:1246. [PMID: 38674936 PMCID: PMC11053965 DOI: 10.3390/nu16081246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
(1) Background: Gastric cancer is a significant cause of cancer-related mortality worldwide. Weight loss and malnutrition associated with cancer are linked with increased mortality rates and reduced quality of life. Cancer cachexia, characterised by the loss of skeletal muscle, is associated with approximately 20% of cancer-related deaths and differs from malnutrition in that it cannot be fully reversed by nutritional support alone. It is now recognised that the primary pathophysiological process underlying cancer cachexia is chronic inflammation leading to increased calorie consumption. Current treatments that focus on nutritional supplementation, psychological counselling, appetite stimulation and reducing inflammation are lacking in efficacy. This review focuses on the evidence supporting the potential roles of natural anti-inflammatory products and their derivatives including fatty acids, probiotics, amino acids, curcumin, fucoidan, epigallocatechin-3-gallate, ginger, resveratrol and Boswellia serrata in the management of gastric cancer cachexia. (2) Results: While natural anti-inflammatory products show promise in a number of in vitro and in vivo studies, there are only a small number of human studies available. Where present, the evidence base is heterogeneous, with varying study methodologies and outcomes. (3) Conclusions: Natural anti-inflammatory products represent a potential adjunctive therapy for gastric cancer cachexia. Further research, particularly well-designed clinical trials, is needed to elucidate their optimal role, dosing and safety profiles in the management of gastric cancer cachexia.
Collapse
Affiliation(s)
- Jerocin Vishani Loyala
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2GW, UK
| | - Billy Down
- High Wycombe Hospital, Buckinghamshire Healthcare NHS Trust, High Wycombe HP11 2TT, UK;
| | - Enoch Wong
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2GW, UK
| | - Benjamin Tan
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
116
|
Yang L, Li D, Sun S, Liu D, Wang Y, Liu X, Zhou B, Nie W, Li L, Wang Y, Sha S, Li Y, Shen C, Tao J. Dupilumab therapy improves gut microbiome dysbiosis and tryptophan metabolism in Chinese patients with atopic dermatitis. Int Immunopharmacol 2024; 131:111867. [PMID: 38493690 DOI: 10.1016/j.intimp.2024.111867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Dupilumab has demonstrate its potential to orchestrate inflammatory skin microenvironment, enhance skin barrier and shift skin microbiome dysbiosis, collectively contributing to clinical improvement in patients with atopic dermatitis (AD). As the second genome of human body, growing evidence suggests that the gut microbiome might relate to the host response to treatments. Little is known about the association between dupilumab treatment and gut microbiome in AD patients. OBJECTIVE We aimed to characterize the gut microbiome among Chinese subjects with or without AD and determine the potential effect of dupilumab on the gut microbiome. RESULTS The 16 s rRNA gene sequencing was conducted on 48 healthy controls (HC), 44 AD patients and 27 AD patients who received dupilumab for 16 weeks. Prior to treatment, we identified the changed beta-diversity, increased Firmicutes/Bacteroidetes ratio, decreased Bifidobacterium and expanded Faecalibacterium among the AD patients compared to HC. After 16 weeks of dupilumab treatment, gut microbiome dysbiosis of the AD patients improved with reversed beta-diversity, closer bacterial connections, increased colonization of Bifidobacterium, Ruminococcus gnavus, and Coprococcus, which were negatively correlated with disease severity indicators. This shift was largely independent of the degree of clinical improvement. Bacterial function analysis revealed further metabolic alterations following dupilumab treatment, including up-regulated expression of genes involved in the indole pathway of tryptophan metabolism, corroborated by quantitative UHPLC-MS/MS analysis. CONCLUSION Dupilumab treatment tends to help shift the gut microbial dysbiosis in AD patients to a healthier state, along with improved intestinal tryptophan metabolism, suggesting the gut flora and its metabolites may mediate part of the synergistic therapeutic effects on the host.
Collapse
Affiliation(s)
- Liu Yang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Danqi Li
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Shuomin Sun
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Danping Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaohuan Liu
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha 410007, Hunan, China
| | - Bin Zhou
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Wenjia Nie
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Lu Li
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Yifei Wang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Shanshan Sha
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Yan Li
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Chen Shen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China.
| |
Collapse
|
117
|
Jing Y, Wang Q, Bai F, Li Z, Li Y, Liu W, Yan Y, Zhang S, Gao C, Yu Y. Role of microbiota-gut-brain axis in natural aging-related alterations in behavior. Front Neurosci 2024; 18:1362239. [PMID: 38699678 PMCID: PMC11063250 DOI: 10.3389/fnins.2024.1362239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction Aging is a complex, time-dependent biological process that involves a decline of overall function. Over the past decade, the field of intestinal microbiota associated with aging has received considerable attention. However, there is limited information surrounding microbiota-gut-brain axis (MGBA) to further reveal the mechanism of aging. Methods In this study, locomotory function and sensory function were evaluated through a series of behavioral tests.Metabolic profiling were determined by using indirect calorimetry.16s rRNA sequence and targeted metabolomics analyses were performed to investigate alterations in the gut microbiota and fecal short-chain fatty acids (SCFAs). The serum cytokines were detected by a multiplex cytokine assay.The expression of proinflammatory factors were detected by western blotting. Results Decreased locomotor activity, decreased pain sensitivity, and reduced respiratory metabolic profiling were observed in aged mice. High-throughput sequencing revealed that the levels of genus Lactobacillus and Dubosiella were reduced, and the levels of genus Alistipes and Bacteroides were increased in aged mice. Certain bacterial genus were directly associated with the decline of physiological behaviors in aged mice. Furthermore, the amount of fecal SCFAs in aged mice was decreased, accompanied by an upregulation in the circulating pro-inflammatory cytokines and increased expression of inflammatory factors in the brain. Discussion Aging-induced microbial dysbiosis was closely related with the overall decline in behavior, which may attribute to the changes in metabolic products, e.g., SCFAs, caused by an alteration in the gut microbiota, leading to inflammaging and contributing to neurological deficits. Investigating the MGBA might provide a novel viewpoint to exploring the pathogenesis of aging and expanding appropriate therapeutic targets.
Collapse
Affiliation(s)
- Yingli Jing
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Qiuying Wang
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Fan Bai
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Zihan Li
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Yan Li
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Weijin Liu
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Yitong Yan
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Shuangyue Zhang
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Chen Gao
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Yan Yu
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
118
|
Ali A, Wu L, Ali SS. Gut microbiota and acute kidney injury: immunological crosstalk link. Int Urol Nephrol 2024; 56:1345-1358. [PMID: 37749436 DOI: 10.1007/s11255-023-03760-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/14/2023] [Indexed: 09/27/2023]
Abstract
The gut microbiota, often called the "forgotten organ," plays a crucial role in bidirectional communication with the host for optimal physiological function. This communication helps regulate the host's immunity and metabolism positively and negatively. Many factors influence microbiota homeostasis and subsequently lead to an immune system imbalance. The correlation between an unbalanced immune system and acute diseases such as acute kidney injury is not fully understood, and the role of gut microbiota in disease pathogenesis is still yet uncovered. This review summarizes our understanding of gut microbiota, focusing on the interactions between the host's immune system and the microbiome and their impact on acute kidney injury.
Collapse
Affiliation(s)
- Asmaa Ali
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
- Department of Pulmonary Medicine, Abbassia Chest Hospital, MOH, Cairo, Egypt.
- Department of Respiratory Allergy, A Al-Rashed Allergy Center, Ministry of Health, Kuwait, Kuwait.
| | - Liang Wu
- Yizheng Hospital, Nanjing Drum Tower Hospital Group, Yizheng, 210008, China.
| | - Sameh Samir Ali
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, China
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
119
|
Li C, Lanasa D, Park JH. Pathways and mechanisms of CD4 +CD8αα + intraepithelial T cell development. Trends Immunol 2024; 45:288-302. [PMID: 38514370 PMCID: PMC11015970 DOI: 10.1016/j.it.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
The mammalian small intestine epithelium harbors a peculiar population of CD4+CD8αα+ T cells that are derived from mature CD4+ T cells through reprogramming of lineage-specific transcription factors. CD4+CD8αα+ T cells occupy a unique niche in T cell biology because they exhibit mixed phenotypes and functional characteristics of both CD4+ helper and CD8+ cytotoxic T cells. The molecular pathways driving their generation are not fully mapped. However, recent studies demonstrate the unique role of the commensal gut microbiota as well as distinct cytokine and chemokine requirements in the differentiation and survival of these cells. We review the established and newly identified factors involved in the generation of CD4+CD8αα+ intraepithelial lymphocytes (IELs) and place them in the context of the molecular machinery that drives their phenotypic and functional differentiation.
Collapse
Affiliation(s)
- Can Li
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dominic Lanasa
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
120
|
Lombardi M, Troisi J, Motta BM, Torre P, Masarone M, Persico M. Gut-Liver Axis Dysregulation in Portal Hypertension: Emerging Frontiers. Nutrients 2024; 16:1025. [PMID: 38613058 PMCID: PMC11013091 DOI: 10.3390/nu16071025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Portal hypertension (PH) is a complex clinical challenge with severe complications, including variceal bleeding, ascites, hepatic encephalopathy, and hepatorenal syndrome. The gut microbiota (GM) and its interconnectedness with human health have emerged as a captivating field of research. This review explores the intricate connections between the gut and the liver, aiming to elucidate how alterations in GM, intestinal barrier function, and gut-derived molecules impact the development and progression of PH. A systematic literature search, following PRISMA guidelines, identified 12 original articles that suggest a relationship between GM, the gut-liver axis, and PH. Mechanisms such as dysbiosis, bacterial translocation, altered microbial structure, and inflammation appear to orchestrate this relationship. One notable study highlights the pivotal role of the farnesoid X receptor axis in regulating the interplay between the gut and liver and proposes it as a promising therapeutic target. Fecal transplantation experiments further emphasize the pathogenic significance of the GM in modulating liver maladies, including PH. Recent advancements in metagenomics and metabolomics have expanded our understanding of the GM's role in human ailments. The review suggests that addressing the unmet need of identifying gut-liver axis-related metabolic and molecular pathways holds potential for elucidating pathogenesis and directing novel therapeutic interventions.
Collapse
Affiliation(s)
- Martina Lombardi
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy;
- European Institute of Metabolomics (EIM) Foundation, Via G. Puccini, 3, 84081 Baronissi, SA, Italy
| | - Jacopo Troisi
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy;
- European Institute of Metabolomics (EIM) Foundation, Via G. Puccini, 3, 84081 Baronissi, SA, Italy
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy; (B.M.M.); (P.T.); (M.M.)
| | - Benedetta Maria Motta
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy; (B.M.M.); (P.T.); (M.M.)
| | - Pietro Torre
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy; (B.M.M.); (P.T.); (M.M.)
| | - Mario Masarone
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy; (B.M.M.); (P.T.); (M.M.)
| | - Marcello Persico
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy; (B.M.M.); (P.T.); (M.M.)
| |
Collapse
|
121
|
Lee SU, Jang BS, Na YR, Lee SH, Han S, Chang JH, Kim HJ. Effect of Lactobacillus Rhamnosus GG for Regulation of Inflammatory Response in Radiation-Induced Enteritis. Probiotics Antimicrob Proteins 2024; 16:636-648. [PMID: 37072632 DOI: 10.1007/s12602-023-10071-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2023] [Indexed: 04/20/2023]
Abstract
The purpose of this study was to investigate the role of Lactobacillus rhamnosus GG (LGG) probiotics in radiation enteritis using in vivo mice. A total of 40 mice were randomly assigned to four groups: control, probiotics, radiotherapy (RT), and RT + probiotics. For the group of probiotics, 0.2 mL of solution that contained 1.0 × 108 colony-forming units (CFU) of LGG was used and orally administered daily until sacrifice. For RT, a single dose of 14 Gy was administered using a 6 mega-voltage photon beam to the abdominopelvic area. Mice were sacrifice at day 4 (S1) and day 7 (S2) after RT. Their jejunum, colon, and stool were collected. A multiplex cytokine assay and 16 s ribosomal RNA amplicon sequencing were then performed. Regarding cytokine concentrations in tissues, pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin-6 and monocyte chemotactic protein-1, showed significantly decreased protein levels in colon tissues of the RT + probiotics group than in the RT alone group (all p < 0.05). As for comparing microbial abundance through alpha-diversity and beta-diversity, no significant differences were observed between the RT + probiotics and RT alone groups, except for an increase in alpha-diversity in the stool of the RT + probiotics group. Upon analysis of differential microbes based on treatment, the dominance of anti-inflammatory-related microbes, such as Porphyromonadaceae, Bacteroides acidifaciens, and Ruminococcus, was observed in the jejunum, colon, and stool of the RT + probiotics group. With regard to predicted metabolic pathway abundances, the pathways associated with anti-inflammatory processes, such as biosynthesis of pyrimidine nucleotides, peptidoglycans, tryptophan, adenosylcobalamin, and propionate, were differentially identified in the RT + probiotics group compared to the RT alone group. Protective effects of probiotics on radiation enteritis were potentially derived from dominant anti-inflammation-related microbes and metabolites.
Collapse
Affiliation(s)
- Sung Uk Lee
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, South Korea
- Proton Therapy Center, National Cancer Center, Goyang, South Korea
| | - Bum-Sup Jang
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea
| | - Yi Rang Na
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, South Korea
| | - Sun Hwa Lee
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea
| | - Sunwoo Han
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, South Korea
| | - Ji Hyun Chang
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, South Korea.
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea.
| | - Hak Jae Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, South Korea.
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
122
|
Zhang L, Wang P, Huang J, Xing Y, Wong FS, Suo J, Wen L. Gut microbiota and therapy for obesity and type 2 diabetes. Front Endocrinol (Lausanne) 2024; 15:1333778. [PMID: 38596222 PMCID: PMC11002083 DOI: 10.3389/fendo.2024.1333778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/06/2024] [Indexed: 04/11/2024] Open
Abstract
There has been a major increase in Type 2 diabetes and obesity in many countries, and this will lead to a global public health crisis, which not only impacts on the quality of life of individuals well but also places a substantial burden on healthcare systems and economies. Obesity is linked to not only to type 2 diabetes but also cardiovascular diseases, musculoskeletal disorders, and certain cancers, also resulting in increased medical costs and diminished quality of life. A number of studies have linked changes in gut in obesity development. Dysbiosis, a deleterious change in gut microbiota composition, leads to altered intestinal permeability, associated with obesity and Type 2 diabetes. Many factors affect the homeostasis of gut microbiota, including diet, genetics, circadian rhythms, medication, probiotics, and antibiotics. In addition, bariatric surgery induces changes in gut microbiota that contributes to the metabolic benefits observed post-surgery. Current obesity management strategies encompass dietary interventions, exercise, pharmacotherapy, and bariatric surgery, with emerging treatments including microbiota-altering approaches showing promising efficacy. While pharmacotherapy has demonstrated significant advancements in recent years, bariatric surgery remains one of the most effective treatments for sustainable weight loss. However, access to this is generally limited to those living with severe obesity. This underscores the need for non-surgical interventions, particularly for adolescents and mildly obese patients. In this comprehensive review, we assess longitudinal alterations in gut microbiota composition and functionality resulting from the two currently most effective anti-obesity treatments: pharmacotherapy and bariatric surgery. Additionally, we highlight the functions of gut microbiota, focusing on specific bacteria, their metabolites, and strategies for modulating gut microbiota to prevent and treat obesity. This review aims to provide insights into the evolving landscape of obesity management and the potential of microbiota-based approaches in addressing this pressing global health challenge.
Collapse
Affiliation(s)
- Luyao Zhang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Pai Wang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Juan Huang
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha, Hunan, China
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanpeng Xing
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Jian Suo
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Li Wen
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
123
|
Hu XZ, Fu LL, Ye B, Ao M, Yan M, Feng HC. Gut microbiota and risk of coronary heart disease: a two-sample Mendelian randomization study. Front Cardiovasc Med 2024; 11:1273666. [PMID: 38590695 PMCID: PMC10999620 DOI: 10.3389/fcvm.2024.1273666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Background The relationship between gut microbiota composition and coronary heart disease (CHD) has been recently reported in several observational studies. However, the causal effect of gut microbiota on coronary heart disease is uncharted. Objective This study attempted to investigate the effect of gut microbiota on coronary heart disease by Mendelian randomization (MR) analysis. Methods Through the two-sample MR method, single-nucleotide polymorphisms relevant to gut microbiota were selected as instrument variables to evaluate the causal association between gut microbiota and the risk of CHD. Results According to the selection criteria of the inverse variance-weighted average method, Class Actinobacteria, Class Lentisphaeria, Family Clostridiales vadinBB60group, Genus Clostridium innocuum group, Genus Bifidobacterium, Genus Butyricicoccus, Genus Oxalobacter, Genus Turicibacter, and Order Victivallales, presented a suggestive association with coronary heart disease. Conclusion This two-sample Mendelian randomization study found that gut microbiota was causally associated with coronary heart disease. Further randomized controlled trials are needed to clarify the protective effect of probiotics on coronary heart disease and their specific protective mechanisms.
Collapse
Affiliation(s)
- Xiang-zhi Hu
- Medical College, Guizhou University, Guiyang, China
| | - Ling-ling Fu
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, China
| | - Bin Ye
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, China
| | - Man Ao
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, China
| | - Ming Yan
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, China
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hong-chao Feng
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, China
| |
Collapse
|
124
|
Wu-Chuang A, Rojas A, Bernal C, Cardozo F, Valenzuela A, Romero C, Mateos-Hernández L, Cabezas-Cruz A. Influence of microbiota-driven natural antibodies on dengue transmission. Front Immunol 2024; 15:1368599. [PMID: 38558802 PMCID: PMC10978734 DOI: 10.3389/fimmu.2024.1368599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Dengue has had a significant global health impact, with a dramatic increase in incidence over the past 50 years, affecting more than 100 countries. The absence of a specific treatment or widely applicable vaccine emphasizes the urgent need for innovative strategies. This perspective reevaluates current evidence supporting the concept of dual protection against the dengue virus (DENV) through natural antibodies (NAbs), particularly anti-α-Gal antibodies induced by the host's gut microbiome (GM). These anti-α-Gal antibodies serve a dual purpose. Firstly, they can directly identify DENV, as mosquito-derived viral particles have been observed to carry α-Gal, thereby providing a safeguard against human infections. Secondly, they possess the potential to impede virus development in the vector by interacting with the vector's microbiome and triggering infection-refractory states. The intricate interplay between human GM and NAbs on one side and DENV and vector microbiome on the other suggests a novel approach, using NAbs to directly target DENV and simultaneously disrupt vector microbiome to decrease pathogen transmission and vector competence, thereby blocking DENV transmission cycles.
Collapse
Affiliation(s)
- Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandra Rojas
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Cynthia Bernal
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Fátima Cardozo
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Adriana Valenzuela
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Cristina Romero
- Universidad Nacional de Asunción, Facultad de Ciencias Químicas, San Lorenzo, Paraguay
| | - Lourdes Mateos-Hernández
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
125
|
Moore ML, Ford JL, Schladweiler MC, Dye JA, Jackson TW, Miller CN. Gut metabolic changes during pregnancy reveal the importance of gastrointestinal region in sample collection. Metabolomics 2024; 20:40. [PMID: 38460019 PMCID: PMC11168590 DOI: 10.1007/s11306-024-02099-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/06/2024] [Indexed: 03/11/2024]
Abstract
INTRODUCTION Studies of gastrointestinal physiology and the gut microbiome often consider the influence of intestinal region on experimental endpoints. However, this same consideration is not often applied to the gut metabolome. Understanding the contribution of gut regionality may be critically important to the rapidly changing metabolic environments, such as during pregnancy. OBJECTIVES We sought to characterize the difference in the gut metabolome in pregnant mice stratified by region-comparing the small intestine, cecum, and feces. Pre-pregnancy feces were collected to understand the influence of pregnancy on the fecal metabolome. METHODS Feces were collected from CD-1 female mice before breeding. On gestation day (GD) 18, gut contents were collected from the small intestine, cecum, and descending colon. Metabolites were analyzed with LC-MS/MS using the Biocrates MetaboINDICATOR™ MxP® Quant 500 kit. RESULTS Of the 104 small molecule metabolites meeting analysis criteria, we found that 84 (81%) were differentially abundant based on gut region. The most significant regional comparison observed was between the cecum and small intestines, with 52 (50%) differentially abundant metabolites. Pregnancy itself altered 41 (39.4%) fecal small molecule metabolites. CONCLUSIONS The regional variation observed in the gut metabolome are likely due to the microbial and physiological differences between the different parts of the intestines. Additionally, pregnancy impacts the fecal metabolome, which may be due to evolving needs of both the dam and fetus.
Collapse
Affiliation(s)
- Makala L Moore
- Oak Ridge Institute for Science and Education, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jermaine L Ford
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Janice A Dye
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Thomas W Jackson
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Colette N Miller
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| |
Collapse
|
126
|
Fan Y, Keerthisinghe TP, Nian M, Cao X, Chen X, Yang Q, Sampathkumar K, Loo JSC, Ng KW, Demokritou P, Fang M. Comparative secretome metabolic dysregulation by six engineered dietary nanoparticles (EDNs) on the simulated gut microbiota. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133003. [PMID: 38029586 DOI: 10.1016/j.jhazmat.2023.133003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/27/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023]
Abstract
The potential use of engineered dietary nanoparticles (EDNs) in diet has been increasing and poses a risk of exposure. The effect of EDNs on gut bacterial metabolism remains largely unknown. In this study, liquid chromatography-mass spectrometry (LC-MS) based metabolomics was used to reveal significantly altered metabolites and metabolic pathways in the secretome of simulated gut microbiome exposed to six different types of EDNs (Chitosan, cellulose nanocrystals (CNC), cellulose nanofibrils (CNF) and polylactic-co-glycolic acid (PLGA); two inorganic EDNs including TiO2 and SiO2) at two dietary doses. We demonstrated that all six EDNs can alter the composition in the secretome with distinct patterns. Chitosan, followed by PLGA and SiO2, has shown the highest potency in inducing the secretome change with major pathways in tryptophan and indole metabolism, bile acid metabolism, tyrosine and phenol metabolism. Metabolomic alterations with clear dose response were observed in most EDNs. Overall, phenylalanine has been shown as the most sensitive metabolites, followed by bile acids such as chenodeoxycholic acid and cholic acid. Those metabolites might be served as the representative metabolites for the EDNs-gut bacteria interaction. Collectively, our studies have demonstrated the sensitivity and feasibility of using metabolomic signatures to understand and predict EDNs-gut microbiome interaction.
Collapse
Affiliation(s)
- Yijun Fan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei 230601, Anhui, China
| | | | - Min Nian
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiaoqiong Cao
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA 02115, USA
| | - Xing Chen
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qin Yang
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Kaarunya Sampathkumar
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Joachim Say Chye Loo
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA 02115, USA
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Institute of Eco-Chongming, Shanghai 202162, China.
| |
Collapse
|
127
|
Moreira de Gouveia MI, Bernalier-Donadille A, Jubelin G. Enterobacteriaceae in the Human Gut: Dynamics and Ecological Roles in Health and Disease. BIOLOGY 2024; 13:142. [PMID: 38534413 DOI: 10.3390/biology13030142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024]
Abstract
The human gut microbiota plays a crucial role in maintaining host health. Our review explores the prevalence and dynamics of Enterobacteriaceae, a bacterial family within the Proteobacteria phylum, in the human gut which represents a small fraction of the gut microbiota in healthy conditions. Even though their roles are not yet fully understood, Enterobacteriaceae and especially Escherichia coli (E. coli) play a part in creating an anaerobic environment, producing vitamins and protecting against pathogenic infections. The composition and residency of E. coli strains in the gut fluctuate among individuals and is influenced by many factors such as geography, diet and health. Dysbiosis, characterized by alterations in the microbial composition of the gut microbiota, is associated with various diseases, including obesity, inflammatory bowel diseases and metabolic disorders. A consistent pattern in dysbiosis is the expansion of Proteobacteria, particularly Enterobacteriaceae, which has been proposed as a potential marker for intestinal and extra-intestinal inflammatory diseases. Here we develop the potential mechanisms contributing to Enterobacteriaceae proliferation during dysbiosis, including changes in oxygen levels, alterations in mucosal substrates and dietary factors. Better knowledge of these mechanisms is important for developing strategies to restore a balanced gut microbiota and reduce the negative consequences of the Enterobacteriaceae bloom.
Collapse
Affiliation(s)
| | | | - Gregory Jubelin
- Université Clermont Auvergne, INRAE, MEDIS UMR454, F-63000 Clermont-Ferrand, France
| |
Collapse
|
128
|
Donkers JM, Wiese M, van den Broek TJ, Wierenga E, Agamennone V, Schuren F, van de Steeg E. A host-microbial metabolite interaction gut-on-a-chip model of the adult human intestine demonstrates beneficial effects upon inulin treatment of gut microbiome. MICROBIOME RESEARCH REPORTS 2024; 3:18. [PMID: 38841408 PMCID: PMC11149092 DOI: 10.20517/mrr.2023.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 06/07/2024]
Abstract
Background: The gut and its microbiome have a major impact on many aspects of health and are therefore also an attractive target for drug- or food-based therapies. Here, we report on the added value of combining a microbiome screening model, the i-screen, with fresh intestinal tissue explants in a microfluidic gut-on-a-chip model, the Intestinal Explant Barrier Chip (IEBC). Methods: Adult human gut microbiome (fecal pool of 6 healthy donors) was cultured anaerobically in the i-screen platform for 24 h, without and with exposure to 4 mg/mL inulin. The i-screen cell-free culture supernatant was subsequently applied to the luminal side of adult human colon tissue explants (n = 3 donors), fixed in the IEBC, for 24 h and effects were evaluated. Results: The supplementation of the media with inulin promoted the growth of Anaerostipes, Bifidobacterium, Blautia, and Collinsella in the in vitro i-screen, and triggered an elevated production of butyrate by the microbiota. Human colon tissue exposed to inulin-treated i-screen cell-free culture supernatant or control i-screen cell-free culture supernatant with added short-chain fatty acids (SCFAs) showed improved tissue barrier integrity measured by a 28.2%-34.2% reduction in FITC-dextran 4000 (FD4) leakage and 1.3 times lower transport of antipyrine. Furthermore, the release of pro-inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α was reduced under these circumstances. Gene expression profiles confirmed these findings, but showed more profound effects for inulin-treated supernatant compared to SCFA-supplemented supernatant. Conclusion: The combination of i-screen and IEBC facilitates the study of complex intestinal processes such as host-microbial metabolite interaction and gut health.
Collapse
Affiliation(s)
- Joanne M. Donkers
- Department of Metabolic Health Research, TNO, Leiden 2333 BE, the Netherlands
| | - Maria Wiese
- Department of Microbiology & Systems Biology, TNO, Leiden 2333 BE, the Netherlands
| | - Tim J. van den Broek
- Department of Microbiology & Systems Biology, TNO, Leiden 2333 BE, the Netherlands
| | - Esmée Wierenga
- Department of Metabolic Health Research, TNO, Leiden 2333 BE, the Netherlands
| | - Valeria Agamennone
- Department of Microbiology & Systems Biology, TNO, Leiden 2333 BE, the Netherlands
| | - Frank Schuren
- Department of Microbiology & Systems Biology, TNO, Leiden 2333 BE, the Netherlands
| | - Evita van de Steeg
- Department of Metabolic Health Research, TNO, Leiden 2333 BE, the Netherlands
| |
Collapse
|
129
|
Cheng Y, Zhao R, Qiao M, Ma Y, Li T, Li N, Shen Y, Huang X, Song L. The Pea Oligosaccharides Could Stimulate the In Vitro Proliferation of Beneficial Bacteria and Enhance Anti-Inflammatory Effects via the NF-κB Pathway. Foods 2024; 13:626. [PMID: 38397603 PMCID: PMC10887999 DOI: 10.3390/foods13040626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The oligosaccharides extracted from the seeds of peas, specifically consisting of raffinose, stachyose, and verbascose, fall under the category of raffinose family oligosaccharides (RFOs). The effect of RFOs on intestinal microflora and the anti-inflammatory mechanism were investigated by in vitro fermentation and cell experiments. Firstly, mouse feces were fermented in vitro and different doses of RFOs (0~2%) were added to determine the changes in the representative bacterial community, PH, and short-chain fatty acids in the fermentation solution during the fermentation period. The probiotic index was used to evaluate the probiotic proliferation effect of RFOs and the optimal group was selected for 16S rRNA assay with blank group. Then, the effects of RFOs on the inflammatory response of macrophage RAW264.7 induced by LPS were studied. The activity of cells, the levels of NO, ROS, inflammatory factors, and the expression of NF-κB, p65, and iNOS proteins in related pathways were measured. The results demonstrated that RFOs exerted a stimulatory effect on the proliferation of beneficial bacteria while concurrently inhibiting the growth of harmful bacteria. Moreover, RFOs significantly enhanced the diversity of intestinal flora and reduced the ratio of Firmicutes-to-Bacteroides (F/B). Importantly, it was observed that RFOs effectively suppressed NO and ROS levels, as well as inflammatory cytokine release and expression of NF-κB, p65, and iNOS proteins. These findings highlight the potential of RFOs in promoting intestinal health and ameliorating intestinal inflammation.
Collapse
Affiliation(s)
- Yongxia Cheng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (Y.C.); (R.Z.); (M.Q.); (Y.M.); (T.L.); (N.L.); (Y.S.); (X.H.)
- Zhengzhou City Key Laboratory for Soybean Refined Processing, Zhengzhou 450002, China
| | - Ruoqi Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (Y.C.); (R.Z.); (M.Q.); (Y.M.); (T.L.); (N.L.); (Y.S.); (X.H.)
| | - Mingwu Qiao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (Y.C.); (R.Z.); (M.Q.); (Y.M.); (T.L.); (N.L.); (Y.S.); (X.H.)
- Zhengzhou City Key Laboratory for Soybean Refined Processing, Zhengzhou 450002, China
| | - Yan Ma
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (Y.C.); (R.Z.); (M.Q.); (Y.M.); (T.L.); (N.L.); (Y.S.); (X.H.)
- Zhengzhou City Key Laboratory for Soybean Refined Processing, Zhengzhou 450002, China
| | - Tiange Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (Y.C.); (R.Z.); (M.Q.); (Y.M.); (T.L.); (N.L.); (Y.S.); (X.H.)
- Zhengzhou City Key Laboratory for Soybean Refined Processing, Zhengzhou 450002, China
| | - Ning Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (Y.C.); (R.Z.); (M.Q.); (Y.M.); (T.L.); (N.L.); (Y.S.); (X.H.)
- Zhengzhou City Key Laboratory for Soybean Refined Processing, Zhengzhou 450002, China
| | - Yue Shen
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (Y.C.); (R.Z.); (M.Q.); (Y.M.); (T.L.); (N.L.); (Y.S.); (X.H.)
- Zhengzhou City Key Laboratory for Soybean Refined Processing, Zhengzhou 450002, China
| | - Xianqing Huang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (Y.C.); (R.Z.); (M.Q.); (Y.M.); (T.L.); (N.L.); (Y.S.); (X.H.)
- Zhengzhou City Key Laboratory for Soybean Refined Processing, Zhengzhou 450002, China
| | - Lianjun Song
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (Y.C.); (R.Z.); (M.Q.); (Y.M.); (T.L.); (N.L.); (Y.S.); (X.H.)
- Zhengzhou City Key Laboratory for Soybean Refined Processing, Zhengzhou 450002, China
| |
Collapse
|
130
|
Sun W, Zhou T, Ding P, Guo L, Zhou X, Long K. Bibliometric analysis of intestinal microbiota and lung diseases. Front Cell Infect Microbiol 2024; 14:1347110. [PMID: 38426014 PMCID: PMC10902173 DOI: 10.3389/fcimb.2024.1347110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/09/2024] [Indexed: 03/02/2024] Open
Abstract
Background Increasing evidence suggests a close association between the intestinal microbiome and the respiratory system, drawing attention to studying the gut-lung axis. This research employs bibliometric methods to conduct a visual analysis of literature in the field of intestinal microbiota and lung diseases over the past two decades. It offers scientific foundations for research directions and critical issues in this field. Methods We retrieved all articles on intestinal microbiota and lung diseases from the SCI-Expanded of WoSCC on October 25, 2023. The analysis included original articles and reviews published in English from 2011 to 2023. We utilized Python, VOSviewer, and CiteSpace to analyze the retrieved data visually. Results A total of 794 publications were analyzed. China ranked first in the number of publications, while the United States had the highest citations and H-index. Jian Wang was the most prolific author. Zhejiang University was the institution with the highest number of publications. Frontiers in Microbiology was the journal with the most publications. Author keywords appearing more than 100 times included "intestinal microbiota/microbiome", "microbiota/microbiome", and "gut-lung axis". Conclusion The correlation and underlying mechanisms between intestinal microbiota and lung diseases, including asthma, COPD, lung cancer, and respiratory infections, remain hot topics in research. However, understanding the mechanisms involving the gut-lung axis is still in its infancy and requires further elucidation.
Collapse
Affiliation(s)
- Weiting Sun
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tong Zhou
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Ding
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuxue Guo
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiujuan Zhou
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kunlan Long
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
131
|
Lu T, Huang C, Weng R, Wang Z, Sun H, Ma X. Enteric glial cells contribute to chronic stress-induced alterations in the intestinal microbiota and barrier in rats. Heliyon 2024; 10:e24899. [PMID: 38317901 PMCID: PMC10838753 DOI: 10.1016/j.heliyon.2024.e24899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 12/13/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
Background Emerging evidence has demonstrated the impact of psychological stress on intestinal microbiota, however, the precise mechanisms are not fully understood. Enteric glia, a unique type of peripheral glia found within the enteric nervous system (ENS), play an active role in enteric neural circuits and have profound effects on gut functions. In the present study, we tested the hypothesis that enteric glia are involved in the alterations in the intestinal microflora and barrier induced by chronic water-avoidance stress (WAS) in the gut. Methods and results Western blotting and immunohistochemical (IHC) staining were used to examine the expression of glial fibrillary acidic protein (GFAP), nitric oxide synthetase (NOS) and choline acety1transferase (ChAT) in colon tissues. 16S rDNA sequencing was performed to analyse the composition of the intestinal microbiota in rats. Changes in the tight junction proteins Occludin, Claudin1 and proliferating cell nuclear antigen (PCNA) in the colon tissues were detected after WAS. The abundance of Firmicutes, Proteobacteria, Lactobacillus and Lachnospiraceae_NK4A136 decreased significantly, whereas the abundance of Actinobacteria, Ruminococcaceae_UCG-005 and Christensenellaceae-R-7 increased significantly in stressed rats. Meanwhile, the expression of Occludin, Claudin1 and PCNA significantly decreased after WAS. Treatment with L-A-aminohexanedioic acid (L-AA), a gliotoxin that blunts astrocytic function, obviously decreased the abundance of Actinobacteria, Ruminococcaceae_UCG-005 and Christensenel-laceae_R-7 in stressed rats and significantly increased the abundance of Proteobacteria, Lactobacillus and Lachnospiraceae_NK4A136. In addition, the protein expression of colon Occludin, Claudin1, and PCNA increased after intraperitoneal injection of L-AA. Furthermore, the expression level of NOS in colon tissues was significantly decreased, whereas that of ChAT was significantly increased following L-AA treatment. Conclusions Our results showed that enteric glial cells may contribute to WAS-induced changes in the intestinal microbiota and barrier function by modulating the activity of NOS and cholinergic neurones in the ENS.
Collapse
Affiliation(s)
- Tong Lu
- Shandong Intelligent Technology Innovation Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Chenxu Huang
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88 Wenhua Road, Jinan, 250014, China
| | - Rongxin Weng
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88 Wenhua Road, Jinan, 250014, China
| | - Zepeng Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88 Wenhua Road, Jinan, 250014, China
| | - Haiji Sun
- Shandong Intelligent Technology Innovation Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88 Wenhua Road, Jinan, 250014, China
| | - Xiaoli Ma
- Shandong Intelligent Technology Innovation Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| |
Collapse
|
132
|
Wang Y, Cheng T, Cui Y, Qu D, Peng X, Yang L, Xiao X. Associations between gut microbiota and adverse neurodevelopmental outcomes in preterm infants: a two-sample Mendelian randomization study. Front Neurosci 2024; 18:1344125. [PMID: 38419663 PMCID: PMC10899413 DOI: 10.3389/fnins.2024.1344125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Gut microbiota are associated with adverse neurodevelopmental outcomes in preterm infants; however, the precise causal relationship remains unclear. In this study, we conducted a two-sample Mendelian randomization (MR) analysis to comprehensively study the relationship between gut microbiota and adverse neurodevelopmental outcomes in preterm infants and identify specific causal bacteria that may be associated with the occurrence and development of adverse neurodevelopmental outcomes in preterm infants. The genome-wide association analysis (GWAS) of the MiBioGen biogroup was used as the exposure data. The GWAS of six common adverse neurodevelopmental outcomes in premature infants from the FinnGen consortium R9 was used as the outcome data. Genetic variations, namely, single nucleotide polymorphisms (SNPs) below the locus-wide significance level (1 × 10-5) and genome-wide statistical significance threshold (5 × 10-8) were selected as instrumental variables (IVs). MR studies use inverse variance weighting (IVW) as the main method. To supplement this, we also applied three additional MR methods: MR-Egger, weighted median, and weighted mode. In addition, the Cochrane's Q test, MR-Egger intercept test, Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO), and leave-one-out methods were used for sensitivity analysis. Our study shows a causal relationship between specific gut microbiota and neurodevelopmental outcomes in preterm infants. These findings provide new insights into the mechanism by which gut microbiota may mediate adverse neurodevelopmental outcomes in preterm infants.
Collapse
Affiliation(s)
- Yuqian Wang
- Department of Graduate, Dalian Medical University, Dalian, Liaoning, China
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Tongfei Cheng
- Department of Pediatrics, The Affiliated Women’s and Children’s Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yifan Cui
- Department of Pediatrics, Dalian Women and Children’s Medical Group, Dalian, Liaoning, China
| | - Danyang Qu
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xin Peng
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Liu Yang
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xuwu Xiao
- Department of Graduate, Dalian Medical University, Dalian, Liaoning, China
- Department of Pediatrics, Dalian Women and Children’s Medical Group, Dalian, Liaoning, China
| |
Collapse
|
133
|
Li J, Huang G, Wang J, Wang S, Yu Y. Hydrogen Regulates Ulcerative Colitis by Affecting the Intestinal Redox Environment. J Inflamm Res 2024; 17:933-945. [PMID: 38370464 PMCID: PMC10871146 DOI: 10.2147/jir.s445152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
The redox balance in the intestine plays an important role in maintaining intestinal homeostasis, and it is closely related to the intestinal mucosal barrier, intestinal inflammation, and the gut microbiota. Current research on the treatment of ulcerative colitis has focused on immune disorders, excessive inflammation, and oxidative stress. However, an imbalance in intestinal redox reaction plays a particularly critical role. Hydrogen is produced by some anaerobic bacteria via hydrogenases in the intestine. Increasing evidence suggests that hydrogen, as an inert gas, is crucial for immunity, inflammation, and oxidative stress and plays a protective role in ulcerative colitis. Hydrogen maintains the redox state balance in the intestine in ulcerative colitis and reduces damage to intestinal epithelial cells by exerting its selective antioxidant ability. Hydrogen also regulates the intestinal flora, reduces the harmful effects of bacteria on the intestinal epithelial barrier, promotes the restoration of normal anaerobic bacteria in the intestines, and ultimately improves the integrity of the intestinal epithelial barrier. The present review focuses on the therapeutic mechanisms of hydrogen-targeting ulcerative colitis.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Gang Huang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Juexin Wang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Sui Wang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Yanbo Yu
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
134
|
Li X, Niu H, Huang Z, Zhang M, Xing M, Chen Z, Wu L, Xu P. Deciphering the Role of the Gut Microbiota in Exposure to Emerging Contaminants and Diabetes: A Review. Metabolites 2024; 14:108. [PMID: 38393000 PMCID: PMC10890638 DOI: 10.3390/metabo14020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Emerging pollutants, a category of compounds currently not regulated or inadequately regulated by law, have recently become a focal point of research due to their potential toxic effects on human health. The gut microbiota plays a pivotal role in human health; it is particularly susceptible to disruption and alteration upon exposure to a range of toxic environmental chemicals, including emerging contaminants. The disturbance of the gut microbiome caused by environmental pollutants may represent a mechanism through which environmental chemicals exert their toxic effects, a mechanism that is garnering increasing attention. However, the discussion on the toxic link between emerging pollutants and glucose metabolism remains insufficiently explored. This review aims to establish a connection between emerging pollutants and glucose metabolism through the gut microbiota, delving into the toxic impacts of these pollutants on glucose metabolism and the potential role played by the gut microbiota.
Collapse
Affiliation(s)
- Xueqing Li
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Rd., Binjiang District, Hangzhou 310051, China
| | - Huixia Niu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Rd., Binjiang District, Hangzhou 310051, China
| | - Zhengliang Huang
- Disease Prevention and Control Center of Jingning She Autonomous County, Lishui 323500, China
| | - Man Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Mingluan Xing
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Rd., Binjiang District, Hangzhou 310051, China
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Rd., Binjiang District, Hangzhou 310051, China
| | - Lizhi Wu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Rd., Binjiang District, Hangzhou 310051, China
| | - Peiwei Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Rd., Binjiang District, Hangzhou 310051, China
| |
Collapse
|
135
|
Feng YJ, Wang BQ, Cao LL, Dong LY, Zhang CY, Hu DJ, Zhou Z, Cao JX. Efficacy of Fire-Needle Therapy in Improving Neurological Function Following Cerebral Infarction and Its Effect on Intestinal Flora Metabolites. Int J Gen Med 2024; 17:387-399. [PMID: 38333018 PMCID: PMC10850761 DOI: 10.2147/ijgm.s450027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/16/2024] [Indexed: 02/10/2024] Open
Abstract
Objective This study was to investigate the mechanism of action and clinical efficacy of fire-needle therapy in improving neurological function in patients with acute cerebral infarction (identified as a wind-phlegm-blood stasis syndrome in traditional Chinese medicine). Methods We included patients diagnosed with acute cerebral infarction (wind-phlegm-blood stasis syndrome) admitted to the Encephalopathy and Acupuncture Center of the Second Affiliated Hospital of Tianjin University of Chinese Medicine. We randomly allocated them into the treatment and control groups, with 45 cases in each group. Acupuncture treatments that focused on regulating the mind and dredging the collaterals were used in the control group, while the treatment group additionally received fire-needle therapy. Our indicators included the National Institutes of Health Stroke Scale (NIHSS) scores, the Fugl-Meyer Assessment (FMA) scale, peripheral blood tumor necrosis factor-α (TNF-α), interleukin-17 (IL-17), hypersensitivity C-reactive protein (hs-CRP), and intestinal metabolites short-chain fatty acids (SCFAs). We measured these indicators before treatment and 14 days after treatment. Results The post-treatment NIHSS scores of the two groups were significantly reduced (P < 0.05), and the treatment group showed a more significant decline in the score when compared to the control group (P < 0.05). The treatment group showing significant improvement in the domains of reflex activity, mobility, cooperative movement, and finger movement (P < 0.05). Both groups showed a significant decrease in the IL-17 and hs-CRP levels (P < 0.05), with the treatment group demonstrating a significant declining trend when compared to the control group (P < 0.05). The levels of acetic acid, propionic acid, butyric acid, and valeric acid all increased significantly in the two groups (P < 0.05), with acetic acid and butyric acid increasing significantly in the treatment group when compared to the control group (P < 0.05). Clinical efficacy rate: 78.6% of patients in the treatment group had an excellent rate, whereas it was 30.0% in the control group, and the difference was statistically significant (P < 0.001). Conclusion Fire-needle therapy was effective in upregulating the SCFA content in patients with acute cerebral infarction (wind-phlegm-blood stasis syndrome), inhibiting the level of the inflammatory response, and improving the recovery of neurological functions. Clinical registration number Registration website link: https://www.chictr.org.cn. Registration date: 2022/9/27. Registration number: ChiCTR2200064122.
Collapse
Affiliation(s)
- Yi-Jun Feng
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Bing-Quan Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Lu-Lu Cao
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Li-Ying Dong
- Department of Encephalopathy and Acupuncture, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, People’s Republic of China
| | - Chu-Yi Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Dong-Jian Hu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Zhen Zhou
- Department of Encephalopathy and Acupuncture, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, People’s Republic of China
| | - Jin-Xiu Cao
- Department of Geriatrics, Shanghai Eighth People’s Hospital, Shanghai, 200235, People’s Republic of China
| |
Collapse
|
136
|
Florea CM, Rosu R, Moldovan R, Vlase L, Toma V, Decea N, Baldea I, Filip GA. The impact of chronic Trimethylamine N-oxide administration on liver oxidative stress, inflammation, and fibrosis. Food Chem Toxicol 2024; 184:114429. [PMID: 38176578 DOI: 10.1016/j.fct.2023.114429] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
TMAO, a gut microbiota derived byproduct, has been associated with various cardiometabolic diseases by promoting oxidative stress and inflammation. The liver is the main organ for TMAO production and chronic exposure to high doses of TMAO could alter its function. In this study, we evaluated the effect of chronic exposure of high TMAO doses on liver oxidative stress, inflammation, and fibrosis. TMAO was administered daily via gastric gavage to laboratory rats for 3 months. Blood was drawn for the quantification of TMAO, and liver tissues were harvested for the assessment of oxidative stress (MDA, GSH, GSSG, GPx, CAT, and 8-oxo-dG) and inflammation by quantification of IL-1α, TNF-α, IL-10, TGF-β, NOS and COX-2 expression. The evaluation of fibrosis was made by Western blot analysis of α-SMA and Collagen-3 protein expression. Histological investigation and immunohistochemical staining of iNOS were performed in order to assess the liver damage. After 3 months of TMAO exposure, TMAO serum levels enhanced in parallel with increases in MDA and GSSG levels in liver tissue and lower values of GSH and GSH/GSSG ratio as well as a decrease in GPx and CAT activities. Inflammation was also highlighted, with enhanced iNOS, COX-2, and IL-10 expression, without structural changes and without induction of liver fibrosis.
Collapse
Affiliation(s)
- Cristian Marius Florea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Radu Rosu
- Fifth Department of Internal Medicine, Cardiology Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Remus Moldovan
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Vlad Toma
- Department of Molecular Biology and Biotechnologies, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania; Department of Experimental Biology and Biochemistry, Institute of Biological Research, branch of NIRDBS, Cluj-Napoca, Romania; Center for Systems Biology, Biodiversity and Bioresources "3B", Babeș-Bolyai University, Cluj-Napoca, Romania.
| | - Nicoleta Decea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Baldea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
137
|
Matin S, Dadkhah M. BDNF/CREB signaling pathway contribution in depression pathogenesis: A survey on the non-pharmacological therapeutic opportunities for gut microbiota dysbiosis. Brain Res Bull 2024; 207:110882. [PMID: 38244808 DOI: 10.1016/j.brainresbull.2024.110882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/04/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Emerging evidence supports the gut microbiota and the brain communication in general health. This axis may affect behavior through modulating neurotransmission, and thereby involve in the pathogenesis and/or progression of different neuropsychiatric disorders such as depression. Brain-derived neurotrophic factor and cAMP response element-binding protein known as CREB/BDNF pathway plays have critical functions in the pathogenesis of depression as the same of mechanisms related to antidepressants. However, the putative causal significance of the CREB/BDNF signaling cascade in the gut-brain axis in depression remains unknown. Also interventions such as probiotics supplementation and exercise can influence microbiome also improve bidirectional communication of gut and brain. In this review we aim to explain the BDNF/CREB signaling pathway and gut microbiota dysfunction and then evaluate the potential role of probiotics, prebiotics, and exercise as a therapeutic target in the gut microbiota dysfunction induced depression. The current narrative review will specifically focus on the impact of exercise and diet on the intestinal microbiota component, as well as the effect that these therapies may have on the microbiota to alleviate depressive symptoms. Finally, we look at how BDNF/CREB signaling pathway may exert distinct effects on depression and gut microbiota dysfunction.
Collapse
Affiliation(s)
- Somaieh Matin
- Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Digestive Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
138
|
Abstract
Biogeography is the study of species distribution and diversity within an ecosystem and is at the core of how we understand ecosystem dynamics and interactions at the macroscale. In gut microbial communities, a historical reliance on bulk sequencing to probe community composition and dynamics has overlooked critical processes whereby microscale interactions affect systems-level microbiota function and the relationship with the host. In recent years, higher-resolution sequencing and novel single-cell level data have uncovered an incredible heterogeneity in microbial composition and have enabled a more nuanced spatial understanding of the gut microbiota. In an era when spatial transcriptomics and single-cell imaging and analysis have become key tools in mammalian cell and tissue biology, many of these techniques are now being applied to the microbiota. This fresh approach to intestinal biogeography has given important insights that span temporal and spatial scales, from the discovery of mucus encapsulation of the microbiota to the quantification of bacterial species throughout the gut. In this Review, we highlight emerging knowledge surrounding gut biogeography enabled by the observation and quantification of heterogeneity across multiple scales.
Collapse
Affiliation(s)
- Giselle McCallum
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carolina Tropini
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
- Humans and the Microbiome Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada.
| |
Collapse
|
139
|
Hu X, Fang Z, Wang F, Mei Z, Huang X, Lin Y, Lin Z. A causal relationship between gut microbiota and subcortical brain structures contributes to the microbiota-gut-brain axis: a Mendelian randomization study. Cereb Cortex 2024; 34:bhae056. [PMID: 38415993 DOI: 10.1093/cercor/bhae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 02/29/2024] Open
Abstract
A correlation between gut microbiota and brain structure, referring to as a component of the gut-brain axis, has been observed in observational studies. However, the causality of this relationship and its specific bacterial taxa remains uncertain. To reveal the causal effects of gut microbiota on subcortical brain volume, we applied Mendelian randomization (MR) studies in this study. Genome-wide association study data were obtained from the MiBioGen Consortium (n = 18,340) and the Enhancing Neuro Imaging Genetics through Meta-Analysis Consortium (n = 13,170). The primary estimate was obtained utilizing the inverse-variance weighted, while heterogeneity and pleiotropy were assessed using the Cochrane Q statistic, MR Pleiotropy RESidual Sum and Outlier, and MR-Egger intercept. Our findings provide strong evidence that a higher abundance of the genus Parasutterella is causally correlated with a decrease in intracranial volume (β = -30,921.33, 95% CI -46,671.78 to -15,170.88, P = 1.19 × 10-4), and the genus FamilyXIIIUCG001 is associated with a decrease in thalamus volume (β = -141.96, 95% CI: -214.81 to -69.12, P = 1.0× 10-4). This MR study offers novel perspectives on the intricate interplay between the gut microbiota and subcortical brain volume, thereby lending some support to the existence of the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Xuequn Hu
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Changle District, Fuzhou 350209, Fujian Province, China
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou 350005, Fujian Province, China
| | - Zhiyong Fang
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Changle District, Fuzhou 350209, Fujian Province, China
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou 350005, Fujian Province, China
| | - Feng Wang
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Changle District, Fuzhou 350209, Fujian Province, China
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou 350005, Fujian Province, China
| | - Zhen Mei
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Changle District, Fuzhou 350209, Fujian Province, China
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou 350005, Fujian Province, China
| | - Xiaofen Huang
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Changle District, Fuzhou 350209, Fujian Province, China
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou 350005, Fujian Province, China
| | - Yuanxiang Lin
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Changle District, Fuzhou 350209, Fujian Province, China
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou 350005, Fujian Province, China
| | - Zhangya Lin
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Changle District, Fuzhou 350209, Fujian Province, China
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang District, Fuzhou 350005, Fujian Province, China
| |
Collapse
|
140
|
Feng P, Xue X, Bukhari I, Qiu C, Li Y, Zheng P, Mi Y. Gut microbiota and its therapeutic implications in tumor microenvironment interactions. Front Microbiol 2024; 15:1287077. [PMID: 38322318 PMCID: PMC10844568 DOI: 10.3389/fmicb.2024.1287077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
The development of cancer is not just the growth and proliferation of a single transformed cell, but its tumor microenvironment (TME) also coevolves with it, which is primarily involved in tumor initiation, development, metastasis, and therapeutic responses. Recent years, TME has been emerged as a potential target for cancer diagnosis and treatment. However, the clinical efficacy of treatments targeting the TME, especially its specific components, remains insufficient. In parallel, the gut microbiome is an essential TME component that is crucial in cancer immunotherapy. Thus, assessing and constructing frameworks between the gut microbiota and the TME can significantly enhance the exploration of effective treatment strategies for various tumors. In this review the role of the gut microbiota in human cancers, including its function and relationship with various tumors was summarized. In addition, the interaction between the gut microbiota and the TME as well as its potential applications in cancer therapeutics was described. Furthermore, it was summarized that fecal microbiota transplantation, dietary adjustments, and synthetic biology to introduce gut microbiota-based medical technologies for cancer treatment. This review provides a comprehensive summary for uncovering the mechanism underlying the effects of the gut microbiota on the TME and lays a foundation for the development of personalized medicine in further studies.
Collapse
Affiliation(s)
- Pengya Feng
- Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Children Rehabilitation Medicine, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xia Xue
- Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ihtisham Bukhari
- Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunjing Qiu
- Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingying Li
- Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengyuan Zheng
- Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Mi
- Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
141
|
Saviano A, Petruzziello C, Cancro C, Macerola N, Petti A, Nuzzo E, Migneco A, Ojetti V. The Efficacy of a Mix of Probiotics ( Limosilactobacillus reuteri LMG P-27481 and Lacticaseibacillus rhamnosus GG ATCC 53103) in Preventing Antibiotic-Associated Diarrhea and Clostridium difficile Infection in Hospitalized Patients: Single-Center, Open-Label, Randomized Trial. Microorganisms 2024; 12:198. [PMID: 38258024 PMCID: PMC10819176 DOI: 10.3390/microorganisms12010198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Antibiotic-associated diarrhea is a condition reported in 5-35% of patients treated with antibiotics, especially in older patients with comorbidities. In most cases, antibiotic-associated diarrhea is not associated with serious complications, but it can prolong hospitalization and provoke Clostridium difficile infection. An important role in the prevention of antibiotic-associated diarrhea is carried out by some probiotic strains such as Lactobacillus GG or the yeast Saccharomyces boulardii that showed good efficacy and a significant reduction in antibiotic-associated diarrhea. Similarly, the Limosilactobacillus reuteri DSM 17938 showed significant benefits in acute diarrhea, reducing its duration and abdominal pain. AIM The aim of this study was to test the efficacy of a mix of two probiotic strains (Limosilactobacillus reuteri LMG P-27481 and Lacticaseibacillus rhamnosus GG ATCC 53103; Reuterin GG®, NOOS, Italy), in association with antibiotics (compared to antibiotics used alone), in reducing antibiotic-associated diarrhea, clostridium difficile infection, and other gastrointestinal symptoms in adult hospitalized patients. PATIENTS AND METHODS We enrolled 113 (49M/64F, mean age 69.58 ± 21.28 years) adult patients treated with antibiotics who were hospitalized at the Internal Medicine Department of the San Carlo di Nancy Hospital in Rome from January 2023 to September 2023. Patients were randomized to receive probiotics 1.4 g twice/day in addition with antibiotics (Reuterin GG® group, total: 56 patients, 37F/19M, 67.16 ± 20.5 years old) or antibiotics only (control group, total: 57 patients, 27F/30 M, 71 ± 22 years old). RESULTS Patients treated with Reuterin GG® showed a significant reduction in diarrhea and clostridium difficile infection. In particular, 28% (16/57) of patients in the control group presented with diarrhea during treatment, compared with 11% (6/56) in the probiotic group (p < 0.05). Interestingly, 7/57 (11%) of patients treated only with antibiotics developed clostridium difficile infection compared to 0% in the probiotic group (p < 0.01). Finally, 9% (5/57) of patients in the control group presented with vomiting compared with 2% (1/56) in the probiotic group (p < 0.05). CONCLUSIONS Our study showed, for the first time, the efficacy of these two specific probiotic strains in preventing antibiotic-associated diarrhea and clostridium difficile infection in adult hospitalized patients treated with antibiotic therapy. This result allows us to hypothesize that the use of specific probiotic strains during antibiotic therapy can prevent dysbiosis and subsequent antibiotic-associated diarrhea and clostridium difficile infection, thus resulting in both patient and economic health care benefits.
Collapse
Affiliation(s)
- Angela Saviano
- Emergency Medicine Department, Polyclinic A. Gemelli Hospital, 00168 Rome, Italy; (A.S.); (A.M.)
- Internal and Emergency Medicine Department, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Carmine Petruzziello
- Internal Medicine Department, San Carlo di Nancy Hospital, 00165 Rome, Italy; (C.P.); (N.M.); (A.P.); (E.N.)
| | - Clelia Cancro
- Internal and Emergency Medicine Department, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Noemi Macerola
- Internal Medicine Department, San Carlo di Nancy Hospital, 00165 Rome, Italy; (C.P.); (N.M.); (A.P.); (E.N.)
| | - Anna Petti
- Internal Medicine Department, San Carlo di Nancy Hospital, 00165 Rome, Italy; (C.P.); (N.M.); (A.P.); (E.N.)
| | - Eugenia Nuzzo
- Internal Medicine Department, San Carlo di Nancy Hospital, 00165 Rome, Italy; (C.P.); (N.M.); (A.P.); (E.N.)
| | - Alessio Migneco
- Emergency Medicine Department, Polyclinic A. Gemelli Hospital, 00168 Rome, Italy; (A.S.); (A.M.)
| | - Veronica Ojetti
- Internal and Emergency Medicine Department, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Internal Medicine Department, San Carlo di Nancy Hospital, 00165 Rome, Italy; (C.P.); (N.M.); (A.P.); (E.N.)
| |
Collapse
|
142
|
Gonçalves CL, Doifode T, Rezende VL, Costa MA, Rhoads JM, Soutullo CA. The many faces of microbiota-gut-brain axis in autism spectrum disorder. Life Sci 2024; 337:122357. [PMID: 38123016 DOI: 10.1016/j.lfs.2023.122357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
The gut-brain axis is gaining more attention in neurodevelopmental disorders, especially autism spectrum disorder (ASD). Many factors can influence microbiota in early life, including host genetics and perinatal events (infections, mode of birth/delivery, medications, nutritional supply, and environmental stressors). The gut microbiome can influence blood-brain barrier (BBB) permeability, drug bioavailability, and social behaviors. Developing microbiota-based interventions such as probiotics, gastrointestinal (GI) microbiota transplantation, or metabolite supplementation may offer an exciting approach to treating ASD. This review highlights that RNA sequencing, metabolomics, and transcriptomics data are needed to understand how microbial modulators can influence ASD pathophysiology. Due to the substantial clinical heterogeneity of ASD, medical caretakers may be unlikely to develop a broad and effective general gut microbiota modulator. However, dietary modulation followed by administration of microbiota modulators is a promising option for treating ASD-related behavioral and gastrointestinal symptoms. Future work should focus on the accuracy of biomarker tests and developing specific psychobiotic agents tailored towards the gut microbiota seen in ASD patients, which may include developing individualized treatment options.
Collapse
Affiliation(s)
- Cinara L Gonçalves
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Tejaswini Doifode
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health (UTHealth), Houston, TX, USA
| | - Victoria L Rezende
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Maiara A Costa
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - J Marc Rhoads
- Department of Pediatrics, Division of Pediatric Gastroenterology, McGovern Medical School, The University of Texas Health (UTHealth), Houston, TX, USA
| | - Cesar A Soutullo
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health (UTHealth), Houston, TX, USA
| |
Collapse
|
143
|
McMillan AS, Foley MH, Perkins CE, Theriot CM. Loss of Bacteroides thetaiotaomicron bile acid-altering enzymes impacts bacterial fitness and the global metabolic transcriptome. Microbiol Spectr 2024; 12:e0357623. [PMID: 38018975 PMCID: PMC10783122 DOI: 10.1128/spectrum.03576-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Recent work on bile salt hydrolases (BSHs) in Gram-negative bacteria, such as Bacteroides, has primarily focused on how they can impact host physiology. However, the benefits bile acid metabolism confers to the bacterium that performs it are not well understood. In this study, we set out to define if and how Bacteroides thetaiotaomicron (B. theta) uses its BSHs and hydroxysteroid dehydrogenase to modify bile acids to provide a fitness advantage for itself in vitro and in vivo. Genes encoding bile acid-altering enzymes were able to impact how B. theta responds to nutrient limitation in the presence of bile acids, specifically carbohydrate metabolism, affecting many polysaccharide utilization loci. This suggests that B. theta may be able to shift its metabolism, specifically its ability to target different complex glycans including host mucin, when it comes into contact with specific bile acids in the gut.
Collapse
Affiliation(s)
- Arthur S. McMillan
- Department of Biological Sciences, Genetics Program, College of Science, North Carolina State University, Raleigh, North Carolina, USA
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Matthew H. Foley
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Caroline E. Perkins
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Casey M. Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
144
|
Ji D, Chen WZ, Zhang L, Zhang ZH, Chen LJ. Gut microbiota, circulating cytokines and dementia: a Mendelian randomization study. J Neuroinflammation 2024; 21:2. [PMID: 38178103 PMCID: PMC10765696 DOI: 10.1186/s12974-023-02999-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/16/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Some studies have shown that gut microbiota may be associated with dementia. However, the causal effects between gut microbiota and different types of dementia and whether cytokines act as a mediator remain unclear. METHODS Gut microbiota, cytokines, and five dementia types, including Alzheimer's disease (AD), frontotemporal dementia (FTD), dementia with Lewy body (DLB), vascular dementia (VD), and Parkinson's disease dementia (PDD) were identified from large-scale genome-wide association studies (GWAS) summary data. We used Mendelian randomization (MR) to investigate the causal relationships between gut microbiota, cytokines, and five types of dementia. Inverse variance weighting (IVW) was used as the main statistical method. In addition, we explored whether cytokines act as a mediating factor in the pathway from gut microbiota to dementia. RESULTS There were 20 positive and 16 negative causal effects between genetic liability in the gut microbiota and dementia. Also, there were five positive and four negative causal effects between cytokines and dementias. Cytokines did not act as mediating factors. CONCLUSIONS Gut microbiota and cytokines were causally associated with five types of dementia, and cytokines seemed not to be the mediating factors in the pathway from gut microbiota to dementia.
Collapse
Affiliation(s)
- Dong Ji
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei, Anhui, China
| | - Wen-Zhu Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei, Anhui, China
| | - Lei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei, Anhui, China
| | - Zhi-Hua Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Li-Jian Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei, Anhui, China.
| |
Collapse
|
145
|
Yuan Z, Kang Y, Mo C, Huang S, Qin F, Zhang J, Wang F, Jiang J, Yang X, Liang H, Ye L. Causal relationship between gut microbiota and tuberculosis: a bidirectional two-sample Mendelian randomization analysis. Respir Res 2024; 25:16. [PMID: 38178098 PMCID: PMC10765819 DOI: 10.1186/s12931-023-02652-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Growing evidence from observational studies and clinical trials suggests that the gut microbiota is associated with tuberculosis (TB). However, it is unclear whether any causal relationship exists between them and whether causality is bidirectional. METHODS A bidirectional two-sample Mendelian randomization (MR) analysis was performed. The genome-wide association study (GWAS) summary statistics of gut microbiota were obtained from the MiBioGen consortium, while the GWAS summary statistics of TB and its specific phenotypes [respiratory tuberculosis (RTB) and extrapulmonary tuberculosis (EPTB)] were retrieved from the UK Biobank and the FinnGen consortium. And 195 bacterial taxa from phylum to genus were analyzed. Inverse variance weighted (IVW), MR-Egger regression, maximum likelihood (ML), weighted median, and weighted mode methods were applied to the MR analysis. The robustness of causal estimation was tested using the heterogeneity test, horizontal pleiotropy test, and leave-one-out method. RESULTS In the UK Biobank database, we found that 11 bacterial taxa had potential causal effects on TB. Three bacterial taxa genus.Akkermansia, family.Verrucomicrobiacea, order.Verrucomicrobiales were validated in the FinnGen database. Based on the results in the FinnGen database, the present study found significant differences in the characteristics of gut microbial distribution between RTB and EPTB. Four bacterial taxa genus.LachnospiraceaeUCG010, genus.Parabacteroides, genus.RuminococcaceaeUCG011, and order.Bacillales were common traits in relation to both RTB and TB, among which order.Bacillales showed a protective effect. Additionally, family.Bacteroidacea and genus.Bacteroides were identified as common traits in relation to both EPTB and TB, positively associating with a higher risk of EPTB. In reverse MR analysis, no causal association was identified. No significant heterogeneity of instrumental variables (IVs) or horizontal pleiotropy was found. CONCLUSION Our study supports a one-way causal relationship between gut microbiota and TB, with gut microbiota having a causal effect on TB. The identification of characteristic gut microbiota provides scientific insights for the potential application of the gut microbiota as a preventive, diagnostic, and therapeutic tool for TB.
Collapse
Affiliation(s)
- Zongxiang Yuan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yiwen Kang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Chuye Mo
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Shihui Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Fang Qin
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Junhan Zhang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Fengyi Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Life Science Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Xiaoxiang Yang
- Department of Infectious Diseases in Children, Maternity and Child Health Care of Guangxi Zhuang Autonomous Region, Nanning, 530003, Guangxi, China.
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Life Science Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Life Science Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
146
|
Liu X, Yuan J, Liu S, Tang M, Meng X, Wang X, Li Y, Chai Y, Kou C, Yang Q, Li J, Zhang L, Guan Q, Zhang H. Investigating causal associations among gut microbiota, metabolites and autoimmune hypothyroidism: a univariable and multivariable Mendelian randomization study. Front Immunol 2024; 14:1213159. [PMID: 38239342 PMCID: PMC10794377 DOI: 10.3389/fimmu.2023.1213159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
Background Accumulating evidence suggests that the gut microbiota and its metabolites may be involved in autoimmune hypothyroidism. However, the causal association between gut microbiota, metabolites and autoimmune hypothyroidism remains to be determined. Methods Instrumental variables were screened from the GWAS datasets of 211 gut microbiota taxonomic groups, gut microbiota-derived metabolites, and autoimmune hypothyroidism. Univariable Mendelian randomization (MR) and multivariable Mendelian randomization (MVMR) were used to analyse the potential causal relationship between autoimmune hypothyroidism, these metabolites, or these microbiota. During the MR analysis, we alternated multiple MR methods with different model assumptions to assess the consistency and robustness of the findings: inverse variance weighted (IVW), weighted median, MR pleiotropy residual sum and outlier (MRPRESSO) and MR-Egger methods. Reverse MR analysis was performed to assess the possibility of reverse causality. Finally, enrichment analyses were used to investigate potential biofunctions. Results The IVW results of univariable MR showed that the phyla Actinobacteria, genus DefluviitaleaceaeUCG011, genus Eggerthella, family Defluviitaleaceae, genus Subdoligranulum, genus RuminococcaceaeUCG011, and genus Intestinimonas were associated with autoimmune hypothyroidism. After FDR adjustment, the absence of a causal relationship between gut microbiota and autoimmune hypothyroidism (PFDR > 0.05) suggested a possible marginal association. The results on gut metabolites showed that N-(3-furoyl)glycine, pipecolate, phenylalanine, allantoin, indololactate and alanine were associated with autoimmune hypothyroidism. After FDR correction, only indololactate was associated with hypothyroidism (OR=1.592; 95% CI, 1.228-2.065; PFDR= 0.036). Family Defluviitaleaceae and genus DefluviitaleaceaeUCG011 were suggestively significant in the MVMR. The results of reverse MR analysis showed no reverse causality between autoimmune hypothyroidism and the identified gut microbiota. Enrichment analysis revealed that several key regulatory pathways were significantly enriched. Conclusion This study supported that there were beneficial or detrimental causal effects of gut microbiota and its metabolites on autoimmune hypothyroidism risk, which provides more theoretical support for mechanistic research on the "thyroid-gut" axis.
Collapse
Affiliation(s)
- Xue Liu
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Jie Yuan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shuai Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mulin Tang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xue Meng
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xinhui Wang
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yuchen Li
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yuwei Chai
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Chunjia Kou
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Qingqing Yang
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Juyi Li
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Li Zhang
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qingbo Guan
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Haiqing Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| |
Collapse
|
147
|
Zhang Q, Li G, Zhao W, Wang X, He J, Zhou L, Zhang X, An P, Liu Y, Zhang C, Zhang Y, Liu S, Zhao L, Liu R, Li Y, Jiang W, Wang X, Wang Q, Fang B, Zhao Y, Ren Y, Niu X, Li D, Shi S, Hung WL, Wang R, Liu X, Ren F. Efficacy of Bifidobacterium animalis subsp. lactis BL-99 in the treatment of functional dyspepsia: a randomized placebo-controlled clinical trial. Nat Commun 2024; 15:227. [PMID: 38172093 DOI: 10.1038/s41467-023-44292-xif:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 12/07/2023] [Indexed: 07/26/2024] Open
Abstract
Current treatment for functional dyspepsia (FD) has limited and unsustainable efficacy. Probiotics have the sustainable potential to alleviate FD. This randomized controlled clinical trial (Chinese Clinical Trial Registry, ChiCTR2000041430) assigned 200 FD patients to receive placebo, positive-drug (rabeprazole), or Bifidobacterium animalis subsp. lactis BL-99 (BL-99; low, high doses) for 8-week. The primary outcome was the clinical response rate (CRR) of FD score after 8-week treatment. The secondary outcomes were CRR of FD score at other periods, and PDS, EPS, serum indicators, fecal microbiota and metabolites. The CRR in FD score for the BL-99_high group [45 (90.0%)] was significantly higher than that for placebo [29 (58.0%), p = 0.001], BL-99_low [37 (74.0%), p = 0.044] and positive_control [35 (70.0%), p = 0.017] groups after 8-week treatment. This effect was sustained until 2-week after treatment but disappeared 8-week after treatment. Further metagenomic and metabolomics revealed that BL-99 promoted the accumulation of SCFA-producing microbiota and the increase of SCFA levels in stool and serum, which may account for the increase of serum gastrin level. This study supports the potential use of BL-99 for the treatment of FD.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Guang Li
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Wen Zhao
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Xifan Wang
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Jingjing He
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Limian Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaoxu Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Peng An
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yinghua Liu
- Department of Nutrition, Chinese PLA General Hospital, Beijing, China
| | - Chengying Zhang
- Department of General Practice, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yong Zhang
- Department of Nutrition, Chinese PLA General Hospital, Beijing, China
| | - Simin Liu
- Center for Global Cardiometabolic Health, Departments of Epidemiology, Medicine, and Surgery, Brown University, Providence, RI, USA
| | - Liang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Rong Liu
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yixuan Li
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Wenjian Jiang
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Wang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Qingyu Wang
- Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Bing Fang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yuyang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Yimei Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Xiaokang Niu
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Dongjie Li
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Shaoqi Shi
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Wei-Lian Hung
- National Center of Technology Innovation for Dairy, Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China.
| | - Ran Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Fazheng Ren
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| |
Collapse
|
148
|
Zhang Q, Li G, Zhao W, Wang X, He J, Zhou L, Zhang X, An P, Liu Y, Zhang C, Zhang Y, Liu S, Zhao L, Liu R, Li Y, Jiang W, Wang X, Wang Q, Fang B, Zhao Y, Ren Y, Niu X, Li D, Shi S, Hung WL, Wang R, Liu X, Ren F. Efficacy of Bifidobacterium animalis subsp. lactis BL-99 in the treatment of functional dyspepsia: a randomized placebo-controlled clinical trial. Nat Commun 2024; 15:227. [PMID: 38172093 PMCID: PMC10764899 DOI: 10.1038/s41467-023-44292-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Current treatment for functional dyspepsia (FD) has limited and unsustainable efficacy. Probiotics have the sustainable potential to alleviate FD. This randomized controlled clinical trial (Chinese Clinical Trial Registry, ChiCTR2000041430) assigned 200 FD patients to receive placebo, positive-drug (rabeprazole), or Bifidobacterium animalis subsp. lactis BL-99 (BL-99; low, high doses) for 8-week. The primary outcome was the clinical response rate (CRR) of FD score after 8-week treatment. The secondary outcomes were CRR of FD score at other periods, and PDS, EPS, serum indicators, fecal microbiota and metabolites. The CRR in FD score for the BL-99_high group [45 (90.0%)] was significantly higher than that for placebo [29 (58.0%), p = 0.001], BL-99_low [37 (74.0%), p = 0.044] and positive_control [35 (70.0%), p = 0.017] groups after 8-week treatment. This effect was sustained until 2-week after treatment but disappeared 8-week after treatment. Further metagenomic and metabolomics revealed that BL-99 promoted the accumulation of SCFA-producing microbiota and the increase of SCFA levels in stool and serum, which may account for the increase of serum gastrin level. This study supports the potential use of BL-99 for the treatment of FD.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Guang Li
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Wen Zhao
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Xifan Wang
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Jingjing He
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Limian Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaoxu Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Peng An
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yinghua Liu
- Department of Nutrition, Chinese PLA General Hospital, Beijing, China
| | - Chengying Zhang
- Department of General Practice, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yong Zhang
- Department of Nutrition, Chinese PLA General Hospital, Beijing, China
| | - Simin Liu
- Center for Global Cardiometabolic Health, Departments of Epidemiology, Medicine, and Surgery, Brown University, Providence, RI, USA
| | - Liang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Rong Liu
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yixuan Li
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Wenjian Jiang
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Wang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Qingyu Wang
- Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Bing Fang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yuyang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Yimei Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Xiaokang Niu
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Dongjie Li
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Shaoqi Shi
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Wei-Lian Hung
- National Center of Technology Innovation for Dairy, Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China.
| | - Ran Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Fazheng Ren
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| |
Collapse
|
149
|
Zhao W, Bu X, Zhou W, Zeng Q, Qin T, Wu S, Li W, Zou H, Li M, Wang G. Interactions between Balantidium ctenopharyngodoni and microbiota reveal its low pathogenicity in the hindgut of grass carp. BMC Microbiol 2024; 24:7. [PMID: 38172646 PMCID: PMC10762984 DOI: 10.1186/s12866-023-03154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Hosts, parasites, and microbiota interact with each other, forming a complex ecosystem. Alterations to the microbial structure have been observed in various enteric parasitic infections (e.g. parasitic protists and helminths). Interestingly, some parasites are associated with healthy gut microbiota linked to the intestinal eubiosis state. So the changes in bacteria and metabolites induced by parasite infection may offer benefits to the host, including protection from other parasitesand promotion of intestinal health. The only ciliate known to inhabit the hindgut of grass carp, Balantidium ctenopharyngodoni, does not cause obvious damage to the intestinal mucosa. To date, its impact on intestinal microbiota composition remains unknown. In this study, we investigated the microbial composition in the hindgut of grass carp infected with B. ctenopharyngodoni, as well as the changes of metabolites in intestinal contents resulting from infection. RESULTS Colonization by B. ctenopharyngodoni was associated with an increase in bacterial diversity, a higher relative abundance of Clostridium, and a lower abundance of Enterobacteriaceae. The family Aeromonadaceae and the genus Citrobacter had significantly lower relative abundance in infected fish. Additionally, grass carp infected with B. ctenopharyngodoni exhibited a significant increase in creatine content in the hindgut. This suggested that the presence of B. ctenopharyngodoni may improve intestinal health through changes in microbiota and metabolites. CONCLUSIONS We found that grass carp infected with B. ctenopharyngodoni exhibit a healthy microbiota with an increased bacterial diversity. The results suggested that B. ctenopharyngodoni reshaped the composition of hindgut microbiota similarly to other protists with low pathogenicity. The shifts in the microbiota and metabolites during the colonization and proliferation of B. ctenopharyngodoni indicated that it may provide positive effects in the hindgut of grass carp.
Collapse
Affiliation(s)
- Weishan Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xialian Bu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weitian Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingwen Zeng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tian Qin
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shangong Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Wenxiang Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Hong Zou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Ming Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Guitang Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
150
|
Patel N, Dinesh S, Sharma S. From Gut to Glucose: A Comprehensive Review on Functional Foods and Dietary Interventions for Diabetes Management. Curr Diabetes Rev 2024; 20:e111023222081. [PMID: 37861021 DOI: 10.2174/0115733998266653231005072450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/17/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND In the realm of diabetes research, considerable attention has been directed toward elucidating the intricate interplay between the gastrointestinal tract and glucose regulation. The gastrointestinal tract, once exclusively considered for its role in digestion and nutrient assimilation, is presently acknowledged as a multifaceted ecosystem with regulatory supremacy over metabolic homeostasis and glucose metabolism. Recent studies indicate that alterations in the composition and functionality of the gut microbiota could potentially influence the regulation of glucose levels and glucose homeostasis in the body. Dysbiosis, characterized by perturbations in the equilibrium of gut microbial constituents, has been irrevocably linked to an augmented risk of diabetes mellitus (DM). Moreover, research has revealed the potential influence of the gut microbiota on important factors, like inflammation and insulin sensitivity, which are key contributors to the onset and progression of diabetes. The key protagonists implicated in the regulation of glucose encompass the gut bacteria, gut barrier integrity, and the gut-brain axis. A viable approach to enhance glycemic control while concurrently mitigating the burden of comorbidities associated with diabetes resides in the strategic manipulation of the gut environment through adapted dietary practices. OBJECTIVE This review aimed to provide a deep understanding of the complex relationship between gut health, glucose metabolism, and diabetes treatment. CONCLUSION This study has presented an exhaustive overview of dietary therapies and functional foods that have undergone extensive research to explore their potential advantages in the management of diabetes. It looks into the role of gut health in glucose regulation, discusses the impact of different dietary elements on the course of diabetes, and evaluates how well functional foods can help with glycemic control. Furthermore, it investigates the mechanistic aspects of these therapies, including their influence on insulin sensitivity, β-cell activity, and inflammation. It deliberates on the limitations and potential prospects associated with integrating functional foods into personalized approaches to diabetes care.
Collapse
Affiliation(s)
- Nirali Patel
- Department of Bioinformatics, BioNome, Bengaluru 560043, India
| | - Susha Dinesh
- Department of Bioinformatics, BioNome, Bengaluru 560043, India
| | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bengaluru 560043, India
| |
Collapse
|