101
|
Randall PA, Vemuri VK, Segovia KN, Torres EF, Hosmer S, Nunes EJ, Santerre JL, Makriyannis A, Salamone JD. The novel cannabinoid CB1 antagonist AM6545 suppresses food intake and food-reinforced behavior. Pharmacol Biochem Behav 2010; 97:179-84. [PMID: 20713079 DOI: 10.1016/j.pbb.2010.07.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 05/04/2010] [Accepted: 07/27/2010] [Indexed: 11/26/2022]
Abstract
Drugs that interfere with cannabinoid CB1 transmission suppress food-motivated behaviors, and may be useful clinically as appetite suppressants. However, there may also be undesirable side effects (e.g., nausea, malaise, anxiety, and depression) that are produced by the current generation of CB1 inverse agonists such as rimonabant and taranabant. For that reason, it is important to continue research on novel cannabinoid antagonists. The present studies examined the effects of the novel compound AM6545, which is a neutral antagonist of CB1 receptors that is thought to have relatively poor penetrability into the central nervous system. Intraperitoneal administration of AM6545 significantly reduced food-reinforced operant responding at doses of 4.0, 8.0 and 16.0 mg/kg. AM6545 also produced a strong suppression of the intake of high-carbohydrate and high-fat diets in the same dose range, but only produced a mild suppression of lab chow intake at the highest dose (16.0 mg/kg). Although AM6545 did not affect food handling, it did reduce time spent feeding and feeding rate. Taken together, these results suggest that AM6545 is a compound that warrants further study as a potential appetite suppressant drug.
Collapse
Affiliation(s)
- P A Randall
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Tam J, Vemuri VK, Liu J, Bátkai S, Mukhopadhyay B, Godlewski G, Osei-Hyiaman D, Ohnuma S, Ambudkar SV, Pickel J, Makriyannis A, Kunos G. Peripheral CB1 cannabinoid receptor blockade improves cardiometabolic risk in mouse models of obesity. J Clin Invest 2010; 120:2953-66. [PMID: 20664173 PMCID: PMC2912197 DOI: 10.1172/jci42551] [Citation(s) in RCA: 356] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 05/19/2010] [Indexed: 02/06/2023] Open
Abstract
Obesity and its metabolic consequences are a major public health concern worldwide. Obesity is associated with overactivity of the endocannabinoid system, which is involved in the regulation of appetite, lipogenesis, and insulin resistance. Cannabinoid-1 receptor (CB1R) antagonists reduce body weight and improve cardiometabolic abnormalities in experimental and human obesity, but their therapeutic potential is limited by neuropsychiatric side effects. Here we have demonstrated that a CB1R neutral antagonist largely restricted to the periphery does not affect behavioral responses mediated by CB1R in the brains of mice with genetic or diet-induced obesity, but it does cause weight-independent improvements in glucose homeostasis, fatty liver, and plasma lipid profile. These effects were due to blockade of CB1R in peripheral tissues, including the liver, as verified through the use of CB1R-deficient mice with or without transgenic expression of CB1R in the liver. These results suggest that targeting peripheral CB1R has therapeutic potential for alleviating cardiometabolic risk in obese patients.
Collapse
Affiliation(s)
- Joseph Tam
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - V. Kiran Vemuri
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Jie Liu
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Sándor Bátkai
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Bani Mukhopadhyay
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Grzegorz Godlewski
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Douglas Osei-Hyiaman
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Shinobu Ohnuma
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Suresh V. Ambudkar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - James Pickel
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexandros Makriyannis
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
103
|
Storr MA, Bashashati M, Hirota C, Vemuri VK, Keenan CM, Duncan M, Lutz B, Mackie K, Makriyannis A, MacNaughton WK, Sharkey KA. Differential effects of CB(1) neutral antagonists and inverse agonists on gastrointestinal motility in mice. Neurogastroenterol Motil 2010; 22:787-96, e223. [PMID: 20180825 PMCID: PMC2943391 DOI: 10.1111/j.1365-2982.2010.01478.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cannabinoid type 1 (CB(1)) receptors are involved in the regulation of gastrointestinal (GI) motility and secretion. Our aim was to characterize the roles of the CB(1) receptor on GI motility and secretion in vitro and in vivo by using different classes of CB(1) receptor antagonists. METHODS Immunohistochemistry was used to examine the localization of CB(1) receptor in the mouse ileum and colon. Organ bath experiments on mouse ileum and in vivo motility testing comprising upper GI transit, colonic expulsion, and whole gut transit were performed to characterize the effects of the inverse agonist/antagonist AM251 and the neutral antagonist AM4113. As a marker of secretory function we measured short circuit current in vitro using Ussing chambers and stool fluid content in vivo in mouse colon. We also assessed colonic epithelial permeability in vitro using FITC-labeled inulin. KEY RESULTS In vivo, the inverse agonist AM251 increased upper GI transit and whole gut transit, but it had no effect on colonic expulsion. By contrast, the neutral antagonist AM4113 increased upper GI transit, but unexpectedly reduced both colonic expulsion and whole gut transit at high, but not lower doses. CONCLUSIONS & INFERENCES Cannabinoid type 1 receptors regulate small intestinal and colonic motility, but not GI secretion under physiological conditions. Cannabinoid type 1 inverse agonists and CB(1) neutral antagonists have different effects on intestinal motility. The ability of the neutral antagonist not to affect whole gut transit may be important for the future development of CB(1) receptor antagonists as therapeutic agents.
Collapse
Affiliation(s)
- Martin A. Storr
- Snyder Institute of Infection, Immunity & Inflammation, University Calgary, Calgary, Alberta, Canada,Division of Gastroenterology, Department of Medicine, University Calgary, Calgary, Alberta, Canada
| | - Mohammad Bashashati
- Snyder Institute of Infection, Immunity & Inflammation, University Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, University Calgary, Calgary, Alberta, Canada,Department of Physiology & Pharmacology, University Calgary, Calgary, Alberta, Canada
| | - Christina Hirota
- Snyder Institute of Infection, Immunity & Inflammation, University Calgary, Calgary, Alberta, Canada,Department of Physiology & Pharmacology, University Calgary, Calgary, Alberta, Canada
| | - V. Kiran Vemuri
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Catherine M. Keenan
- Snyder Institute of Infection, Immunity & Inflammation, University Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, University Calgary, Calgary, Alberta, Canada,Department of Physiology & Pharmacology, University Calgary, Calgary, Alberta, Canada
| | - Marnie Duncan
- Snyder Institute of Infection, Immunity & Inflammation, University Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, University Calgary, Calgary, Alberta, Canada,Department of Physiology & Pharmacology, University Calgary, Calgary, Alberta, Canada
| | - Beat Lutz
- Department of Physiological Chemistry, University Medical Center of the Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | | | - Wallace K. MacNaughton
- Snyder Institute of Infection, Immunity & Inflammation, University Calgary, Calgary, Alberta, Canada,Department of Physiology & Pharmacology, University Calgary, Calgary, Alberta, Canada
| | - Keith A. Sharkey
- Snyder Institute of Infection, Immunity & Inflammation, University Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, University Calgary, Calgary, Alberta, Canada,Department of Physiology & Pharmacology, University Calgary, Calgary, Alberta, Canada
| |
Collapse
|
104
|
Sink KS, Segovia KN, Collins LE, Markus EJ, Vemuri VK, Makriyannis A, Salamone JD. The CB1 inverse agonist AM251, but not the CB1 antagonist AM4113, enhances retention of contextual fear conditioning in rats. Pharmacol Biochem Behav 2010; 95:479-84. [PMID: 20347865 DOI: 10.1016/j.pbb.2010.03.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 03/16/2010] [Accepted: 03/18/2010] [Indexed: 10/19/2022]
Abstract
The effects of CB1 antagonist/inverse agonists on the acquisition and consolidation of conditioned fear remain uncertain. Recent studies suggest that the CB1 antagonist/inverse agonist AM251 affects acquisition or consolidation of both contextual and discretely cued fear memories. AM251 is frequently referred to as a CB1 antagonist; however in vitro signal transduction assays indicate that this drug also elicits inverse agonist activity at CB1 receptors. The present studies were undertaken to compare the effects of AM251 on conditioned fear with those produced by AM4113, a novel CB1 antagonist with minimal inverse agonist activity. All drugs were administered prior to conditioning. In retention tests conducted two weeks after conditioning, both AM251 (4.0 mg/kg) and AM4113 (6.0 mg/kg)-treated animals exhibited reduced freezing during a conditioned tone cue played within a novel context. In contextual fear retention tests, animals previously treated with 4.0 or 8.0 mg/kg AM251 exhibited enhanced freezing. By contrast, no dose of AM4113 had any significant effect on contextual fear memory, which is consistent with the lower signal transduction activity of AM4113 at CB1 receptors compared to AM251. These results suggest that CB1 neutral antagonists may be less likely than CB1 inverse agonists to facilitate the acquisition or consolidation of contextual fear that may contribute to some clinical disorders.
Collapse
Affiliation(s)
- K S Sink
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| | | | | | | | | | | | | |
Collapse
|
105
|
Sink KS, Segovia KN, Sink J, Randall PA, Collins LE, Correa M, Markus EJ, Vemuri VK, Makriyannis A, Salamone JD. Potential anxiogenic effects of cannabinoid CB1 receptor antagonists/inverse agonists in rats: comparisons between AM4113, AM251, and the benzodiazepine inverse agonist FG-7142. Eur Neuropsychopharmacol 2010; 20:112-22. [PMID: 20015619 PMCID: PMC2817975 DOI: 10.1016/j.euroneuro.2009.11.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 10/30/2009] [Accepted: 11/10/2009] [Indexed: 01/12/2023]
Abstract
Cannabinoid CB1 inverse agonists suppress food-motivated behaviors, but may also induce psychiatric effects such as depression and anxiety. To evaluate behaviors potentially related to anxiety, the present experiments assessed the CB1 inverse agonist AM251 (2.0-8.0mg/kg), the CB1 antagonist AM4113 (3.0-12.0mg/kg), and the benzodiazepine inverse agonist FG-7142 (10.0-20.0mg/kg), using the open field test and the elevated plus maze. Although all three drugs affected open field behavior, these effects were largely due to actions on locomotion. In the elevated plus maze, FG-7142 and AM251 both produced anxiogenic effects. FG-7142 and AM251 also significantly increased c-Fos activity in the amygdala and nucleus accumbens shell. In contrast, AM4113 failed to affect performance in the plus maze, and did not induce c-Fos immunoreactivity. The weak effects of AM4113 are consistent with biochemical data showing that AM4113 induces little or no intrinsic cellular activity. This research may lead to the development of novel appetite suppressants with reduced anxiogenic effects.
Collapse
Affiliation(s)
- K S Sink
- Dept. of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Izzo AA, Sharkey KA. Cannabinoids and the gut: new developments and emerging concepts. Pharmacol Ther 2010; 126:21-38. [PMID: 20117132 DOI: 10.1016/j.pharmthera.2009.12.005] [Citation(s) in RCA: 309] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 12/24/2009] [Indexed: 12/11/2022]
Abstract
Cannabis has been used to treat gastrointestinal (GI) conditions that range from enteric infections and inflammatory conditions to disorders of motility, emesis and abdominal pain. The mechanistic basis of these treatments emerged after the discovery of Delta(9)-tetrahydrocannabinol as the major constituent of Cannabis. Further progress was made when the receptors for Delta(9)-tetrahydrocannabinol were identified as part of an endocannabinoid system, that consists of specific cannabinoid receptors, endogenous ligands and their biosynthetic and degradative enzymes. Anatomical, physiological and pharmacological studies have shown that the endocannabinoid system is widely distributed throughout the gut, with regional variation and organ-specific actions. It is involved in the regulation of food intake, nausea and emesis, gastric secretion and gastroprotection, GI motility, ion transport, visceral sensation, intestinal inflammation and cell proliferation in the gut. Cellular targets have been defined that include the enteric nervous system, epithelial and immune cells. Molecular targets of the endocannabinoid system include, in addition to the cannabinoid receptors, transient receptor potential vanilloid 1 receptors, peroxisome proliferator-activated receptor alpha receptors and the orphan G-protein coupled receptors, GPR55 and GPR119. Pharmacological agents that act on these targets have been shown in preclinical models to have therapeutic potential. Here, we discuss cannabinoid receptors and their localization in the gut, the proteins involved in endocannabinoid synthesis and degradation and the presence of endocannabinoids in the gut in health and disease. We focus on the pharmacological actions of cannabinoids in relation to GI disorders, highlighting recent data on genetic mutations in the endocannabinoid system in GI disease.
Collapse
Affiliation(s)
- Angelo A Izzo
- Department of Experimental Pharmacology, University of Naples Federico II and Endocannabinoid Research Group, Naples, Italy.
| | | |
Collapse
|
107
|
Aloyo VJ, Berg KA, Clarke WP, Spampinato U, Harvey JA. Inverse Agonism at Serotonin and Cannabinoid Receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 91:1-40. [DOI: 10.1016/s1877-1173(10)91001-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
108
|
Sink KS, Segovia KN, Nunes EJ, Collins LE, Vemuri VK, Thakur G, Makriyannis A, Salamone JD. Intracerebroventricular administration of cannabinoid CB1 receptor antagonists AM251 and AM4113 fails to alter food-reinforced behavior in rats. Psychopharmacology (Berl) 2009; 206:223-32. [PMID: 19588124 PMCID: PMC4425366 DOI: 10.1007/s00213-009-1602-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 06/19/2009] [Indexed: 10/20/2022]
Abstract
RATIONALE Drugs that interfere with cannabinoid CB1 transmission suppress food-motivated behaviors and may be useful as appetite suppressants, but there is uncertainty about the locus of action for the feeding-suppression effects of these drugs. OBJECTIVE The present work was conducted to determine if two drugs that interfere with cannabinoid receptor transmission, AM251 and AM4113, have effects on food-reinforced behavior after administration into the lateral ventricle (intracerebroventricular (ICV)). RESULTS Although systemic administration of both drugs can suppress food-reinforced behavior, neither AM251 (40, 80, and 160 microg) nor AM4113 (60, 120, and 240 microg) administered at various times prior to testing produced any suppression of food-reinforced operant responding on a fixed-ratio 5 schedule. Because the modulation of locomotion by drugs that act on CB1 receptors is hypothesized to be a forebrain effect, these drugs also were assessed for their ability to reverse the locomotor suppression produced by the CB1 agonist AM411. ICV administration of either AM251 or AM4113 reversed the locomotor suppression induced by the CB1 agonist AM411 in the same dose range that failed to produce any effects on feeding. CONCLUSIONS This indicates that both AM4113 and AM251, when administered ICV, can interact with forebrain CB1 receptors and are efficacious on forebrain-mediated functions unrelated to feeding. These results suggest that CB1 neutral antagonists or inverse agonists may not be affecting food-reinforced behavior via interactions with forebrain CB1 receptors located in nucleus accumbens or hypothalamus and that lower brainstem or peripheral receptors may be involved.
Collapse
Affiliation(s)
- K. S. Sink
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA,Yerkes National Primate Center and the Center for Behavioral Neuroscience, Emory University, 954 Gatewood Drive, Atlanta, GA 30329, USA
| | - K. N. Segovia
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| | - E. J. Nunes
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| | - L. E. Collins
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| | - V. K. Vemuri
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - G. Thakur
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - A. Makriyannis
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - J. D. Salamone
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| |
Collapse
|
109
|
Cinar R, Szücs M. CB1 receptor-independent actions of SR141716 on G-protein signaling: coapplication with the mu-opioid agonist Tyr-D-Ala-Gly-(NMe)Phe-Gly-ol unmasks novel, pertussis toxin-insensitive opioid signaling in mu-opioid receptor-Chinese hamster ovary cells. J Pharmacol Exp Ther 2009; 330:567-74. [PMID: 19448142 DOI: 10.1124/jpet.109.152710] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
The CB(1) cannabinoid receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride (SR141716) has been shown by many investigators to inhibit basal G-protein activity, i.e., to display inverse agonism at high concentrations. However, it is not clear whether this effect is cannabinoid CB(1) receptor-mediated. Using the ligand-stimulated [(35)S]guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) assay, we have found that 10 microM SR141716 slightly but significantly decreases the basal [(35)S]GTPgammaS binding in membranes of the wild-type and CB(1) receptor knockout mouse cortex, parental Chinese hamster ovary (CHO) cells, and CHO cells stably transfected with micro-opioid receptors, MOR-CHO. Accordingly, we conclude that the inverse agonism of SR141716 is CB(1) receptor-independent. Although the specific MOR agonist Tyr-D-Ala-Gly-(NMe)Phe-Gly-ol (DAMGO) saturably and concentration-dependently stimulated [(35)S]GTPgammaS binding, SR141716 (10 microM) inhibited the basal by 25% and competitively inhibited DAMGO stimulation in the mouse cortex. In MOR-CHO membranes, DAMGO caused a 501 +/- 29% stimulation of the basal activity, which was inhibited to 456 +/- 22% by 10 microM SR141716. The inverse agonism of SR141716 was abolished, and DAMGO alone displayed weak, naloxone-insensitive stimulation, whereas the combination of DAMGO and SR141716 (10 microM each) resulted in a 169 +/- 22% stimulation of the basal activity (that was completely inhibited by the prototypic opioid antagonist naloxone) because of pertussis toxin (PTX) treatment to uncouple MORs from G(i)/G(o) proteins. SR141716 proved to bind directly to MORs with low affinity (IC(50) = 5.7 microM). These results suggest the emergence of novel, PTX-insensitive G-protein signaling that is blocked by naloxone when MORs are activated by the combination of DAMGO and SR141716.
Collapse
MESH Headings
- Animals
- CHO Cells
- Cricetinae
- Cricetulus
- Dose-Response Relationship, Drug
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/administration & dosage
- GTP-Binding Proteins/physiology
- Male
- Mice
- Mice, Knockout
- Pertussis Toxin/pharmacology
- Piperidines/administration & dosage
- Pyrazoles/administration & dosage
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/deficiency
- Receptor, Cannabinoid, CB1/physiology
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/physiology
- Rimonabant
- Signal Transduction/drug effects
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Resat Cinar
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | | |
Collapse
|
110
|
Delta-9-tetrahydrocannabinol enhances food reinforcement in a mouse operant conflict test. Psychopharmacology (Berl) 2009; 205:475-87. [PMID: 19452141 DOI: 10.1007/s00213-009-1557-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 04/23/2009] [Indexed: 02/05/2023]
Abstract
RATIONALE Cannabinoid compounds are known to regulate feeding behavior by modulating the hedonic and/or the incentive properties of food. OBJECTIVES The aim of this work was to determine the involvement of the cannabinoid system in food reinforcement associated with a conflict situation generated by stress. METHODS Mice were trained on a fixed ratio 1 schedule of reinforcement to obtain standard, chocolate-flavored or fat-enriched pellets. Once the acquisition criteria were achieved, the reinforced lever press was paired with foot-shock exposure, and the effects of Delta(9)-tetrahydrocannabinol (THC; 1 mg/kg) were evaluated in this conflict paradigm. RESULTS THC did not modify the operant response in mice trained with standard pellets. In contrast, THC improved the instrumental performance of mice trained with chocolate-flavored and fat-enriched pellets. However, the cannabinoid agonist did not fully restore the baseline responses obtained previous to foot-shock delivery. THC ameliorated the performance to obtain high palatable food in this conflict test in both food-restricted and sated mice. The effects of THC on food reinforcement seem to be long-lasting since mice previously treated with this compound showed a better recovery of the instrumental behavior after foot-shock exposure. CONCLUSIONS These findings reveal that the cannabinoid system is involved in the regulation of goal-directed responses towards high palatable and high caloric food under stressful situations.
Collapse
|
111
|
Cannabinoid-1 receptor inverse agonists: current understanding of mechanism of action and unanswered questions. Int J Obes (Lond) 2009; 33:947-55. [PMID: 19597516 DOI: 10.1038/ijo.2009.132] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rimonabant and taranabant are two extensively studied cannabinoid-1 receptor (CB1R) inverse agonists. Their effects on in vivo peripheral tissue metabolism are generally well replicated. The central nervous system site of action of taranabant or rimonabant is firmly established based on brain receptor occupancy studies. At the whole-body level, the mechanism of action of CB1R inverse agonists includes a reduction in food intake and an increase in energy expenditure. At the tissue level, fat mass reduction, liver lipid reduction and improved insulin sensitivity have been shown. These effects on tissue metabolism are readily explained by CB1R inverse agonist acting on brain CB1R and indirectly influencing the tissue metabolism through the autonomic nervous system. It has also been hypothesized that rimonabant acts directly on adipocytes, hepatocytes, pancreatic islets or skeletal muscle in addition to acting on brain CB1R, although strong support for the contribution of peripherally located CB1R to in vivo efficacy is still lacking. This review will carefully examine the published literature and provide a perspective on what new tools and studies are required to address the peripheral site of action hypothesis.
Collapse
|
112
|
Janero DR, Makriyannis A. Cannabinoid receptor antagonists: pharmacological opportunities, clinical experience, and translational prognosis. Expert Opin Emerg Drugs 2009; 14:43-65. [PMID: 19249987 DOI: 10.1517/14728210902736568] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The endogenous cannabinoid (CB) (endocannabinoid) signaling system is involved in a variety of (patho)physiological processes, primarily by virtue of natural, arachidonic acid-derived lipids (endocannabinoids) that activate G protein-coupled CB1 and CB2 receptors. A hyperactive endocannabinoid system appears to contribute to the etiology of several disease states that constitute significant global threats to human health. Consequently, mounting interest surrounds the design and profiling of receptor-targeted CB antagonists as pharmacotherapeutics that attenuate endocannabinoid transmission for salutary gain. Experimental and clinical evidence supports the therapeutic potential of CB1 receptor antagonists to treat overweight/obesity, obesity-related cardiometabolic disorders, and substance abuse. Laboratory data suggest that CB2 receptor antagonists might be effective immunomodulatory and, perhaps, anti-inflammatory drugs. One CB1 receptor antagonist/inverse agonist, rimonabant, has emerged as the first-in-class drug approved outside the United States for weight control. Select follow-on agents (taranabant, otenabant, surinabant, rosonabant, SLV-319, AVE1625, V24343) have also been studied in the clinic. However, rimonabant's market withdrawal in the European Union and suspension of rimonabant's, taranabant's, and otenabant's ongoing development programs have highlighted some adverse clinical side effects (especially nausea and psychiatric disturbances) of CB1 receptor antagonists/inverse agonists. Novel CB1 receptor ligands that are peripherally directed and/or exhibit neutral antagonism (the latter not affecting constitutive CB1 receptor signaling) may optimize the benefits of CB1 receptor antagonists while minimizing any risk. Indeed, CB1 receptor-neutral antagonists appear from preclinical data to offer efficacy comparable to or better than that of prototype CB1 receptor antagonists/inverse agonists, with less propensity to induce nausea. Continued pharmacological profiling, as the prelude to first-in-man testing of CB1 receptor antagonists with unique modes of targeting/pharmacological action, represents an exciting translational frontier in the critical path to CB receptor blockers as medicines.
Collapse
Affiliation(s)
- David R Janero
- Northeastern University, Center for Drug Discovery, Boston, MA 02115-5000, USA.
| | | |
Collapse
|
113
|
JANERO DAVIDR, VADIVEL SUBRAMANIANK, MAKRIYANNIS ALEXANDROS. Pharmacotherapeutic modulation of the endocannabinoid signalling system in psychiatric disorders: drug-discovery strategies. Int Rev Psychiatry 2009; 21:122-33. [PMID: 19367506 PMCID: PMC5531754 DOI: 10.1080/09540260902782778] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Medicinal chemistry has produced small-molecule agents with drug-like character that potently and safely modulate the activity of discrete endocannabinoid system components as potential treatments for medical disorders, including various psychiatric conditions. Two cannabinoid (CB) receptors (CB1 and CB2) currently represent prime endocannabinoid-system therapeutic targets for ligands that either mimic endocannabinoid signalling processes and/or potentiate endocannabinoid-system activity (agonists) or attenuate pathologically heightened endocannabinoid-system transmission (antagonists). Two endocannabinoid deactivating enzymes, fatty acid amide hydrolase (FAAH) and soluble monoacylglycerol lipase (MGL), are increasingly prominent targets for inhibitors that indirectly potentiate endocannabinoid-system signalling. Continued profiling of drug candidates in relevant disease models, identification of additional cannabinoid-related therapeutic targets, and validation of new pharmacological modes of endocannabinoid system modulation will undoubtedly invite further translational efforts in the cannabinoid field for treating psychiatric disorders and other medical conditions.
Collapse
|
114
|
Hanus LO. Pharmacological and therapeutic secrets of plant and brain (endo)cannabinoids. Med Res Rev 2009; 29:213-71. [PMID: 18777572 DOI: 10.1002/med.20135] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Research on the chemistry and pharmacology of cannabinoids and endocannabinoids has reached enormous proportions, with approximately 15,000 articles on Cannabis sativa L. and cannabinoids and over 2,000 articles on endocannabinoids. The present review deals with the history of the Cannabis sativa L. plant, its uses, constituent compounds and their biogeneses, and similarity to compounds from Radula spp. In addition, details of the pharmacology of natural cannabinoids, as well as synthetic agonists and antagonists are presented. Finally, details regarding the pioneering isolation of the endocannabinoid anandamide, as well as the pharmacology and potential therapeutic uses of endocannabinoid congeners are presented.
Collapse
Affiliation(s)
- Lumír Ondrej Hanus
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
115
|
Abstract
Many drugs of abuse, including cannabinoids, opioids, alcohol and nicotine, can alter the levels of endocannabinoids in the brain. Recent studies show that release of endocannabinoids in the ventral tegmental area can modulate the reward-related effects of dopamine and might therefore be an important neurobiological mechanism underlying drug addiction. There is strong evidence that the endocannabinoid system is involved in drug-seeking behavior (especially behavior that is reinforced by drug-related cues), as well as in the mechanisms that underlie relapse to drug use. The cannabinoid CB(1) antagonist/inverse agonist rimonabant has been shown to reduce the behavioral effects of stimuli associated with drugs of abuse, including nicotine, alcohol, cocaine, and marijuana. Thus, the endocannabinoid system represents a promising target for development of new treatments for drug addiction.
Collapse
Affiliation(s)
- Zuzana Justinova
- Department of Health and Human Services, Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
116
|
Abstract
Pharmacological and biochemical investigations on the endocannabinoid system are facilitated by the availability of compounds which interact with its constituents in specific and understandable ways. This chapter describes the main representatives of several classes of chemicals employed as pharmacological tools in this field, focusing on small organic compounds having, where possible, a drug-like structure. Many compounds having different intrinsic activity and selectivity towards the G-protein coupled receptors (GPCR) CB₁ and CB₂ are now available and are currently employed in research protocols. Recently, allosteric ligands for CB₁ receptor and selective ligands for GPR55, a newly characterised GPCR, have also been described in the literature. As for compounds affecting endocannabinoid levels in living tissues, many classes of selective and, in some cases, drug-like inhibitors of FAAH are available, while only compounds with poor selectivity or in vivo activity are known to inhibit other enzymes involved in endocannabinoid catabolism, such as NAAA or MGL, and in endocannabinoid biosynthesis.
Collapse
Affiliation(s)
- Marco Mor
- Dipartimento Farmaceutico, Università degli Studi di Parma, viale G. P. Usberti 27/A Campus Universitario, Parma, I-43100, Italy.
| | | |
Collapse
|
117
|
Tallett A, Blundell J, Rodgers R. Effects of acute low-dose combined treatment with naloxone and AM 251 on food intake, feeding behaviour and weight gain in rats. Pharmacol Biochem Behav 2009; 91:358-66. [DOI: 10.1016/j.pbb.2008.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 08/04/2008] [Accepted: 08/06/2008] [Indexed: 01/08/2023]
|
118
|
Abstract
This chapter will review the basic pharmacology of endocannabinoid receptors. As the best-described cannabinoid receptors are G-protein-coupled receptors (GPCRs), those will be the focus of this chapter. We will start with a basic review of GPCR signaling, as these concepts are critical to understanding the function of cannabinoid receptors. Next, several features of cannabinoid receptor signaling will be presented, with an emphasis on the effectors modulated by cannabinoid receptors. Finally, we will finish with a discussion of cannabinoid receptor agonists and antagonists and future directions. The aim of this chapter is to introduce the cannabinoid receptor pharmacology that will be necessary to appreciate the intricacies of endocannabinoid signaling presented in later chapters.
Collapse
|
119
|
Scherma M, Fadda P, Le Foll B, Forget B, Fratta W, Goldberg SR, Tanda G. The endocannabinoid system: a new molecular target for the treatment of tobacco addiction. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2008; 7:468-81. [PMID: 19128204 PMCID: PMC3821699 DOI: 10.2174/187152708786927859] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tobacco addiction is one of the leading preventable causes of mortality in the world and nicotine appears to be the main critical psychoactive component in establishing and maintaining tobacco dependence. Several lines of evidence suggest that the rewarding effects of nicotine, which underlie its abuse potential, can be modulated by manipulating the endocannabinoid system. For example, pharmacological blockade or genetic deletion of cannabinoid CB(1) receptors reduces or eliminates many behavioral and neurochemical effects of nicotine that are related to its addictive potential. This review will focus on the recently published literature about the role of the endocannabinoid system in nicotine addiction and on the endocannabinoid system as a novel molecular target for the discovery of medications for tobacco dependence.
Collapse
Affiliation(s)
- Maria Scherma
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, USA
- B.B. Brodie Department of Neuroscience, University of Cagliari, Italy
| | - Paola Fadda
- B.B. Brodie Department of Neuroscience, University of Cagliari, Italy
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, and University of Toronto, Toronto, Canada
| | - Benoit Forget
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, and University of Toronto, Toronto, Canada
| | - Walter Fratta
- B.B. Brodie Department of Neuroscience, University of Cagliari, Italy
| | - Steven R. Goldberg
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, USA
| | - Gianluigi Tanda
- Psychobiology Section, Medications Discovery Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, USA
| |
Collapse
|
120
|
Miner P, Abayev Y, Kandova E, Gerges M, Styler E, Wapniak R, Touzani K, Sclafani A, Bodnar RJ. Role of systemic endocannabinoid CB-1 receptor antagonism in the acquisition and expression of fructose-conditioned flavor-flavor preferences in rats. Pharmacol Biochem Behav 2008; 90:318-24. [PMID: 18407342 PMCID: PMC4560860 DOI: 10.1016/j.pbb.2008.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/27/2008] [Accepted: 03/05/2008] [Indexed: 11/20/2022]
Abstract
Rats learn to prefer a flavor mixed into a fructose-saccharin solution over a different flavor mixed into a saccharin-only solution which is considered to be a form of flavor-flavor conditioning. Fructose-conditioned flavor preferences are impaired by systemic dopamine D1 and to a lesser degree, D2 receptor antagonism as well as by NMDA, but not opioid, receptor antagonism. Given the emerging role of the endocannabinoid system in mediating hedonically-driven food intake, the present study examined whether systemic administration of the inverse CB-1 receptor agonist, AM-251 would alter fructose-conditioned flavor preferences. In Experiment 1, food-restricted rats were trained over 10 sessions (30 min/day) to drink a fructose-saccharin solution mixed with one flavor (CS+/Fs) and a less-preferred saccharin-only solution mixed with another flavor (CS-/s). Subsequent two-bottle tests with the two flavors in saccharin (CS+/s, CS-/s) occurred 15 min following counterbalanced pairs of AM-251 doses of 0, 0.1, 1 or 3 mg/kg. Preference for CS+/s over CS-/s following vehicle treatment (74%) was significantly reduced by the 0.1 (67%) and 1 (65%) AM-251 doses, whereas CS+/s, but not CS-/s intake was significantly reduced by the 1 and 3 mg/kg AM-251 doses. In Experiment 2, rats received systemic injections of AM-251 (1 mg/kg) or vehicle prior to the 10 CS+/Fs and CS-/s training sessions. In subsequent two-bottle tests (drug-free) the AM-251 and control groups displayed similar preferences for the CS+ flavor (66% vs. 69%). Experiment 3 demonstrated that AM-251 significantly decreased chow intake (24 h), and 1-h intakes of fructose-saccharin and saccharin-only solutions in ad libitum-fed rats. These data indicate that functional CB-1 receptor antagonism significantly reduces the expression, but not the acquisition of fructose-conditioned flavor-flavor preferences. The endogenous endocannabinoid system is therefore implicated in the maintenance of this form of learned flavor preferences.
Collapse
Affiliation(s)
- Patricia Miner
- Neuropsychology Doctoral Sub-Program, The Graduate Center, City University of New York, United States
| | - Yana Abayev
- Department of Psychology, Queens College, City University of New York, United States
| | - Ester Kandova
- Department of Psychology, Queens College, City University of New York, United States
| | - Meri Gerges
- Department of Psychology, Queens College, City University of New York, United States
| | - Esther Styler
- Department of Psychology, Queens College, City University of New York, United States
| | - Rachel Wapniak
- Department of Psychology, Queens College, City University of New York, United States
| | - Khalid Touzani
- Department of Psychology, Brooklyn College, City University of New York, United States
| | - Anthony Sclafani
- Neuropsychology Doctoral Sub-Program, The Graduate Center, City University of New York, United States
- Cognition, Brain and Behavior Doctoral Sub-Program, The Graduate Center, City University of New York, United States
- Department of Psychology, Brooklyn College, City University of New York, United States
| | - Richard J. Bodnar
- Neuropsychology Doctoral Sub-Program, The Graduate Center, City University of New York, United States
- Department of Psychology, Queens College, City University of New York, United States
| |
Collapse
|
121
|
Oral bioavailability of the novel cannabinoid CB1 antagonist AM6527: effects on food-reinforced behavior and comparisons with AM4113. Pharmacol Biochem Behav 2008; 91:303-6. [PMID: 18703081 DOI: 10.1016/j.pbb.2008.07.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 07/16/2008] [Accepted: 07/18/2008] [Indexed: 11/20/2022]
Abstract
Drugs that interfere with cannabinoid CB1 transmission suppress food-motivated behaviors, and may be clinically useful as appetite suppressants. Several CB1 receptor inverse agonists, such as rimonabant and AM251, as well as the CB1 receptor neutral antagonist, AM4113, have been assessed for their effects on food-motivated behavior. One important criterion for establishing if a drug may be useful clinically is the determination of its oral bioavailability. The present studies compared the effects of AM4113 and a novel CB1 antagonist, AM6527, on the suppression of food-reinforced behavior following intraperitoneal (IP) and oral administration. AM4113 and AM6527 both suppressed lever pressing after IP injections. The ED50 for the effect on FR5 responding was 0.78 mg/kg for IP AM4113, and 0.5763 mg/kg for IP AM6527. AM6527 also was effective after oral administration (ED50=1.49 mg/kg), however, AM 4113 was ineffective up to oral doses of 32.0 mg/kg. AM 4113 may be very useful as a research tool, but its lack of oral activity suggests that this drug might not be effective if orally administered in humans. In contrast, AM 6527 is an orally active CB1 antagonist, which may be useful for clinical research on the appetite suppressant effects of CB1 antagonists.
Collapse
|
122
|
Järbe TUC, LeMay BJ, Olszewska T, Vemuri VK, Wood JT, Makriyannis A. Intrinsic effects of AM4113, a putative neutral CB1 receptor selective antagonist, on open-field behaviors in rats. Pharmacol Biochem Behav 2008; 91:84-90. [PMID: 18640150 DOI: 10.1016/j.pbb.2008.06.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Revised: 06/06/2008] [Accepted: 06/24/2008] [Indexed: 12/26/2022]
Abstract
We examined open-field effects in rats of the cannabinoid 1 receptor (CB1R) agonist WIN55,212-2 (WIN; 3 mg/kg) and its interaction with the CB1R putative neutral antagonist AM4113 (0.3 to 3 mg/kg). Separate studies examined AM4113 alone (0.3 to 5.6 mg/kg). Unlike the CB1R antagonist rimonabant, in vitro (e.g., [Sink K.S., McLaughlin P.J., Wood J.A., Brown C., Fan P., Vemuri V.K., Pang Y., Olzewska T., Thakur G.A., Makriyannis A., Parker L.A., Salamone J.D. The novel cannabinoid CB(1) receptor neutral antagonist AM4113 suppresses food intake and food-reinforced behavior but does not induce signs of nausea in rats. Neuropsychopharmacology 2008a; 33: 946-955.; Sink K.S., Vemuri V.K., Olszewska T., Makriyannis A., Salamone J.D. Cannabinoid CB1 antagonists and dopamine antagonists produce different effects on a task involving response allocation and effort-related choice in food-seeking behavior. Psychopharmacology (Berl) 2008b; 196: 565-574.]) AM4113 produced no change in cAMP accumulation (neutral antagonism vis-a-vis inverse agonism). Recorded behaviors were: ambulation, rearing, circling, latency, scratching, grooming, defecation, urination and vocalization/squeaking. WIN reduced ambulation and rearing; AM4113 completely (ambulation) or partially (rearing) antagonized these behaviors. WIN alone resulted in circling and an increased latency to leave the start area; effects blocked by AM4113. AM4113 increased scratching and grooming, effects attenuated but not abolished by WIN. AM4113 alone tended to reduce ambulation and rearing and had no effect on latency or circling. AM4113 alone increased scratching and grooming. Effects on defecation, urination and vocalization were non-significant. The open-field effects of AM4113 are similar to those reported for rimonabant in rats. Yet, unlike the inverse agonists rimonabant and AM251, the putative neutral CB1R antagonist AM4113 did not produce signs of nausea in ferrets and rats ([Chambers A.P., Vemuri V.K., Peng Y., Wood J.T., Olszewska T., Pittman Q.J., Makriyannis A., Sharkey K.A. A neutral CB1 receptor antagonist reduces weight gain in rat. Am J Physiol Regul Integr Comp Physiol 2007; 293: R2185-2193.; Sink K.S., McLaughlin P.J., Wood J.A., Brown C., Fan P., Vemuri V.K., Pang Y., Olzewska T., Thakur G.A., Makriyannis A., Parker L.A., Salamone J.D. The novel cannabinoid CB(1) receptor neutral antagonist AM4113 suppresses food intake and food-reinforced behavior but does not induce signs of nausea in rats. Neuropsychopharmacology 2008a; 33: 946-955.; Sink K.S., Vemuri V.K., Olszewska T., Makriyannis A., Salamone J.D. Cannabinoid CB1 antagonists and dopamine antagonists produce different effects on a task involving response allocation and effort-related choice in food-seeking behavior. Psychopharmacology (Berl) 2008b; 196: 565-574.]).
Collapse
Affiliation(s)
- T U C Järbe
- Northeastern University, Center for Drug Discovery, 116 Mugar, 360 Huntington Ave., Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
123
|
Hodge J, Bow JP, Plyler KS, Vemuri VK, Wisniecki A, Salamone JD, Makriyannis A, McLaughlin PJ. The cannabinoid CB1 receptor inverse agonist AM 251 and antagonist AM 4113 produce similar effects on the behavioral satiety sequence in rats. Behav Brain Res 2008; 193:298-305. [PMID: 18602425 DOI: 10.1016/j.bbr.2008.06.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 06/04/2008] [Accepted: 06/10/2008] [Indexed: 10/21/2022]
Abstract
Cannabinoid CB1 inverse agonists such as rimonabant and AM 251 hold therapeutic promise as appetite suppressants, but the extent to which non-motivational factors contribute to their anorectic effects is not fully known. Examination of the behavioral satiety sequence (BSS) in rats, the orderly progression from eating to post-prandial grooming and then resting, has revealed that these compounds preserve the order of events but differ markedly from natural satiation. The most notable difference is that grooming (particularly scratching) is profoundly enhanced at anorectic doses, while eating and resting are diminished, raising the possibility that the anorectic effect is simply secondary to the grooming effect. In the current design, the neutral CB1 antagonist AM 4113, which has been found to lack some of the undesirable effects of AM 251, produced nearly identical effects on the BSS as AM 251. The possibility that competition from enhanced grooming could account for the anorectic effect of AM 4113 was examined by yoking the pattern of disruptions caused by grooming in the AM 4113-treated group to forced locomotion in a different group fed in a modified running wheel. This response competition did not significantly reduce food intake. It was concluded that AM 4113, a CB1 neutral antagonist, produces the same effects on the BSS as AM 251, but that response competition from enhanced grooming may not be a sufficient explanation for the anorectic effects of CB1 antagonists/inverse agonists.
Collapse
Affiliation(s)
- Janel Hodge
- Department of Psychology, Edinboro University of Pennsylvania, 210 East Normal Street, Edinboro, PA 16444, USA
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Le Foll B, Forget B, Aubin HJ, Goldberg SR. Blocking cannabinoid CB1 receptors for the treatment of nicotine dependence: insights from pre-clinical and clinical studies. Addict Biol 2008; 13:239-52. [PMID: 18482433 DOI: 10.1111/j.1369-1600.2008.00113.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tobacco use is one of the leading preventable causes of death in developed countries. Since existing medications are only partially effective in treating tobacco smokers, there is a great need for improved medications for smoking cessation. It has been recently proposed that cannabinoid CB(1) receptor antagonists represent a new class of therapeutic agents for drug dependence, and notably, nicotine dependence. Here, we will review current evidence supporting the use of this class of drugs for smoking cessation treatment. Pre-clinical studies indicate that nicotine exposure produces changes in endocannabinoid content in the brain. In experimental animals, N-piperidinyl-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methylpyrazole-3-carboxamide (rimonabant, SR141716) and N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251), two cannabinoid CB(1) receptor antagonists, block nicotine self-administration behavior, an effect that may be related to the blockade of the dopamine-releasing effects of nicotine in the brain. Rimonabant also seems efficacious in decreasing the influence of nicotine-associated stimuli over behavior, suggesting that it may act on two distinct neuronal pathways, those implicated in drug-taking behavior and those involved in relapse phenomena. The utility of rimonabant has been evaluated in several clinical trials. It seems that rimonabant is an efficacious treatment for smoking cessation, although its efficacy does not exceed that of nicotine-replacement therapy and its use may be limited by emotional side effects (nausea, anxiety and depression, mostly). Rimonabant also appears to decrease relapse rates in smokers. These findings indicate significant, but limited, utility of rimonabant for smoking cessation.
Collapse
Affiliation(s)
- Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada.
| | | | | | | |
Collapse
|
125
|
Sink KS, Vemuri VK, Olszewska T, Makriyannis A, Salamone JD. Cannabinoid CB1 antagonists and dopamine antagonists produce different effects on a task involving response allocation and effort-related choice in food-seeking behavior. Psychopharmacology (Berl) 2008; 196:565-74. [PMID: 18004546 PMCID: PMC3713618 DOI: 10.1007/s00213-007-0988-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 10/16/2007] [Indexed: 10/22/2022]
Abstract
RATIONALE Cannabinoid CB1 antagonists/inverse agonists suppress food-motivated behaviors and are being evaluated as potential appetite suppressants. It has been suggested that the effects of CB1 antagonism on food motivation could be related to actions on mesolimbic dopamine (DA). If this were true, then the effects of interference with cannabinoid CB1 transmission should closely resemble the effects of interference with DA transmission. OBJECTIVE To directly compare the effects of DA antagonists with those of CB1 antagonists/inverse agonists, the present studies employed a concurrent lever-pressing/chow-intake procedure. With this task, interference with DA transmission shifts choice behavior such that lever pressing for a preferred food is decreased but chow intake is increased. RESULTS Rats treated with IP injections of the DA D1 antagonist SCH39166 (ecopipam; 0.05-0.2 mg/kg) or the D2 antagonist eticlopride (0.025-0.1 mg/kg) showed substantial decreases in lever pressing and concomitant increases in chow consumption. In contrast, IP administration of the CB1 neutral antagonist AM4113 (4.0-16.0 mg/kg) or the CB1 antagonist/inverse agonist AM251 (2.0-8.0 mg/kg) decreased operant responding for pellets, but there was no corresponding increase in chow intake. CONCLUSIONS These effects of CB1 antagonists/inverse agonists were similar to those produced by the appetite suppressant fenfluramine and by prefeeding. In contrast, low doses of DA antagonists leave primary food motivation intact, but shift behaviors toward food reinforcers that can be obtained with lower response costs. These results suggest that the effects of interference with CB1 transmission are readily distinguishable from those of reduced DA transmission.
Collapse
Affiliation(s)
- K. S. Sink
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| | - V. K. Vemuri
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - T. Olszewska
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - A. Makriyannis
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - J. D. Salamone
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA. Division of Behavioral Neuroscience, Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| |
Collapse
|
126
|
Chen RZ, Frassetto A, Lao JZ, Huang RRC, Xiao JC, Clements MJ, Walsh TF, Hale JJ, Wang J, Tong X, Fong TM. Pharmacological evaluation of LH-21, a newly discovered molecule that binds to cannabinoid CB1 receptor. Eur J Pharmacol 2008; 584:338-42. [PMID: 18336811 DOI: 10.1016/j.ejphar.2008.02.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 01/29/2008] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
Abstract
LH-21 (5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-3-hexyl-1H-1,2,4-triazole) was previously reported as a neutral antagonist at the cannabinoid CB1 receptor which, despite its reported poor ability to penetrate into the brain, suppressed food intake and body weight in rats by intraperitoneal administration. In the present study, we studied the mechanism of action of LH-21 by characterizing its in vitro pharmacological properties and in vivo efficacy. LH-21 inhibited the binding of [3H]CP55940 to cloned human and rat CB1 receptors with IC50 values of 631+/-98 nM, and 690+/-41 nM, respectively, and acted as an inverse agonist in a cAMP functional assay using cultured cells expressing human, rat or mouse CB1 receptor. The compound was shown to be brain-penetrant in rats by intravenous administration. Importantly, a single dose of LH-21 (60 mg/kg, i.p.) caused a similar suppression of overnight food intake and body weight gain in wild-type and CB1 receptor knockout mice. Our results suggest that LH-21 is a low affinity inverse agonist for the CB1 receptor and does not act on the CB1 receptor to inhibit food intake in mice.
Collapse
Affiliation(s)
- Richard Z Chen
- Department of Metabolic Disorders, Merck Research Laboratories, P.O. Box 2000, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Vemuri VK, Janero DR, Makriyannis A. Pharmacotherapeutic targeting of the endocannabinoid signaling system: drugs for obesity and the metabolic syndrome. Physiol Behav 2007; 93:671-86. [PMID: 18155257 DOI: 10.1016/j.physbeh.2007.11.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 11/02/2007] [Indexed: 10/22/2022]
Abstract
Endogenous signaling lipids ("endocannabinoids") functionally related to Delta(9)-tetrahydrocannabinol, the psychoactive ingredient of marijuana (Cannabis), are important biomediators and metabolic regulators critical to mammalian (patho)physiology. The growing family of endocannabinoids, along with endocannabinoid biosynthetic and inactivating enzymes, transporters, and at least two membrane-bound, G-protein coupled receptors, comprise collectively the mammalian endocannabinoid signaling system. The ubiquitous and diverse regulatory actions of the endocannabinoid system in health and disease have supported the regulatory approval of natural products and synthetic agents as drugs that alter endocannabinoid-system activity. More recent data support the concept that the endocananbinoid system may be modulated for therapeutic gain at discrete pharmacological targets with safety and efficacy. Potential medications based on the endocannabinoid system have thus become a central focus of contemporary translational research for varied indications with important unmet medical needs. One such indication, obesity, is a global pandemic whose etiology has a pathogenic component of endocannabinoid-system hyperactivity and for which current pharmacological treatment is severely limited. Application of high-affinity, selective CB1 cannabinoid receptor ligands to attenuate endocannabinoid signaling represents a state-of-the-art approach for improving obesity pharmacotherapy. To this intent, several selective CB1 receptor antagonists with varied chemical structures are currently in advanced preclinical or clinical trials, and one (rimonabant) has been approved as a weight-management drug in some markets. Emerging preclinical data suggest that CB1 receptor neutral antagonists may represent breakthrough medications superior to antagonists/inverse agonists such as rimonabant for therapeutic attenuation of CB1 receptor transmission. Since obesity is a predisposing condition for the cluster of cardiovascular and metabolic derangements collectively known as the metabolic syndrome, effective endocannabinoid-modulatory anti-obesity therapeutics would also help redress other major health problems including type-2 diabetes, atherothrombosis, inflammation, and immune disorders. Pressing worldwide healthcare needs and increasing appreciation of endocannabinoid biology make the rational design and refinement of targeted CB1 receptor modulators a promising route to future medications with significant therapeutic impact against overweight, obesity, obesity-related cardiometabolic dysregulation, and, more generally, maladies having a reward-supported appetitive component.
Collapse
Affiliation(s)
- V Kiran Vemuri
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115-5000, United States
| | | | | |
Collapse
|
128
|
Janero DR, Makriyannis A. Targeted modulators of the endogenous cannabinoid system: future medications to treat addiction disorders and obesity. Curr Psychiatry Rep 2007; 9:365-73. [PMID: 17915075 DOI: 10.1007/s11920-007-0047-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The endogenous endocannabinoid system encompasses a family of natural signaling lipids ("endocannabinoids") functionally related to (9)-tetrahydrocannabinol, the psychoactive ingredient of marijuana (cannabis), along with proteins that modulate the endocannabinoids, including enzymes, transporters, and receptors. The endocannabinoid system's ubiquitous regulatory actions in health and disease underscore its importance to mammalian (patho)physiology and suggest discrete targets through which it may be modulated for therapeutic gain. Medications based on the endocannabinoid system are an important focus of contemporary translational research, particularly with respect to substance abuse and obesity, two prevalent disorders with a pathogenic component of endocannabinoid system hyperactivity. Pressing health care needs have made the rational design of targeted CB1 cannabinoid-receptor modulators a promising route to future medications with significant therapeutic impact against psychobehavioral and metabolic disturbances having a reward-supported appetitive component.
Collapse
Affiliation(s)
- David R Janero
- Center for Drug Discovery, Northeastern University, 116 Mugar Hall, 360 Huntington Avenue, Boston, MA 02115-5000, USA.
| | | |
Collapse
|
129
|
Salamone JD, McLaughlin PJ, Sink K, Makriyannis A, Parker LA. Cannabinoid CB1 receptor inverse agonists and neutral antagonists: effects on food intake, food-reinforced behavior and food aversions. Physiol Behav 2007; 91:383-8. [PMID: 17521686 PMCID: PMC2806672 DOI: 10.1016/j.physbeh.2007.04.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Drugs that interfere with cannabinoid CB1 receptor transmission suppress a number of food-related behaviors, and these compounds are currently being assessed for their potential utility as appetite suppressants. In addition to rimonabant (SR141716A), several other compounds have been evaluated, including AM251 and AM1387. Biochemical studies indicate that most of the drugs assessed thus far have been CB1 inverse agonists, and these drugs all act to suppress food intake and disrupt food-reinforced behavior. Behavioral tests involving intake of different diets (i.e., high fat, high carbohydrate, laboratory chow) indicate that consumption of all three food types is disrupted by CB1 inverse agonists, and that, expressed as a percent of baseline intake, the effect is roughly comparable across different diets. Although CB1 inverse agonists do not appear to produce severe motor impairments that disrupt feeding behavior, there is evidence that they can induce nausea and malaise. Recent studies have been undertaken to characterize the behavioral effects of CB1 receptor neutral antagonists such as AM4113 to determine if these drugs can reduce feeding and food-reinforced behaviors. Across a variety of different tests, AM4113 produces effects on food-motivated behavior that are very similar to those produced by CB1 inverse agonists. Moreover, this drug did not induce conditioned gaping in rats or vomiting in ferrets. These results suggest that CB1 receptor neutral antagonists may decrease appetite by blocking endogenous cannabinoid tone, and that these drugs may be less associated with nausea than is the case for CB1 inverse agonists.
Collapse
Affiliation(s)
- John D Salamone
- Department of Psychology, University of Connecticut, 406 Babbidge Road, Storrs, CT 06269-1020, USA.
| | | | | | | | | |
Collapse
|