101
|
Henkel A, Alali H, Devassy A, Alawadi M, Redzic Z. Antagonistic interactions between dexamethasone and fluoxetine modulate morphodynamics and expression of cytokines in astrocytes. Neuroscience 2014; 280:318-27. [DOI: 10.1016/j.neuroscience.2014.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/04/2014] [Accepted: 09/07/2014] [Indexed: 12/27/2022]
|
102
|
Lirng JF, Chen HC, Fuh JL, Tsai CF, Liang JF, Wang SJ. Increased myo-inositol level in dorsolateral prefrontal cortex in migraine patients with major depression. Cephalalgia 2014; 35:702-9. [DOI: 10.1177/0333102414557048] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 10/04/2014] [Indexed: 11/17/2022]
Abstract
Background Although the comorbidity between migraine and major depressive disorder (MDD) has been recognized, the pathophysiology remains unclear. The dorsolateral prefrontal cortex (DLPFC) is a well-known neural substrate for MDD. We investigated the relationship between brain metabolites in DLPFC and comorbid MDD in migraine patients. Methods We recruited migraine patients from a tertiary headache clinic. A board-certified psychiatrist conducted a structured interview for MDD diagnosis. The severity of depression was evaluated by the Beck Depression Inventory (BDI). Thirty migraine patients (five men, 25 women; mean age: 40.4 ± 12.4 years) completed the study, and 16 of them were diagnosed with MDD. All patients underwent a magnetic resonance spectroscopy (MRS) examination focusing on bilateral DLPFC. The ratios of N-acetylaspartate (NAA), choline (Cho), and myo-inositol (mI) to total creatine (tCr) were compared between migraine patients with and without MDD, and were correlated with BDI scores. Results Relative to patients without MDD, migraine patients with MDD had higher mI/tCr ratios in the bilateral DLPFC ( p = 0.02, left; p = 0.02, right, Mann-Whitney U test). The mI/tCr ratios in the right DLPFC were positively correlated with BDI scores ( r = 0.52, p = 0.003). The NAA/tCr and Cho/tCr ratios did not differ between migraine patients with and without MDD. Conclusion Increased mI/tCr within the DLPFC might be associated with the presence of MDD in migraine patients.
Collapse
Affiliation(s)
- Jiing-Feng Lirng
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taiwan
| | - Hung-Chieh Chen
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taiwan
- Department of Radiology, Taichung Veterans General Hospital, Taiwan
| | - Jong-Ling Fuh
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taiwan
- Brain Research Center, National Yang-Ming University, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taiwan
| | - Chia-Fen Tsai
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taiwan
- Institute of Brain Science, National Yang-Ming University, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taiwan
| | - Jen-Feng Liang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taiwan
| | - Shuu-Jiun Wang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taiwan
- Brain Research Center, National Yang-Ming University, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taiwan
- Institute of Brain Science, National Yang-Ming University, Taiwan
| |
Collapse
|
103
|
Effects of brief pulse and ultrabrief pulse electroconvulsive stimulation on rodent brain and behaviour in the corticosterone model of depression. Int J Neuropsychopharmacol 2014; 17:1477-86. [PMID: 24607259 DOI: 10.1017/s1461145714000200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Brief pulse electroconvulsive therapy (BP ECT; pulse width 0.5-1.5 ms) is the most effective treatment available for severe depression. However, its use is associated with side-effects. The stimulus in ultrabrief pulse ECT (UBP ECT; pulse width 0.25-0.3 ms) is more physiological and has been reported to be associated with less cognitive side-effects, but its antidepressant effectiveness is not yet well established. Using electroconvulsive stimulation (ECS), the animal model of ECT, we previously reported UBP ECS to be significantly less effective than well-established BP ECS in eliciting behavioural, molecular and cellular antidepressant-related effects in naïve rats. We have now compared the effects of BP and UBP ECS in an animal model of depression related to exogenous supplementation with the stress-induced glucocorticoid hormone, corticosterone. Corticosterone administration resulted in an increase in immobility time in the forced swim test (FST) (p < 0.01) and decreases in the expression of brain-derived neurotrophic factor (BDNF) (p < 0.05) and glial fibrillary acidic protein (GFAP) (p < 0.001) in the hippocampus and frontal cortex. There was no significant difference in the duration or type of seizure induced by BP (0.5 ms) or UBP (0.3 ms) ECS. UBP ECS proved to be as effective as BP ECS at inducing a behavioural antidepressant response in the FST with a significant decrease (p < 0.001) in immobility seen following administration of ECS. Both forms of ECS also induced significant increases in BDNF protein (p < 0.01) expression in the hippocampus. BP ECS (p < 0.05) but not UBP ECS induced a significant increase in GFAP levels in the hippocampus and frontal cortex. Overall, UBP ECS effectively induced antidepressant-related behavioural and molecular responses in the corticosterone supplementation model, providing the first preclinical data on the potential role of this form of ECS to treat a depression phenotype related to elevated corticosterone.
Collapse
|
104
|
Applications of blood-based protein biomarker strategies in the study of psychiatric disorders. Prog Neurobiol 2014; 122:45-72. [PMID: 25173695 DOI: 10.1016/j.pneurobio.2014.08.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/11/2014] [Accepted: 08/19/2014] [Indexed: 02/07/2023]
Abstract
Major psychiatric disorders such as schizophrenia, major depressive and bipolar disorders are severe, chronic and debilitating, and are associated with high disease burden and healthcare costs. Currently, diagnoses of these disorders rely on interview-based assessments of subjective self-reported symptoms. Early diagnosis is difficult, misdiagnosis is a frequent occurrence and there are no objective tests that aid in the prediction of individual responses to treatment. Consequently, validated biomarkers are urgently needed to help address these unmet clinical needs. Historically, psychiatric disorders are viewed as brain disorders and consequently only a few researchers have as yet evaluated systemic changes in psychiatric patients. However, promising research has begun to challenge this concept and there is an increasing awareness that disease-related changes can be traced in the peripheral system which may even be involved in the precipitation of disease onset and course. Converging evidence from molecular profiling analysis of blood serum/plasma have revealed robust molecular changes in psychiatric patients, suggesting that these disorders may be detectable in other systems of the body such as the circulating blood. In this review, we discuss the current clinical needs in psychiatry, highlight the importance of biomarkers in the field, and review a representative selection of biomarker studies to highlight opportunities for the implementation of personalized medicine approaches in the field of psychiatry. It is anticipated that the implementation of validated biomarker tests will not only improve the diagnosis and more effective treatment of psychiatric patients, but also improve prognosis and disease outcome.
Collapse
|
105
|
Effects of Kaixin Jieyu Decoction (开心解郁汤) on behavior and glial fibrillary acidic protein expression in cerebral hippocampus of a rat vascular depression model. Chin J Integr Med 2014; 21:223-8. [DOI: 10.1007/s11655-014-1820-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Indexed: 10/24/2022]
|
106
|
Miguel-Hidalgo JJ, Wilson BA, Hussain S, Meshram A, Rajkowska G, Stockmeier CA. Reduced connexin 43 immunolabeling in the orbitofrontal cortex in alcohol dependence and depression. J Psychiatr Res 2014; 55:101-9. [PMID: 24774648 PMCID: PMC4078739 DOI: 10.1016/j.jpsychires.2014.04.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/18/2014] [Accepted: 04/04/2014] [Indexed: 11/28/2022]
Abstract
Reduced density of glial cells and low levels of some astrocyte proteins have been described in the orbitofrontal cortex (OFC) in depression and alcoholism, two disorders often comorbid. These regressive changes may also involve the communication between astrocytes via gap junctions and hemichannels, which play important regulatory roles in neurotransmission. We determined levels and morphological immunostaining parameters of connexin 43 (Cx43), the main protein subunit of astrocyte gap junctions/hemichannels, in the OFC of subjects with depression, alcoholism or comorbid depression/alcoholism as compared to non-psychiatric subjects. Postmortem brain samples from 23 subjects with major depressive disorder (MDD), 16 with alcohol dependence, 13 with comorbid MDD and alcohol dependence, and 20 psychiatrically-normal comparison subjects were processed for western blots to determine Cx43 levels. Area fraction of Cx43 immunoreactivity, and density and average size of immunoreactive puncta were measured in histological sections. There was a significant, larger than 60 percent decrease in Cx43 level in the three psychiatric groups as compared to controls. Area fraction of immunoreactivity and immunoreactive punctum size were reduced in all psychiatric groups, but Cx43-immunoreactive puncta density was reduced only in alcohol-dependent subjects. Among psychiatric subjects, no difference in Cx43 levels or immunostaining was found between suicides and non-suicides. The present data suggest that dysfunction of the OFC is accompanied by reduction in the levels of gap junction protein Cx43 in depression and alcoholism, and reduction in density of Cx43 immunoreactive puncta only in alcoholism, pointing to altered gap junction or hemichannel-based communication in the pathophysiology of those disorders.
Collapse
Affiliation(s)
- José Javier Miguel-Hidalgo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216-4505, USA.
| | - Barbara A. Wilson
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
| | - Syed Hussain
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
| | - Ashish Meshram
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
| | - Grazyna Rajkowska
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
| | - Craig A. Stockmeier
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS,Psychiatry, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
107
|
Schroeter ML, Sacher J, Steiner J, Schoenknecht P, Mueller K. Serum S100B represents a new biomarker for mood disorders. Curr Drug Targets 2014; 14:1237-48. [PMID: 23701298 PMCID: PMC3821390 DOI: 10.2174/13894501113149990014] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/26/2013] [Accepted: 05/17/2013] [Indexed: 01/11/2023]
Abstract
Recently, mood disorders have been discussed to be characterized by glial pathology. The protein S100B, a growth and differentiation factor, is located in, and may actively be released by astro- and oligodendrocytes. This protein is easily assessed in human serum and provides a useful parameter for glial activation or injury. Here, we review studies investigating the glial marker S100B in serum of patients with mood disorders. Studies consistently show that S100B is elevated in mood disorders; more strongly in major depressive than bipolar disorder. Consistent with the glial hypothesis of mood disorders, serum S100B levels interact with age with higher levels in elderly depressed subjects. Successful antidepressive treatment has been associated with serum S100B reduction in major depression, whereas there is no evidence of treatment effects in mania. In contrast to the glial marker S100B, the neuronal marker protein neuron-specific enolase is unaltered in mood disorders. Recently, serum S100B has been linked to specific imaging parameters in the human white matter suggesting a role for S100B as an oligodendrocytic marker protein. In sum, serum S100B can be regarded as a promising in vivo biomarker for mood disorders deepening the understanding of the pathogenesis and plasticity-changes in these disorders. Future longitudinal studies combining serum S100B with other cell-specific serum parameters and multimodal imaging are warranted to further explore this serum protein in the development, monitoring and treatment of mood disorders.
Collapse
Affiliation(s)
- Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1A, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
108
|
Miguel-Hidalgo JJ, Whittom A, Villarreal A, Soni M, Meshram A, Pickett JC, Rajkowska G, Stockmeier CA. Apoptosis-related proteins and proliferation markers in the orbitofrontal cortex in major depressive disorder. J Affect Disord 2014; 158:62-70. [PMID: 24655767 PMCID: PMC3996705 DOI: 10.1016/j.jad.2014.02.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/03/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND In major depressive disorder (MDD), lowered neural activity and significant reductions of markers of cell resiliency to degeneration occur in the prefrontal cortex (PFC). It is still unclear whether changes in other relevant markers of cell vulnerability to degeneration and markers of cell proliferation are associated with MDD. METHODS Levels of caspase 8 (C8), X-linked inhibitor of apoptosis protein (XIAP), direct IAP binding protein with low pI (DIABLO), proliferating cell nuclear antigen (PCNA) and density of cells immunoreactive (-IR) for proliferation marker Ki-67 were measured in postmortem samples of the left orbitofrontal cortex (OFC) of subjects with MDD, and psychiatrically-normal comparison subjects. RESULTS There was significant increase in C8, a higher ratio of DIABLO to XIAP, lower packing density of Ki-67-IR cells, and an unexpected age-dependent increase in PCNA in subjects with MDD vs. controls. PCNA levels were significantly higher in MDD subjects unresponsive to antidepressants or untreated with antidepressants. The DIABLO/XIAP ratio was higher in MDD subjects without antidepressants than in comparison subjects. LIMITATIONS Qualitative nature of responsiveness assessments; definition of resistance to antidepressant treatment is still controversial; and unclear role of PCNA. CONCLUSIONS Markers of cell vulnerability to degeneration are increased and density of Ki67-positive cells is low MDD, but accompanied by normal XIAP levels. The results suggest increased vulnerability to cell pathology in depression that is insufficient to cause morphologically conspicuous cell death. Persistent but low-grade vulnerability to cell degeneration coexisting with reduced proliferation readiness may explain age-dependent reductions in neuronal densities in the OFC of depressed subjects.
Collapse
Affiliation(s)
- Jose J Miguel-Hidalgo
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA.
| | - Angela Whittom
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ashley Villarreal
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Madhav Soni
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ashish Meshram
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jason C Pickett
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Grazyna Rajkowska
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Craig A Stockmeier
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA; Psychiatry, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
109
|
Jun C, Choi Y, Lim SM, Bae S, Hong YS, Kim JE, Lyoo IK. Disturbance of the glutamatergic system in mood disorders. Exp Neurobiol 2014; 23:28-35. [PMID: 24737937 PMCID: PMC3984954 DOI: 10.5607/en.2014.23.1.28] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/24/2014] [Accepted: 02/24/2014] [Indexed: 12/11/2022] Open
Abstract
The role of glutamatergic system in the neurobiology of mood disorders draws increasing attention, as disturbance of this system is consistently implicated in mood disorders including major depressive disorder and bipolar disorder. Thus, the glutamate hypothesis of mood disorders is expected to complement and improve the prevailing monoamine hypothesis, and may indicate novel therapeutic targets. Since the contribution of astrocytes is found to be crucial not only in the modulation of the glutamatergic system but also in the maintenance of brain energy metabolism, alterations in the astrocytic function and neuroenergetic environment are suggested as the potential neurobiological underpinnings of mood disorders. In the present review, the evidence of glutamatergic abnormalities in mood disorders based on postmortem and magnetic resonance spectroscopy (MRS) studies is presented, and disrupted energy metabolism involving astrocytic dysfunction is proposed as the underlying mechanism linking altered energy metabolism, perturbations in the glutamatergic system, and pathogenesis of mood disorders.
Collapse
Affiliation(s)
- Chansoo Jun
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea. ; Ewha Brain Institute, Ewha Womans University, Seoul 120-750, Korea
| | - Yera Choi
- Ewha Brain Institute, Ewha Womans University, Seoul 120-750, Korea. ; Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences, Seoul 151-747, Korea
| | - Soo Mee Lim
- Ewha Brain Institute, Ewha Womans University, Seoul 120-750, Korea. ; Department of Radiology, Ewha Womans University College of Medicine, Seoul 158-710, Korea
| | - Sujin Bae
- Brain Institute and Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Young Sun Hong
- Ewha Brain Institute, Ewha Womans University, Seoul 120-750, Korea. ; Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul 158-710, Korea
| | - Jieun E Kim
- Ewha Brain Institute, Ewha Womans University, Seoul 120-750, Korea. ; Department of Brain and Cognitive Sciences, Ewha Womans University Graduate School, Seoul 120-750, Korea
| | - In Kyoon Lyoo
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea. ; Ewha Brain Institute, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
110
|
Khundakar AA, Thomas AJ. Cellular morphometry in late-life depression: a review of postmortem studies. Am J Geriatr Psychiatry 2014; 22:122-32. [PMID: 24012224 DOI: 10.1016/j.jagp.2013.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/21/2013] [Accepted: 06/13/2013] [Indexed: 11/20/2022]
Abstract
The impact of major depression in late life is considerable and set to intensify with a worldwide shift in demographic profile toward an elderly population. Although the precise neurobiological mechanisms are not fully understood, a significant body of clinical, epidemiological, and imaging data have suggested divergent pathophysiological pathways underlie depression in late life, when compared with younger patients. Neuroimaging studies have demonstrated significant increases in white matter hyperintensities in late-life depression in several key areas involved in affective circuitry. Postmortem cellular morphometry studies have played a vital role in the identification of discrete changes in the brain microstructure in depression. This review draws together such postmortem studies, which have utilized tissue from younger/mixed age and late-life depressed patients. These findings have suggested varying neuronal and glial cell pathology in depression between different age cohorts. This age-related disparity may suggest different pathophysiological basis for depression, with vascular factors playing a potentially greater role in late life.
Collapse
Affiliation(s)
- Ahmad A Khundakar
- Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Alan J Thomas
- Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
111
|
Abstract
High levels of several proinflammatory components of the immune system, such as interleukin-6, C-reactive protein, tumor necrosis factor (TNF)-α, or neopterin in patients suffering from major depression (MD) point to the involvement of an inflammatory process in the pathophysiology of MD. The direct and indirect effects of cytokines on neurotransmitter storage and release - mediated by microglia cells and astrocytes - are discussed. The tryptophan/kynurenine metabolism is one of the indirect mechanisms because the enzyme indoleamine 2,3-dioxygenase - a key enzyme of this metabolism in the central nervous system - is driven by pro- and anti-inflammatory cytokines and degrades serotonin. Moreover, neuroactive kynurenines such as kynurenic acid and quinolinic acid act on the glutamatergic neurotransmission as N-methyl-D-aspartate antagonists and agonists, respectively. Alterations of the serotonergic, noradrenergic and glutamatergic neurotransmission have been shown with low-level neuroinflammation and may be involved in symptom generation. Epidemiological and clinical studies show a role for inflammation as a risk factor for MD. A large-scale epidemiological study in MD clearly demonstrates that severe infections and autoimmune disorders are lifetime risk factors for MD. The vulnerability-stress-inflammation model matches with this view as stress may increase proinflammatory cytokines and even contribute to a lasting proinflammatory state. Further support comes from the therapeutic benefit of anti-inflammatory medications such as the cyclo-oxygenase-2 inhibitors, TNF-α antagonists and others, and the anti-inflammatory and immunomodulatory intrinsic effects of antidepressants.
Collapse
Affiliation(s)
- Norbert Müller
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University of Munich, Munich, Germany
| |
Collapse
|
112
|
Glial degeneration as a model of depression. Pharmacol Rep 2013; 65:1572-9. [DOI: 10.1016/s1734-1140(13)71518-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/24/2013] [Indexed: 11/18/2022]
|
113
|
Nauczyciel C, Robic S, Dondaine T, Verin M, Robert G, Drapier D, Naudet F, Millet B. The nucleus accumbens: a target for deep brain stimulation in resistant major depressive disorder. J Mol Psychiatry 2013; 1:17. [PMID: 26019865 PMCID: PMC4445576 DOI: 10.1186/2049-9256-1-17] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/18/2013] [Indexed: 01/21/2023] Open
Abstract
Objective This review aimed to investigate the therapeutic potential of Deep Brain Stimulation (DBS) for treating resistant Major Depressive Disorder (MDD). We explored the role of Nucleus accumbens (Nac) as a target for treatment. Method We made a systematic review of all studies examining the mechanisms of action of high frequency brain stimulation and the pathophysiology of MDD. We also reported all the studies exploring the therapeutic potential of DBS in MDD. Results As a central relay-structure, the Nac seems to play a central role in MDD symptomatology. We investigated its role as a primary target for DBS in depressed patients. Anatomically the Nac is at the centre of the interactions between dopaminergic, serotoninergic and glutamatergic systems. Functionally, the Nac is involved in both normal and abnormal reward processes and in anhedonia and loss of motivation. Due to its central location between the emotional system, the cognitive system and motor control system, the Nac seems to have a central role in mood and feeling regulation. Conclusion According to encouraging recent studies, DBS seems to be a promising technique in resistant MDD treatment.
Collapse
Affiliation(s)
- Cecilia Nauczyciel
- Academic Department of Adult Psychiatry, Guillaume Régnier Hospital, EA 4712 35000, Rennes, France
| | - Suzanne Robic
- Lyon Neuroscience Research Center INSERM U1028 - CNRS UMR 5292 Dynamics and Brain Cognition, 69675, Bron, France
| | - Thibaut Dondaine
- Rennes University Hospital Centre Research Unit EA 4712 Behavior and Basal Ganglia, 35000, Rennes, France
| | - Marc Verin
- Rennes University Hospital Centre Research Unit EA 4712 Behavior and Basal Ganglia, 35000, Rennes, France
| | - Gabriel Robert
- Academic Department of Adult Psychiatry, Guillaume Régnier Hospital, EA 4712 35000, Rennes, France ; Rennes University Hospital Centre Research Unit EA 4712 Behavior and Basal Ganglia, 35000, Rennes, France
| | - Dominique Drapier
- Academic Department of Adult Psychiatry, Guillaume Régnier Hospital, EA 4712 35000, Rennes, France ; Rennes University Hospital Centre Research Unit EA 4712 Behavior and Basal Ganglia, 35000, Rennes, France
| | - Florian Naudet
- Academic Department of Adult Psychiatry, Guillaume Régnier Hospital, EA 4712 35000, Rennes, France ; Rennes University Hospital Centre Research Unit EA 4712 Behavior and Basal Ganglia, 35000, Rennes, France
| | - Bruno Millet
- Academic Department of Adult Psychiatry, Guillaume Régnier Hospital, EA 4712 35000, Rennes, France ; Rennes University Hospital Centre Research Unit EA 4712 Behavior and Basal Ganglia, 35000, Rennes, France
| |
Collapse
|
114
|
Rajkowska G, Stockmeier CA. Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets 2013; 14:1225-36. [PMID: 23469922 PMCID: PMC3799810 DOI: 10.2174/13894501113149990156] [Citation(s) in RCA: 436] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 02/07/2023]
Abstract
The present paper reviews astrocyte pathology in major depressive disorder (MDD) and proposes that reductions in astrocytes and related markers are key features in the pathology of MDD. Astrocytes are the most numerous and versatile of all types of glial cells. They are crucial to the neuronal microenvironment by regulating glucose metabolism, neurotransmitter uptake (particularly for glutamate), synaptic development and maturation and the blood brain barrier. Pathology of astrocytes has been consistently noted in MDD as well as in rodent models of depressive-like behavior. This review summarizes evidence from human postmortem tissue showing alterations in the expression of protein and mRNA for astrocyte markers such as glial fibrillary acidic protein (GFAP), gap junction proteins (connexin 40 and 43), the water channel aquaporin-4 (AQP4), a calcium-binding protein S100B and glutamatergic markers including the excitatory amino acid transporters 1 and 2 (EAAT1, EAAT2) and glutamine synthetase. Moreover, preclinical studies are presented that demonstrate the involvement of GFAP and astrocytes in animal models of stress and depressive-like behavior and the influence of different classes of antidepressant medications on astrocytes. In light of the various astrocyte deficits noted in MDD, astrocytes may be novel targets for the action of antidepressant medications. Possible functional consequences of altered expression of astrocytic markers in MDD are also discussed. Finally, the unique pattern of cell pathology in MDD, characterized by prominent reductions in the density of astrocytes and in the expression of their markers without obvious neuronal loss, is contrasted with that found in other neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State St., Box 127, Jackson, MS 39216-4505, USA.
| | | |
Collapse
|
115
|
Abstract
Major depression is characterized by low mood, a reduced ability to experience pleasure and frequent cognitive, physiological and high anxiety symptoms. It is also the leading cause of years lost due to disability worldwide in women and men, reflecting a lifelong trajectory of recurring episodes, increasing severity and progressive treatment resistance. Yet, antidepressant drugs at best treat only one out of every two patients and have not fundamentally changed since their discovery by chance >50 yr ago. This status quo may reflect an exaggerated emphasis on a categorical disease classification that was not intended for biological research and on oversimplified gene-to-disease models for complex illnesses. Indeed, genetic, molecular and cellular findings in major depression suggest shared risk and continuous pathological changes with other brain-related disorders. So, an alternative is that pathological findings in major depression reflect changes in vulnerable brain-related biological modules, each with their own aetiological factors, pathogenic mechanisms and biological/environment moderators. In this model, pathological entities have low specificity for major depression and instead co-occur, combine and interact within individual subjects across disorders, contributing to the expression of biological endophenotypes and potentially clinical symptom dimensions. Here, we discuss current limitations in depression research, review concepts of gene-to-disease biological scales and summarize human post-mortem brain findings related to pyramidal neurons, γ-amino butyric acid neurons, astrocytes and oligodendrocytes, as prototypical brain circuit biological modules. Finally we discuss nested aetiological factors and implications for dimensional pathology. Evidence suggests that a focus on local cell circuits may provide an appropriate integration point and a critical link between underlying molecular mechanisms and neural network dysfunction in major depression.
Collapse
|
116
|
Chandley MJ, Szebeni K, Szebeni A, Crawford J, Stockmeier CA, Turecki G, Miguel-Hidalgo JJ, Ordway GA. Gene expression deficits in pontine locus coeruleus astrocytes in men with major depressive disorder. J Psychiatry Neurosci 2013; 38:276-84. [PMID: 23415275 PMCID: PMC3692725 DOI: 10.1503/jpn.120110] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Norepinephrine and glutamate are among several neurotransmitters implicated in the neuropathology of major depressive disorder (MDD). Glia deficits have also been demonstrated in people with MDD, and glia are critical modulators of central glutamatergic transmission. We studied glia in men with MDD in the region of the brain (locus coeruleus; LC) where noradrenergic neuronal cell bodies reside and receive glutamatergic input. METHODS The expression of 3 glutamate-related genes (SLC1A3, SLC1A2, GLUL) concentrated in glia and a glia gene (GFAP) were measured in postmortem tissues from men with MDD and from paired psychiatrically healthy controls. Initial gene expression analysis of RNA isolated from homogenized tissue (n = 9-10 pairs) containing the LC were followed by detailed analysis of gene expressions in astrocytes and oligodendrocytes (n = 6-7 pairs) laser captured from the LC region. We assessed protein changes in GFAP using immunohistochemistry and immunoblotting (n = 7-14 pairs). RESULTS Astrocytes, but not oligodendrocytes, demonstrated robust reductions in the expression of SLC1A3 and SLC1A2, whereas GLUL expression was unchanged. GFAP expression was lower in astrocytes, and we confirmed reduced GFAP protein in the LC using immunostaining methods. LIMITATIONS Reduced expression of protein products of SLC1A3 and SLC1A2 could not be confirmed because of insufficient amounts of LC tissue for these assays. Whether gene expression abnormalities were associated with only MDD and not with suicide could not be confirmed because most of the decedents who had MDD died by suicide. CONCLUSION Major depressive disorder is associated with unhealthy astrocytes in the noradrenergic LC, characterized here by a reduction in astrocyte glutamate transporter expression. These findings suggest that increased glutamatergic activity in the LC occurs in men with MDD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gregory A. Ordway
- Correspondence to: G.A. Ordway, Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, PO Box 70577, Johnson City TN 37614;
| |
Collapse
|
117
|
Li LF, Yang J, Ma SP, Qu R. Magnolol treatment reversed the glial pathology in an unpredictable chronic mild stress-induced rat model of depression. Eur J Pharmacol 2013; 711:42-9. [DOI: 10.1016/j.ejphar.2013.04.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 04/04/2013] [Accepted: 04/04/2013] [Indexed: 12/16/2022]
|
118
|
Sanacora G, Banasr M. From pathophysiology to novel antidepressant drugs: glial contributions to the pathology and treatment of mood disorders. Biol Psychiatry 2013; 73:1172-9. [PMID: 23726152 PMCID: PMC3688253 DOI: 10.1016/j.biopsych.2013.03.032] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/09/2013] [Accepted: 03/13/2013] [Indexed: 12/22/2022]
Abstract
Several structural and cellular changes, including marked glial anomalies, have been observed in association with major depressive disorder. Here we review these cellular alterations and highlight the importance of glial cell pathology, especially astroglial dysfunction, in the pathophysiology of neuropsychiatric disorders with a particular interest in major depressive disorder. The functional role of astrocytes in glutamate uptake and glutamate/glutamine cycling is discussed, as is the deleterious effects of chronic stress on glial cell function. Lastly, we discuss the effect of antidepressants on glial cell function and the possibility of targeting glial cells in the quest to develop novel therapeutics.
Collapse
Affiliation(s)
- Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | |
Collapse
|
119
|
Effects of restraint stress on glial activity in the rostral ventromedial medulla. Neuroscience 2013; 241:10-21. [DOI: 10.1016/j.neuroscience.2013.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 12/24/2022]
|
120
|
Mechawar N. [What can microscopy teach us on suicide?]. SANTE MENTALE AU QUEBEC 2013; 37:57-64. [PMID: 23666281 DOI: 10.7202/1014956ar] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The fine neuroanatomy of mood disorders and suicide is a relatively recent field of investigation. Together with neuroimaging, molecular biology and biochemistry, histological analyses of post-mortem brain regions implicated in mood regulation allow gaining a better understanding of the cellular and molecular mechanisms underlying major depression and suicide. In this article, the author discusses recent studies conducted in his laboratory on the fine neuroanatomy of the anterior cingular cortex (ACC). In particular, he presents data showing that ACC white matter fibrous astrocytes are hypertrophic in depressed suicides compared to matched sudden-death controls. These data are interpreted in the context of the neuroimmune hypothesis of major depression and suicide.
Collapse
Affiliation(s)
- Naguib Mechawar
- Groupe McGill d'Études sur le Suicide, Institut universitaire en santé mentale Douglas, Département de psychiatrie, Université McGill
| |
Collapse
|
121
|
Winkler U, Hirrlinger PG, Sestu M, Wilhelm F, Besser S, Zemljic-Harpf AE, Ross RS, Bornschein G, Krügel U, Ziegler WH, Hirrlinger J. Deletion of the cell adhesion adaptor protein vinculin disturbs the localization of GFAP in Bergmann glial cells. Glia 2013; 61:1067-83. [DOI: 10.1002/glia.22495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 02/22/2013] [Indexed: 12/24/2022]
Affiliation(s)
- Ulrike Winkler
- Carl-Ludwig-Institute for Physiology; Faculty of Medicine; University of Leipzig; Liebigstr. 27; D-04103; Leipzig; Germany
| | | | - Marcello Sestu
- Mechanisms of Cell Migration; Interdisciplinary Center for Clinical Research (IZKF); Faculty of Medicine; University of Leipzig; Liebigstr. 21; D-04103; Leipzig; Germany
| | - Franziska Wilhelm
- Carl-Ludwig-Institute for Physiology; Faculty of Medicine; University of Leipzig; Liebigstr. 27; D-04103; Leipzig; Germany
| | - Stefanie Besser
- Carl-Ludwig-Institute for Physiology; Faculty of Medicine; University of Leipzig; Liebigstr. 27; D-04103; Leipzig; Germany
| | | | | | - Grit Bornschein
- Carl-Ludwig-Institute for Physiology; Faculty of Medicine; University of Leipzig; Liebigstr. 27; D-04103; Leipzig; Germany
| | - Ute Krügel
- Rudolf-Boehm-Institute of Pharmacology and Toxicology; Faculty of Medicine; University of Leipzig; Härtelstr. 16-18; D-04107; Leipzig; Germany
| | | | | |
Collapse
|
122
|
Rajkowska G, Hughes J, Stockmeier CA, Miguel-Hidalgo JJ, Maciag D. Coverage of blood vessels by astrocytic endfeet is reduced in major depressive disorder. Biol Psychiatry 2013; 73:613-21. [PMID: 23146357 PMCID: PMC3578083 DOI: 10.1016/j.biopsych.2012.09.024] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 01/21/2023]
Abstract
BACKGROUND Depression and cerebrovascular disease influence each other, according to clinical studies. Despite this evidence, no studies have investigated the relationship between major depressive disorder (MDD) and cerebrovascular disease at the cellular level. Astrocytic processes are a crucial interface between blood vessels and neurons, and astrocyte density is reduced in MDD. This study investigated the coverage of vessels by astrocyte endfeet in the prefrontal cortex in MDD. METHODS Thirteen pairs of MDD and nonpsychiatric control subjects were used for double immunofluorescent staining and confocal image analysis. Frozen sections of gray matter from orbitofrontal area 47 and white matter from the ventromedial prefrontal cortex were examined. Astrocytic processes (labeled with antibodies for aquaporin-4 (AQP4) or glial fibrillary acidic protein were co-localized with blood vessels (labeled with an antibody to collagen IV) to measure the coverage of vessel walls by astrocyte processes. RESULTS The coverage of blood vessels by endfeet of AQP4-immunoreactive (IR) astrocytes was significantly reduced by 50% in subjects with MDD as compared with control subjects [analysis of covariance: F(1,23) = 5.161, p = .033]. This difference was detected in orbitofrontal gray matter but not in white matter. Conversely, the coverage of vessels by glial fibrillary acidic protein-IR processes did not significantly differ between the groups. CONCLUSIONS A significant reduction in the coverage of gray matter vessels by AQP4-IR astrocyte processes in MDD suggests alterations in AQP4 functions such as regulation of water homeostasis, blood flow, glucose transport and metabolism, the blood-brain barrier, glutamate turnover, and synaptic plasticity.
Collapse
Affiliation(s)
- Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi 39216-4505, USA.
| | - Jonathan Hughes
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
| | - Craig A. Stockmeier
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS,Psychiatry, Case Western Reserve University, Cleveland, OH
| | | | - Dorota Maciag
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
123
|
Jellinger KA. Organic bases of late-life depression: a critical update. J Neural Transm (Vienna) 2013; 120:1109-25. [PMID: 23355089 DOI: 10.1007/s00702-012-0945-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 11/30/2012] [Indexed: 02/07/2023]
Abstract
Late-life depression (LLD) is frequently associated with cognitive impairment and increases the risk of subsequent dementia. Cerebrovascular disease, deep white matter lesions, Alzheimer disease (AD) and dementia with Lewy bodies (DLB) have all been hypothesized to contribute to this increased risk, and a host of studies have looked at the interplay between cerebrovascular disease and LLD. This has resulted in new concepts of LLD, such as "vascular depression", but despite multiple magnetic resonance imaging (MRI) studies in this field, the relationship between structural changes in human brain and LLD is still controversial. While pathological findings of suicide in some elderly persons revealed multiple lacunes, small vessel cerebrovascular disease, AD-related lesions or multiple neurodegenerative pathologies, recent autopsy data challenged the role of subcortical lacunes and white matter lesions as major morphological substrates of depressive symptoms as well as poorer executive function and memory. Several neuropathological studies, including a personal clinico-pathological study in a small cohort of elderly persons with LLD and age-matched controls confirmed that lacunes, periventricular and deep white matter demyelination as well as AD-related lesions are usually unrelated to the occurrence of LLD. In the same line, neuropathological data show that early-onset depression is not associated with an acceleration of age-related neurodegenerative changes. Very recent data on the critical role of glia-modulating neuronal dysfunction and degeneration in depression are discussed.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Kenyongasse 18, 1070 Vienna, Austria.
| |
Collapse
|
124
|
Radomska KJ, Halvardson J, Reinius B, Lindholm Carlström E, Emilsson L, Feuk L, Jazin E. RNA-binding protein QKI regulates Glial fibrillary acidic protein expression in human astrocytes. Hum Mol Genet 2013; 22:1373-82. [PMID: 23321059 DOI: 10.1093/hmg/dds553] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Linkage, association and expression studies previously pointed to the human QKI, KH domain containing, RNA-binding (QKI) as a candidate gene for schizophrenia. Functional studies of the mouse orthologue Qk focused mainly on its role in oligodendrocyte development and myelination, while its function in astroglia remained unexplored. Here, we show that QKI is highly expressed in human primary astrocytes and that its splice forms encode proteins targeting different subcellular localizations. Uncovering the role of QKI in astrocytes is of interest in light of growing evidence implicating astrocyte dysfunction in the pathogenesis of several disorders of the central nervous system. We selectively silenced QKI splice variants in human primary astrocytes and used RNA sequencing to identify differential expression and splice variant composition at the genome-wide level. We found that an mRNA expression of Glial fibrillary acidic protein (GFAP), encoding a major component of astrocyte intermediate filaments, was down-regulated after QKI7 splice variant silencing. Moreover, we identified a potential QKI-binding site within the 3' untranslated region of human GFAP. This sequence was not conserved between mice and humans, raising the possibility that GFAP is a target for QKI in humans but not rodents. Haloperidol treatment of primary astrocytes resulted in coordinated increases in QKI7 and GFAP expression. Taken together, our results provide the first link between QKI and GFAP, two genes with alterations previously observed independently in schizophrenic patients. Our findings for QKI, together with its well-known role in myelination, suggest that QKI is a hub regulator of glia function in humans.
Collapse
Affiliation(s)
- Katarzyna J Radomska
- Department of Evolution and Development, Evolutionary Biology Centre, Uppsala University, Uppsala,Sweden
| | | | | | | | | | | | | |
Collapse
|
125
|
Parpura V, Verkhratsky A. Astrogliopathology: could nanotechnology restore aberrant calcium signalling and pathological astroglial remodelling? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:1625-31. [PMID: 23219860 DOI: 10.1016/j.bbamcr.2012.11.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/23/2012] [Accepted: 11/24/2012] [Indexed: 12/19/2022]
Abstract
Pathology of the brain is caused by the deficiency in tissue homeostasis. As the main homeostatic element of the mammalian nervous system is represented by astrocytes, these glial cells are involved in many, if not all, brain disorders. Diseased astrocytes undergo a variety of morphological and functional changes, including deregulation of calcium dynamics. To rectify undesirable changes in astrocytes and/or neurones that occur in disease, we postulate the future use of nanotechnology-based therapeutics. Carbon nanotubes emerged as one of the most promising advanced nanomaterials for use in neuroprosthesis. Recently, they have been used to affect morpho-functional characteristics of astrocytes. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
Affiliation(s)
- Vladimir Parpura
- Department of Neurobiology, University of Alabama, Birmingham, AL 35294, USA.
| | | |
Collapse
|
126
|
Abstract
Late-life depression (LLD) has a complex and multifactoral etiology. There is growing interest in elucidating how glia, acting alone or as part of a glial-neuronal network, may contribute to the pathophysiology of depression. In this paper, we explore results from neuroimaging studies showing gray-matter volume loss in key frontal and subcortical structures implicated in LLD, and present the few histological studies that have examined neuronal and glial densities in these regions. Compared to results in younger people with depression, there appear to be age-dependent differences in neuronal pathology but the changes in glial pathology may be more subtle, perhaps reflecting a longer-term compensatory gliosis to earlier damage. We then consider the mechanisms by which both astrocytes and microglia may mediate and modulate neuronal dysfunction and possible degeneration in depression. These include a critical role in the response to peripheral inflammation and central microglial activation, as well as a key role in glutamate metabolism. Advances in our understanding of glia are highlighted, including the role of microglia as "electricians" of the brain and astrocytes as key communicating cells, an integral part of the tripartite synapse. Finally, implications for clinicians are discussed, including the consideration of glia as biomarkers for LLD and incorporation of glia into future therapeutic strategies.
Collapse
Affiliation(s)
- Matt Bennett Paradise
- Brain and Mind Research Institute, University of Sydney, Camperdown, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
127
|
John CS, Smith KL, Van'T Veer A, Gompf HS, Carlezon WA, Cohen BM, Öngür D, Bechtholt-Gompf AJ. Blockade of astrocytic glutamate uptake in the prefrontal cortex induces anhedonia. Neuropsychopharmacology 2012; 37:2467-75. [PMID: 22739467 PMCID: PMC3442341 DOI: 10.1038/npp.2012.105] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Major depression is associated with both dysregulated glutamatergic neurotransmission and fewer astrocytes in limbic areas including the prefrontal cortex (PFC). These deficits may be functionally related. Notably, astrocytes regulate glutamate levels by removing glutamate from the synapse via the glutamate transporter (GLT-1). Previously, we demonstrated that central blockade of GLT-1 induces anhedonia and c-Fos expression in the PFC. Given the role of the PFC in regulating mood, we hypothesized that GLT-1 blockade in the PFC alone would be sufficient to induce anhedonia in rats. We microinjected the GLT-1 inhibitor, dihydrokainic acid (DHK), into the PFC and examined the effects on mood using intracranial self-stimulation (ICSS). At lower doses, intra-PFC DHK produced modest increases in ICSS thresholds, reflecting a depressive-like effect. At higher doses, intra-PFC DHK resulted in cessation of responding. We conducted further tests to clarify whether this total cessation of responding was related to an anhedonic state (tested by sucrose intake), a nonspecific result of motor impairment (measured by the tape test), or seizure activity (measured with electroencephalogram (EEG)). The highest dose of DHK increased latency to begin drinking without altering total sucrose intake. Furthermore, neither motor impairment nor evidence of seizure activity was observed in the tape test or EEG recordings. A decrease in reward value followed by complete cessation of ICSS responding suggests an anhedonic-like effect of intra-PFC DHK; a conclusion that was substantiated by an increased latency to begin sucrose drinking. Overall, these results suggest that blockade of astrocytic glutamate uptake in the PFC is sufficient to produce anhedonia, a core symptom of depression.
Collapse
Affiliation(s)
- Catherine S John
- Department of Psychiatry, Harvard Medical School–McLean Hospital, Belmont, MA, USA
| | - Karen L Smith
- Department of Psychiatry, Harvard Medical School–McLean Hospital, Belmont, MA, USA
| | - Ashlee Van'T Veer
- Department of Psychiatry, Harvard Medical School–McLean Hospital, Belmont, MA, USA
| | - Heinrich S Gompf
- Department of Psychiatry, Harvard Medical School–McLean Hospital, Belmont, MA, USA
| | - William A Carlezon
- Department of Psychiatry, Harvard Medical School–McLean Hospital, Belmont, MA, USA
| | - Bruce M Cohen
- Department of Psychiatry, Harvard Medical School–McLean Hospital, Belmont, MA, USA
| | - Dost Öngür
- Department of Psychiatry, Harvard Medical School–McLean Hospital, Belmont, MA, USA
| | - Anita J Bechtholt-Gompf
- Department of Psychiatry, Harvard Medical School–McLean Hospital, Belmont, MA, USA,Department of Psychiatry, Harvard Medical School, McLean Hospital, 115 Mill Street, MRC 215, Belmont, MA 02478, USA, Tel: +1 617 855 2050, Fax: +1 617 855 2023, E-mail:
| |
Collapse
|
128
|
Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ. Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 2012; 13:465-77. [PMID: 22678511 DOI: 10.1038/nrn3257] [Citation(s) in RCA: 1121] [Impact Index Per Article: 86.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The essential amino acid tryptophan is not only a precursor of serotonin but is also degraded to several other neuroactive compounds, including kynurenic acid, 3-hydroxykynurenine and quinolinic acid. The synthesis of these metabolites is regulated by an enzymatic cascade, known as the kynurenine pathway, that is tightly controlled by the immune system. Dysregulation of this pathway, resulting in hyper-or hypofunction of active metabolites, is associated with neurodegenerative and other neurological disorders, as well as with psychiatric diseases such as depression and schizophrenia. With recently developed pharmacological agents, it is now possible to restore metabolic equilibrium and envisage novel therapeutic interventions.
Collapse
Affiliation(s)
- Robert Schwarcz
- University of Maryland School of Medicine, Baltimore, Maryland 21228, USA. rschwarc@mprc. umaryland.edu
| | | | | | | |
Collapse
|
129
|
Elsayed M, Banasr M, Duric V, Fournier NM, Licznerski P, Duman RS. Antidepressant effects of fibroblast growth factor-2 in behavioral and cellular models of depression. Biol Psychiatry 2012; 72:258-65. [PMID: 22513055 PMCID: PMC3401338 DOI: 10.1016/j.biopsych.2012.03.003] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Basic and clinical studies report that the expression of fibroblast growth factor-2 (FGF-2) is decreased in the prefrontal cortex (PFC) of depressed subjects or rodents exposed to stress and increased following antidepressant treatment. Here, we aim to determine if 1) FGF-2/fibroblast growth factor receptor (FGFR) signaling is sufficient and required for mediating an antidepressant response behaviorally and cellularly; and 2) if the antidepressant actions of FGF-2 are mediated specifically by the PFC. METHODS The role of FGF-2 signaling in behavioral models of depression and anxiety was tested using chronic unpredictable stress (CUS)/sucrose consumption test (SCT), forced swim test (FST), and novelty suppressed feeding test (NSFT). We also assessed the number of bromodeoxyuridine labeled dividing glial cells in the PFC as a cellular index relevant to depression (i.e., decreased by stress and increased by antidepressant treatment). RESULTS Chronic FGF-2 infusions (intracerebroventricular) blocked the deficit in SCT caused by CUS. Moreover, the response to antidepressant treatment in the CUS/SCT and FST was abolished upon administration of an inhibitor of FGFR activity, SU5402. These results are consistent with the regulation of proliferating cells in the PFC, a portion of which are of oligodendrocyte lineage. Lastly, subchronic infusions of FGF-2 into the PFC but not into the dorsal striatum produced antidepressant-like and anxiolytic-like effects on FST and NSFT respectively. CONCLUSIONS These findings demonstrate that FGF-2/FGFR signaling is sufficient and necessary for the behavioral, as well as gliogenic, actions of antidepressants and highlight the PFC as a brain region sensitive to the antidepressant actions of FGF-2.
Collapse
|
130
|
Imbe H, Kimura A, Donishi T, Kaneoke Y. Chronic restraint stress decreases glial fibrillary acidic protein and glutamate transporter in the periaqueductal gray matter. Neuroscience 2012; 223:209-18. [PMID: 22890077 DOI: 10.1016/j.neuroscience.2012.08.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 12/22/2022]
Abstract
Stress affects brain activity and promotes long-term changes in multiple neural systems. Exposure to stressors causes substantial effects on the perception and response to pain. In several animal models, chronic stress produces lasting hyperalgesia. Postmortem studies of stress-related psychiatric disorders have demonstrated a decrease in the number of astrocytes and the level of glial fibrillary acidic protein (GFAP), a marker for astrocyte, in the cerebral cortex. Since astrocytes play vital roles in maintaining neuroplasticity via synapse maintenance and secretion of neurotrophins, impairment of astrocytes is thought to be involved in the neuropathology. In the present study we examined GFAP and excitatory amino acid transporter 2 (EAAT2) protein levels in the periaqueductal gray matter (PAG) after subacute and chronic restraint stresses to clarify changes in descending pain modulatory system in the rat with stress-induced hyperalgesia. Chronic restraint stress (6h/day for 3 weeks), but not subacute restraint stress (6h/day for 3 days), caused a marked mechanical hypersensitivity and aggressive behavior. The chronic restraint stress induced a significant decrease of GFAP protein level in the PAG (32.0 ± 8.9% vs. control group, p<0.05). In immunohistochemical analysis the remarkable decrease of GFAP was observed in the ventrolateral PAG. The EAAT2 protein level in the 3 weeks stress group (79.6 ± 6.8%) was significantly lower compared to that in the control group (100.0 ± 6.1%, p<0.05). In contrast there was no significant difference in the GFAP and EAAT2 protein levels between the control and 3 days stress groups These findings suggest a dysfunction of the PAG that plays pivotal roles in the organization of strategies for coping with stressors and in pain modulation after chronic restraint stress.
Collapse
Affiliation(s)
- H Imbe
- Department of Physiology, Wakayama Medical University, Kimiidera 811-1, Wakayama City 641-8509, Japan.
| | | | | | | |
Collapse
|
131
|
Chandley M, Ordway G. Noradrenergic Dysfunction in Depression and Suicide. THE NEUROBIOLOGICAL BASIS OF SUICIDE 2012. [DOI: 10.1201/b12215-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
132
|
Naismith SL, Norrie LM, Mowszowski L, Hickie IB. The neurobiology of depression in later-life: Clinical, neuropsychological, neuroimaging and pathophysiological features. Prog Neurobiol 2012; 98:99-143. [DOI: 10.1016/j.pneurobio.2012.05.009] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 05/03/2012] [Accepted: 05/09/2012] [Indexed: 02/07/2023]
|
133
|
Daniele S, Da Pozzo E, Abelli M, Panighini A, Pini S, Gesi C, Lari L, Cardini A, Cassano GB, Martini C. Platelet uptake of GABA and glutamate in patients with bipolar disorder. Bipolar Disord 2012; 14:301-8. [PMID: 22548903 DOI: 10.1111/j.1399-5618.2012.01005.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Gamma aminobutyric acid (GABA) and glutamate (Glu) are the major neurotransmitters of the human central nervous system, and their actions are determined by specific transporters. Several studies suggest that GABA- and Glu-uptake mechanisms are modified in patients with bipolar disorder (BD). We explored the functionality of the GABA and Glu transporters in three groups of patients with BD, each with a different polarity of index episode (manic, depressive, or euthymic) at the time of blood draw. METHODS Forty patients with a diagnosis of BD, according to DSM-IV-TR criteria, and 15 healthy subjects were enrolled in the study. GABA and Glu uptake were evaluated in freshly prepared platelets using [(3) H]GABA or [(3) H]glutamate. RESULTS Compared to controls, GABA uptake was significantly increased in patients with depressive episodes and significantly decreased in subjects with manic episodes. Glu uptake was significantly increased in patients with index manic episodes and in euthymic patients compared to healthy controls. Moreover, a positive correlation was found between GABA platelet uptake and Hamilton Depression Rating Scale scores and between Glu platelet uptake and Young Mania Rating Scale scores in patients with manic episodes. CONCLUSIONS We found a relationship between GABA- and Glu-uptake levels and the polarity of episodes in patients with BD. Our data suggest that the functionality of both GABA and Glu transporters could represent a useful neurobiological marker to characterize the real polarity of an index episode of illness in patients with BD.
Collapse
Affiliation(s)
- Simona Daniele
- Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Neuropathological abnormalities of astrocytes, GABAergic neurons, and pyramidal neurons in the dorsolateral prefrontal cortices of patients with major depressive disorder. Eur Neuropsychopharmacol 2012; 22:330-8. [PMID: 21962915 DOI: 10.1016/j.euroneuro.2011.09.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/08/2011] [Accepted: 09/01/2011] [Indexed: 12/13/2022]
Abstract
Human post-mortem brain studies have revealed reduced density and size of neurons and glial cells in the dorsolateral prefrontal cortex (dlPFC) in major depressive disorder (MDD). However, the basis of these cytoarchitectural abnormalities and the relationship between them are not understood. We hypothesized that the reduced density of GABAergic neurons and glial cells was associated with altered glutamate neurotransmission in the dlPFC. In order to test this hypothesis, we examined a specific marker type (i.e., calretinin, CR: as a marker of GABAergic neurons) and also attempted to identify the neuropathological markers that correlate with the density of CR-immunoreactive (IR) GABAergic neurons in the dlPFC, using the Stanley Neuropathology Consortium Integrative Database (SNCID, http://sncid.stanleyresearch.org/), which is a web-based tool used to integrate Stanley Medical Research Institute (SMRI) data sets. We found that the density of CR-IR GABAergic neurons was significantly lower in layer I of the dlPFC of MDD patients (n=15) than in that of unaffected controls (n=15) (p=0.021). CR-IR GABAergic neuronal changes were positively correlated with changes in several markers for glial cells and pyramidal neurons in the dlPFC of all SNC subjects (n=60). We also found that the glutamate changes negatively correlated with glial fibrillary acidic protein (GFAP) expression levels and CR-IR GABAergic neuronal density in the prefrontal cortex of all SNC subjects (P<0.05). These findings yield some insight into the mechanism by which increased glutamatergic neurotransmission leads to excitotoxic damage both in neurons and glial cells in the dlPFC of MDD patients.
Collapse
|
135
|
Abstract
Altered glial structure and function is implicated in several major mental illnesses and increasing evidence specifically links changes in oligodendrocytes with disrupted mood regulation. Low density and reduced expression of oligodendrocyte-specific gene transcripts in postmortem human subjects points toward decreased oligodendrocyte function in most of the major mental illnesses. Similar features are observed in rodent models of stress-induced depressive-like phenotypes, such as the unpredictable chronic mild stress and chronic corticosterone exposure, suggesting an effect downstream from stress. However, whether oligodendrocyte changes are a causal component of psychiatric phenotypes is not known. Traditional views that identify oligodendrocytes solely as nonfunctional support cells are being challenged, and recent studies suggest a more dynamic role for oligodendrocytes in neuronal functioning than previously considered, with the region adjacent to the node of Ranvier (i.e., paranode) considered a critical region of glial-neuronal interaction. Here, we briefly review the current knowledge regarding oligodendrocyte disruptions in psychiatric disorders and related animal models, with a focus on major depression. We then highlight several rodent studies, which suggest that alterations in oligodendrocyte structure and function can produce behavioral changes that are informative of mood regulatory mechanisms. Together, these studies suggest a model, whereby impaired oligodendrocyte and possibly paranode structure and function can impact neural circuitry, leading to downstream effects related to emotionality in rodents, and potentially to mood regulation in human psychiatric disorders.
Collapse
Affiliation(s)
- N Edgar
- Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - E Sibille
- Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA,Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Bridgeside Point II, Suite 231, 450 Technology Drive, Pittsburgh, PA 15219, USA. E-mail:
| |
Collapse
|
136
|
De Filippis B, Fabbri A, Simone D, Canese R, Ricceri L, Malchiodi-Albedi F, Laviola G, Fiorentini C. Modulation of RhoGTPases improves the behavioral phenotype and reverses astrocytic deficits in a mouse model of Rett syndrome. Neuropsychopharmacology 2012; 37:1152-63. [PMID: 22157810 PMCID: PMC3306877 DOI: 10.1038/npp.2011.301] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 10/28/2011] [Accepted: 10/28/2011] [Indexed: 11/09/2022]
Abstract
RhoGTPases are crucial molecules in neuronal plasticity and cognition, as confirmed by their role in non-syndromic mental retardation. Activation of brain RhoGTPases by the bacterial cytotoxic necrotizing factor 1 (CNF1) reshapes the actin cytoskeleton and enhances neurotransmission and synaptic plasticity in mouse brains. We evaluated the effects of a single CNF1 intracerebroventricular inoculation in a mouse model of Rett syndrome (RTT), a rare neurodevelopmental disorder and a genetic cause of mental retardation, for which no effective therapy is available. Fully symptomatic MeCP2-308 male mice were evaluated in a battery of tests specifically tailored to detect RTT-related impairments. At the end of behavioral testing, brain sections were immunohistochemically characterized. Magnetic resonance imaging and spectroscopy (MRS) were also applied to assess morphological and metabolic brain changes. The CNF1 administration markedly improved the behavioral phenotype of MeCP2-308 mice. CNF1 also dramatically reversed the evident signs of atrophy in astrocytes of mutant mice and restored wt-like levels of this cell population. A partial rescue of the overexpression of IL-6 cytokine was also observed in RTT brains. CNF1-induced brain metabolic changes detected by MRS analysis involved markers of glial integrity and bioenergetics, and point to improved mitochondria functionality in CNF1-treated mice. These results clearly indicate that modulation of brain RhoGTPases by CNF1 may constitute a totally innovative therapeutic approach for RTT and, possibly, for other disorders associated with mental retardation.
Collapse
Affiliation(s)
- Bianca De Filippis
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | - Alessia Fabbri
- Department Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Roma, Italy
| | - Daiana Simone
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | - Rossella Canese
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | - Laura Ricceri
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | | | - Giovanni Laviola
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | - Carla Fiorentini
- Department Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Roma, Italy
| |
Collapse
|
137
|
Abstract
Increasing evidence suggests that cortical astrocytic function is disrupted in mood disorders and suicide. The fine neuroanatomy of astrocytes, however, remains to be investigated in these psychiatric conditions. In this study, we performed a detailed morphometric analysis of 3D-reconstructed gray and white matter astrocytes in Golgi-impregnated anterior cingulate cortex (ACC) samples from depressed suicides and matched controls. Postmortem ACC samples (BA24) from 10 well-characterized depressed suicides and 10 matched sudden-death controls were obtained from the Quebec Suicide Brain Bank. Golgi-impregnated protoplasmic astrocytes (gray matter, layer VI) and fibrous astrocytes (adjacent white matter) were reconstructed, and their morphometric features were analyzed using the Neurolucida software. For each cell, the soma size as well as the number, length, and branching of processes were determined. The densities of thorny protrusions found along the processes of both astrocytic subtypes were also determined. Protoplasmic astrocytes showed no significant difference between groups for any of the quantified parameters. However, fibrous astrocytes had significantly larger cell bodies, as well as longer, more ramified processes in depressed suicides, with values for these parameters being about twice as high as those measured in controls. These results provide the first evidence of altered cortical astrocytic morphology in mood disorders. The presence of hypertrophic astrocytes in BA24 white matter is consistent with reports suggesting white matter alterations in depression, and provides further support to the neuroinflammatory theory of depression.
Collapse
|
138
|
Schroeter ML, Steiner J, Mueller K. Glial pathology is modified by age in mood disorders--a systematic meta-analysis of serum S100B in vivo studies. J Affect Disord 2011; 134:32-8. [PMID: 21144594 DOI: 10.1016/j.jad.2010.11.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/06/2010] [Accepted: 11/06/2010] [Indexed: 01/01/2023]
Abstract
BACKGROUND Mood disorders are characterized by specific glial pathology. Recently, based on histopathological post mortem studies, the glial hypothesis has been discussed as a dynamic process, in particular with regard to glioplasticity. Whereas in young subjects with mood disorders, glial cell density or glial cell numbers are reduced, they are increased in elderly subjects. METHODS To validate this concept in vivo, we investigated the dynamic course of glial pathology in mood disorders across studies measuring the glial marker protein S100B in serum in a systematic and quantitative meta-analysis according to the QUOROM and PRISMA statement. We searched for studies in PubMed and Medline, applied strict inclusion/exclusion criteria, and calculated effect sizes according to Cohen and Hedges. RESULTS The final meta-analysis included 174 subjects with mood disorders and 102 control subjects. It demonstrated higher levels of the glial marker protein S100B in older compared with younger adult subjects suffering from mood disorders, although both young and older subjects showed elevated values in comparison to control subjects. Illness duration and age at onset had no impact on serum S100B. LIMITATIONS Influences of antidepressive drugs vs. the spontaneous course of the illness, differences between mood disorder subtypes and the specific role of S100B have to be investigated in future longitudinal studies. CONCLUSIONS The meta-analysis indicates a modifying effect of S100B in mood disorders in the interaction with age, with an increasing role across the lifespan. Results are relevant for the understanding of mood disorders and future illness modifying therapies because S100B may influence neuro- and glioplasticity.
Collapse
Affiliation(s)
- Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.
| | | | | |
Collapse
|
139
|
Panigada T, Gosselin RD. Behavioural alteration in chronic pain: Are brain glia involved? Med Hypotheses 2011; 77:584-8. [DOI: 10.1016/j.mehy.2011.06.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 06/06/2011] [Accepted: 06/15/2011] [Indexed: 12/24/2022]
|
140
|
Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology 2011; 62:63-77. [PMID: 21827775 DOI: 10.1016/j.neuropharm.2011.07.036] [Citation(s) in RCA: 784] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/22/2011] [Accepted: 07/23/2011] [Indexed: 12/12/2022]
Abstract
Half a century after the first formulation of the monoamine hypothesis, compelling evidence implies that long-term changes in an array of brain areas and circuits mediating complex cognitive-emotional behaviors represent the biological underpinnings of mood/anxiety disorders. A large number of clinical studies suggest that pathophysiology is associated with dysfunction of the predominant glutamatergic system, malfunction in the mechanisms regulating clearance and metabolism of glutamate, and cytoarchitectural/morphological maladaptive changes in a number of brain areas mediating cognitive-emotional behaviors. Concurrently, a wealth of data from animal models have shown that different types of environmental stress enhance glutamate release/transmission in limbic/cortical areas and exert powerful structural effects, inducing dendritic remodeling, reduction of synapses and possibly volumetric reductions resembling those observed in depressed patients. Because a vast majority of neurons and synapses in these areas and circuits use glutamate as neurotransmitter, it would be limiting to maintain that glutamate is in some way 'involved' in mood/anxiety disorders; rather it should be recognized that the glutamatergic system is a primary mediator of psychiatric pathology and, potentially, also a final common pathway for the therapeutic action of antidepressant agents. A paradigm shift from a monoamine hypothesis of depression to a neuroplasticity hypothesis focused on glutamate may represent a substantial advancement in the working hypothesis that drives research for new drugs and therapies. Importantly, despite the availability of multiple classes of drugs with monoamine-based mechanisms of action, there remains a large percentage of patients who fail to achieve a sustained remission of depressive symptoms. The unmet need for improved pharmacotherapies for treatment-resistant depression means there is a large space for the development of new compounds with novel mechanisms of action such as glutamate transmission and related pathways. This article is part of a Special Issue entitled 'Anxiety and Depression'.
Collapse
|
141
|
Miguel-Hidalgo JJ, Overholser JC, Jurjus GJ, Meltzer HY, Dieter L, Konick L, Stockmeier CA, Rajkowska G. Vascular and extravascular immunoreactivity for intercellular adhesion molecule 1 in the orbitofrontal cortex of subjects with major depression: age-dependent changes. J Affect Disord 2011; 132:422-31. [PMID: 21536333 PMCID: PMC3137705 DOI: 10.1016/j.jad.2011.03.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/31/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Vascular and immune alterations in the prefrontal cortex may contribute to major depression in elderly subjects. Intercellular adhesion molecule-1 (ICAM-1), major inflammatory mediator in vessels and astrocytes, could be altered in geriatric depression, but little is known about its age-dependent expression in subjects with depression and its relationship to astrocytes identified by the marker glial fibrillary acidic protein (GFAP), found to be reduced in depression. METHODS We measured the percentage of gray matter area fraction covered by ICAM-1 immunoreactivity in blood vessels and in extravascular accumulations of ICAM-1 immunoreactivity in 19 non-psychiatric comparison subjects and 18 subjects with major depression, all characterized by postmortem psychological diagnosis. Association of extravascular ICAM-1 to GFAP-positive astrocytes was investigated by double-labeling immunofluorescence. RESULTS Vascular and extravascular fractions of ICAM-1 immunoreactivity were lower in subjects with MDD than in non-psychiatric comparison subjects. Non-psychiatric comparison subjects older than 60 experienced dramatic increase in extravascular ICAM-1 immunoreactivity, but this increase was attenuated in elderly subjects with MDD, particularly in those dying by suicide. Most extracellular ICAM-1 immunoreactivity was coextensive with GFAP-immunoreactive astrocytes in both groups. LIMITATIONS Heterogeneity in type and dosage of antidepressant medication. Difficulty in determining the exact onset of depression in subjects older than 60 at the time of death. Routine cerebrovascular pathological screening may miss subtle subcellular and molecular changes. CONCLUSIONS There is significant attenuation of extravascular and vascular ICAM-1 immunoreactivity in elderly subjects with major depression suggesting an astrocyte-associated alteration in immune function in the aging orbitofrontal cortex of subjects with MDD.
Collapse
Affiliation(s)
- Jose Javier Miguel-Hidalgo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Allaman I, Fiumelli H, Magistretti PJ, Martin JL. Fluoxetine regulates the expression of neurotrophic/growth factors and glucose metabolism in astrocytes. Psychopharmacology (Berl) 2011; 216:75-84. [PMID: 21301813 DOI: 10.1007/s00213-011-2190-y] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 01/17/2011] [Indexed: 02/08/2023]
Abstract
RATIONALE The pharmacological actions of most antidepressants are ascribed to the modulation of serotonergic and/or noradrenergic transmission in the brain. During therapeutic treatment for major depression, fluoxetine, one of the most commonly prescribed selective serotonin reuptake inhibitor (SSRI) antidepressants, accumulates in the brain, suggesting that fluoxetine may interact with additional targets. In this context, there is increasing evidence that astrocytes are involved in the pathophysiology of major depression. OBJECTIVES The aim of this study was to examine the effects of fluoxetine on the expression of neurotrophic/growth factors that have antidepressant properties and on glucose metabolism in cultured cortical astrocytes. RESULTS Treatment of astrocytes with fluoxetine and paroxetine, another SSRI antidepressant, upregulated brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), and VGF mRNA expression. In contrast, the tricyclic antidepressants desipramine and imipramine did not affect the expression of these neurotrophic/growth factors. Analysis of the effects of fluoxetine on glucose metabolism revealed that fluoxetine reduces glycogen levels and increases glucose utilization and lactate release by astrocytes. Similar data were obtained with paroxetine, whereas imipramine and desipramine did not regulate glucose metabolism in this glial cell population. Our results also indicate that the effects of fluoxetine and paroxetine on glucose utilization, lactate release, and expression of BDNF, VEGF, and VGF are not mediated by serotonin-dependent mechanisms. CONCLUSIONS These data suggest that, by increasing the expression of specific astrocyte-derived neurotrophic factors and lactate release from astrocytes, fluoxetine may contribute to normalize the trophic and metabolic support to neurons in major depression.
Collapse
Affiliation(s)
- Igor Allaman
- Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | | | | | | |
Collapse
|
143
|
Docosahexaenoic acid (DHA): an ancient nutrient for the modern human brain. Nutrients 2011; 3:529-54. [PMID: 22254110 PMCID: PMC3257695 DOI: 10.3390/nu3050529] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 04/27/2011] [Accepted: 05/03/2011] [Indexed: 12/31/2022] Open
Abstract
Modern humans have evolved with a staple source of preformed docosahexaenoic acid (DHA) in the diet. An important turning point in human evolution was the discovery of high-quality, easily digested nutrients from coastal seafood and inland freshwater sources. Multi-generational exploitation of seafood by shore-based dwellers coincided with the rapid expansion of grey matter in the cerebral cortex, which characterizes the modern human brain. The DHA molecule has unique structural properties that appear to provide optimal conditions for a wide range of cell membrane functions. This has particular implications for grey matter, which is membrane-rich tissue. An important metabolic role for DHA has recently been identified as the precursor for resolvins and protectins. The rudimentary source of DHA is marine algae; therefore it is found concentrated in fish and marine oils. Unlike the photosynthetic cells in algae and higher plants, mammalian cells lack the specific enzymes required for the de novo synthesis of alpha-linolenic acid (ALA), the precursor for all omega-3 fatty acid syntheses. Endogenous synthesis of DHA from ALA in humans is much lower and more limited than previously assumed. The excessive consumption of omega-6 fatty acids in the modern Western diet further displaces DHA from membrane phospholipids. An emerging body of research is exploring a unique role for DHA in neurodevelopment and the prevention of neuropsychiatric and neurodegenerative disorders. DHA is increasingly being added back into the food supply as fish oil or algal oil supplementation.
Collapse
|
144
|
McNamara RK, Liu Y. Reduced expression of fatty acid biosynthesis genes in the prefrontal cortex of patients with major depressive disorder. J Affect Disord 2011; 129:359-63. [PMID: 20863572 PMCID: PMC3023006 DOI: 10.1016/j.jad.2010.08.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 08/26/2010] [Indexed: 12/17/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is associated with central and peripheral deficits in long-chain polyunsaturated fatty acids (LC-PUFA), particularly those in the omega-3 fatty acid family. However, the etiology of these deficits remains poorly understood, and there is currently little known about the expression of genes that mediate fatty acid biosynthesis in MDD patients. METHODS The expression of FADS1 (Δ5 desaturase), FADS2 (Δ6 desaturase), HELO1 [ELOVL5] (elongase), PEX19 (peroxisome), and SCD (stearoyl-CoA desaturase [Δ9 desaturase]) was determined in the postmortem prefrontal cortex of MDD patients (n=10) and non-psychiatric controls (n=10) by real-time reverse transcriptase polymerase chain reaction (RT-PCR). RESULTS After correcting for multiple comparisons, FADS1 mRNA expression was significantly lower in MDD patients relative to controls (-27%, p=0.009), and there were trends for lower expression of FADS2 (-30%, p=0.07), HELO1 (-37%, p=0.02), and SCD (-43%, p=0.02). PEX19 mRNA expression did not differ between controls and MDD patients (-2%, p=0.92). There were no significant gender effects, and relative reductions in FADS1, HELO1, and SCD expression were greater in patients that did not commit suicide compared with patients that did commit suicide. LIMITATIONS The sample size was small, and all MDD patients were receiving antidepressant medications. CONCLUSIONS Principal genes involved in LC-PUFA and monounsaturated fatty acid biosynthesis are down-regulated in the postmortem prefrontal cortex of MDD patients. Additional studies are needed to replicate and extend these findings in a larger sample that includes antidepressant-free MDD patients.
Collapse
Affiliation(s)
- Robert K McNamara
- Department of Psychiatry, Lipidomics Research Program, University of Cincinnati College of Medicine, Cincinnati, OH 45219, United States.
| | | |
Collapse
|
145
|
Miguel-Hidalgo JJ, Waltzer R, Whittom AA, Austin MC, Rajkowska G, Stockmeier CA. Glial and glutamatergic markers in depression, alcoholism, and their comorbidity. J Affect Disord 2010; 127:230-40. [PMID: 20580095 PMCID: PMC2975814 DOI: 10.1016/j.jad.2010.06.003] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 06/03/2010] [Indexed: 12/31/2022]
Abstract
BACKGROUND Alteration of glutamatergic neurotransmission in the prefrontal cortex (PFC) may contribute to the pathophysiology of alcoholism and major depressive disorder (MDD). Among glial cells, astrocytes are mostly responsible for recycling synaptic glutamate by uptake through excitatory amino acid transporters 1 and 2 (EAAT1 and EAAT2), and conversion to glutamine with glutamine synthetase (GS). Low density of astrocytes in the PFC of "uncomplicated' alcoholics and MDD subjects may parallel altered glutamate transporters and GS in the PFC. METHODS Immunohistochemistry and Western blotting for glutamate transporters, GS and glial fibrillary acidic protein (GFAP) were applied to postmortem tissue of the left orbitofrontal cortex from 13 subjects with MDD, 13 with alcoholism, 10 with comorbid alcoholism plus MDD (MDA), and 13 non-psychiatric controls. Area fraction of immunoreactivity was measured in sections, and protein levels in Western blots. RESULTS EAAT2 immunoreactivity was significantly lower in MDD and MDA subjects than in controls. EAAT1 levels were lower in MDA and MDD subjects as compared to controls, while GS levels in MDA were significantly lower than in alcoholics and controls, and lower in MDD subjects than in alcoholics. Area fraction of GFAP was lower in MDD, but not in MDA subjects as compared to controls or alcoholics. LIMITATIONS High variability of protein levels in some groups and effects of antidepressant treatment, although appearing to be limited, cannot be fully evaluated. CONCLUSIONS There are differential changes in the expression of glial glutamatergic markers in depression and alcoholism, suggesting a depletion of certain aspects of glutamatergic processing in depression.
Collapse
Affiliation(s)
- José Javier Miguel-Hidalgo
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | | | | | | | | | | |
Collapse
|
146
|
Haley GE, Kohama SG, Urbanski HF, Raber J. Age-related decreases in SYN levels associated with increases in MAP-2, apoE, and GFAP levels in the rhesus macaque prefrontal cortex and hippocampus. AGE (DORDRECHT, NETHERLANDS) 2010; 32:283-296. [PMID: 20640549 PMCID: PMC2926858 DOI: 10.1007/s11357-010-9137-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 02/16/2010] [Indexed: 05/29/2023]
Abstract
Loss of synaptic integrity in the hippocampus and prefrontal cortex (PFC) may play an integral role in age-related cognitive decline. Previously, we showed age-related increases in the dendritic marker microtubule associated protein 2 (MAP-2) and the synaptic marker synaptophysin (SYN) in mice. Similarly, apolipoprotein E (apoE), involved in lipid transport and metabolism, and glial fibrillary acidic protein (GFAP), a glia specific marker, increase with age in rodents. In this study, we assessed whether these four proteins show similar age-related changes in a nonhuman primate, the rhesus macaque. Free-floating sections from the PFC and hippocampus from adult, middle-aged, and aged rhesus macaques were immunohistochemically labeled for MAP-2, SYN, apoE, and GFAP. Protein levels were measured as area occupied by fluorescence using confocal microscopy as well as by Western blot. In the PFC and hippocampus of adult and middle-aged animals, the levels of SYN, apoE, and GFAP immunoreactivity were comparable but there was a trend towards higher MAP-2 levels in middle-aged than adult animals. There was significantly less SYN and more MAP-2, apoE, and GFAP immunoreactivity in the PFC and hippocampus of aged animals compared to adult or middle-aged animals. Thus, the age-related changes in MAP-2, apoE, and GFAP levels were similar to those previously observed in rodents. On the other hand, the age-related changes in SYN levels were not, but were similar to those previously observed in the aging human brain. Taken together, these data emphasize the value of the rhesus macaque as a pragmatic translational model for human brain aging.
Collapse
Affiliation(s)
- Gwendolen E. Haley
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239 USA
- Division of Neuroscience, ONPRC, Oregon Health and Science University, Beaverton, OR 97006 USA
| | - Steven G. Kohama
- Division of Neuroscience, ONPRC, Oregon Health and Science University, Beaverton, OR 97006 USA
| | - Henryk F. Urbanski
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239 USA
- Division of Neuroscience, ONPRC, Oregon Health and Science University, Beaverton, OR 97006 USA
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239 USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239 USA
- Division of Neuroscience, ONPRC, Oregon Health and Science University, Beaverton, OR 97006 USA
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239 USA
- 3181 SW Sam Jackson Pkwy, Mail Code L-470, Portland, OR 97239 USA
| |
Collapse
|
147
|
Szewczyk B, Albert PR, Rogaeva A, Fitzgibbon H, May WL, Rajkowska G, Miguel-Hidalgo JJ, Stockmeier CA, Woolverton WL, Kyle PB, Wang Z, Austin MC. Decreased expression of Freud-1/CC2D1A, a transcriptional repressor of the 5-HT1A receptor, in the prefrontal cortex of subjects with major depression. Int J Neuropsychopharmacol 2010; 13:1089-101. [PMID: 20392296 PMCID: PMC3089896 DOI: 10.1017/s1461145710000301] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Serotonin1A (5-HT(1A)) receptors are reported altered in the brain of subjects with major depressive disorder (MDD). Recent studies have identified transcriptional regulators of the 5-HT(1A) receptor and have documented gender-specific alterations in 5-HT(1A) transcription factor and 5-HT(1A) receptors in female MDD subjects. The 5' repressor element under dual repression binding protein-1 (Freud-1) is a calcium-regulated repressor that negatively regulates the 5-HT(1A) receptor gene. This study documented the cellular expression of Freud-1 in the human prefrontal cortex (PFC) and quantified Freud-1 protein in the PFC of MDD and control subjects as well as in the PFC of rhesus monkeys chronically treated with fluoxetine. Freud-1 immunoreactivity was present in neurons and glia and was co-localized with 5-HT(1A) receptors. Freud-1 protein level was significantly decreased in the PFC of male MDD subjects (37%, p=0.02) relative to gender-matched control subjects. Freud-1 protein was also reduced in the PFC of female MDD subjects (36%, p=0.18) but was not statistically significant. When the data was combined across genders and analysed by age, the decrease in Freud-1 protein level was greater in the younger MDD subjects (48%, p=0.01) relative to age-matched controls as opposed to older depressed subjects. Similarly, 5-HT(1A) receptor protein was significantly reduced in the PFC of the younger MDD subjects (48%, p=0.01) relative to age-matched controls. Adult male rhesus monkeys administered fluoxetine daily for 39 wk revealed no significant change in cortical Freud-1 or 5-HT(1A) receptor proteins compared to vehicle-treated control monkeys. Reduced protein expression of Freud-1 in MDD subjects may reflect dysregulation of this transcription factor, which may contribute to the altered regulation of 5-HT(1A) receptors observed in subjects with MDD. These data may also suggest that reductions in Freud-1 protein expression in the PFC may be associated with early onset of MDD.
Collapse
Affiliation(s)
- Bernadeta Szewczyk
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Altshuler LL, Abulseoud OA, Foland-Ross L, Bartzokis G, Chang S, Mintz J, Hellemann G, Vinters HV. Amygdala astrocyte reduction in subjects with major depressive disorder but not bipolar disorder. Bipolar Disord 2010; 12:541-9. [PMID: 20712756 DOI: 10.1111/j.1399-5618.2010.00838.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Several magnetic resonance imaging studies have found changes in amygdala volumes in adults with mood disorders. The cellular basis for these changes has not been explored in detail. Specifically, it is not known whether differences in the density and/or volume of neurons or glial cells contribute to tissue volume changes seen on magnetic resonance images. METHODS Postmortem amygdala samples were obtained from the Stanley Foundation Neuropathology Consortium from subjects diagnosed with bipolar disorder (n = 10), major depressive disorder (n = 11), and schizophrenia (n = 9), and from normal controls (n = 14). Samples were first stained with glial fibrillary acidic protein (GFAP) and counter-stained with hematoxylin to ascertain neuron and glia (astrocyte) densities. RESULTS No significant differences in neuronal densities were found between groups. However, a reduction in the density of GFAP immunoreactive astrocytes was observed in the amygdala of subjects with major depressive disorder compared to the bipolar disorder, schizophrenia, and normal control postmortem samples. CONCLUSIONS A decrease in density of GFAP immunoreactive astrocytes in the amygdala of depressed subjects is consistent with prior histologic reports and might contribute to amygdala volume reductions reported in several in vivo neuroimaging studies.
Collapse
Affiliation(s)
- Lori L Altshuler
- VA Greater Los Angeles Healthcare System, West Los Angeles Healthcare Center, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6968, USA.
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Olabarria M, Noristani HN, Verkhratsky A, Rodríguez JJ. Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer's disease. Glia 2010; 58:831-8. [PMID: 20140958 DOI: 10.1002/glia.20967] [Citation(s) in RCA: 239] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Astrocytes are fundamental for brain homeostasis and are at the fulcrum of neurological diseases including Alzheimer's disease (AD). Here, we monitored changes in astroglia morphology throughout the age-dependent progression of AD. We used an immunohistochemical approach that allows us to determine the domain of glial cytoskeleton, by measuring the surface, volume, and the relationship between astrocytes and neuritic plaques. We investigated astroglia in the hippocampus of a triple transgenic mouse model of AD (3xTg-AD) that mimics the progression of the human disease. The numerical density of astrocytes is affected neither by AD nor by age. We found reduction of surface and volume of GFAP profiles from early ages (6 months; 43.84 and 52.76%, respectively), persisting at 12 (40.73 and 45.39%) and 18 months (64.80 and 71.95%) in the dentate gyrus (DG) of 3xTg-AD, whereas in CA1 it appears at 18 months (29.42 and 32.74%). This cytoskeleton atrophy is accompanied by a significant reduction of glial somata volume in DG at 12 and 18 months (40.46 and 75.55%, respectively), whereas in CA1 it is significant at 18 months (42.81%). However, while astroglial atrophy appears as a generalized process, astrocytes surrounding plaques are clearly hypertrophic as revealed by increased surface (48.06%; 66.66%), and volume (57.10%; 71.06%) of GFAP profiles in DG and CA1, respectively, at 18 months. We suggest differential effects of AD on astroglial populations depending on their association with plaques accounting for the progressive disruption of neural networks connectivity and neurotransmitters imbalance which underlie mnesic and cognitive impairments observed in AD.
Collapse
Affiliation(s)
- Markel Olabarria
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | | | | | | |
Collapse
|
150
|
Mood disorders are glial disorders: evidence from in vivo studies. Cardiovasc Psychiatry Neurol 2010; 2010:780645. [PMID: 20585358 PMCID: PMC2878670 DOI: 10.1155/2010/780645] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 03/30/2010] [Indexed: 02/07/2023] Open
Abstract
It has recently been suggested that mood disorders can be characterized by glial pathology as indicated by histopathological postmortem findings. Here, we review studies investigating the glial marker S100B in serum of patients with mood disorders. This protein might act as a growth and differentiation factor. It is located in, and may actively be released by, astro- and oligodendrocytes. Studies consistently show that S100B is elevated in mood disorders; more strongly in major depressive than bipolar disorder. Successful antidepressive treatment reduces S100B in major depression whereas there is no evidence of treatment effects in mania. In contrast to the glial marker S100B, the neuronal marker protein neuron-specific enolase is unaltered. By indicating glial alterations without neuronal changes, serum S100B studies confirm specific glial pathology in mood disorders in vivo. S100B can be regarded as a potential diagnostic biomarker for mood disorders and as a biomarker for successful antidepressive treatment.
Collapse
|