101
|
Walker AJ, Kim Y, Price JB, Kale RP, McGillivray JA, Berk M, Tye SJ. Stress, Inflammation, and Cellular Vulnerability during Early Stages of Affective Disorders: Biomarker Strategies and Opportunities for Prevention and Intervention. Front Psychiatry 2014; 5:34. [PMID: 24782789 PMCID: PMC3988376 DOI: 10.3389/fpsyt.2014.00034] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 03/17/2014] [Indexed: 12/27/2022] Open
Abstract
The mood disorder prodrome is conceptualized as a symptomatic, but not yet clinically diagnosable stage of an affective disorder. Although a growing area, more focused research is needed in the pediatric population to better characterize psychopathological symptoms and biological markers that can reliably identify this very early stage in the evolution of mood disorder pathology. Such information will facilitate early prevention and intervention, which has the potential to affect a person's disease course. This review focuses on the prodromal characteristics, risk factors, and neurobiological mechanisms of mood disorders. In particular, we consider the influence of early-life stress, inflammation, and allostatic load in mediating neural mechanisms of neuroprogression. These inherently modifiable factors have known neuroadaptive and neurodegenerative implications, and consequently may provide useful biomarker targets. Identification of these factors early in the course of the disease will accordingly allow for the introduction of early interventions which augment an individual's capacity for psychological resilience through maintenance of synaptic integrity and cellular resilience. A targeted and complementary approach to boosting both psychological and physiological resilience simultaneously during the prodromal stage of mood disorder pathology has the greatest promise for optimizing the neurodevelopmental potential of those individuals at risk of disabling mood disorders.
Collapse
Affiliation(s)
- Adam J Walker
- Department of Psychiatry and Psychology, Mayo Clinic , Rochester, MN , USA ; School of Psychology, Deakin University , Melbourne, VIC , Australia
| | - Yesul Kim
- Department of Psychiatry and Psychology, Mayo Clinic , Rochester, MN , USA ; School of Psychology, Deakin University , Melbourne, VIC , Australia
| | - J Blair Price
- Department of Psychiatry and Psychology, Mayo Clinic , Rochester, MN , USA
| | - Rajas P Kale
- Department of Psychiatry and Psychology, Mayo Clinic , Rochester, MN , USA ; School of Engineering, Deakin University , Geelong, VIC , Australia
| | | | - Michael Berk
- School of Medicine, Deakin University , Geelong, VIC , Australia ; Department of Psychiatry, University of Melbourne , Melbourne, VIC , Australia ; Orygen Youth Health Research Centre , Melbourne, VIC , Australia ; The Florey Institute of Neuroscience and Mental Health , Melbourne, VIC , Australia
| | - Susannah J Tye
- Department of Psychiatry and Psychology, Mayo Clinic , Rochester, MN , USA ; School of Psychology, Deakin University , Melbourne, VIC , Australia ; Department of Psychiatry, University of Minnesota , Minneapolis, MN , USA
| |
Collapse
|
102
|
Li SX, Liu LJ, Xu LZ, Gao L, Wang XF, Zhang JT, Lu L. Diurnal alterations in circadian genes and peptides in major depressive disorder before and after escitalopram treatment. Psychoneuroendocrinology 2013; 38:2789-2799. [PMID: 24001941 DOI: 10.1016/j.psyneuen.2013.07.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 07/12/2013] [Accepted: 07/13/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Strong links exist between circadian disturbances and some of the most characteristic symptoms of clinical major depressive disorder (MDD). However, changes in the expression of clock genes or neuropeptides related to the regulation of circadian rhythm that may influence the susceptibility to recurrence after antidepressant treatment in MDD have not been investigated. METHODS Blood samples were collected at 4h intervals for 24h from 12 male healthy controls and 12 male MDD patients before and after treatment with escitalopram for 8 weeks. The outcome measures included the relative expression of clock gene mRNA (PERIOD1, PERIOD2, PERIOD3, CRY1, BMAL1, NPAS2, and GSK-3β), and the levels of serum melatonin, vasoactive intestinal polypeptide (VIP), cortisol, adrenocorticotropic hormone (ACTH), insulin-like growth factor-1 (IGF-1), and growth hormone (GH). RESULTS Compared with healthy controls, MDD patients showed disruptions in the diurnal rhythms of the expression of PERIOD1, PERIOD2, CRY1, BMAL1, NPAS2, and GSK-3β and disruptions in the diurnal rhythms of the release of melatonin, VIP, cortisol, ACTH, IGF-1, and GH. Several of these disruptions (i.e., PER1, CRY1, melatonin, VIP, cortisol, ACTH, and IGF-1) persisted 8 weeks after escitalopram treatment, similar to the increase in the 24h levels of VIP and decreases in the 24h levels of cortisol and ACTH. CONCLUSION These persistent neurobiological changes may play a role in MDD symptoms that are thought to contribute to the vulnerability to recurrence and long-term maintenance therapy.
Collapse
Affiliation(s)
- Su-Xia Li
- National Institute on Drug Dependence, Peking University, Beijing 100191, China.
| | | | | | | | | | | | | |
Collapse
|
103
|
Schroeder AM, Colwell CS. How to fix a broken clock. Trends Pharmacol Sci 2013; 34:605-19. [PMID: 24120229 PMCID: PMC3856231 DOI: 10.1016/j.tips.2013.09.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 12/29/2022]
Abstract
Fortunate are those who rise out of bed to greet the morning light well rested with the energy and enthusiasm to drive a productive day. Others, however, depend on hypnotics for sleep and require stimulants to awaken lethargic bodies. Sleep/wake disruption is a common occurrence in healthy individuals throughout their lifespan and is also a comorbid condition to many diseases (neurodegenerative) and psychiatric disorders (depression and bipolar). There is growing concern that chronic disruption of the sleep/wake cycle contributes to more serious conditions including diabetes (type 2), cardiovascular disease, and cancer. A poorly functioning circadian system resulting in misalignments in the timing of clocks throughout the body may be at the root of the problem for many people. In this article we discuss environmental (light therapy) and lifestyle changes (scheduled meals, exercise, and sleep) as interventions to help fix a broken clock. We also discuss the challenges and potential for future development of pharmacological treatments to manipulate this key biological system.
Collapse
Affiliation(s)
- Analyne M Schroeder
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA 90024, USA
| | | |
Collapse
|
104
|
Siwek M, Szewczyk B, Dudek D, Styczeń K, Sowa-Kućma M, Młyniec K, Siwek A, Witkowski L, Pochwat B, Nowak G. Zinc as a marker of affective disorders. Pharmacol Rep 2013; 65:1512-8. [DOI: 10.1016/s1734-1140(13)71512-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/10/2013] [Indexed: 11/16/2022]
|
105
|
Han K, Holder JL, Schaaf CP, Lu H, Chen H, Kang H, Tang J, Wu Z, Hao S, Cheung SW, Yu P, Sun H, Breman AM, Patel A, Lu HC, Zoghbi HY. SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties. Nature 2013; 503:72-7. [PMID: 24153177 PMCID: PMC3923348 DOI: 10.1038/nature12630] [Citation(s) in RCA: 286] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 09/02/2013] [Indexed: 02/07/2023]
Abstract
Mutations in SHANK3 and large duplications of the region spanning SHANK3 both cause a spectrum of neuropsychiatric disorders, indicating that proper SHANK3 dosage is critical for normal brain function. However, SHANK3 overexpression per se has not been established as a cause of human disorders because 22q13 duplications involve several genes. Here we report that Shank3 transgenic mice modelling a human SHANK3 duplication exhibit manic-like behaviour and seizures consistent with synaptic excitatory/inhibitory imbalance. We also identified two patients with hyperkinetic disorders carrying the smallest SHANK3-spanning duplications reported so far. These findings indicate that SHANK3 overexpression causes a hyperkinetic neuropsychiatric disorder. To probe the mechanism underlying the phenotype, we generated a Shank3 in vivo interactome and found that Shank3 directly interacts with the Arp2/3 complex to increase F-actin levels in Shank3 transgenic mice. The mood-stabilizing drug valproate, but not lithium, rescues the manic-like behaviour of Shank3 transgenic mice raising the possibility that this hyperkinetic disorder has a unique pharmacogenetic profile.
Collapse
Affiliation(s)
- Kihoon Han
- 1] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA [2] Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA [3] Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Liu RJ, Fuchikami M, Dwyer JM, Lepack AE, Duman RS, Aghajanian GK. GSK-3 inhibition potentiates the synaptogenic and antidepressant-like effects of subthreshold doses of ketamine. Neuropsychopharmacology 2013; 38:2268-77. [PMID: 23680942 PMCID: PMC3773678 DOI: 10.1038/npp.2013.128] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/08/2013] [Accepted: 05/08/2013] [Indexed: 12/15/2022]
Abstract
A single dose of the short-acting NMDA antagonist ketamine produces rapid and prolonged antidepressant effects in treatment-resistant patients with major depressive disorder (MDD), which are thought to occur via restoration of synaptic connectivity. However, acute dissociative side effects and eventual fading of antidepressant effects limit widespread clinical use of ketamine. Recent studies in medial prefrontal cortex (mPFC) show that the synaptogenic and antidepressant-like effects of a single standard dose of ketamine in rodents are dependent upon activation of the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) signaling pathway together with inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3), which relieves its inhibitory in influence on mTOR. Here, we found that the synaptogenic and antidepressant-like effects of a single otherwise subthreshold dose of ketamine were potentiated when given together with a single dose of lithium chloride (a nonselective GSK-3 inhibitor) or a preferential GSK-3β inhibitor; these effects included rapid activation of the mTORC1 signaling pathway, increased inhibitory phosphorylation of GSK-3β, increased synaptic spine density/diameter, increased excitatory postsynaptic currents in mPFC layer V pyramidal neurons, and antidepressant responses that persist for up to 1 week in the forced-swim test model of depression. The results demonstrate that low, subthreshold doses of ketamine combined with lithium or a selective GSK-3 inhibitor are equivalent to higher doses of ketamine, indicating the pivotal role of the GSK-3 pathway in modulating the synaptogenic and antidepressant responses to ketamine. The possible mitigation by GSK-3 inhibitors of the eventual fading of ketamine's antidepressant effects remains to be explored.
Collapse
Affiliation(s)
- Rong-Jian Liu
- Laboratory of Molecular Psychiatry, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Manabu Fuchikami
- Laboratory of Molecular Psychiatry, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jason M Dwyer
- Laboratory of Molecular Psychiatry, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Ashley E Lepack
- Laboratory of Molecular Psychiatry, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Ronald S Duman
- Laboratory of Molecular Psychiatry, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - George K Aghajanian
- Laboratory of Molecular Psychiatry, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Connecticut Mental Health Center, Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06508, USA, Tel: +203 974 7761, Fax: +203 974 7897, E-mail:
| |
Collapse
|
107
|
Lee HJ, Son GH, Geum D. Circadian rhythm hypotheses of mixed features, antidepressant treatment resistance, and manic switching in bipolar disorder. Psychiatry Investig 2013; 10:225-32. [PMID: 24302944 PMCID: PMC3843013 DOI: 10.4306/pi.2013.10.3.225] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 08/06/2013] [Accepted: 08/06/2013] [Indexed: 12/21/2022] Open
Abstract
Numerous hypotheses have been put forth over the years to explain the development of bipolar disorder. Of these, circadian rhythm hypotheses have gained much importance of late. While the hypothalamus-pituitary-adrenal (HPA) axis hyperactivation hypothesis and the monoamine hypothesis somewhat explain the pathogenic mechanism of depression, they do not provide an explanation for the development of mania/hypomania. Interestingly, all patients with bipolar disorder display significant disruption of circadian rhythms and sleep/wake cycles throughout their mood cycles. Indeed, mice carrying the Clock gene mutation exhibit an overall behavioral profile that is similar to human mania, including hyperactivity, decreased sleep, lowered depression-like behavior, and lower anxiety. It was recently reported that monoamine signaling is in fact regulated by the circadian system. Thus, circadian rhythm instability, imposed on the dysregulation of HPA axis and monoamine system, may in turn increase individual susceptibility for switching from depression to mania/hypomania. In addition to addressing the pathophysiologic mechanism underlying the manic switch, circadian rhythm hypotheses can explain other bipolar disorder-related phenomena such as treatment resistant depression and mixed features.
Collapse
Affiliation(s)
- Heon-Jeong Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Gi-Hoon Son
- Department of Legal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dongho Geum
- Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| |
Collapse
|
108
|
Abstract
Chronotherapeutics refers to treatments based on the principles of circadian rhythm organization and sleep physiology, which control the exposure to environmental stimuli that act on biological rhythms, in order to achieve therapeutic effects in the treatment of psychiatric conditions. It includes manipulations of the sleep-wake cycle such as sleep deprivation and sleep phase advance, and controlled exposure to light and dark. The antidepressant effects of chronotherapeutics are evident in difficult-to-treat conditions such as bipolar depression, which has been associated with extremely low success rates of antidepressant drugs in naturalistic settings and with stable antidepressant response to chronotherapeutics in more than half of the patients. Recent advances in the study of the effects of chronotherapeutics on neurotransmitter systems, and on the biological clock machinery, allow us to pinpoint its mechanism of action and to transform it from a neglected or “orphan” treatment to a powerful clinical instrument in everyday psychiatric practice.
Collapse
Affiliation(s)
- Francesco Benedetti
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy.
| |
Collapse
|
109
|
Rybakowski JK, Abramowicz M, Szczepankiewicz A, Michalak M, Hauser J, Czekalski S. The association of glycogen synthase kinase-3beta (GSK-3β) gene polymorphism with kidney function in long-term lithium-treated bipolar patients. Int J Bipolar Disord 2013; 1:8. [PMID: 25505675 PMCID: PMC4230305 DOI: 10.1186/2194-7511-1-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/31/2013] [Indexed: 11/10/2022] Open
Abstract
Background Most bipolar patients experience a reduction in urinary concentrating ability within a few weeks of starting lithium treatment. This phenomenon may be connected with the effect of lithium on the glycogen synthase kinase-3beta (GSK-3β) present in the renal tubules. The GSK-3β gene is located on chromosome 3q13 and possesses a functional -50 C/T polymorphism. In the present study, we estimated this polymorphism in a group of long-term lithium-treated patients and assessed its association with various parameters of kidney function, including novel markers of kidney injury such as serum neutrophil gelatinase-associated lipocalin (NGAL) and urinary beta2-microglobulin (β2-MG). Methods The study comprised 78 patients with bipolar mood disorder (25 males, 53 females), aged 36 to 82 (60 ± 11) years. The mean duration of bipolar illness was 6 to 50 (24 ± 10) years, and the patients have been receiving lithium for 5 to 38 (16 ± 9) years. All the patients had the following features, regarded as the phenotypes of kidney functions measured: urine examination for specific gravity evaluation, serum creatinine concentration, and estimated glomerular filtration rate (eGFR) evaluation, as well as the serum concentrations of NGAL and urinary β2-MG. Genotyping of GSK-3β gene -50 C/T polymorphism was done by polymerase chain reaction analysis. Results and discussion Thirty-four patients (6 males, 28 females) had the T/T genotype, 37 patients (16 males, 21 females) had the T/C genotype, and 7 patients (3 males, 4 females) had the C/C genotype. Patients homozygous for C allele had significantly higher urine specific gravities (1.019 ± 0.008) compared to the remaining genotypes (1.013 ± 0.007) (p = 0.035), with no influence of the duration of lithium treatment. Other parameters of kidney function (serum creatinine, eGFR, serum NGAL, and urinary β2-MG levels) were not different between genotypes and, again, were not affected by the duration of lithium treatment. There was no correlation between urine specific gravity and other kidney function parameters. The results of our study indicate that the GSK-3β genotype may be connected with lithium-induced impairment of renal concentrating ability in long-term lithium-treated bipolar patients. Limitations of the study include small size of the sample, small number of C/C genotype patients, and a lack of multiple testing analysis of genotypic differences in various measures of kidney function.
Collapse
Affiliation(s)
- Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, ul. Szpitalna 27/33, Poznan, 60-572 Poland
| | - Maria Abramowicz
- Department of Adult Psychiatry, Poznan University of Medical Sciences, ul. Szpitalna 27/33, Poznan, 60-572 Poland
| | - Aleksandra Szczepankiewicz
- Psychiatric Genetics Unit, Poznan University of Medical Sciences, ul. Szpitalna 27/33, Poznan, 60-572 Poland ; Laboratory of Molecular and Cell Biology, Poznan University of Medical Sciences, ul. Szpitalna 27/33, Poznan, 60-572 Poland
| | - Michal Michalak
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, ul. Dabrowskiego 79, Poznan, 60-529 Poland
| | - Joanna Hauser
- Psychiatric Genetics Unit, Poznan University of Medical Sciences, ul. Szpitalna 27/33, Poznan, 60-572 Poland
| | - Stanislaw Czekalski
- Department of Nephrology, Transplantology and Internal Diseases, Poznan University of Medical Sciences, ul. Przybyszewskiego 49, Poznan, 60-355 Poland
| |
Collapse
|
110
|
Abstract
Lithium has been used for the treatment of mood disorders for over 60 years, yet the exact mechanisms by which it exerts its therapeutic effects remain unclear. Two enzymatic chains or pathways emerge as targets for lithium: inositol monophosphatase within the phosphatidylinositol signalling pathway and the protein kinase glycogen synthase kinase 3. Lithium inhibits these enzymes through displacing the normal cofactor magnesium, a vital regulator of numerous signalling pathways. Here we provide an overview of evidence, supporting a role for the inhibition of glycogen synthase kinase 3 and inositol monophosphatase in the pharmacodynamic actions of lithium. We also explore how inhibition of these enzymes by lithium can lead to downstream effects of clinical relevance, both for mood disorders and neurodegenerative diseases. Establishing a better understanding of lithium's mechanisms of action may allow the development of more effective and more tolerable pharmacological agents for the treatment of a range of mental illnesses, and provide clearer insight into the pathophysiology of such disorders.
Collapse
Affiliation(s)
- Kayleigh M Brown
- Institute of Psychiatry, King's College London, PO Box 63, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | | |
Collapse
|
111
|
Willi R, Harmeier A, Giovanoli S, Meyer U. Altered GSK3β signaling in an infection-based mouse model of developmental neuropsychiatric disease. Neuropharmacology 2013; 73:56-65. [PMID: 23707483 DOI: 10.1016/j.neuropharm.2013.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/08/2013] [Accepted: 05/10/2013] [Indexed: 12/17/2022]
Abstract
Protein kinase B (AKT) and glycogen synthase kinase 3 beta (GSK3β) are two protein kinases involved in dopaminergic signaling. Dopamine-associated neuropsychiatric illnesses such as schizophrenia and bipolar disorder seem to be characterized by impairments in the AKT/GSK3β network. Here, we sought evidence for the presence of molecular and functional changes in the AKT/GSK3β pathway using an established infection-based mouse model of developmental neuropsychiatric disease that is based on prenatal administration of the viral mimetic poly(I:C) (=polyriboinosinic-polyribocytidilic acid). We found that adult offspring of poly(I:C)-exposed mothers displayed decreased total levels of AKT protein and reduced phosphorylation at AKT threonine residues in the medial prefrontal cortex. Prenatally immune challenged offspring also exhibited increased GSK3β protein expression and activation status, the latter of which was evidenced by a decrease in the ratio between phosphorylated and total GSK3β protein in the medial prefrontal cortex. These molecular changes were not associated with overt signs of inflammatory processes in the adult brain. We further found that acute pre-treatment with the selective GSK3β inhibitor TDZD-8 dose-dependently normalized aberrant behavior typically emerging following prenatal immune activation, including deficient spontaneous alternation in the Y-maze and increased locomotor responses to systemic amphetamine treatment. Taken together, the present mouse model demonstrates that prenatal exposure to viral-like immune activation leads to long-term alterations in GSK3β signaling, some of which are critically implicated in schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Roman Willi
- Neuroscience Discovery, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | | | | | | |
Collapse
|
112
|
Lin YF, Huang MC, Liu HC. Glycogen synthase kinase 3β gene polymorphisms may be associated with bipolar I disorder and the therapeutic response to lithium. J Affect Disord 2013; 147:401-6. [PMID: 23021822 DOI: 10.1016/j.jad.2012.08.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 08/14/2012] [Accepted: 08/17/2012] [Indexed: 01/25/2023]
Abstract
BACKGROUND Glycogen Synthase Kinase 3β (GSK-3β) is thought to be a key feature in the therapeutic mechanism of mood stabilizers (e.g., lithium). Overexpression of GSK-3β might play a role in the pathogenesis of bipolar I disorder. Within the GSK-3β gene, a promoter single nucleotide polymorphism (SNP) rs334558 was identified associated with transcriptional strength, and an intronic SNP rs6438552 was found to regulate selection of splice acceptor sites. The aim of this study is to test the association between the two polymorphisms and bipolar I disorder. METHODS We genotyped the two SNPs in 138 Taiwanese bipolar I disorder patients and 131 controls. Lithium treatment efficacy was evaluated for 83 patients who had been treated with lithium carbonate for at least 24 months. RESULTS We found no association between each of the two SNPs and the risk of bipolar I disorder. Following correction for multiple testing, CT genotype at rs6438552 was associated with an older age of onset than other genotypes (P=0.042) in female patients. Patients with genotype TT at rs334558 (P=0.044) had poorer response to lithium treatment. There was a trend that haplotype C-T increased the risk for bipolar I disorder (adjusted OR=4.22, corrected P=0.084), and patients with haplotype T-T had poorer treatment response to lithium than those with haplotype C-C. LIMITATIONS Limitations included small sample size, retrospective data collection, and a potential sampling bias. CONCLUSIONS Despite the several limitations of the study, our results suggested GSK-3β genetic variants may be associated with the risk of bipolar I disorder, age of disease onset in females, and the therapeutic response to lithium.
Collapse
Affiliation(s)
- Yen-Feng Lin
- Harvard School of Public Health, Boston, MA 02115, USA
| | | | | |
Collapse
|
113
|
Kazemnejad S, Khanmohammadi M, Zarnani A, Nikokar I, Saghari S. Role of Wnt signaling on proliferation of menstrual blood derived stem cells. J Stem Cells Regen Med 2013. [PMID: 24693204 PMCID: PMC3908310 DOI: 10.46582/jsrm.0901004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AIM Menstrual blood derived stem cells (MenSCs) are unique stem cells that have been isolated and identified recently. The special traits of MenSCs can be related to the cell signaling pathways. In this study, in order to find out the role of Wnt signaling on MenSCs proliferation, we evaluated ß-catenin expression as a key participant in Wnt signaling pathway in response to Lithium chloride (LiCl). METHODS MenSCs were isolated from healthy women by combining gradient density centrifugation with plastic adherence. After characterization of the isolated cells, cell proliferation of MenSCs in presence of 10-15 mM LiCl was evaluated by MTT assay. ß-catenin expression of the treated cells was examined using immunofluorescence technique. RESULTS Flow cytometric analysis revealed that both mesenchymal and embryonic stem cell markers are expressed on menstrual blood stem cells. MTT value decreased depending on the LiCl concentration. The proliferation of MenSCs cultivated in culture media containing 15mM LiCl was approximately two fold less than those grown without LiCl (p<0.01). Moreover, nuclear accumulation of ß-catenin protein in cells treated by LiCl was greater than cells without LiCl. CONCLUSION The MenSCs are stem cell populations with high proliferation ability and unique immunophenotyping properties. Our results demonstrated that Wnt signaling pathway regulates MenSCs proliferation via trans-localization of activated-ß-catenin protein.
Collapse
Affiliation(s)
- S Kazemnejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute , ACECR, Tehran, Iran . ; Paramedical Faculty of Guilan University of Medical Sciences , Langroud, Guilan, Iran
| | - M Khanmohammadi
- Reproductive Biotechnology Research Center, Avicenna Research Institute , ACECR, Tehran, Iran
| | - Ah Zarnani
- Nanobiotechnology Research Center, Avicenna Research Institute , ACECR, Tehran, Iran
| | - I Nikokar
- Paramedical Faculty of Guilan University of Medical Sciences , Langroud, Guilan, Iran
| | - S Saghari
- Paramedical Faculty of Guilan University of Medical Sciences , Langroud, Guilan, Iran
| |
Collapse
|
114
|
Marsh CA, Berent-Spillson A, Love T, Persad CC, Pop-Busui R, Zubieta JK, Smith YR. Functional neuroimaging of emotional processing in women with polycystic ovary syndrome: a case-control pilot study. Fertil Steril 2013; 100:200-7.e1. [PMID: 23557757 DOI: 10.1016/j.fertnstert.2013.02.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To evaluate emotional processing in women with insulin-resistant polycystic ovary syndrome (IR-PCOS) and its relationship to glucose regulation and the mu-opioid system. DESIGN Case-control pilot. SETTING Tertiary referring medical center. PATIENT(S) Seven women with IR-PCOS and five non-insulin-resistant controls, aged 21-40 years, recruited from the general population. INTERVENTION(S) Sixteen weeks of metformin (1,500 mg/day) in women with IR-PCOS. MAIN OUTCOME MEASURE(S) Assessment of mood, metabolic function, and neuronal activation during an emotional task using functional magnetic resonance imaging (fMRI), and mu-opioid receptor availability using positive emission tomography (PET). RESULT(S) We found that insulin-resistant PCOS patients [1] had greater limbic activation during an emotion task than controls (n = 5); [2] trended toward decreased positive affect and increased trait anxiety; [3] after metformin treatment, had limbic activation that no longer differed from controls; and [4] had positive correlations between fMRI limbic activation during emotional processing and mu-opioid binding potential. CONCLUSION(S) Patients with IR-PCOS had greater regional activation during an emotion task than the controls, although this resolved with metformin therapy. Alterations in mu-opioid neurotransmission may underlie limbic system activity and mood disorders in IR-PCOS.
Collapse
Affiliation(s)
- Courtney A Marsh
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan 48109–0276, USA.
| | | | | | | | | | | | | |
Collapse
|
115
|
Kishore BK, Ecelbarger CM. Lithium: a versatile tool for understanding renal physiology. Am J Physiol Renal Physiol 2013; 304:F1139-49. [PMID: 23408166 DOI: 10.1152/ajprenal.00718.2012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
By virtue of its unique interactions with kidney cells, lithium became an important research tool in renal physiology and pathophysiology. Investigators have uncovered the intricate relationships of lithium with the vasopressin and aldosterone systems, and the membrane channels or transporters regulated by them. While doing so, their work has also led to 1) questioning the role of adenylyl cyclase activity and prostaglandins in lithium-induced suppression of aquaporin-2 gene transcription; 2) unraveling the role of purinergic signaling in lithium-induced polyuria; and 3) highlighting the importance of the epithelial sodium channel (ENaC) in lithium-induced nephrogenic diabetes insipidus (NDI). Lithium-induced remodeling of the collecting duct has the potential to shed new light on collecting duct remodeling in disease conditions, such as diabetes insipidus. The finding that lithium inhibits glycogen synthase kinase-3β (GSK3β) has opened an avenue for studies on the role of GSK3β in urinary concentration, and GSK isoforms in renal development. Finally, proteomic and metabolomic profiling of the kidney and urine in rats treated with lithium is providing insights into how the kidney adapts its metabolism in conditions such as acquired NDI and the multifactorial nature of lithium-induced NDI. This review provides state-of-the-art knowledge of lithium as a versatile tool for understanding the molecular physiology of the kidney, and a comprehensive view of how this tool is challenging some of our long-standing concepts in renal physiology, often with paradigm shifts, and presenting paradoxical situations in renal pathophysiology. In addition, this review points to future directions in research where lithium can lead the renal community.
Collapse
Affiliation(s)
- Bellamkonda K Kishore
- Nephrology Research (151M) VA SLC Health Care System, 500 Foothill Dr, Salt Lake City, UT 84148, USA.
| | | |
Collapse
|
116
|
β-Arrestins in the Central Nervous System. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:267-95. [DOI: 10.1016/b978-0-12-394440-5.00011-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
117
|
Chiu CT, Wang Z, Hunsberger JG, Chuang DM. Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. Pharmacol Rev 2013; 65:105-42. [PMID: 23300133 PMCID: PMC3565922 DOI: 10.1124/pr.111.005512] [Citation(s) in RCA: 292] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mood stabilizers lithium and valproic acid (VPA) are traditionally used to treat bipolar disorder (BD), a severe mental illness arising from complex interactions between genes and environment that drive deficits in cellular plasticity and resiliency. The therapeutic potential of these drugs in other central nervous system diseases is also gaining support. This article reviews the various mechanisms of action of lithium and VPA gleaned from cellular and animal models of neurologic, neurodegenerative, and neuropsychiatric disorders. Clinical evidence is included when available to provide a comprehensive perspective of the field and to acknowledge some of the limitations of these treatments. First, the review describes how action at these drugs' primary targets--glycogen synthase kinase-3 for lithium and histone deacetylases for VPA--induces the transcription and expression of neurotrophic, angiogenic, and neuroprotective proteins. Cell survival signaling cascades, oxidative stress pathways, and protein quality control mechanisms may further underlie lithium and VPA's beneficial actions. The ability of cotreatment to augment neuroprotection and enhance stem cell homing and migration is also discussed, as are microRNAs as new therapeutic targets. Finally, preclinical findings have shown that the neuroprotective benefits of these agents facilitate anti-inflammation, angiogenesis, neurogenesis, blood-brain barrier integrity, and disease-specific neuroprotection. These mechanisms can be compared with dysregulated disease mechanisms to suggest core cellular and molecular disturbances identifiable by specific risk biomarkers. Future clinical endeavors are warranted to determine the therapeutic potential of lithium and VPA across the spectrum of central nervous system diseases, with particular emphasis on a personalized medicine approach toward treating these disorders.
Collapse
Affiliation(s)
- Chi-Tso Chiu
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
118
|
Lithium and GSK3-β promoter gene variants influence white matter microstructure in bipolar disorder. Neuropsychopharmacology 2013; 38:313-27. [PMID: 22990942 PMCID: PMC3527112 DOI: 10.1038/npp.2012.172] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lithium is the mainstay for the treatment of bipolar disorder (BD) and inhibits glycogen synthase kinase 3-β (GSK3-β). The less active GSK3-β promoter gene variants have been associated with less detrimental clinical features of BD. GSK3-β gene variants and lithium can influence brain gray matter structure in psychiatric conditions. Diffusion tensor imaging (DTI) measures of white matter (WM) integrity showed widespred disruption of WM structure in BD. In a sample of 70 patients affected by a major depressive episode in course of BD, we investigated the effect of ongoing long-term lithium treatment and GSK3-β promoter rs334558 polymorphism on WM microstructure, using DTI and tract-based spatial statistics with threshold-free cluster enhancement. We report that the less active GSK3-β rs334558*C gene-promoter variants, and the long-term administration of the GSK3-β inhibitor lithium, were associated with increases of DTI measures of axial diffusivity (AD) in several WM fiber tracts, including corpus callosum, forceps major, anterior and posterior cingulum bundle (bilaterally including its hippocampal part), left superior and inferior longitudinal fasciculus, left inferior fronto-occipital fasciculus, left posterior thalamic radiation, bilateral superior and posterior corona radiata, and bilateral corticospinal tract. AD reflects the integrity of axons and myelin sheaths. We suggest that GSK3-β inhibition and lithium could counteract the detrimental influences of BD on WM structure, with specific benefits resulting from effects on specific WM tracts contributing to the functional integrity of the brain and involving interhemispheric, limbic, and large frontal, parietal, and fronto-occipital connections.
Collapse
|
119
|
Eagle AL, Knox D, Roberts MM, Mulo K, Liberzon I, Galloway MP, Perrine SA. Single prolonged stress enhances hippocampal glucocorticoid receptor and phosphorylated protein kinase B levels. Neurosci Res 2012. [PMID: 23201176 DOI: 10.1016/j.neures.2012.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Animal models of posttraumatic stress disorder (PTSD) can explore neurobiological mechanisms by which trauma enhances fear and anxiety reactivity. Single prolonged stress (SPS) shows good validity in producing PTSD-like behavior. While SPS-induced behaviors have been linked to enhanced glucocorticoid receptor (GR) expression, the molecular ramifications of enhanced GR expression have yet to be identified. Phosphorylated protein kinase B (pAkt) is critical for stress-mediated enhancement in general anxiety and memory, and may be regulated by GRs. However, it is currently unknown if pAkt levels are modulated by SPS, as well as if the specificity of GR and pAkt related changes contribute to anxiety-like behavior after SPS. The current study set out to examine the effects of SPS on GR and pAkt protein levels in the amygdala and hippocampus and to examine the specificity of these changes to unconditioned anxiety-like behavior. Levels of GR and pAkt were increased in the hippocampus, but not amygdala. Furthermore, SPS had no effect on unconditioned anxiety-like behavior suggesting that generalized anxiety is not consistently observed following SPS. The results suggest that SPS-enhanced GR expression is associated with phosphorylation of Akt, and also suggest that these changes are not related to an anxiogenic phenotype.
Collapse
Affiliation(s)
- Andrew L Eagle
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Detroit, MI, USA.
| | | | | | | | | | | | | |
Collapse
|
120
|
Deletion of GSK3β in D2R-expressing neurons reveals distinct roles for β-arrestin signaling in antipsychotic and lithium action. Proc Natl Acad Sci U S A 2012. [PMID: 23188793 DOI: 10.1073/pnas.1215489109] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Several studies in rodent models have shown that glycogen synthase kinase 3 β (GSK3β) plays an important role in the actions of antispychotics and mood stabilizers. Recently it was demonstrated that GSK3β through a β-arrestin2/protein kinase B (PKB or Akt)/protein phosphatase 2A (PP2A) signaling complex regulates dopamine (DA)- and lithium-sensitive behaviors and is required to mediate endophenotypes of mania and depression in rodents. We have previously shown that atypical antipsychotics antagonize DA D2 receptor (D2R)/β-arrestin2 interactions more efficaciously than G-protein-dependent signaling, whereas typical antipsychotics inhibit both pathways with similar efficacy. To elucidate the site of action of GSK3β in regulating DA- or lithium-sensitive behaviors, we generated conditional knockouts of GSK3β, where GSK3β was deleted in either DA D1- or D2-receptor-expressing neurons. We analyzed these mice for behaviors commonly used to test antipsychotic efficacy or behaviors that are sensitive to lithium treatment. Mice with deletion of GSK3β in D2 (D2GSK3β(-/-)) but not D1 (D1GSK3β(-/-)) neurons mimic antipsychotic action. However, haloperidol (HAL)-induced catalepsy was unchanged in either D2GSK3β(-/-) or D1GSK3β(-/-) mice compared with control mice. Interestingly, genetic stabilization of β-catenin, a downstream target of GSK3β, in D2 neurons did not affect any of the behaviors tested. Moreover, D2GSK3β(-/-) or D1GSK3β(-/-) mice showed similar responses to controls in the tail suspension test (TST) and dark-light emergence test, behaviors which were previously shown to be β-arrestin2- and GSK3β-dependent and sensitive to lithium treatment. Taken together these studies suggest that selective deletion of GSK3β but not stabilization of β-catenin in D2 neurons mimics antipsychotic action without affecting signaling pathways involved in catalepsy or certain mood-related behaviors.
Collapse
|
121
|
Khasraw M, Ashley D, Wheeler G, Berk M. Using lithium as a neuroprotective agent in patients with cancer. BMC Med 2012; 10:131. [PMID: 23121766 PMCID: PMC3520780 DOI: 10.1186/1741-7015-10-131] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/02/2012] [Indexed: 02/08/2023] Open
Abstract
Neurocognitive impairment is being increasingly recognized as an important issue in patients with cancer who develop cognitive difficulties either as part of direct or indirect involvement of the nervous system or as a consequence of either chemotherapy-related or radiotherapy-related complications. Brain radiotherapy in particular can lead to significant cognitive defects. Neurocognitive decline adversely affects quality of life, meaningful employment, and even simple daily activities. Neuroprotection may be a viable and realistic goal in preventing neurocognitive sequelae in these patients, especially in the setting of cranial irradiation. Lithium is an agent that has been in use for psychiatric disorders for decades, but recently there has been emerging evidence that it can have a neuroprotective effect.This review discusses neurocognitive impairment in patients with cancer and the potential for investigating the use of lithium as a neuroprotectant in such patients.
Collapse
Affiliation(s)
- Mustafa Khasraw
- Andrew Love Cancer Centre, Geelong Hospital, Victoria, Australia.
| | | | | | | |
Collapse
|
122
|
Soeiro-de-Souza MG, Dias VV, Figueira ML, Forlenza OV, Gattaz WF, Zarate CA, Machado-Vieira R. Translating neurotrophic and cellular plasticity: from pathophysiology to improved therapeutics for bipolar disorder. Acta Psychiatr Scand 2012; 126:332-41. [PMID: 22676371 PMCID: PMC3936785 DOI: 10.1111/j.1600-0447.2012.01889.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Bipolar disorder (BD) likely involves, at a molecular and cellular level, dysfunctions of critical neurotrophic, cellular plasticity and resilience pathways and neuroprotective processes. Therapeutic properties of mood stabilizers are presumed to result from a restoration of the function of these altered pathways and processes through a wide range of biochemical and molecular effects. We aimed to review the altered pathways and processes implicated in BD, such as neurotrophic factors, mitogen-activated protein kinases, Bcl-2, phosphoinositol signaling, intracellular calcium and glycogen synthase kinase-3. METHODS We undertook a literature search of recent relevant journal articles, book chapter and reviews on neurodegeneration and neuroprotection in BD. Search words entered were 'brain-derived neurotrophic factor,''Bcl-2,''mitogen-activated protein kinases,''neuroprotection,''calcium,''bipolar disorder,''mania,' and 'depression.' RESULTS The most consistent and replicated findings in the pathophysiology of BD may be classified as follows: i) calcium dysregulation, ii) mitochondrial/endoplasmic reticulum dysfunction, iii) glial and neuronal death/atrophy and iv) loss of neurotrophic/plasticity effects in brain areas critically involved in mood regulation. In addition, the evidence supports that treatment with mood stabilizers; in particular, lithium restores these pathophysiological changes. CONCLUSION Bipolar disorder is associated with impairments in neurotrophic, cellular plasticity and resilience pathways as well as in neuroprotective processes. The evidence supports that treatment with mood stabilizers, in particular lithium, restores these pathophysiological changes. Studies that attempt to prevent (intervene before the onset of the molecular and cellular changes), treat (minimize severity of these deficits over time), and rectify (reverse molecular and cellular deficits) are promising therapeutic strategies for developing improved treatments for bipolar disorder.
Collapse
Affiliation(s)
- M. G. Soeiro-de-Souza
- Mood Disorders Unit (GRUDA), Department and Institute of Psychiatry, School of Medicine, University of Sao Paulo (HC-FMUSP), São Paulo, Brazil
| | - V. V. Dias
- Mood Disorders Unit (GRUDA), Department and Institute of Psychiatry, School of Medicine, University of Sao Paulo (HC-FMUSP), São Paulo, Brazil
| | - M. L. Figueira
- Bipolar Disorder Research Program, Hospital Santa Maria, Faculty of Medicine, University of Lisbon, (FMUL), Lisbon, Portugal
| | - O. V. Forlenza
- Laboratory of Neuroscience LIM-27, Department and Institute of Psychiatry, School of Medicine, University of Sao Paulo (HC-FMUSP), São Paulo, Brazil
| | - W. F. Gattaz
- Laboratory of Neuroscience LIM-27, Department and Institute of Psychiatry, School of Medicine, University of Sao Paulo (HC-FMUSP), São Paulo, Brazil
| | - C. A. Zarate
- Section on the Neurobiology and Treatment of Mood Disorders, Intramural Research Program, National Institute of Mental Health, Bethesda, MD, USA
| | - R. Machado-Vieira
- Laboratory of Neuroscience LIM-27, Department and Institute of Psychiatry, School of Medicine, University of Sao Paulo (HC-FMUSP), São Paulo, Brazil
| |
Collapse
|
123
|
Moretti M, Budni J, dos Santos DB, Antunes A, Daufenbach JF, Manosso LM, Farina M, Rodrigues ALS. Protective Effects of Ascorbic Acid on Behavior and Oxidative Status of Restraint-Stressed Mice. J Mol Neurosci 2012; 49:68-79. [DOI: 10.1007/s12031-012-9892-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/20/2012] [Indexed: 01/20/2023]
|
124
|
Liu S, Sun N, Xu Y, Yang C, Ren Y, Liu Z, Cao X, Sun Y, Xu Q, Zhang K, Shen Y. Possible association of the GSK3β gene with the anxiety symptoms of major depressive disorder and P300 waveform. Genet Test Mol Biomarkers 2012; 16:1382-9. [PMID: 23030648 DOI: 10.1089/gtmb.2012.0227] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Glycogen synthase kinase-3β (GSK3β) may play an important role in the brain of patients with major depressive disorder (MDD); therefore, we investigated whether the GSK3β gene is involved in the etiology of MDD and whether it affects MDD endophenotypes. Three single-nucleotide polymorphisms (SNPs) (rs6438552, rs7633279, and rs334558) were genotyped in 559 MDD patients and 486 healthy controls. To explore quantitative traits of MDD, we analyzed the association of these SNPs with the factor scores of the 17-item Hamilton Depression Rating Scale (HAMD-17) and the Hamilton Anxiety Rating Scale (HAMA). We also determined the effects of these SNPs on the measurement of the P300 wave. Although no significant association between GSK3β SNPs and MDD was found, some genotypes and haplotypes were associated with anxiety symptoms in MDD. The three SNPs were associated with the HAMA total score and with the HAMD anxiety and somatization factor score (p<0.05). Three-locus haplotype analysis showed the C-T-G carriers to have a strong association with the HAMA total score (p=0.032). Moreover, the P300 latency and amplitude were also associated with GSK3β genotypes. The individuals with the T allele genotype, both in rs6438552 and rs7633279, have a longer P300 latency than those carrying the C/C (p=0.04) and A/A genotype (p=0.013). The individuals with the G/G genotype in rs334558 have a lower amplitude than those carrying the A allele genotype (p=0.007). Our findings show, for the first time, that GSK3β polymorphisms may play an important role in MDD endophenotypes, especially in anxiety symptoms.
Collapse
Affiliation(s)
- Sha Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Rom S, Fan S, Reichenbach N, Dykstra H, Ramirez SH, Persidsky Y. Glycogen synthase kinase 3β inhibition prevents monocyte migration across brain endothelial cells via Rac1-GTPase suppression and down-regulation of active integrin conformation. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1414-25. [PMID: 22863953 PMCID: PMC3463628 DOI: 10.1016/j.ajpath.2012.06.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 06/04/2012] [Accepted: 06/20/2012] [Indexed: 01/13/2023]
Abstract
Glycogen synthase kinase (GSK) 3β has been identified as a regulator of immune responses. We demonstrated previously that GSK3β inhibition in human brain microvascular endothelial cells (BMVECs) reduced monocyte adhesion/migration across BMVEC monolayers. Herein, we tested the idea that GSK3β inhibition in monocytes can diminish their ability to engage the brain endothelium and migrate across the blood-brain barrier. Pretreatment of primary monocytes with GSK3β inhibitors resulted in a decrease in adhesion (60%) and migration (85%), with similar results in U937 monocytic cells. Monocyte-BMVEC interactions resulted in diminished barrier integrity that was reversed by GSK3β suppression in monocytic cells. Because integrins mediate monocyte rolling/adhesion, we detected the active conformational form of very late antigen 4 after stimulation with a peptide mimicking monocyte engagement by vascular cell adhesion molecule-1. Peptide stimulation resulted in a 14- to 20-fold up-regulation of the active form of integrin in monocytes that was suppressed by GSK3β inhibitors (40% to 60%). Because small GTPases, such as Rac1, control leukocyte movement, we measured active Rac1 after monocyte activation with relevant stimuli. Stimulation enhanced the level of active Rac1 that was diminished by GSK3β inhibitors. Monocytes treated with GSK3β inhibitors showed increased levels of inhibitory sites of the actin-binding protein, cofilin, and vasodilator-stimulated phosphoprotein-regulating conformational changes of integrins. These results indicate that GSK3β inhibition in monocytes affects active integrin expression, cytoskeleton rearrangement, and adhesion via suppression of Rac1-diminishing inflammatory leukocyte responses.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
126
|
Mazzardo-Martins L, Martins DF, Stramosk J, Cidral-Filho FJ, Santos ARS. Glycogen synthase kinase 3-specific inhibitor AR-A014418 decreases neuropathic pain in mice: evidence for the mechanisms of action. Neuroscience 2012; 226:411-20. [PMID: 23000630 DOI: 10.1016/j.neuroscience.2012.09.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/31/2012] [Accepted: 09/08/2012] [Indexed: 11/19/2022]
Abstract
The present study examined the antihyperalgesic effect of a specific inhibitor of Glycogen Synthase Kinase 3 (GSK3), AR-A014418, on the partial ligation of the sciatic nerve (PSNL), a neuropathic pain model in mice and investigated some mechanisms of action. AR-A014418 (0.01-1 mg/kg) administered by intraperitoneal route (i.p.) inhibited mechanical hyperalgesia. This action started 30 min after i.p. administration and remained significant up to 2 h. When administered daily for 5 days, AR-A014418 (0.3 mg/kg, i.p.) significantly reduced the mechanical hyperalgesia caused by PSNL. Intraperitoneal (i.p.) treatment with AR-A014418 (0.3 mg/kg) also significantly inhibited cold hyperalgesia induced by PSNL. Pre-administration of PCPA (100 mg/kg, i.p., inhibitor of serotonin synthesis) and AMPT (100 mg/kg, i.p., inhibitor of tyrosine hydroxylase), but not l-arginine (600 mg/kg, i.p., a nitric oxide precursor), significantly reduced the mechanical hyperalgesia elicited by AR-A014418. Furthermore, the administration of AR-A014418 significantly prevented the increase of TNF-α (inhibition of 76±8%) and IL-1β (inhibition of 62±10%), but did not alter lumbar spinal cord IL1-ra and IL-10 levels. Finally, intraperitoneal administration of AR-A014418 did not affect locomotor activity in the open-field test. Taken together, these results provide experimental evidence indicating that AR-A014418 produces marked antihyperalgesic effects in neuropathic pain in mice, possibly due to mechanisms that reduce proinflammatory cytokines, as well as increases in serotonergic and catecholaminergic pathways. The present study suggests that GSK3 may be a novel pharmacological target for the treatment of neuropathic pain and AR-A014418 might be a potential molecule of interest for chronic pain relief.
Collapse
Affiliation(s)
- L Mazzardo-Martins
- Laboratório de Neurobiologia da Dor e Inflamação, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário-Trindade, Florianópolis, SC, Brazil
| | | | | | | | | |
Collapse
|
127
|
P2RX7: expression responds to sleep deprivation and associates with rapid cycling in bipolar disorder type 1. PLoS One 2012; 7:e43057. [PMID: 22952630 PMCID: PMC3429455 DOI: 10.1371/journal.pone.0043057] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 07/16/2012] [Indexed: 12/30/2022] Open
Abstract
Context Rapid cycling is a severe form of bipolar disorder with an increased rate of episodes that is particularly treatment-responsive to chronotherapy and stable sleep-wake cycles. We hypothesized that the P2RX7 gene would be affected by sleep deprivation and be implicated in rapid cycling. Objectives To assess whether P2RX7 expression is affected by total sleep deprivation and if variation in P2RX7 is associated with rapid cycling in bipolar patients. Design Gene expression analysis in peripheral blood mononuclear cells (PBMCs) from healthy volunteers and case-case and case-control SNP/haplotype association analyses in patients. Participants Healthy volunteers at the sleep research center, University of California, Irvine Medical Center (UCIMC), USA (n = 8) and Swedish outpatients recruited from specialized psychiatric clinics for bipolar disorder, diagnosed with bipolar disorder type 1 (n = 569; rapid cycling: n = 121) and anonymous blood donor controls (n = 1,044). Results P2RX7 RNA levels were significantly increased during sleep deprivation in PBMCs from healthy volunteers (p = 2.3*10−9). The P2RX7 rs2230912 _A allele was more common (OR = 2.2, p = 0.002) and the ACGTTT haplotype in P2RX7 (rs1718119 to rs1621388) containing the protective rs2230912_G allele (OR = 0.45–0.49, p = 0.003–0.005) was less common, among rapid cycling cases compared to non-rapid cycling bipolar patients and blood donor controls. Conclusions Sleep deprivation increased P2RX7 expression in healthy persons and the putatively low-activity P2RX7 rs2230912 allele A variant was associated with rapid cycling in bipolar disorder. This supports earlier findings of P2RX7 associations to affective disorder and is in agreement with that particularly rapid cycling patients have a more vulnerable diurnal system.
Collapse
|
128
|
Joaquim HPG, Talib LL, Forlenza OV, Diniz BS, Gattaz WF. Long-term sertraline treatment increases expression and decreases phosphorylation of glycogen synthase kinase-3B in platelets of patients with late-life major depression. J Psychiatr Res 2012; 46:1053-8. [PMID: 22622071 DOI: 10.1016/j.jpsychires.2012.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 04/09/2012] [Accepted: 04/23/2012] [Indexed: 01/12/2023]
Abstract
BACKGROUND Abnormal regulation of glycogen synthase kinase 3-beta (GSK3B) activity has been implicated in the pathophysiology of mood disorders. Many pharmacological agents, including antidepressants, can modulate GSK3B. The aim of the present study was to investigate the effect of short-and long-term sertraline treatment on the expression and phosphorylation of GSK3B in platelets of patients with late-life major depression. METHODS Thirty-nine unmedicated elderly adults with major depressive disorder (MDD) were initially included in this study. The comparison group comprised 18 age-matched, healthy individuals. The expression of total and Ser-9 phosphorylated GSK3B (pGSK3B) was determined by Enzyme Immunometric Assay (EIA) in platelets of patients and controls at baseline, and after 3 and 12 months of sertraline treatments for patients only. During this period, patients were continuously treated with therapeutic doses of sertraline. GSK3B activity was indirectly estimated by calculating the proportion of inactive (phosphorylated) forms (pGSK3B) in relation to the total expression of the enzyme (i.e., GSK3B ratio). RESULTS Depressed patients had significantly higher levels of pGSK3B as compared to controls (p < 0.001). Within the MDD group, after 3 months of sertraline treatment no significant changes were observed in GSK3B expression and phosphorylation state, as compared to baseline levels. However, after 12 months of treatment we found a significant increase in the expression of total GSK3B (p = 0.05), in the absence of any significant changes in pGSK3B (p = 0.12), leading to a significant reduction in GSK3B ratio (p = 0.001). CONCLUSIONS Our findings indicate that GSK3B expression was upregulated by the continuous treatment with sertraline, along with an increment in the proportion of active forms of the enzyme. This is compatible with an increase in overall GSK3B activity, which may have been induced by the long-term treatment of late-life depression with sertraline.
Collapse
Affiliation(s)
- Helena P G Joaquim
- Laboratory of Neuroscience-LIM 27, Department and Institute of Psychiatry, Faculty of Medicine, University of Sao Paulo, Rua Dr. Ovídio Pires de Campos 785, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
129
|
Chronic treatment with lithium or valproate modulates the expression of Homer1b/c and its related genes Shank and Inositol 1,4,5-trisphosphate receptor. Eur Neuropsychopharmacol 2012; 22:527-35. [PMID: 22245542 PMCID: PMC3361644 DOI: 10.1016/j.euroneuro.2011.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/28/2011] [Accepted: 11/14/2011] [Indexed: 01/31/2023]
Abstract
Homer proteins are associated with both dopaminergic and glutamatergic function. In addition, these proteins are implicated in many signal transduction pathways that are also putative targets of the mood stabilizers lithium and valproate (VPA). This study investigated the effect of in vivo chronic administration of therapeutically-relevant doses of lithium and VPA on the expression of the inducible (Homer1a and ania-3) and constitutive (Homer1b/c) isoforms of the Homer1 gene in rat brain, and of two other Homer-related genes: Inositol 1,4,5 trisphosphate receptor (IP3R) and Shank. Homer1b/c was significantly decreased in cortex by VPA, and in striatal and accumbal subregions by both lithium and VPA. Both mood stabilizers reduced Homer1b/c expression in the dorsolateral caudate-putamen, while only VPA decreased gene expression in all other striatal subregions. Shank and IP3R were downregulated by both mood stabilizers in the cortex. Neither chronic lithium nor VPA affected Homer immediate-early genes. These results suggest that lithium and VPA similarly modulate the expression of structural postsynaptic genes with topographic specificity in cortical and subcortical regions. Thus, Homer may represent an additional molecular substrate for mood stabilizers, and a potential link with dopaminergic function.
Collapse
|
130
|
Mood disorders. Transl Neurosci 2012. [DOI: 10.1017/cbo9780511980053.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
131
|
Duric V, Duman RS. Depression and treatment response: dynamic interplay of signaling pathways and altered neural processes. Cell Mol Life Sci 2012; 70:39-53. [PMID: 22585060 DOI: 10.1007/s00018-012-1020-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 04/18/2012] [Accepted: 04/24/2012] [Indexed: 01/15/2023]
Abstract
Since the 1960s, when the first tricyclic and monoamine oxidase inhibitor antidepressant drugs were introduced, most of the ensuing agents were designed to target similar brain pathways that elevate serotonin and/or norepinephrine signaling. Fifty years later, the main goal of the current depression research is to develop faster-acting, more effective therapeutic agents with fewer side effects, as currently available antidepressants are plagued by delayed therapeutic onset and low response rates. Clinical and basic science research studies have made significant progress towards deciphering the pathophysiological events within the brain involved in development, maintenance, and treatment of major depressive disorder. Imaging and postmortem brain studies in depressed human subjects, in combination with animal behavioral models of depression, have identified a number of different cellular events, intracellular signaling pathways, proteins, and target genes that are modulated by stress and are potentially vital mediators of antidepressant action. In this review, we focus on several neural mechanisms, primarily within the hippocampus and prefrontal cortex, which have recently been implicated in depression and treatment response.
Collapse
Affiliation(s)
- Vanja Duric
- Department of Psychiatry, Yale University, 34 Park Street, New Haven, CT 06508, USA
| | | |
Collapse
|
132
|
Mood-stabilizing drugs: mechanisms of action. Trends Neurosci 2012; 35:36-46. [PMID: 22217451 DOI: 10.1016/j.tins.2011.11.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/03/2011] [Accepted: 11/22/2011] [Indexed: 12/20/2022]
Abstract
Mood-stabilizing drugs are the most widely prescribed pharmacological treatments for bipolar disorder, a disease characterized by recurrent episodes of mania and depression. Despite extensive clinical utilization, significant questions concerning their mechanisms of action remain. In recent years, a diverse set of molecular and cellular targets of these drugs has been identified. Based on these findings, downstream effects on neural and synaptic plasticity within key circuits have been proposed. Here, we discuss recent data, identify current challenges impeding progress and define areas for future investigation. Further understanding of the primary targets and downstream levels of convergence of mood-stabilizing drugs will guide development of novel therapeutic strategies and help translate discoveries into more effective treatments with less burdensome adverse-effect profiles.
Collapse
|
133
|
GSK-3 activity is critical for the orientation of the cortical microtubules and the dorsoventral axis determination in zebrafish embryos. PLoS One 2012; 7:e36655. [PMID: 22574208 PMCID: PMC3345025 DOI: 10.1371/journal.pone.0036655] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 04/04/2012] [Indexed: 12/14/2022] Open
Abstract
The formation of dorsal-ventral (D–V) axis is the earliest event that breaks the radial symmetry and determines the bilateral body plan of a vertebrate embryo, however, the maternal control of this process is not fully understood. Here, we discovered a new dorsalizing window of acute lithium treatment, which covers only less than 10 minutes after fertilization. Lithium treatment in this window was not able to reverse the ventralized phenotype in tokkeabi (tkk) mutant embryos, and its dorsalizing activity on wild-type embryos was inhibited by nocodazole co-treatment. These evidences indicate that the underlying mechanism is independent of a direct activation of Wnt/β-catenin signaling, but depends on the upstream level of the microtubule mediated dorsal determinant transport. In order to identify the target of lithium in this newly discovered sensitive window, GSK-3 inhibitor IX as well as the IMPase inhibitor L690, 330 treatments were performed. We found that only GSK-3 inhibitor IX treatment mimicked the lithium treatment in the dorsalizing activity. Further study showed that the parallel pattern of cortical microtubules in the vegetal pole region and the directed migration of the Wnt8a mRNA were randomized by either lithium or GSK-3 inhibitor IX treatment. These results thus revealed an early and critical role of GSK-3 activity that regulates the orientation of the cortical microtubules and the directed transport of the dorsal determinants in zebrafish embryos.
Collapse
|
134
|
Budni J, Lobato KR, Binfaré RW, Freitas AE, Costa AP, Martín-de-Saavedra MD, Leal RB, Lopez MG, Rodrigues ALS. Involvement of PI3K, GSK-3β and PPARγ in the antidepressant-like effect of folic acid in the forced swimming test in mice. J Psychopharmacol 2012; 26:714-23. [PMID: 22037925 DOI: 10.1177/0269881111424456] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Preclinical and clinical studies indicate that deficiency in folic acid plays a role in the pathophysiology of depression. Considering that alterations in the signaling pathways that regulate neuroplasticity and cellular survival are implicated in depressive disorders, the present study investigated the involvement of the phosphoinositide 3-kinase (PI3K), glycogen synthase kinase-3 (GSK-3β), and peroxisome proliferator-activated receptor-γ (PPARγ) in the antidepressant-like effect of folic acid in the forced swimming test (FST). The intracerebroventricular (i.c.v.) pre-treatment of mice with LY294002 (10 nmol/site, a PI3K inhibitor) or GW-9662 (1 µg/site, a PPARγ antagonist) prevented the antidepressant-like effect of folic acid (50 mg/kg, p.o.) in the FST. In addition, the administration of subeffective doses of the selective GSK-3β inhibitor, AR-A014418 (3 mg/kg, i.p.), a non-selective GSK-3β inhibitor, lithium chloride (10 mg/kg, p.o) or a PPARγ agonist, rosiglitazone (1 µg/site, i.c.v.) in combination with a subeffective dose of folic acid (10 mg/kg, p.o.) significantly reduced the immobility time in the FST as compared with either drug alone, without altering the locomotor activity. These results indicate that the antidepressant-like effect of folic acid in the FST might be dependent on inhibition of GSK-3β and activation of PPARγ, reinforcing the notion that these are important targets for antidepressant activity.
Collapse
Affiliation(s)
- Josiane Budni
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Wang CC, Chen PS, Hsu CW, Wu SJ, Lin CT, Gean PW. Valproic acid mediates the synaptic excitatory/inhibitory balance through astrocytes--a preliminary study. Prog Neuropsychopharmacol Biol Psychiatry 2012; 37:111-20. [PMID: 22343008 DOI: 10.1016/j.pnpbp.2012.01.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/31/2012] [Accepted: 01/31/2012] [Indexed: 11/30/2022]
Abstract
Valproic acid (VPA) is one of the most widely used anticonvulsant and mood-stabilizing agents for the treatment of epilepsy and bipolar disorder. However, the underlying therapeutic mechanisms of the treatment of each disease remain unclear. Recently, the anti-epileptic effect of VPA has been found to lead to modulation of the synaptic excitatory/inhibitory balance. In addition, the therapeutic action of VPA has been linked to its effect on astrocytes by regulating gene expression at the molecular level, perhaps through an epigenetic mechanism as a histone deacetylase (HDAC) inhibitor. To provide insight into the mechanisms underlying the actions of VPA, this study investigated whether the synaptic excitatory/inhibitory (E/I) balance could be mediated by VPA through astrocytes. First, using the primary rat neuronal, astroglial, and neuro-glial mixed culture systems, we demonstrated that VPA treatment could regulate the mRNA levels of two post-synaptic cell adhesion molecules(neuroligin-1 and neuregulin-1) and two extracellular matrices (neuronal pentraxin-1and thrombospondin-3) in primary rat astrocyte cultures in a time- and concentration-dependent manner. Moreover, the up-regulation effect of VPA was noted in astrocytes, but not in neurons. In addition, these regulatory effects could be mimicked by sodium butyrate, a HDAC inhibitor, but not by lithium or two other glycogen synthase kinase-3 beta inhibitors. With the known role of these four proteins in regulating the synaptic E/I balance, we further demonstrated that VPA increased excitatory post-synaptic protein (postsynaptic density 95) and inhibitory post-synaptic protein (Gephyrin) in cortical neuro-glial mixed cultures. Our results suggested that VPA might affect the synaptic excitatory/inhibitory balance through its effect on astrocytes. This work provides the basis for future evaluation of the role of astroglial cell adhesion molecules and the extracellular matrix on the control of excitatory and inhibitory synapse formation.
Collapse
Affiliation(s)
- Chao-Chuan Wang
- Department of Anatomy, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
136
|
Abstract
Schizophrenia is a prevalent complex trait disorder manifested by severe neurocognitive dysfunctions and lifelong disability. During the past few years several studies have provided direct evidence for the involvement of different signaling pathways in schizophrenia. In this review, we mainly focus on AKT/GSK3 signaling pathway in schizophrenia. The original study on the involvement of this pathway in schizophrenia was published by Emamian et al. in 2004. This study reported convergent evidence for a decrease in AKT1 protein levels and levels of phosphorylation of GSK-3β in the peripheral lymphocytes and brains of individuals with schizophrenia; a significant association between schizophrenia and an AKT1 haplotype; and a greater sensitivity to the sensorimotor gating-disruptive effect of amphetamine, conferred by AKT1 deficiency. It also showed that haloperidol can induce a stepwise increase in regulatory phosphorylation of AKT1 in the brains of treated mice that could compensate for the impaired function of this signaling pathway in schizophrenia. Following this study, several independent studies were published that not only confirmed the association of this signaling pathway with schizophrenia across different populations, but also shed light on the mechanisms by which AKT/GSK3 pathway may contribute to the development of this complex disorder. In this review, following an introduction on the role of AKT in human diseases and its functions in neuronal and non-neuronal cells, a review on the results of studies published on AKT/GSK3 signaling pathway in schizophrenia after the original 2004 paper will be provided. A brief review on other signaling pathways involved in schizophrenia and the possible connections with AKT/GSK3 signaling pathway will be discussed. Moreover, some possible molecular mechanisms acting through this pathway will be discussed besides the mechanisms by which they may contribute to the pathogenesis of schizophrenia. Finally, different transcription factors related to schizophrenia will be reviewed to see how hypo-activity of AKT signaling pathway may impact such transcriptional mechanisms.
Collapse
Affiliation(s)
- Effat S Emamian
- Advanced Technologies for Novel Therapeutics (ATNT), Newark NJ, USA.
| |
Collapse
|
137
|
Haimovich A, Eliav U, Goldbourt A. Determination of the Lithium Binding Site in Inositol Monophosphatase, the Putative Target for Lithium Therapy, by Magic-Angle-Spinning Solid-State NMR. J Am Chem Soc 2012; 134:5647-51. [DOI: 10.1021/ja211794x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anat Haimovich
- Raymond and Beverly Sackler Faculty of Exact Sciences,
School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Uzi Eliav
- Raymond and Beverly Sackler Faculty of Exact Sciences,
School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Amir Goldbourt
- Raymond and Beverly Sackler Faculty of Exact Sciences,
School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
138
|
Benedetti F, Dallaspezia S, Lorenzi C, Pirovano A, Radaelli D, Locatelli C, Poletti S, Colombo C, Smeraldi E. Gene-gene interaction of glycogen synthase kinase 3-β and serotonin transporter on human antidepressant response to sleep deprivation. J Affect Disord 2012; 136:514-9. [PMID: 22119086 DOI: 10.1016/j.jad.2011.10.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 10/25/2011] [Accepted: 10/25/2011] [Indexed: 02/02/2023]
Abstract
BACKGROUND Glycogen synthase kinase 3-β (GSK3-β) is involved in the control of cell behavior and in the mechanism of action of lithium and serotonergic antidepressants, and in humans a promoter variant (rs334558*C) was associated with reduced activity and better antidepressant response. The short form of a polymorphism in the promoter in the serotonin transporter (5-HTTLPR) has been consistently associated with worse antidepressant response. In animals the knockout of GSK3-β counteracts the depressive-like behavioral effects of 5-HT inhibition. METHODS With a translational approach, we studied the effect of 5-HTTLPR and rs334558 on antidepressant response to sleep deprivation in a unique sample of 122 patients affected by a major depressive episode in course of bipolar disorder. Mood was self rated on Visual Analog Scales, and severity of depression was rated on Montgomery-Asberg rating scale. RESULTS We observed a triple interaction of 5-HTTLPR, rs334558 and treatment on severity of depression. While among rs334558 T/T homozygotes the best antidepressant response was associated with 5-HTTLPR l/l homozygosity, among the rs334558 C carriers the 5-HTTLPR s/s showed the best response to treatment. CONCLUSIONS A gene promoter polymorphism which reduces the activity of GSK3-β counteracts the detrimental influence of the short form of the 5-HT promoter on antidepressant response. A key component of Wnt pathway, and upstream of the mTOR signaling cascade, GSK3-β influences synaptic plasticity and cell resilience. Gene-gene interactions between components of the monoaminergic signal transduction pathways and of plasticity related pathways can shape the individual antidepressant response.
Collapse
Affiliation(s)
- Francesco Benedetti
- Department of Clinical Neurosciences, Scientific Institute San Raffaele and University Vita-Salute, Milano, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Maes M, Fišar Z, Medina M, Scapagnini G, Nowak G, Berk M. New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates--Nrf2 activators and GSK-3 inhibitors. Inflammopharmacology 2012; 20:127-50. [PMID: 22271002 DOI: 10.1007/s10787-011-0111-7] [Citation(s) in RCA: 255] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 12/15/2011] [Indexed: 02/07/2023]
Abstract
This paper reviews new drug targets in the treatment of depression and new drug candidates to treat depression. Depression is characterized by aberrations in six intertwined pathways: (1) inflammatory pathways as indicated by increased levels of proinflammatory cytokines, e.g. interleukin-1 (IL-1), IL-6, and tumour necrosis factor α. (2) Activation of cell-mediated immune pathways as indicated by an increased production of interferon γ and neopterin. (3) Increased reactive oxygen and nitrogen species and damage by oxidative and nitrosative stress (O&NS), including lipid peroxidation, damage to DNA, proteins and mitochondria. (4) Lowered levels of key antioxidants, such as coenzyme Q10, zinc, vitamin E, glutathione, and glutathione peroxidase. (5) Damage to mitochondria and mitochondrial DNA and reduced activity of respiratory chain enzymes and adenosine triphosphate production. (6) Neuroprogression, which is the progressive process of neurodegeneration, apoptosis, and reduced neurogenesis and neuronal plasticity, phenomena that are probably caused by inflammation and O&NS. Antidepressants tend to normalize the above six pathways. Targeting these pathways has the potential to yield antidepressant effects, e.g. using cytokine antagonists, minocycline, Cox-2 inhibitors, statins, acetylsalicylic acid, ketamine, ω3 poly-unsaturated fatty acids, antioxidants, and neurotrophic factors. These six pathways offer new, pathophysiologically guided drug targets suggesting that novel therapies could be developed that target these six pathways simultaneously. Both nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activators and glycogen synthase kinase-3 (GSK-3) inhibitors target the six above-mentioned pathways. GSK-3 inhibitors have antidepressant effects in animal models of depression. Nrf2 activators and GSK-3 inhibitors have the potential to be advanced to phase-2 clinical trials to examine whether they augment the efficacy of antidepressants or are useful as monotherapy.
Collapse
Affiliation(s)
- Michael Maes
- Maes Clinics@TRIA, 998 Rimklongsamsen Road, Bangkok 10310, Thailand.
| | | | | | | | | | | |
Collapse
|
140
|
Chen PC, Gaisina IN, El-Khodor BF, Ramboz S, Makhortova NR, Rubin LL, Kozikowski AP. Identification of a Maleimide-Based Glycogen Synthase Kinase-3 (GSK-3) Inhibitor, BIP-135, that Prolongs the Median Survival Time of Δ7 SMA KO Mouse Model of Spinal Muscular Atrophy. ACS Chem Neurosci 2012; 3:5-11. [PMID: 22348181 DOI: 10.1021/cn200085z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The discovery of upregulated glycogen synthase kinase-3 (GSK-3) in various pathological conditions has led to the development of a host of chemically diverse small molecule GSK-3 inhibitors, such as BIP-135. GSK-3 inhibition emerged as an alternative therapeutic target for treating spinal muscular atrophy (SMA) when a number of GSK-3 inhibitors were shown to elevate survival motor neuron (SMN) levels in vitro and to rescue motor neurons when their intrinsic SMN level was diminished by SMN-specific short hairpin RNA (shRNA). Despite their cellular potency, the in vivo efficacy of GSK-3 inhibitors has yet to be evaluated in an animal model of SMA. Herein, we disclose that a potent and reasonably selective GSK-3 inhibitor, namely BIP-135, was tested in a transgenic Δ7 SMA KO mouse model of SMA, and found to prolong the median survival of these animals. In addition, this compound was shown to elevate the SMN protein level in SMA patient-derived fibroblast cells as determined by western blot, and was neuroprotective in a cell-based, SMA-related model of oxidative stress-induced neurodegeneration.
Collapse
Affiliation(s)
- Po C. Chen
- Department of Medicinal Chemistry
and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago,
Illinois 60612, United States
| | - Irina N. Gaisina
- Department of Medicinal Chemistry
and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago,
Illinois 60612, United States
| | - Bassem F. El-Khodor
- PsychoGenics Inc., 765 Old Sawmill River
Road, Tarrytown, New York 10591, United States
| | - Sylvie Ramboz
- PsychoGenics Inc., 765 Old Sawmill River
Road, Tarrytown, New York 10591, United States
| | - Nina R. Makhortova
- Department of Stem Cell and Regenerative
Biology and Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, United States
| | - Lee L. Rubin
- Department of Stem Cell and Regenerative
Biology and Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, United States
| | - Alan P. Kozikowski
- Department of Medicinal Chemistry
and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago,
Illinois 60612, United States
| |
Collapse
|
141
|
Park SW, Phuong VT, Lee CH, Lee JG, Seo MK, Cho HY, Fang ZH, Lee BJ, Kim YH. Effects of antipsychotic drugs on BDNF, GSK-3β, and β-catenin expression in rats subjected to immobilization stress. Neurosci Res 2011; 71:335-40. [DOI: 10.1016/j.neures.2011.08.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/09/2011] [Accepted: 08/12/2011] [Indexed: 10/17/2022]
|
142
|
Abelaira HM, Réus GZ, Ribeiro KF, Zappellini G, Ferreira GK, Gomes LM, Carvalho-Silva M, Luciano TF, Marques SO, Streck EL, Souza CT, Quevedo J. Effects of acute and chronic treatment elicited by lamotrigine on behavior, energy metabolism, neurotrophins and signaling cascades in rats. Neurochem Int 2011; 59:1163-74. [DOI: 10.1016/j.neuint.2011.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 10/13/2011] [Accepted: 10/15/2011] [Indexed: 12/29/2022]
|
143
|
Benedetti F, Radaelli D, Poletti S, Locatelli C, Falini A, Colombo C, Smeraldi E. Opposite effects of suicidality and lithium on gray matter volumes in bipolar depression. J Affect Disord 2011; 135:139-47. [PMID: 21807414 DOI: 10.1016/j.jad.2011.07.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/08/2011] [Accepted: 07/09/2011] [Indexed: 12/20/2022]
Abstract
BACKGROUND Mood disorders are associated with the highest increase of attempted and completed suicide. Suicidality in major depressive disorder and in schizophrenia has been associated with reduced gray matter volumes in orbitofrontal cortex. Lithium reduces the suicide risk of patients with bipolar disorder (BD) to the same levels of the general population, and can increase GM volumes. We studied the effect of a positive history of attempted suicide and ongoing lithium treatment on regional GM volumes of patients affected by bipolar depression. METHODS With a correlational design, we studied 57 currently depressed inpatients with bipolar disorder: 19 with and 38 without a positive history of suicide attempts, 39 unmedicated and 18 with ongoing lithium treatment. Total and regional gray matter volumes were assessed using voxel-based morphometry. RESULTS Total GM volume is inversely correlated with depression severity. A positive history of suicide attempts was associated with higher stress in early life. Suicide attempters showed reduced GM volumes in several brain areas including dorsolateral prefrontal cortex, orbitofrontal cortex, anterior cingulate, superior temporal cortex, parieto-occipital cortex, and basal ganglia. Long term lithium treatment was associated with increased GM volumes in the same areas where suicide was associated with decreased GM. CONCLUSIONS Reduced GM volumes in critical cortical areas of suicidal patients could be a biological correlate of an impaired ability to associate choices and outcomes and to plan goal-directed behaviors based on a lifetime historical perspective, which, coupled with mood-congruent depressive cognitive distortions, could lead to more hopelessness and suicide. Lithium could exert its specific therapeutic effect on suicide by acting in the same areas.
Collapse
Affiliation(s)
- Francesco Benedetti
- Department of Clinical Neurosciences, Scientific Institute San Raffaele and University Vita-Salute, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
144
|
Siraskar B, Völkl J, Ahmed MSE, Hierlmeier M, Gu S, Schmid E, Leibrock C, Föller M, Lang UE, Lang F. Enhanced catecholamine release in mice expressing PKB/SGK-resistant GSK3. Pflugers Arch 2011; 462:811-9. [DOI: 10.1007/s00424-011-1006-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 07/26/2011] [Accepted: 07/28/2011] [Indexed: 12/13/2022]
|
145
|
Del'guidice T, Lemasson M, Beaulieu JM. Role of Beta-arrestin 2 downstream of dopamine receptors in the Basal Ganglia. Front Neuroanat 2011; 5:58. [PMID: 21922001 PMCID: PMC3167352 DOI: 10.3389/fnana.2011.00058] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 08/17/2011] [Indexed: 12/26/2022] Open
Abstract
Multifunctional scaffolding protein beta-arrestins (βArr) and the G protein-receptor kinases are involved in the desensitization of several G protein-coupled receptors (GPCR). However, arrestins can also contribute to GPCR signaling independently from G proteins. In this review, we focus on the role of βArr in the regulation of dopamine receptor functions in the striatum. First, we present in vivo evidence supporting a role for these proteins in the regulation of dopamine receptor desensitization. Second, we provide an overview of the roles of βArr2 in the regulation of extracellular-signal-regulated kinases/MAP kinases and Akt/GSK3 signaling pathways downstream of the D1 and D2 dopamine receptors. Thereafter, we examine the possible involvement of βArr-mediated signaling in the action of dopaminergic drugs used for the treatment of mental disorders. Finally, we focus on different potential cellular proteins regulated by βArr-mediated signaling which could contribute to the regulation of behavioral responses to dopamine. Overall, the identification of a cell signaling function for βArr downstream of dopamine receptors underscores the intricate complexity of the intertwined mechanisms regulating and mediating cell signaling in the basal ganglia. Understanding these mechanisms may lead to a better comprehension of the several roles played by these structures in the regulation of mood and to the development of new psychoactive drugs having better therapeutic efficacy.
Collapse
Affiliation(s)
- Thomas Del'guidice
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Centre de Recherche Université Laval Robert-Giffard Québec, QC, Canada
| | | | | |
Collapse
|
146
|
McClung CA. Circadian rhythms and mood regulation: insights from pre-clinical models. Eur Neuropsychopharmacol 2011; 21 Suppl 4:S683-93. [PMID: 21835596 PMCID: PMC3179573 DOI: 10.1016/j.euroneuro.2011.07.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/06/2011] [Accepted: 07/13/2011] [Indexed: 12/13/2022]
Abstract
Affective disorders such as major depression, bipolar disorder, and seasonal affective disorder are associated with major disruptions in circadian rhythms. Indeed, altered sleep/wake cycles are a critical feature for diagnosis in the DSM IV and several of the therapies used to treat these disorders have profound effects on rhythm length and stabilization in human populations. Furthermore, multiple human genetic studies have identified polymorphisms in specific circadian genes associated with these disorders. Thus, there appears to be a strong association between the circadian system and mood regulation, although the mechanisms that underlie this association are unclear. Recently, a number of studies in animal models have begun to shed light on the complex interactions between circadian genes and mood-related neurotransmitter systems, the effects of light manipulation on brain circuitry, the impact of chronic stress on rhythms, and the ways in which antidepressant and mood-stabilizing drugs alter the clock. This review will focus on the recent advances that have been gleaned from the use of pre-clinical models to further our understanding of how the circadian system regulates mood.
Collapse
Affiliation(s)
- Colleen A McClung
- Department of Psychiatry, University of Pittsburgh Medical School, 450 Technology Dr. Suite 223, Pittsburgh, PA 15219, United States.
| |
Collapse
|
147
|
Ketamine influences CLOCK:BMAL1 function leading to altered circadian gene expression. PLoS One 2011; 6:e23982. [PMID: 21887357 PMCID: PMC3161090 DOI: 10.1371/journal.pone.0023982] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 08/01/2011] [Indexed: 01/13/2023] Open
Abstract
Major mood disorders have been linked to abnormalities in circadian rhythms, leading to disturbances in sleep, mood, temperature, and hormonal levels. We provide evidence that ketamine, a drug with rapid antidepressant effects, influences the function of the circadian molecular machinery. Ketamine modulates CLOCK:BMAL1-mediated transcriptional activation when these regulators are ectopically expressed in NG108-15 neuronal cells. Inhibition occurs in a dose-dependent manner and is attenuated after treatment with the GSK3β antagonist SB21673. We analyzed the effect of ketamine on circadian gene expression and observed a dose-dependent reduction in the amplitude of circadian transcription of the Bmal1, Per2, and Cry1 genes. Finally, chromatin-immunoprecipitation analyses revealed that ketamine altered the recruitment of the CLOCK:BMAL1 complex on circadian promoters in a time-dependent manner. Our results reveal a yet unsuspected molecular mode of action of ketamine and thereby may suggest possible pharmacological antidepressant strategies.
Collapse
|
148
|
Manceur AP, Tseng M, Holowacz T, Witterick I, Weksberg R, McCurdy RD, Warsh JJ, Audet J. Inhibition of glycogen synthase kinase-3 enhances the differentiation and reduces the proliferation of adult human olfactory epithelium neural precursors. Exp Cell Res 2011; 317:2086-98. [PMID: 21708147 DOI: 10.1016/j.yexcr.2011.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 06/07/2011] [Accepted: 06/10/2011] [Indexed: 01/12/2023]
Abstract
The olfactory epithelium (OE) contains neural precursor cells which can be easily harvested from a minimally invasive nasal biopsy, making them a valuable cell source to study human neural cell lineages in health and disease. Glycogen synthase kinase-3 (GSK-3) has been implicated in the etiology and treatment of neuropsychiatric disorders and also in the regulation of murine neural precursor cell fate in vitro and in vivo. In this study, we examined the impact of decreased GSK-3 activity on the fate of adult human OE neural precursors in vitro. GSK-3 inhibition was achieved using ATP-competitive (6-bromoindirubin-3'-oxime and CHIR99021) or substrate-competitive (TAT-eIF2B) inhibitors to eliminate potential confounding effects on cell fate due to off-target kinase inhibition. GSK-3 inhibitors decreased the number of neural precursor cells in OE cell cultures through a reduction in proliferation. Decreased proliferation was not associated with a reduction in cell survival but was accompanied by a reduction in nestin expression and a substantial increase in the expression of the neuronal differentiation markers MAP1B and neurofilament (NF-M) after 10 days in culture. Taken together, these results suggest that GSK-3 inhibition promotes the early stages of neuronal differentiation in cultures of adult human neural precursors and provide insights into the mechanisms by which alterations in GSK-3 signaling affect adult human neurogenesis, a cellular process strongly suspected to play a role in the etiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Aziza P Manceur
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Xu CM, Wang J, Wu P, Xue YX, Zhu WL, Li QQ, Zhai HF, Shi J, Lu L. Glycogen synthase kinase 3β in the nucleus accumbens core is critical for methamphetamine-induced behavioral sensitization. J Neurochem 2011; 118:126-39. [DOI: 10.1111/j.1471-4159.2011.07281.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
150
|
Wu P, Xue YX, Ding ZB, Xue LF, Xu CM, Lu L. Glycogen synthase kinase 3β in the basolateral amygdala is critical for the reconsolidation of cocaine reward memory. J Neurochem 2011; 118:113-25. [DOI: 10.1111/j.1471-4159.2011.07277.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|