101
|
Issa FA, Hall MK, Hatchett CJ, Weidner DA, Fiorenza AC, Schwalbe RA. Compromised N-Glycosylation Processing of Kv3.1b Correlates with Perturbed Motor Neuron Structure and Locomotor Activity. BIOLOGY 2021; 10:486. [PMID: 34070741 PMCID: PMC8229559 DOI: 10.3390/biology10060486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022]
Abstract
Neurological difficulties commonly accompany individuals suffering from congenital disorders of glycosylation, resulting from defects in the N-glycosylation pathway. Vacant N-glycosylation sites (N220 and N229) of Kv3, voltage-gated K+ channels of high-firing neurons, deeply perturb channel activity in neuroblastoma (NB) cells. Here we examined neuron development, localization, and activity of Kv3 channels in wildtype AB zebrafish and CRISPR/Cas9 engineered NB cells, due to perturbations in N-glycosylation processing of Kv3.1b. We showed that caudal primary (CaP) motor neurons of zebrafish spinal cord transiently expressing fully glycosylated (WT) Kv3.1b have stereotypical morphology, while CaP neurons expressing partially glycosylated (N220Q) Kv3.1b showed severe maldevelopment with incomplete axonal branching and extension around the ventral musculature. Consequently, larvae expressing N220Q in CaP neurons had impaired swimming locomotor activity. We showed that replacement of complex N-glycans with oligomannose attached to Kv3.1b and at cell surface lessened Kv3.1b dispersal to outgrowths by altering the number, size, and density of Kv3.1b-containing particles in membranes of rat neuroblastoma cells. Opening and closing rates were slowed in Kv3 channels containing Kv3.1b with oligomannose, instead of complex N-glycans, which suggested a reduction in the intrinsic dynamics of the Kv3.1b α-subunit. Thus, N-glycosylation processing of Kv3.1b regulates neuronal development and excitability, thereby controlling motor activity.
Collapse
Affiliation(s)
- Fadi A. Issa
- Department of Biology, East Carolina University, Greenville, NC 27858, USA;
| | - M. Kristen Hall
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (M.K.H.); (C.J.H.); (A.C.F.)
| | - Cody J. Hatchett
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (M.K.H.); (C.J.H.); (A.C.F.)
| | - Douglas A. Weidner
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Alexandria C. Fiorenza
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (M.K.H.); (C.J.H.); (A.C.F.)
| | - Ruth A. Schwalbe
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (M.K.H.); (C.J.H.); (A.C.F.)
| |
Collapse
|
102
|
Kurhade SE, Weiner JD, Gao FP, Farrell MP. Functionalized High Mannose-Specific Lectins for the Discovery of Type I Mannosidase Inhibitors. Angew Chem Int Ed Engl 2021; 60:12313-12318. [PMID: 33728787 PMCID: PMC8131250 DOI: 10.1002/anie.202101249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/27/2021] [Indexed: 01/01/2023]
Abstract
An engineered cyanovirin-N homologue that exhibits specificity for high mannose N-glycans has been constructed to aid type I α 1,2-mannosidase inhibitor discovery and development. Engineering the lectins C-terminus permitted facile functionalization with fluorophores via a sortase and click strategy. The resulting lectin constructs exhibit specificity for cells presenting high mannose N-glycans. Importantly, these lectin constructs can also be applied to specifically assess changes in cell surface glycosylation induced by type I mannosidase inhibitors. Testing the utility of these lectin constructs led to the discovery of type I mannosidase inhibitors with nanomolar potency. Cumulatively, these findings reveal the specificity and utility of the functionalized cyanovirin-N homologue constructs, and highlight their potential in analytical contexts that require high mannose-specific lectins.
Collapse
Affiliation(s)
- Suresh E Kurhade
- Department of Medicinal Chemistry, The University of Kansas, 2034 Becker Drive, Lawrence, KS, 66047, USA
| | - Jack D Weiner
- Department of Medicinal Chemistry, The University of Kansas, 2034 Becker Drive, Lawrence, KS, 66047, USA
| | - Fei Philip Gao
- Protein Production Group, The University of Kansas, 2034 Becker Drive, Lawrence, KS, 66047, USA
| | - Mark P Farrell
- Department of Medicinal Chemistry, The University of Kansas, 2034 Becker Drive, Lawrence, KS, 66047, USA
| |
Collapse
|
103
|
Kurhade SE, Weiner JD, Gao FP, Farrell MP. Functionalized High Mannose‐Specific Lectins for the Discovery of Type I Mannosidase Inhibitors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Suresh E. Kurhade
- Department of Medicinal Chemistry The University of Kansas 2034 Becker Drive Lawrence KS 66047 USA
| | - Jack D. Weiner
- Department of Medicinal Chemistry The University of Kansas 2034 Becker Drive Lawrence KS 66047 USA
| | - Fei Philip Gao
- Protein Production Group The University of Kansas 2034 Becker Drive Lawrence KS 66047 USA
| | - Mark P. Farrell
- Department of Medicinal Chemistry The University of Kansas 2034 Becker Drive Lawrence KS 66047 USA
| |
Collapse
|
104
|
Yan P, Patel HJ, Sharma S, Corben A, Wang T, Panchal P, Yang C, Sun W, Araujo TL, Rodina A, Joshi S, Robzyk K, Gandu S, White JR, de Stanchina E, Modi S, Janjigian YY, Hill EG, Liu B, Erdjument-Bromage H, Neubert TA, Que NLS, Li Z, Gewirth DT, Taldone T, Chiosis G. Molecular Stressors Engender Protein Connectivity Dysfunction through Aberrant N-Glycosylation of a Chaperone. Cell Rep 2021; 31:107840. [PMID: 32610141 PMCID: PMC7372946 DOI: 10.1016/j.celrep.2020.107840] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/04/2020] [Accepted: 06/09/2020] [Indexed: 01/08/2023] Open
Abstract
Stresses associated with disease may pathologically remodel the proteome by both increasing interaction strength and altering interaction partners, resulting in proteome-wide connectivity dysfunctions. Chaperones play an important role in these alterations, but how these changes are executed remains largely unknown. Our study unveils a specific N-glycosylation pattern used by a chaperone, Glucose-regulated protein 94 (GRP94), to alter its conformational fitness and stabilize a state most permissive for stable interactions with proteins at the plasma membrane. This "protein assembly mutation' remodels protein networks and properties of the cell. We show in cells, human specimens, and mouse xenografts that proteome connectivity is restorable by inhibition of the N-glycosylated GRP94 variant. In summary, we provide biochemical evidence for stressor-induced chaperone-mediated protein mis-assemblies and demonstrate how these alterations are actionable in disease.
Collapse
Affiliation(s)
- Pengrong Yan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hardik J Patel
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Adriana Corben
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Currently at Mount Sinai Hospital, New York, NY 10029, USA
| | - Tai Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chenghua Yang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Currently at Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Weilin Sun
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Thais L Araujo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kenneth Robzyk
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Srinivasa Gandu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Julie R White
- Comparative Pathology Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shanu Modi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yelena Y Janjigian
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elizabeth G Hill
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bei Liu
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Thomas A Neubert
- Department of Cell Biology and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Nanette L S Que
- Hauptman-Woodward Medical Research Institute, Buffalo, NY 14203, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel T Gewirth
- Hauptman-Woodward Medical Research Institute, Buffalo, NY 14203, USA
| | - Tony Taldone
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
105
|
Bryan L, Clynes M, Meleady P. The emerging role of cellular post-translational modifications in modulating growth and productivity of recombinant Chinese hamster ovary cells. Biotechnol Adv 2021; 49:107757. [PMID: 33895332 DOI: 10.1016/j.biotechadv.2021.107757] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Chinese hamster ovary (CHO) cells are one of the most commonly used host cell lines used for the production human therapeutic proteins. Much research over the past two decades has focussed on improving the growth, titre and cell specific productivity of CHO cells and in turn lowering the costs associated with production of recombinant proteins. CHO cell engineering has become of particular interest in recent years following the publication of the CHO cell genome and the availability of data relating to the proteome, transcriptome and metabolome of CHO cells. However, data relating to the cellular post-translational modification (PTMs) which can affect the functionality of CHO cellular proteins has only begun to be presented in recent years. PTMs are important to many cellular processes and can further alter proteins by increasing the complexity of proteins and their interactions. In this review, we describe the research presented from CHO cells to date related on three of the most important PTMs; glycosylation, phosphorylation and ubiquitination.
Collapse
Affiliation(s)
- Laura Bryan
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
106
|
Hsu CC, Okumura R, Motooka D, Sasaki R, Nakamura S, Iida T, Takeda K. Alleviation of colonic inflammation by Lypd8 in a mouse model of inflammatory bowel disease. Int Immunol 2021; 33:359-372. [PMID: 33822948 DOI: 10.1093/intimm/dxab012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Dysfunction of the intestinal mucosal barrier causes inflammatory bowel diseases (IBDs). Indeed, mucosal barrier impairment in the gut of IBD patients results from decreased expression of barrier molecules. Ly6/Plaur domain containing 8 (Lypd8) segregates microbiota from the colonic epithelial layer. In this study, we found that Lypd8-/- mice, in which flagellated bacteria invaded the mucosal surface of the colon, developed spontaneous colitis when dysbiosis was induced by a high-fat diet (HFD). On the basis of this finding, we assessed whether the application of human LYPD8 (hLYPD8) protein exhibiting the glycan-dependent inhibition of bacterial motility is effective in a colitis model. Oral and anal treatments with hLYPD8 protein ameliorate dextran sulfate sodium-induced colitis and HFD-induced colitis in Lypd8-/- mice. These results indicate a therapeutic potential of hLYPD8 protein supplementation for IBD.
Collapse
Affiliation(s)
- Chiao-Ching Hsu
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Ryu Okumura
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Institute for Open and Transdisciplinary Research Initiative, Osaka University, Suita, Osaka, Japan
| | - Reo Sasaki
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Institute for Open and Transdisciplinary Research Initiative, Osaka University, Suita, Osaka, Japan
| | - Tetsuya Iida
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kiyoshi Takeda
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Institute for Open and Transdisciplinary Research Initiative, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
107
|
Chemical (neo)glycosylation of biological drugs. Adv Drug Deliv Rev 2021; 171:62-76. [PMID: 33548302 DOI: 10.1016/j.addr.2021.01.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/08/2023]
Abstract
Biological drugs, specifically proteins and peptides, are a privileged class of medicinal agents and are characterized with high specificity and high potency of therapeutic activity. However, biologics are fragile and require special care during storage, and are often modified to optimize their pharmacokinetics in terms of proteolytic stability and blood residence half-life. In this review, we showcase glycosylation as a method to optimize biologics for storage and application. Specifically, we focus on chemical glycosylation as an approach to modify biological drugs. We present case studies that illustrate the success of this methodology and specifically address the highly important question: does connectivity within the glycoconjugate have to be native or not? We then present the innovative methods of chemical glycosylation of biologics and specifically highlight the emerging and established protecting group-free methodologies of glycosylation. We discuss thermodynamic origins of protein stabilization via glycosylation, and analyze in detail stabilization in terms of proteolytic stability, aggregation upon storage and/or heat treatment. Finally, we present a case study of protein modification using sialic acid-containing glycans to avoid hepatic clearance of biological drugs. This review aims to spur interest in chemical glycosylation as a facile, powerful tool to optimize proteins and peptides as medicinal agents.
Collapse
|
108
|
Godoy R, Machuca J, Venthur H, Quiroz A, Mutis A. An Overview of Antennal Esterases in Lepidoptera. Front Physiol 2021; 12:643281. [PMID: 33868009 PMCID: PMC8044547 DOI: 10.3389/fphys.2021.643281] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/15/2021] [Indexed: 12/02/2022] Open
Abstract
Lepidoptera are used as a model for the study of insect olfactory proteins. Among them, odorant degrading enzymes (ODEs), that degrade odorant molecules to maintain the sensitivity of antennae, have received less attention. In particular, antennal esterases (AEs; responsible for ester degradation) are crucial for intraspecific communication in Lepidoptera. Currently, transcriptomic and genomic studies have provided AEs in several species. However, efforts in gene annotation, classification, and functional assignment are still lacking. Therefore, we propose to combine evidence at evolutionary, structural, and functional level to update ODEs as well as key information into an easier classification, particularly of AEs. Finally, the kinetic parameters for putative inhibition of ODEs are discussed in terms of its role in future integrated pest management (IPM) strategies.
Collapse
Affiliation(s)
- Ricardo Godoy
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco, Chile
| | - Juan Machuca
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco, Chile
| | - Herbert Venthur
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco, Chile
| | - Andrés Quiroz
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco, Chile
| | - Ana Mutis
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
109
|
Exploring dynamics and network analysis of spike glycoprotein of SARS-COV-2. Biophys J 2021; 120:2902-2913. [PMID: 33705760 PMCID: PMC7939993 DOI: 10.1016/j.bpj.2021.02.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022] Open
Abstract
The ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 continues to rage with devastating consequences on human health and global economy. The spike glycoprotein on the surface of coronavirus mediates its entry into host cells and is the target of all current antibody design efforts to neutralize the virus. The glycan shield of the spike helps the virus to evade the human immune response by providing a thick sugar-coated barrier against any antibody. To study the dynamic motion of glycans in the spike protein, we performed microsecond-long molecular dynamics simulation in two different states that correspond to the receptor binding domain in open or closed conformations. Analysis of this microsecond-long simulation revealed a scissoring motion on the N-terminal domain of neighboring monomers in the spike trimer. The roles of multiple glycans in shielding of spike protein in different regions were uncovered by a network analysis, in which the high betweenness centrality of glycans at the apex revealed their importance and function in the glycan shield. Microdomains of glycans were identified featuring a high degree of intracommunication in these microdomains. An antibody overlap analysis revealed the glycan microdomains as well as individual glycans that inhibit access to the antibody epitopes on the spike protein. Overall, the results of this study provide detailed understanding of the spike glycan shield, which may be utilized for therapeutic efforts against this crisis.
Collapse
|
110
|
N-Glycosylation can selectively block or foster different receptor-ligand binding modes. Sci Rep 2021; 11:5239. [PMID: 33664400 PMCID: PMC7933184 DOI: 10.1038/s41598-021-84569-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/17/2021] [Indexed: 11/09/2022] Open
Abstract
While DNA encodes protein structure, glycans provide a complementary layer of information to protein function. As a prime example of the significance of glycans, the ability of the cell surface receptor CD44 to bind its ligand, hyaluronan, is modulated by N-glycosylation. However, the details of this modulation remain unclear. Based on atomistic simulations and NMR, we provide evidence that CD44 has multiple distinct binding sites for hyaluronan, and that N-glycosylation modulates their respective roles. We find that non-glycosylated CD44 favors the canonical sub-micromolar binding site, while glycosylated CD44 binds hyaluronan with an entirely different micromolar binding site. Our findings show (for the first time) how glycosylation can alter receptor affinity by shielding specific regions of the host protein, thereby promoting weaker binding modes. The mechanism revealed in this work emphasizes the importance of glycosylation in protein function and poses a challenge for protein structure determination where glycosylation is usually neglected.
Collapse
|
111
|
Panera N, Meroni M, Longo M, Crudele A, Valenti L, Bellacchio E, Miele L, D'Oria V, Paolini E, Maggioni M, Fracanzani AL, Alisi A, Dongiovanni P. The KLB rs17618244 gene variant is associated with fibrosing MAFLD by promoting hepatic stellate cell activation. EBioMedicine 2021; 65:103249. [PMID: 33640795 PMCID: PMC7921469 DOI: 10.1016/j.ebiom.2021.103249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/20/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The rs17618244 G>A β-Klotho (KLB) variant has been associated with increased risk of ballooning and inflammation in pediatric patients with metabolic associated fatty liver disease (MAFLD), by reducing KLB expression. In hepatocytes, KLB downregulation induced fat accumulation and the expression of inflammatory and lipotoxic genes. We aimed to examine firstly the impact of the KLB rs17618244 variation on liver damage in adult patients with MAFLD and secondly its effect on hepatic stellate cells (HSCs) activation. METHODS The impact of the KLB rs17618244 variant on histological liver damage was surveyed in a retrospective cohort of 1111 adult patients with MAFLD. Subgroup analysis was performed according to the presence of obesity (BMI>35; n = 708). Immortalized HSCs (LX-2) were transfected with the KLB wild type (LX-2_KLBwt), or with the mutant one carrying the rs17618244 (LX-2_KLBmut). FINDINGS At ordinal regression analysis the KLB rs17618244 variant was associated with hepatic fibrosis (OR 1.23, 95% C.I.1.004-1.51; p = 0.04), but not with steatosis, inflammation and ballooning. By stratifying patients according to the presence of obesity, the KLB A allele was further associated with lobular inflammation (OR 1.32, 95% C.I.1.02-1.72; p = 0.03) and cirrhosis (OR 2.51, 95% C.I.1.23-5.05; p = 0.01) Moreover, hepatic KLB expression correlated with that of fibrogenic genes. LX-2_KLBmut cells showed reduced KLB protein levels paralleled by an induction of pro-fibrogenic genes and enhanced proliferative rate. INTERPRETATION The KLB rs17618244 variant is associated with hepatic fibrosis, inflammation and cirrhosis mainly in obese patients with MAFLD and HSCs which carry this mutation are highly proliferative and acquire a myofibroblast-like phenotype. FUNDING Ricerca Finalizzata Ministero della Salute GR-2019-12,370,172 (NP), Ricerca Corrente Fondazione IRCCS Cà Granda (PD and ALF), Ricerca Finalizzata Ministero della Salute RF-2013-02,358,319 (ALF), and Ricerca Corrente and 5 × 1000 Ministero della Salute (AA).
Collapse
Affiliation(s)
- Nadia Panera
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, 4, Piazza Sant'Onofrio, Rome 00165, Italy
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, Milan 20122, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, Milan 20122, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milano 20122, Italy
| | - Annalisa Crudele
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, 4, Piazza Sant'Onofrio, Rome 00165, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano 20122, Italy; Translational Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Emanuele Bellacchio
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Luca Miele
- Area Medicina Interna, Gastroenterologia e Oncologia Medica, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Valentina D'Oria
- Microscopy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Erika Paolini
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, Milan 20122, Italy; Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano 20133, Italy
| | - Marco Maggioni
- Deparment of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35 Milan 20122, Italy
| | - Anna Ludovica Fracanzani
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, Milan 20122, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano 20122, Italy
| | - Anna Alisi
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, 4, Piazza Sant'Onofrio, Rome 00165, Italy.
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, Milan 20122, Italy.
| |
Collapse
|
112
|
Merselis LC, Rivas ZP, Munson GP. Breaching the Bacterial Envelope: The Pivotal Role of Perforin-2 (MPEG1) Within Phagocytes. Front Immunol 2021; 12:597951. [PMID: 33692780 PMCID: PMC7937864 DOI: 10.3389/fimmu.2021.597951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
The membrane attack complex (MAC) of the complement system and Perforin-1 are well characterized innate immune effectors. MAC is composed of C9 and other complement proteins that target the envelope of gram-negative bacteria. Perforin-1 is deployed when killer lymphocytes degranulate to destroy virally infected or cancerous cells. These molecules polymerize with MAC-perforin/cholesterol-dependent cytolysin (MACPF/CDC) domains of each monomer deploying amphipathic β-strands to form pores through target lipid bilayers. In this review we discuss one of the most recently discovered members of this family; Perforin-2, the product of the Mpeg1 gene. Since their initial description more than 100 years ago, innumerable studies have made macrophages and other phagocytes some of the best understood cells of the immune system. Yet remarkably it was only recently revealed that Perforin-2 underpins a pivotal function of phagocytes; the destruction of phagocytosed microbes. Several studies have established that phagocytosed bacteria persist and in some cases flourish within phagocytes that lack Perforin-2. When challenged with either gram-negative or gram-positive pathogens Mpeg1 knockout mice succumb to infectious doses that the majority of wild-type mice survive. As expected by their immunocompromised phenotype, bacterial pathogens replicate and disseminate to deeper tissues of Mpeg1 knockout mice. Thus, this evolutionarily ancient gene endows phagocytes with potent bactericidal capability across taxa spanning sponges to humans. The recently elucidated structures of mammalian Perforin-2 reveal it to be a homopolymer that depends upon low pH, such as within phagosomes, to transition to its membrane-spanning pore conformation. Clinical manifestations of Mpeg1 missense mutations further highlight the pivotal role of Perforin-2 within phagocytes. Controversies and gaps within the field of Perforin-2 research are also discussed as well as animal models that may be used to resolve the outstanding issues. Our review concludes with a discussion of bacterial counter measures against Perforin-2.
Collapse
Affiliation(s)
- Leidy C Merselis
- Department of Microbiology and Immunology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Zachary P Rivas
- Department of Microbiology and Immunology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - George P Munson
- Department of Microbiology and Immunology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
113
|
Lupala CS, Li X, Lei J, Chen H, Qi J, Liu H, Su XD. Computational simulations reveal the binding dynamics between human ACE2 and the receptor binding domain of SARS-CoV-2 spike protein. QUANTITATIVE BIOLOGY 2021. [DOI: 10.15302/j-qb-020-0231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
114
|
Cho BG, Jiang P, Goli M, Gautam S, Mechref Y. Using micro pillar array columns (μPAC) for the analysis of permethylated glycans. Analyst 2021; 146:4374-4383. [DOI: 10.1039/d1an00643f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The use of both 50 cm and 200 cm micro pillar array column (μPAC) for the analysis of permethylated glycan is demonstrated and assessed.
Collapse
Affiliation(s)
- Byeong Gwan Cho
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| | - Peilin Jiang
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| | - Mona Goli
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| | - Sakshi Gautam
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| |
Collapse
|
115
|
Meng F, Liang Z, Zhao K, Luo C. Drug design targeting active posttranslational modification protein isoforms. Med Res Rev 2020; 41:1701-1750. [PMID: 33355944 DOI: 10.1002/med.21774] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
Modern drug design aims to discover novel lead compounds with attractable chemical profiles to enable further exploration of the intersection of chemical space and biological space. Identification of small molecules with good ligand efficiency, high activity, and selectivity is crucial toward developing effective and safe drugs. However, the intersection is one of the most challenging tasks in the pharmaceutical industry, as chemical space is almost infinity and continuous, whereas the biological space is very limited and discrete. This bottleneck potentially limits the discovery of molecules with desirable properties for lead optimization. Herein, we present a new direction leveraging posttranslational modification (PTM) protein isoforms target space to inspire drug design termed as "Post-translational Modification Inspired Drug Design (PTMI-DD)." PTMI-DD aims to extend the intersections of chemical space and biological space. We further rationalized and highlighted the importance of PTM protein isoforms and their roles in various diseases and biological functions. We then laid out a few directions to elaborate the PTMI-DD in drug design including discovering covalent binding inhibitors mimicking PTMs, targeting PTM protein isoforms with distinctive binding sites from that of wild-type counterpart, targeting protein-protein interactions involving PTMs, and hijacking protein degeneration by ubiquitination for PTM protein isoforms. These directions will lead to a significant expansion of the biological space and/or increase the tractability of compounds, primarily due to precisely targeting PTM protein isoforms or complexes which are highly relevant to biological functions. Importantly, this new avenue will further enrich the personalized treatment opportunity through precision medicine targeting PTM isoforms.
Collapse
Affiliation(s)
- Fanwang Meng
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Zhongjie Liang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Kehao Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Cheng Luo
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
116
|
Lee S. Asn-linked N-acetylglucosamine of the amylin receptor 2 extracellular domain enhances peptide ligand affinity. FEBS Open Bio 2020; 11:195-206. [PMID: 33227824 PMCID: PMC7780097 DOI: 10.1002/2211-5463.13042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 11/07/2022] Open
Abstract
The calcitonin receptor (CTR) has a large extracellular domain (ECD) with multiple N‐glycosylation sites. An asparagine (Asn)‐linked N‐acetylglucosamine (GlcNAc) of CTR ECD N130 was previously reported to enhance peptide hormone binding affinity for CTR ECD. CTR forms a complex with an accessory protein RAMP, and the RAMP:CTR complex gains affinity for peptide hormone amylin as the amylin receptor (AMY). Although N‐glycosylation of AMY ECD was reported to enhance peptide hormone affinity, it remains underexplored which N‐glycosites of AMY ECD are responsible for peptide affinity enhancement and it is unclear whether an Asn‐linked GlcNAc of the N‐glycosites plays a critical role. Here, I investigated the role of the Asn‐linked GlcNAc of CTR N130 in the affinity of an antagonistic amylin analog (AC413) for AMY2 ECD (the RAMP2 ECD:CTR ECD complex). I used Endo H‐treated CTR ECD in which N‐glycans were trimmed to an Asn‐linked GlcNAc on each of the N‐glycosites. I incubated Endo H‐treated CTR ECD with excess of glycan‐free RAMP2 ECD to produce the RAMP2 ECD:CTR ECD complex. Using this coincubation system, I found that the RAMP2 ECD complex with Endo H‐treated CTR ECD with N130D mutation showed a fourfold decrease in AC413 affinity compared with the RAMP2 ECD complex with Endo H‐treated CTR ECD WT. In contrast, RAMP2 ECD N‐glycosylation did not affect peptide binding affinity. These results indicate that the Asn‐linked GlcNAc of CTR N130 is an important peptide affinity enhancer for AMY2 ECD and reveals a significant role of the Asn‐linked GlcNAc in AMY2 function.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Basic Pharmaceutical SciencesFred Wilson School of PharmacyHigh Point UniversityHigh PointNCUSA
| |
Collapse
|
117
|
Criddle RS, Lin HJL, James I, Park JS, Hansen LD, Price JC. Proposing a minimal set of metrics and methods to predict probabilities of amyloidosis disease and onset age in individuals. Aging (Albany NY) 2020; 12:22356-22369. [PMID: 33203794 PMCID: PMC7746394 DOI: 10.18632/aging.202208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Many amyloid-driven pathologies have both genetic and stochastic components where assessing risk of disease development requires a multifactorial assessment where many of the variables are poorly understood. Risk of transthyretin-mediated amyloidosis is enhanced by age and mutation of the transthyretin (TTR) gene, but amyloidosis is not directly initiated by mutated TTR proteins. Nearly all of the 150+ known mutations increase dissociation of the homotetrameric protein structure and increase the probability of an individual developing a TTR amyloid disease late in life. TTR amyloidosis is caused by dissociated monomers that are destabilized and refold into an amyloidogenic form. Therefore, monomer concentration, monomer proteolysis rate, and structural stability are key variables that may determine the rate of development of amyloidosis. Here we develop a unifying biophysical model that quantifies the relationships among these variables in plasma and suggest the probability of an individual developing a TTR amyloid disease can be estimated. This may allow quantification of risk for amyloidosis and provide the information necessary for development of methods for early diagnosis and prevention. Given the similar observation of genetic and sporadic amyloidoses for other diseases, this model and the measurements to assess risk may be applicable to more proteins than just TTR.
Collapse
Affiliation(s)
- Richard S. Criddle
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Hsien-Jung L. Lin
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Isabella James
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Ji Sun Park
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Lee D. Hansen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - John C. Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
118
|
Characterization of Posttranslationally Modified Multidrug Efflux Pumps Reveals an Unexpected Link between Glycosylation and Antimicrobial Resistance. mBio 2020; 11:mBio.02604-20. [PMID: 33203757 PMCID: PMC7683400 DOI: 10.1128/mbio.02604-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The substantial rise in multidrug-resistant bacterial infections is a current global imperative. Cumulative efforts to characterize antimicrobial resistance in bacteria has demonstrated the spread of six families of multidrug efflux pumps, of which resistance-nodulation-cell division (RND) is the major mechanism of multidrug resistance in Gram-negative bacteria. RND is composed of a tripartite protein assembly and confers resistance to a range of unrelated compounds. In the major enteric pathogen Campylobacter jejuni, the three protein components of RND are posttranslationally modified with N-linked glycans. The direct role of N-linked glycans in C. jejuni and other bacteria has long been elusive. Here, we present the first detailed account of the role of N-linked glycans and the link between N-glycosylation and antimicrobial resistance in C. jejuni We demonstrate the multifunctional role of N-linked glycans in enhancing protein thermostability, stabilizing protein complexes and the promotion of protein-protein interaction, thus mediating antimicrobial resistance via enhancing multidrug efflux pump activity. This affirms that glycosylation is critical for multidrug efflux pump assembly. We present a generalized strategy that could be used to investigate general glycosylation system in Campylobacter genus and a potential target to develop antimicrobials against multidrug-resistant pathogens.IMPORTANCE Nearly all bacterial species have at least a single glycosylation system, but the direct effects of these posttranslational protein modifications are unresolved. Glycoproteome-wide analysis of several bacterial pathogens has revealed general glycan modifications of virulence factors and protein assemblies. Using Campylobacter jejuni as a model organism, we have studied the role of general N-linked glycans in the multidrug efflux pump commonly found in Gram-negative bacteria. We show, for the first time, the direct link between N-linked glycans and multidrug efflux pump activity. At the protein level, we demonstrate that N-linked glycans play a role in enhancing protein thermostability and mediating the assembly of the multidrug efflux pump to promote antimicrobial resistance, highlighting the importance of this posttranslational modification in bacterial physiology. Similar roles for glycans are expected to be found in other Gram-negative pathogens that possess general protein glycosylation systems.
Collapse
|
119
|
Berndsen ZT, Chakraborty S, Wang X, Cottrell CA, Torres JL, Diedrich JK, López CA, Yates JR, van Gils MJ, Paulson JC, Gnanakaran S, Ward AB. Visualization of the HIV-1 Env glycan shield across scales. Proc Natl Acad Sci U S A 2020; 117:28014-28025. [PMID: 33093196 PMCID: PMC7668054 DOI: 10.1073/pnas.2000260117] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The dense array of N-linked glycans on the HIV-1 envelope glycoprotein (Env), known as the "glycan shield," is a key determinant of immunogenicity, yet intrinsic heterogeneity confounds typical structure-function analysis. Here, we present an integrated approach of single-particle electron cryomicroscopy (cryo-EM), computational modeling, and site-specific mass spectrometry (MS) to probe glycan shield structure and behavior at multiple levels. We found that dynamics lead to an extensive network of interglycan interactions that drive the formation of higher-order structure within the glycan shield. This structure defines diffuse boundaries between buried and exposed protein surface and creates a mapping of potentially immunogenic sites on Env. Analysis of Env expressed in different cell lines revealed how cryo-EM can detect subtle changes in glycan occupancy, composition, and dynamics that impact glycan shield structure and epitope accessibility. Importantly, this identified unforeseen changes in the glycan shield of Env obtained from expression in the same cell line used for vaccine production. Finally, by capturing the enzymatic deglycosylation of Env in a time-resolved manner, we found that highly connected glycan clusters are resistant to digestion and help stabilize the prefusion trimer, suggesting the glycan shield may function beyond immune evasion.
Collapse
Affiliation(s)
- Zachary T Berndsen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
- The International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037
- Scripps Consortium For HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037
| | - Srirupa Chakraborty
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Xiaoning Wang
- The International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037
- Scripps Consortium For HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Christopher A Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
- The International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037
- Scripps Consortium For HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Cesar A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - James C Paulson
- The International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037
- Scripps Consortium For HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| | | | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037;
- The International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037
- Scripps Consortium For HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
120
|
Azimzadeh Irani M, Ejtehadi MR. Glycan-mediated functional assembly of IL-1RI: structural insights into completion of the current description for immune response. J Biomol Struct Dyn 2020; 40:2575-2585. [PMID: 33124956 DOI: 10.1080/07391102.2020.1841027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Interleukin 1 Receptor type I (IL-1RI) is a multi-domain transmembrane receptor that triggers the inflammatory response. Understanding its detailed mechanism of action is crucial for treating immune disorders. IL-1RI is activated upon formation of its functional assembly that occurs by binding of the IL-1 cytokine and the accessory protein (Il-1RAcP) to it. X-ray crystallography, small-Angle X-ray Scattering and molecular dynamics simulation studies showed that IL-1RI adopts two types of 'compact' and 'extended' conformational states in its dynamical pattern. Furthermore, glycosylation has shown to play a critical role in its activation process. Here, classical and accelerated atomistic molecular dynamics were carried out to examine the role of full glycosylation of IL-1RI and IL-1RAcP in arrangement of the functional assembly. Simulations showed that the 'compact' and 'extended' IL-1RI form two types of 'cytokine-inaccessible-non-signaling' and 'cytokine-accessible-signaling' assemblies with the IL-1RacP, respectively that are both abiding in the presence of glycans. Suggesting that the cytokine binding to IL-1RI is not required for the formation of IL-1RI-IL-1RAcP complex and the 'compact' complex could act as a down-regulatory mechanism. The 'extended' complex is maintained by formation of several persistent hydrogen bonds between the IL-1RI-IL-1RAcP inter-connected glycans. Taken together, it was shown that full glycosylation regulates formation of the IL-1RI functional assembly and play critical role in cytokine biding and triggering the IL-1RI involved downstream pathways in the cell.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maryam Azimzadeh Irani
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | |
Collapse
|
121
|
Oyewusi HA, Huyop F, Wahab RA. Molecular docking and molecular dynamics simulation of Bacillus thuringiensis dehalogenase against haloacids, haloacetates and chlorpyrifos. J Biomol Struct Dyn 2020; 40:1979-1994. [PMID: 33094694 DOI: 10.1080/07391102.2020.1835727] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The high dependency and surplus use of agrochemical products have liberated enormous quantities of toxic halogenated pollutants into the environment and threaten the well-being of humankind. Herein, this study performed molecular docking, molecular dynamic (MD) simulations, molecular mechanics-Poisson Boltzmann Surface Area (MM-PBSA) calculations on the DehH2 from Bacillus thuringiensis, to identify the order of which the enzyme degrades different substrates, haloacids, haloacetate and chlorpyrifos. The study discovered that the DehH2 favored the degradation of haloacids and haloacetates (-3.3 - 4.6 kcal/mol) and formed three hydrogen bonds with Asp125, Arg201 and Lys202. Despite the inconclusive molecular docking result, chlorpyrifos was consistently shown to be the least favored substrate of the DehH2 in MD simulations and MM-PBSA calculations. Results of MD simulations revealed the DehH2-haloacid- (RMSD 0.15 - 0.25 nm) and DehH2-haloacetates (RMSF 0.05 - 0.25 nm) were more stable, with the DehH2-L-2CP complex being the most stable while the least was the DehH2-chlorpyrifos (RMSD 0.295 nm; RMSF 0.05 - 0.59 nm). The Molecular Mechanics Poisson-Boltzmann Surface Area calculations showed the DehH2-L-2CP complex (-24.27 kcal/mol) having the lowest binding energy followed by DehH2-MCA (-22.78 kcal/mol), DehH2-D-2CP (-21.82 kcal/mol), DehH2-3CP (-21.11 kcal/mol), DehH2-2,2-DCP (-18.34 kcal/mol), DehH2-2,3-DCP (-8.34 kcal/mol), DehH2-TCA (-7.62 kcal/mol), while chlorpyrifos was unable to spontaneously bind to DehH2 (+127.16 kcal/mol). In a nutshell, the findings of this study offer valuable insights into the rational tailoring of the DehH2 for expanding its substrate specificity and catalytic activity in the near future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Habeebat Adekilekun Oyewusi
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia.,Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia.,Department of Biochemistry, School of Science and Computer Studies, Federal Polytechnic Ado Ekiti, Ado Ekiti PMB, Ekiti State, Nigeria
| | - Fahrul Huyop
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia.,Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Roswanira Abdul Wahab
- Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia.,Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| |
Collapse
|
122
|
Free-standing spider silk webs of the thomisid Saccodomus formivorus are made of composites comprising micro- and submicron fibers. Sci Rep 2020; 10:17624. [PMID: 33077827 PMCID: PMC7572385 DOI: 10.1038/s41598-020-74469-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Our understanding of the extraordinary mechanical and physico-chemical properties of spider silk is largely confined to the fibers produced by orb-weaving spiders, despite the diversity of foraging webs that occur across numerous spider families. Crab spiders (Thomisidae) are described as ambush predators that do not build webs, but nevertheless use silk for draglines, egg cases and assembling leaf-nests. A little-known exception is the Australian thomisid Saccodomus formivorus, which constructs a basket-like silk web of extraordinary dimensional stability and structural integrity that facilitates the capture of its ant prey. We examined the physical and chemical properties of this unusual web and revealed that the web threads comprise microfibers that are embedded within a biopolymeric matrix containing additionally longitudinally-oriented submicron fibers. We showed that the micro- and submicron fibers differ in their chemical composition and that the web threads show a remarkable lateral resilience compared with that of the major ampullate silk of a well-investigated orb weaver. Our novel analyses of these unusual web and silk characteristics highlight how investigations of non-model species can broaden our understanding of silks and the evolution of foraging webs.
Collapse
|
123
|
Ghorbani M, Brooks BR, Klauda JB. Exploring dynamics and network analysis of spike glycoprotein of SARS-COV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33024973 DOI: 10.1101/2020.09.28.317206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ongoing pandemic caused by coronavirus SARS-COV-2 continues to rage with devastating consequences on human health and global economy. The spike glycoprotein on the surface of coronavirus mediates its entry into host cells and is the target of all current antibody design efforts to neutralize the virus. The glycan shield of the spike helps the virus to evade the human immune response by providing a thick sugar-coated barrier against any antibody. To study the dynamic motion of glycans in the spike protein, we performed microsecond-long MD simulation in two different states that correspond to the receptor binding domain in open or closed conformations. Analysis of this microsecond-long simulation revealed a scissoring motion on the N-terminal domain of neighboring monomers in the spike trimer. Role of multiple glycans in shielding of spike protein in different regions were uncovered by a network analysis, where the high betweenness centrality of glycans at the apex revealed their importance and function in the glycan shield. Microdomains of glycans were identified featuring a high degree of intra-communication in these microdomains. An antibody overlap analysis revealed the glycan microdomains as well as individual glycans that inhibit access to the antibody epitopes on the spike protein. Overall, the results of this study provide detailed understanding of the spike glycan shield, which may be utilized for therapeutic efforts against this crisis.
Collapse
|
124
|
N-glycosylation of the human β1,4-galactosyltransferase 4 is crucial for its activity and Golgi localization. Glycoconj J 2020; 37:577-588. [PMID: 32827291 PMCID: PMC7501111 DOI: 10.1007/s10719-020-09941-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022]
Abstract
β1,4-galactosyltransferase 4 (B4GalT4) is one of seven B4GalTs that belong to CAZy glycosyltransferase family 7 and transfer galactose to growing sugar moieties of proteins, glycolipids, glycosaminoglycans as well as single sugar for lactose synthesis. Herein, we identify two asparagine-linked glycosylation sites in B4GalT4. We found that mutation of one site (Asn220) had greater impact on enzymatic activity while another (Asn335) on Golgi localization and presence of N-glycans at both sites is required for production of stable and enzymatically active protein and its secretion. Additionally, we confirm B4GalT4 involvement in synthesis of keratan sulfate (KS) by generating A375 B4GalT4 knock-out cell lines that show drastic decrease in the amount of KS proteoglycans and no significant structural changes in N- and O-glycans. We show that KS decrease in A375 cells deficient in B4GalT4 activity can be rescued by overproduction of either partially or fully glycosylated B4GalT4 but not with N-glycan-depleted B4GalT4 version.
Collapse
|
125
|
Viral elements and their potential influence on microbial processes along the permanently stratified Cariaco Basin redoxcline. ISME JOURNAL 2020; 14:3079-3092. [PMID: 32801311 PMCID: PMC7785012 DOI: 10.1038/s41396-020-00739-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/18/2020] [Accepted: 08/05/2020] [Indexed: 02/02/2023]
Abstract
Little is known about viruses in oxygen-deficient water columns (ODWCs). In surface ocean waters, viruses are known to act as gene vectors among susceptible hosts. Some of these genes may have metabolic functions and are thus termed auxiliary metabolic genes (AMGs). AMGs introduced to new hosts by viruses can enhance viral replication and/or potentially affect biogeochemical cycles by modulating key microbial pathways. Here we identify 748 viral populations that cluster into 94 genera along a vertical geochemical gradient in the Cariaco Basin, a permanently stratified and euxinic ocean basin. The viral communities in this ODWC appear to be relatively novel as 80 of these viral genera contained no reference viral sequences, likely due to the isolation and unique features of this system. We identify viral elements that encode AMGs implicated in distinctive processes, such as sulfur cycling, acetate fermentation, signal transduction, [Fe–S] formation, and N-glycosylation. These AMG-encoding viruses include two putative Mu-like viruses, and viral-like regions that may constitute degraded prophages that have been modified by transposable elements. Our results provide an insight into the ecological and biogeochemical impact of viruses oxygen-depleted and euxinic habitats.
Collapse
|
126
|
Darby JF, Gilio AK, Piniello B, Roth C, Blagova E, Hubbard RE, Rovira C, Davies GJ, Wu L. Substrate Engagement and Catalytic Mechanisms of N-Acetylglucosaminyltransferase V. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02222] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- John F. Darby
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Amelia K. Gilio
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Beatriz Piniello
- Departament de Quı́mica Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Quı́mica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Christian Roth
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Elena Blagova
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | | | - Carme Rovira
- Departament de Quı́mica Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Quı́mica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08020 Barcelona, Spain
| | - Gideon J. Davies
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Liang Wu
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
127
|
Rebelo AL, Bizeau J, Russo L, Pandit A. Glycan-Functionalized Collagen Hydrogels Modulate the Glycoenvironment of a Neuronal Primary Culture. Biomacromolecules 2020; 21:2681-2694. [DOI: 10.1021/acs.biomac.0c00387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ana Lúcia Rebelo
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland H91 W2TY
| | - Joëlle Bizeau
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland H91 W2TY
| | - Laura Russo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland H91 W2TY
| |
Collapse
|
128
|
Kotidis P, Kontoravdi C. Harnessing the potential of artificial neural networks for predicting protein glycosylation. Metab Eng Commun 2020; 10:e00131. [PMID: 32489858 PMCID: PMC7256630 DOI: 10.1016/j.mec.2020.e00131] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022] Open
Abstract
Kinetic models offer incomparable insight on cellular mechanisms controlling protein glycosylation. However, their ability to reproduce site-specific glycoform distributions depends on accurate estimation of a large number of protein-specific kinetic parameters and prior knowledge of enzyme and transport protein levels in the Golgi membrane. Herein we propose an artificial neural network (ANN) for protein glycosylation and apply this to four recombinant glycoproteins produced in Chinese hamster ovary (CHO) cells, two monoclonal antibodies and two fusion proteins. We demonstrate that the ANN model accurately predicts site-specific glycoform distributions of up to eighteen glycan species with an average absolute error of 1.1%, correctly reproducing the effect of metabolic perturbations as part of a hybrid, kinetic/ANN, glycosylation model (HyGlycoM), as well as the impact of manganese supplementation and glycosyltransferase knock out experiments as a stand-alone machine learning algorithm. These results showcase the potential of machine learning and hybrid approaches for rapidly developing performance-driven models of protein glycosylation.
Collapse
|
129
|
Figueroa-Lozano S, Valk-Weeber RL, Akkerman R, Abdulahad W, van Leeuwen SS, Dijkhuizen L, de Vos P. Inhibitory Effects of Dietary N-Glycans From Bovine Lactoferrin on Toll-Like Receptor 8; Comparing Efficacy With Chloroquine. Front Immunol 2020; 11:790. [PMID: 32477333 PMCID: PMC7235371 DOI: 10.3389/fimmu.2020.00790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/07/2020] [Indexed: 01/06/2023] Open
Abstract
Toll-like receptor 8 (TLR-8) plays a role in the pathogenesis of autoimmune disorders and associated gastrointestinal symptoms that reduce quality of life of patients. Dietary interventions are becoming more accepted as mean to manage onset, progression, and treatment of a broad spectrum of inflammatory conditions. In this study, we assessed the impact of N-glycans derived from bovine lactoferrin (bLF) on the inhibition of TLR-8 activation. We investigated the effects of N-glycans in their native form, as well as in its partially demannosylated and partially desialylated form, on HEK293 cells expressing TLR-8, and in human monocyte-derived dendritic cells (MoDCs). We found that in HEK293 cells, N-glycans strongly inhibited the ssRNA40 induced TLR-8 activation but to a lesser extent the R848 induced TLR-8 activation. The impact was compared with a pharmaceutical agent, i.e., chloroquine (CQN), that is clinically applied to antagonize endosomal TLR- activation. Inhibitory effects of the N-glycans were not influenced by the partially demannosylated or partially desialylated N-glycans. As the difference in charge of the N-glycans did not influence the inhibition capacity of TLR-8, it is possible that the inhibition mediated by the N-glycans is a result of a direct interaction with the receptor rather than a result of pH changes in the endosome. The inhibition of TLR-8 in MoDCs resulted in a significant decrease of IL-6 when cells were treated with the unmodified (0.5-fold, p < 0.0001), partially demannosylated (0.3-fold, p < 0.0001) and partially desialylated (0.4-fold, p < 0.0001) N-glycans. Furthermore, the partially demannosylated and partially desialylated N-glycans showed stronger inhibition of IL-6 production compared with the native N-glycans. This provides evidence that glycan composition plays a role in the immunomodulatory activity of the isolated N-glycans from bLF on MoDCs. Compared to CQN, the N-glycans are specific inhibitors of TLR-8 activation and of IL-6 production in MoDCs. Our findings demonstrate that isolated N-glycans from bLF have attenuating effects on TLR-8 induced immune activation in HEK293 cells and human MoDCs. The inhibitory capacity of N-glycans isolated from bLF onTLR-8 activation may become a food-based strategy to manage autoimmune, infections or other inflammatory disorders.
Collapse
Affiliation(s)
- Susana Figueroa-Lozano
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Rivca L Valk-Weeber
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Groningen, Netherlands
| | - Renate Akkerman
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Wayel Abdulahad
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Sander S van Leeuwen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Groningen, Netherlands
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Groningen, Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
130
|
Mikolajczyk K, Kaczmarek R, Czerwinski M. How glycosylation affects glycosylation: the role of N-glycans in glycosyltransferase activity. Glycobiology 2020; 30:941-969. [PMID: 32363402 DOI: 10.1093/glycob/cwaa041] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
N-glycosylation is one of the most important posttranslational modifications of proteins. It plays important roles in the biogenesis and functions of proteins by influencing their folding, intracellular localization, stability and solubility. N-glycans are synthesized by glycosyltransferases, a complex group of ubiquitous enzymes that occur in most kingdoms of life. A growing body of evidence shows that N-glycans may influence processing and functions of glycosyltransferases, including their secretion, stability and substrate/acceptor affinity. Changes in these properties may have a profound impact on glycosyltransferase activity. Indeed, some glycosyltransferases have to be glycosylated themselves for full activity. N-glycans and glycosyltransferases play roles in the pathogenesis of many diseases (including cancers), so studies on glycosyltransferases may contribute to the development of new therapy methods and novel glycoengineered enzymes with improved properties. In this review, we focus on the role of N-glycosylation in the activity of glycosyltransferases and attempt to summarize all available data about this phenomenon.
Collapse
Affiliation(s)
- Krzysztof Mikolajczyk
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Radoslaw Kaczmarek
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Marcin Czerwinski
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
131
|
Goutham S, Kumari I, Pally D, Singh A, Ghosh S, Akhter Y, Bhat R. Mutually exclusive locales for N-linked glycans and disorder in human glycoproteins. Sci Rep 2020; 10:6040. [PMID: 32269229 PMCID: PMC7142085 DOI: 10.1038/s41598-020-61427-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 01/30/2020] [Indexed: 11/08/2022] Open
Abstract
Several post-translational protein modifications lie predominantly within regions of disorder: the biased localization has been proposed to expand the binding versatility of disordered regions. However, investigating a representative dataset of 500 human N-glycoproteins, we observed the sites of N-linked glycosylations or N-glycosites, to be predominantly present in the regions of predicted order. When compared with disordered stretches, ordered regions were not found to be enriched for asparagines, serines and threonines, residues that constitute the sequon signature for conjugation of N-glycans. We then investigated the basis of mutual exclusivity between disorder and N-glycosites on the basis of amino acid distribution: when compared with control ordered residue stretches without any N-glycosites, residue neighborhoods surrounding N-glycosites showed a depletion of bulky, hydrophobic and disorder-promoting amino acids and an enrichment for flexible and accessible residues that are frequently found in coiled structures. When compared with control disordered residue stretches without any N-glycosites, N-glycosite neighborhoods were depleted of charged, polar, hydrophobic and flexible residues and enriched for aromatic, accessible and order-promoting residues with a tendency to be part of coiled and β structures. N-glycosite neighborhoods also showed greater phylogenetic conservation among amniotes, compared with control ordered regions, which in turn were more conserved than disordered control regions. Our results lead us to propose that unique primary structural compositions and differential propensities for evolvability allowed for the mutual spatial exclusion of N-glycosite neighborhoods and disordered stretches.
Collapse
Affiliation(s)
- Shyamili Goutham
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Sciences, Bangalore, 560012, India
| | - Indu Kumari
- School of Earth and Environmental Sciences, Central University of Himachal Pradesh, District-Kangra, Shahpur, Himachal Pradesh, 176206, India
| | - Dharma Pally
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Sciences, Bangalore, 560012, India
| | - Alvina Singh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Sciences, Bangalore, 560012, India
| | - Sujasha Ghosh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Sciences, Bangalore, 560012, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Ramray Bhat
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Sciences, Bangalore, 560012, India.
| |
Collapse
|
132
|
Samsudin F, Yeo JY, Gan SKE, Bond PJ. Not all therapeutic antibody isotypes are equal: the case of IgM versus IgG in Pertuzumab and Trastuzumab. Chem Sci 2020; 11:2843-2854. [PMID: 32206268 PMCID: PMC7069520 DOI: 10.1039/c9sc04722k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/12/2020] [Indexed: 01/06/2023] Open
Abstract
The therapeutic potential of immunoglobulin M (IgM) is of considerable interest in immunotherapy due to its complement-activating and cell-agglutinating abilities. Pertuzumab and Trastuzumab are monoclonal antibodies used to treat human epidermal growth factor receptor 2 (HER2)-positive breast cancer but exhibit significantly different binding affinities as IgM when compared to its IgG isotype. Using integrative multiscale modelling and simulations of complete antibody assemblies, we show that Pertuzumab IgM is able to utilize all of its V-regions to bind multiple HER2 receptors simultaneously, while similar binding in Trastuzumab IgM is prohibited by steric clashes caused by the large globular domain of HER2. This is subsequently validated by confirming that Pertuzumab IgM inhibits proliferation in HER2 over-expressing live cells more effectively than its IgG counterpart and Trastuzumab IgM. Our study highlights the importance of understanding the molecular details of antibody-antigen interactions for the design and isotype selection of therapeutic antibodies.
Collapse
Affiliation(s)
- Firdaus Samsudin
- Bioinformatics Institute (ASTAR) , 30 Biopolis Street, #07-01 Matrix , Singapore 138671 , Singapore . ;
| | - Joshua Yi Yeo
- Bioinformatics Institute (ASTAR) , 30 Biopolis Street, #07-01 Matrix , Singapore 138671 , Singapore . ;
| | - Samuel Ken-En Gan
- Bioinformatics Institute (ASTAR) , 30 Biopolis Street, #07-01 Matrix , Singapore 138671 , Singapore . ;
- p53 Laboratory (ASTAR) , 8A Biomedical Grove, #06-04/05 Neuros/Immunos , Singapore 138648
- Experimental Drug Development Center (ASTAR) , 10 Biopolis Road Chromos #05-01 , Singapore 138670
| | - Peter J Bond
- Bioinformatics Institute (ASTAR) , 30 Biopolis Street, #07-01 Matrix , Singapore 138671 , Singapore . ;
- Department of Biological Sciences , National University of Singapore , 14 Science Drive 4 , Singapore 117543 , Singapore
| |
Collapse
|
133
|
Stachowski TR, Snell ME, Snell EH. Structural insights into conformational switching in latency-associated peptide between transforming growth factor β-1 bound and unbound states. IUCRJ 2020; 7:238-252. [PMID: 32148852 PMCID: PMC7055372 DOI: 10.1107/s205225251901707x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Transforming growth factor β-1 (TGFβ-1) is a secreted signalling protein that directs many cellular processes and is an attractive target for the treatment of several diseases. The primary endogenous activity regulatory mechanism for TGFβ-1 is sequestration by its pro-peptide, latency-associated peptide (LAP), which sterically prohibits receptor binding by caging TGFβ-1. As such, recombinant LAP is promising as a protein-based therapeutic for modulating TGFβ-1 activity; however, the mechanism of binding is incompletely understood. Comparison of the crystal structure of unbound LAP (solved here to 3.5 Å resolution) with that of the bound complex shows that LAP is in a more open and extended conformation when unbound to TGFβ-1. Analysis suggests a mechanism of binding TGFβ-1 through a large-scale conformational change that includes contraction of the inter-monomer interface and caging by the 'straight-jacket' domain that may occur in partnership through a loop-to-helix transition in the core jelly-roll fold. This conformational change does not appear to include a repositioning of the integrin-binding motif as previously proposed. X-ray scattering-based modelling supports this mechanism and reveals possible orientations and ensembles in solution. Although native LAP is heavily glycosylated, solution scattering experiments show that the overall folding and flexibility of unbound LAP are not influenced by glycan modification. The combination of crystallography, solution scattering and biochemical experiments reported here provide insight into the mechanism of LAP sequestration of TGFβ-1 that is of fundamental importance for therapeutic development.
Collapse
Affiliation(s)
- Timothy R. Stachowski
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
- Cell Stress Biology, Roswell Park Comprehensive Cancer Center, 665 Elm Street, Buffalo, NY 14203, USA
| | - Mary E. Snell
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - Edward H. Snell
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
- Materials Design and Innovation, State University of New York at Buffalo, 700 Ellicott Street, Buffalo, NY 14203, USA
| |
Collapse
|
134
|
Park JS, Holloszy JO, Kim K, Koh JH. Exercise Training-Induced PPARβ Increases PGC-1α Protein Stability and Improves Insulin-Induced Glucose Uptake in Rodent Muscles. Nutrients 2020; 12:nu12030652. [PMID: 32121211 PMCID: PMC7146110 DOI: 10.3390/nu12030652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the long-term effects of training intervention and resting on protein expression and stability of peroxisome proliferator-activated receptor β/δ (PPARβ), peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α), glucose transporter type 4 (GLUT4), and mitochondrial proteins, and determine whether glucose homeostasis can be regulated through stable expression of these proteins after training. Rats swam daily for 3, 6, 9, 14, or 28 days, and then allowed to rest for 5 days post-training. Protein and mRNA levels were measured in the skeletal muscles of these rats. PPARβ was overexpressed and knocked down in myotubes in the skeletal muscle to investigate the effects of swimming training on various signaling cascades of PGC-1α transcription, insulin signaling, and glucose uptake. Exercise training (Ext) upregulated PPARβ, PGC-1α, GLUT4, and mitochondrial enzymes, including NADH-ubiquinone oxidoreductase (NUO), cytochrome c oxidase subunit I (COX1), citrate synthase (CS), and cytochrome c (Cyto C) in a time-dependent manner and promoted the protein stability of PPARβ, PGC-1α, GLUT4, NUO, CS, and Cyto C, such that they were significantly upregulated 5 days after training cessation. PPARβ overexpression increased the PGC-1α protein levels post-translation and improved insulin-induced signaling responsiveness and glucose uptake. The present results indicate that Ext promotes the protein stability of key mitochondria enzymes GLUT4, PGC-1α, and PPARβ even after Ext cessation.
Collapse
Affiliation(s)
- Ju-Sik Park
- Department of Taekwondo, College of Physical Education, Keimyung University, Daegu 42601, Korea;
| | - John O. Holloszy
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kijin Kim
- Department of Physical Education, College of Physical Education, Keimyung University, Daegu 42601, Korea
- Correspondence: (K.K.); (J.-H.K.); Tel.: +82-53-580-5256 (K.K.); +82-53-640-6928 (J.-H.K.)
| | - Jin-Ho Koh
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Physiology, College of Medicine, Yeungnam University, Daegu 42415, Korea
- Correspondence: (K.K.); (J.-H.K.); Tel.: +82-53-580-5256 (K.K.); +82-53-640-6928 (J.-H.K.)
| |
Collapse
|
135
|
Lee SM, Jeong Y, Simms J, Warner ML, Poyner DR, Chung KY, Pioszak AA. Calcitonin Receptor N-Glycosylation Enhances Peptide Hormone Affinity by Controlling Receptor Dynamics. J Mol Biol 2020; 432:1996-2014. [PMID: 32035902 DOI: 10.1016/j.jmb.2020.01.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/27/2019] [Accepted: 01/27/2020] [Indexed: 02/09/2023]
Abstract
The class B G protein-coupled receptor (GPCR) calcitonin receptor (CTR) is a drug target for osteoporosis and diabetes. N-glycosylation of asparagine 130 in its extracellular domain (ECD) enhances calcitonin hormone affinity with the proximal GlcNAc residue mediating this effect through an unknown mechanism. Here, we present two crystal structures of salmon calcitonin-bound, GlcNAc-bearing CTR ECD at 1.78 and 2.85 Å resolutions and analyze the mechanism of the glycan effect. The N130 GlcNAc does not contact the hormone. Surprisingly, the structures are nearly identical to a structure of hormone-bound, N-glycan-free ECD, which suggested that the GlcNAc might affect CTR dynamics not observed in the static crystallographic snapshots. Hydrogen-deuterium exchange mass spectrometry and molecular dynamics simulations revealed that glycosylation stabilized a β-sheet adjacent to the N130 GlcNAc and the N-terminal α-helix near the peptide-binding site while increasing flexibility of the peptide-binding site turret loop. These changes due to N-glycosylation increased the ligand on-rate and decreased its off-rate. The glycan effect extended to RAMP-CTR amylin receptor complexes and was also conserved in the related CGRP receptor. These results reveal that N-glycosylation can modulate GPCR function by altering receptor dynamics.
Collapse
Affiliation(s)
- Sang-Min Lee
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Present Address: Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, 27268, USA
| | - Yejin Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - John Simms
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - Margaret L Warner
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - David R Poyner
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Augen A Pioszak
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
136
|
Stejskal L, Lees WD, Moss DS, Palor M, Bingham RJ, Shepherd AJ, Grove J. Flexibility and intrinsic disorder are conserved features of hepatitis C virus E2 glycoprotein. PLoS Comput Biol 2020; 16:e1007710. [PMID: 32109245 PMCID: PMC7065822 DOI: 10.1371/journal.pcbi.1007710] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 03/11/2020] [Accepted: 02/04/2020] [Indexed: 12/15/2022] Open
Abstract
The glycoproteins of hepatitis C virus, E1E2, are unlike any other viral fusion machinery yet described, and are the current focus of immunogen design in HCV vaccine development; thus, making E1E2 both scientifically and medically important. We used pre-existing, but fragmentary, structures to model a complete ectodomain of the major glycoprotein E2 from three strains of HCV. We then performed molecular dynamic simulations to explore the conformational landscape of E2, revealing a number of important features. Despite high sequence divergence, and subtle differences in the models, E2 from different strains behave similarly, possessing a stable core flanked by highly flexible regions, some of which perform essential functions such as receptor binding. Comparison with sequence data suggest that this consistent behaviour is conferred by a network of conserved residues that act as hinge and anchor points throughout E2. The variable regions (HVR-1, HVR-2 and VR-3) exhibit particularly high flexibility, and bioinformatic analysis suggests that HVR-1 is a putative intrinsically disordered protein region. Dynamic cross-correlation analyses demonstrate intramolecular communication and suggest that specific regions, such as HVR-1, can exert influence throughout E2. To support our computational approach we performed small-angle X-ray scattering with purified E2 ectodomain; this data was consistent with our MD experiments, suggesting a compact globular core with peripheral flexible regions. This work captures the dynamic behaviour of E2 and has direct relevance to the interaction of HCV with cell-surface receptors and neutralising antibodies.
Collapse
Affiliation(s)
- Lenka Stejskal
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, United Kingdom
- Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - William D. Lees
- Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - David S. Moss
- Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - Machaela Palor
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Richard J. Bingham
- Department of Biological Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Adrian J. Shepherd
- Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - Joe Grove
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
137
|
Copoiu L, Malhotra S. The current structural glycome landscape and emerging technologies. Curr Opin Struct Biol 2020; 62:132-139. [PMID: 32006784 DOI: 10.1016/j.sbi.2019.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 11/19/2022]
Abstract
Carbohydrates represent one of the building blocks of life, along with nucleic acids, proteins and lipids. Although glycans are involved in a wide range of processes from embryogenesis to protein trafficking and pathogen infection, we are still a long way from deciphering the glycocode. In this review, we aim to present a few of the challenges that researchers working in the area of glycobiology can encounter and what strategies can be utilised to overcome them. Our goal is to paint a comprehensive picture of the current saccharide landscape available in the Protein Data Bank (PDB). We also review recently updated repositories relevant to the topic proposed, the impact of software development on strategies to structurally solve carbohydrate moieties, and state-of-the-art molecular and cellular biology methods that can shed some light on the function and structure of glycans.
Collapse
Affiliation(s)
- Liviu Copoiu
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Sony Malhotra
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom.
| |
Collapse
|
138
|
Affiliation(s)
| | | | - Ronghu Wu
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
139
|
Ravell JC, Matsuda-Lennikov M, Chauvin SD, Zou J, Biancalana M, Deeb SJ, Price S, Su HC, Notarangelo G, Jiang P, Morawski A, Kanellopoulou C, Binder K, Mukherjee R, Anibal JT, Sellers B, Zheng L, He T, George AB, Pittaluga S, Powers A, Kleiner DE, Kapuria D, Ghany M, Hunsberger S, Cohen JI, Uzel G, Bergerson J, Wolfe L, Toro C, Gahl W, Folio LR, Matthews H, Angelus P, Chinn IK, Orange JS, Trujillo-Vargas CM, Franco JL, Orrego-Arango J, Gutiérrez-Hincapié S, Patel NC, Raymond K, Patiroglu T, Unal E, Karakukcu M, Day AG, Mehta P, Masutani E, De Ravin SS, Malech HL, Altan-Bonnet G, Rao VK, Mann M, Lenardo MJ. Defective glycosylation and multisystem abnormalities characterize the primary immunodeficiency XMEN disease. J Clin Invest 2020; 130:507-522. [PMID: 31714901 PMCID: PMC6934229 DOI: 10.1172/jci131116] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/18/2019] [Indexed: 01/01/2023] Open
Abstract
X-linked immunodeficiency with magnesium defect, EBV infection, and neoplasia (XMEN) disease are caused by deficiency of the magnesium transporter 1 (MAGT1) gene. We studied 23 patients with XMEN, 8 of whom were EBV naive. We observed lymphadenopathy (LAD), cytopenias, liver disease, cavum septum pellucidum (CSP), and increased CD4-CD8-B220-TCRαβ+ T cells (αβDNTs), in addition to the previously described features of an inverted CD4/CD8 ratio, CD4+ T lymphocytopenia, increased B cells, dysgammaglobulinemia, and decreased expression of the natural killer group 2, member D (NKG2D) receptor. EBV-associated B cell malignancies occurred frequently in EBV-infected patients. We studied patients with XMEN and patients with autoimmune lymphoproliferative syndrome (ALPS) by deep immunophenotyping (32 immune markers) using time-of-flight mass cytometry (CyTOF). Our analysis revealed that the abundance of 2 populations of naive B cells (CD20+CD27-CD22+IgM+HLA-DR+CXCR5+CXCR4++CD10+CD38+ and CD20+CD27-CD22+IgM+HLA-DR+CXCR5+CXCR4+CD10-CD38-) could differentially classify XMEN, ALPS, and healthy individuals. We also performed glycoproteomics analysis on T lymphocytes and show that XMEN disease is a congenital disorder of glycosylation that affects a restricted subset of glycoproteins. Transfection of MAGT1 mRNA enabled us to rescue proteins with defective glycosylation. Together, these data provide new clinical and pathophysiological foundations with important ramifications for the diagnosis and treatment of XMEN disease.
Collapse
Affiliation(s)
- Juan C. Ravell
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| | - Mami Matsuda-Lennikov
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| | - Samuel D. Chauvin
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| | - Juan Zou
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| | - Matthew Biancalana
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| | - Sally J. Deeb
- Proteomics and Signal Transduction Group and Computational Systems Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Susan Price
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, Bethesda, Maryland, USA
| | - Helen C. Su
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, Bethesda, Maryland, USA
| | - Giulia Notarangelo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| | - Ping Jiang
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| | - Aaron Morawski
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| | - Chrysi Kanellopoulou
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| | - Kyle Binder
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, Maryland, USA
| | - Ratnadeep Mukherjee
- Center for Cancer Research, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - James T. Anibal
- Center for Cancer Research, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Brian Sellers
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, NIH, Bethesda, Maryland, USA
| | - Lixin Zheng
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| | - Tingyan He
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
- Department of Rheumatology and Immunology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Alex B. George
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| | - Stefania Pittaluga
- Hematopathology Section, Laboratory of Pathology, NCI, Bethesda, Maryland, USA
| | - Astin Powers
- Laboratory of Pathology, NCI, Bethesda, Maryland, USA
| | | | - Devika Kapuria
- Liver Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland, USA
| | - Marc Ghany
- Liver Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland, USA
| | | | - Jeffrey I. Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, NIAID
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, Bethesda, Maryland, USA
| | - Jenna Bergerson
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, Bethesda, Maryland, USA
| | - Lynne Wolfe
- National Human Genome Research Institute, and
| | - Camilo Toro
- National Human Genome Research Institute, and
| | | | - Les R. Folio
- Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Helen Matthews
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| | - Pam Angelus
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, Bethesda, Maryland, USA
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Ivan K. Chinn
- Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Jordan S. Orange
- Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Claudia M. Trujillo-Vargas
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Jose Luis Franco
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Julio Orrego-Arango
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | | | - Niraj Chandrakant Patel
- Section of Infectious Disease and Immunology, Department of Pediatrics, Carolinas Medical Center, and
- Levine Children’s Hospital Atrium Health, Charlotte, North Carolina, USA
| | - Kimiyo Raymond
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Turkan Patiroglu
- Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ekrem Unal
- Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Musa Karakukcu
- Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | | | - Pankaj Mehta
- Department of Physics, Boston University, Boston, Massachusetts, USA
| | - Evan Masutani
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| | - Suk S. De Ravin
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, Bethesda, Maryland, USA
| | - Harry L. Malech
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, Bethesda, Maryland, USA
| | - Grégoire Altan-Bonnet
- Center for Cancer Research, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - V. Koneti Rao
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, Bethesda, Maryland, USA
| | - Matthias Mann
- Proteomics and Signal Transduction Group and Computational Systems Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Michael J. Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| |
Collapse
|
140
|
Chiu ML, Goulet DR, Teplyakov A, Gilliland GL. Antibody Structure and Function: The Basis for Engineering Therapeutics. Antibodies (Basel) 2019; 8:antib8040055. [PMID: 31816964 PMCID: PMC6963682 DOI: 10.3390/antib8040055] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Antibodies and antibody-derived macromolecules have established themselves as the mainstay in protein-based therapeutic molecules (biologics). Our knowledge of the structure–function relationships of antibodies provides a platform for protein engineering that has been exploited to generate a wide range of biologics for a host of therapeutic indications. In this review, our basic understanding of the antibody structure is described along with how that knowledge has leveraged the engineering of antibody and antibody-related therapeutics having the appropriate antigen affinity, effector function, and biophysical properties. The platforms examined include the development of antibodies, antibody fragments, bispecific antibody, and antibody fusion products, whose efficacy and manufacturability can be improved via humanization, affinity modulation, and stability enhancement. We also review the design and selection of binding arms, and avidity modulation. Different strategies of preparing bispecific and multispecific molecules for an array of therapeutic applications are included.
Collapse
Affiliation(s)
- Mark L. Chiu
- Drug Product Development Science, Janssen Research & Development, LLC, Malvern, PA 19355, USA
- Correspondence:
| | - Dennis R. Goulet
- Department of Medicinal Chemistry, University of Washington, P.O. Box 357610, Seattle, WA 98195-7610, USA;
| | - Alexey Teplyakov
- Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA; (A.T.); (G.L.G.)
| | - Gary L. Gilliland
- Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA; (A.T.); (G.L.G.)
| |
Collapse
|
141
|
Crystal Structure of a GH3 β-Glucosidase from the Thermophilic Fungus Chaetomium thermophilum. Int J Mol Sci 2019; 20:ijms20235962. [PMID: 31783503 PMCID: PMC6929035 DOI: 10.3390/ijms20235962] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 11/17/2022] Open
Abstract
Beta-glucosidases (β-glucosidases) have attracted considerable attention in recent years for use in various biotechnological applications. They are also essential enzymes for lignocellulose degradation in biofuel production. However, cost-effective biomass conversion requires the use of highly efficient enzymes. Thus, the search for new enzymes as better alternatives of the currently available enzyme preparations is highly important. Thermophilic fungi are nowadays considered as a promising source of enzymes with improved stability. Here, the crystal structure of a family GH3 β-glucosidase from the thermophilic fungus Chaetomium thermophilum (CtBGL) was determined at a resolution of 2.99 Å. The structure showed the three-domain architecture found in other β-glucosidases with variations in loops and linker regions. The active site catalytic residues in CtBGL were identified as Asp287 (nucleophile) and Glu517 (acid/base). Structural comparison of CtBGL with Protein Data Bank (PDB)-deposited structures revealed variations among glycosylated Asn residues. The enzyme displayed moderate glycosylation compared to other GH3 family β-glucosidases with similar structure. A new glycosylation site at position Asn504 was identified in CtBGL. Moreover, comparison with respect to several thermostability parameters suggested that glycosylation and charged residues involved in electrostatic interactions may contribute to the stability of the enzyme at elevated temperatures. The reported CtBGL structure provides additional insights into the family GH3 enzymes and could offer new ideas for further improvements in β-glucosidases for more efficient use in biotechnological applications regarding cellulose degradation.
Collapse
|
142
|
Bahaman AH, Abdul Wahab R, Hamid AAA, Halim KBA, Kaya Y, Edbeib MF. Substrate docking and molecular dynamic simulation for prediction of fungal enzymes from Trichoderma species-assisted extraction of nanocellulose from oil palm leaves. J Biomol Struct Dyn 2019; 38:4246-4258. [DOI: 10.1080/07391102.2019.1679667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Aina Hazimah Bahaman
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
- Enzyme Technology and Green Synthesis Group, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
- Enzyme Technology and Green Synthesis Group, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Azzmer Azzar Abdul Hamid
- Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Pahang, Malaysia
| | - Khairul Bariyyah Abd Halim
- Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Pahang, Malaysia
| | - Yilmaz Kaya
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Kyrgyzstan
| | - Mohamed Faraj Edbeib
- Department of Animal Production, Faculty of Agriculture, Baniwalid University, Baniwalid, Libya
| |
Collapse
|
143
|
Nebert DW, Liu Z. SLC39A8 gene encoding a metal ion transporter: discovery and bench to bedside. Hum Genomics 2019; 13:51. [PMID: 31521203 PMCID: PMC6744627 DOI: 10.1186/s40246-019-0233-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/14/2019] [Indexed: 01/08/2023] Open
Abstract
SLC39A8 is an evolutionarily highly conserved gene that encodes the ZIP8 metal cation transporter in all vertebrates. SLC39A8 is ubiquitously expressed, including pluripotent embryonic stem cells; SLC39A8 expression occurs in every cell type examined. Uptake of ZIP8-mediated Mn2+, Zn2+, Fe2+, Se4+, and Co2+ represents endogenous functions-moving these cations into the cell. By way of mouse genetic differences, the phenotype of "subcutaneous cadmium-induced testicular necrosis" was assigned to the Cdm locus in the 1970s. This led to identification of the mouse Slc39a8 gene, its most closely related Slc39a14 gene, and creation of Slc39a8-overexpressing, Slc39a8(neo/neo) knockdown, and cell type-specific conditional knockout mouse lines; the Slc39a8(-/-) global knockout mouse is early-embryolethal. Slc39a8(neo/neo) hypomorphs die between gestational day 16.5 and postnatal day 1-exhibiting severe anemia, dysregulated hematopoiesis, hypoplastic spleen, dysorganogenesis, stunted growth, and hypomorphic limbs. Not surprisingly, genome-wide association studies subsequently revealed human SLC39A8-deficiency variants exhibiting striking pleiotropy-defects correlated with clinical disorders in virtually every organ, tissue, and cell-type: numerous developmental and congenital disorders, the immune system, cardiovascular system, kidney, lung, liver, coagulation system, central nervous system, musculoskeletal system, eye, and gastrointestinal tract. Traits with which SLC39A8-deficiency variants are currently associated include Mn2+-deficient hypoglycosylation; numerous birth defects; Leigh syndrome-like mitochondrial redox deficiency; decreased serum high-density lipoprotein-cholesterol levels; increased body mass index; greater risk of coronary artery disease, hypotension, cardiovascular death, allergy, ischemic stroke, schizophrenia, Parkinson disease, inflammatory bowel disease, Crohn disease, myopia, and adolescent idiopathic scoliosis; systemic lupus erythematosus with primary Sjögren syndrome; decreased height; and inadvertent participation in the inflammatory progression of osteoarthritis.
Collapse
Affiliation(s)
- Daniel W Nebert
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267-0056, USA.
- Division of Human Genetics, Department of Pediatrics & Molecular Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, 45229-2899, USA.
| | - Zijuan Liu
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA
| |
Collapse
|
144
|
Bonzom C, Hüttner S, Mirgorodskaya E, Chong SL, Uthoff S, Steinbüchel A, Verhaert RMD, Olsson L. Glycosylation influences activity, stability and immobilization of the feruloyl esterase 1a from Myceliophthora thermophila. AMB Express 2019; 9:126. [PMID: 31407106 PMCID: PMC6691016 DOI: 10.1186/s13568-019-0852-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/02/2019] [Indexed: 11/26/2022] Open
Abstract
Heterologous protein production is widely used in industrial biotechnology. However, using non-native production hosts can lead to enzymes with altered post-translational modifications, such as glycosylation. We have investigated how production in a non-native host affects the physicochemical properties and enzymatic activity of a feruloyl esterase from Myceliophthora thermophila, MtFae1a. The enzyme was produced in two microorganisms that introduce glycosylation (M. thermophila and Pichia pastoris) and in Escherichia coli (non-glycosylated). Mass spectrometric analysis confirmed the presence of glycosylation and revealed differences in the lengths of glycan chains between the enzymes produced in M. thermophila and P. pastoris. The melting temperature and the optimal temperature for activity of the non-glycosylated enzyme were considerably lower than those of the glycosylated enzymes. The three MtFae1a versions also exhibited differences in specific activity and specificity. The catalytic efficiency of the glycosylated enzymes were more than 10 times higher than that of the non-glycosylated one. In biotechnology, immobilization is often used to allow reusing enzyme and was investigated on mesoporous silica particles. We found the binding kinetics and immobilization yield differed between the enzyme versions. The largest differences were observed when comparing enzymes with and without glycosylation, but significant variations were also observed between the two differently glycosylated enzymes. We conclude that the biotechnological value of an enzyme can be optimized for a specific application by carefully selecting the production host.
Collapse
|
145
|
Black LE, Longo JF, Carroll SL. Mechanisms of Receptor Tyrosine-Protein Kinase ErbB-3 (ERBB3) Action in Human Neoplasia. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1898-1912. [PMID: 31351986 DOI: 10.1016/j.ajpath.2019.06.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/16/2022]
Abstract
It is well established that the epidermal growth factor (EGF) receptor, receptor tyrosine-protein kinase erbB-2 (ERBB2)/human EGF receptor 2 (HER2), and, to a lesser extent, ERBB4/HER4, promote the pathogenesis of many types of human cancers. In contrast, the role that ERBB3/HER3, the fourth member of the ERBB family of receptor tyrosine kinases, plays in these diseases is poorly understood and, until recently, underappreciated. In large part, this was because early structural and functional studies suggested that ERBB3 had little, if any, intrinsic tyrosine kinase activity and, thus, was unlikely to be an important therapeutic target. Since then, however, numerous publications have demonstrated an important role for ERBB3 in carcinogenesis, metastasis, and acquired drug resistance. Furthermore, somatic ERBB3 mutations are frequently encountered in many types of human cancers. Dysregulation of ERBB3 trafficking as well as cooperation with other receptor tyrosine kinases further enhance ERBB3's role in tumorigenesis and drug resistance. As a result of these advances in our understanding of the structure and biochemistry of ERBB3, and a growing focus on the development of precision and combinatorial therapeutic regimens, ERBB3 is increasingly considered to be an important therapeutic target in human cancers. In this review, we discuss the unique structural and functional features of ERBB3 and how this information is being used to develop effective new therapeutic agents that target ERBB3 in human cancers.
Collapse
Affiliation(s)
- Laurel E Black
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Jody F Longo
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
146
|
Park SJ, Lee J, Qi Y, Kern NR, Lee HS, Jo S, Joung I, Joo K, Lee J, Im W. CHARMM-GUI Glycan Modeler for modeling and simulation of carbohydrates and glycoconjugates. Glycobiology 2019; 29:320-331. [PMID: 30689864 DOI: 10.1093/glycob/cwz003] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 12/15/2022] Open
Abstract
Characterizing glycans and glycoconjugates in the context of three-dimensional structures is important in understanding their biological roles and developing efficient therapeutic agents. Computational modeling and molecular simulation have become an essential tool complementary to experimental methods. Here, we present a computational tool, Glycan Modeler for in silico N-/O-glycosylation of the target protein and generation of carbohydrate-only systems. In our previous study, we developed Glycan Reader, a web-based tool for detecting carbohydrate molecules from a PDB structure and generation of simulation system and input files. As integrated into Glycan Reader in CHARMM-GUI, Glycan Modeler (Glycan Reader & Modeler) enables to generate the structures of glycans and glycoconjugates for given glycan sequences and glycosylation sites using PDB glycan template structures from Glycan Fragment Database (http://glycanstructure.org/fragment-db). Our benchmark tests demonstrate the universal applicability of Glycan Reader & Modeler to various glycan sequences and target proteins. We also investigated the structural properties of modeled glycan structures by running 2-μs molecular dynamics simulations of HIV envelope protein. The simulations show that the modeled glycan structures built by Glycan Reader & Modeler have the similar structural features compared to the ones solved by X-ray crystallography. We also describe the representative examples of glycoconjugate modeling with video demos to illustrate the practical applications of Glycan Reader & Modeler. Glycan Reader & Modeler is freely available at http://charmm-gui.org/input/glycan.
Collapse
Affiliation(s)
- Sang-Jun Park
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Jumin Lee
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Yifei Qi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Nathan R Kern
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Hui Sun Lee
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Sunhwan Jo
- Leadership Computing Facility, Argonne National Laboratory, Argonne, IL, USA
| | - InSuk Joung
- Center for Advanced Computation, Korea Institute for Advanced Study, Republic of Korea
| | - Keehyung Joo
- Center for Advanced Computation, Korea Institute for Advanced Study, Republic of Korea
| | - Jooyoung Lee
- Center for Advanced Computation, Korea Institute for Advanced Study, Republic of Korea
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
147
|
Datta-Mannan A, Brown RM, Fitchett J, Heng AR, Balasubramaniam D, Pereira J, Croy JE. Modulation of the Biophysical Properties of Bifunctional Antibodies as a Strategy for Mitigating Poor Pharmacokinetics. Biochemistry 2019; 58:3116-3132. [DOI: 10.1021/acs.biochem.9b00074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | | | - Jonathan Fitchett
- Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Biotechnology Center, San Diego, California 92121, United States
| | - Aik Roy Heng
- Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Biotechnology Center, San Diego, California 92121, United States
| | - Deepa Balasubramaniam
- Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Biotechnology Center, San Diego, California 92121, United States
| | | | | |
Collapse
|
148
|
Post-Translational Modification-Dependent Activity of Matrix Metalloproteinases. Int J Mol Sci 2019; 20:ijms20123077. [PMID: 31238509 PMCID: PMC6627178 DOI: 10.3390/ijms20123077] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022] Open
Abstract
Due to their capacity to process different proteins of the extracellular matrix (ECM), matrix metalloproteinases (MMPs) were initially described as a family of secreted proteases, functioning as main ECM regulators. However, through proteolytic processing of various biomolecules, MMPs also modulate intra- and extracellular pathways and networks. Thereby, they are functionally implicated in the regulation of multiple physiological and pathological processes. Consequently, MMP activity is tightly regulated through a combination of epigenetic, transcriptional, and post-transcriptional control of gene expression, proteolytic activation, post-translational modifications (PTMs), and extracellular inhibition. In addition, MMPs, their substrates and ECM binding partners are frequently modified by PTMs, which suggests an important role of PTMs in modulating the pleiotropic activities of these proteases. This review summarizes the recent progress towards understanding the role of PTMs (glycosylation, phosphorylation, glycosaminoglycans) on the activity of several members of the MMP family.
Collapse
|
149
|
Moreno-Carranza B, Robles JP, Cruces-Solís H, Ferrer-Ríos MG, Aguilar-Rivera E, Yupanki M, Martínez de la Escalera G, Clapp C. Sequence optimization and glycosylation of vasoinhibin: Pitfalls of recombinant production. Protein Expr Purif 2019; 161:49-56. [PMID: 31051246 DOI: 10.1016/j.pep.2019.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 11/28/2022]
Abstract
Vasoinhibin belongs to a family of proteins with antiangiogenic properties derived by proteolytic cleavage from the hormone prolactin (PRL). Vasoinhibin isoforms range from the first 79 to the first 159 residues of PRL. In an attempt to increase the yield of recombinant vasoinhibin and avoid incorrect intra- and inter-disulfide bond formation, the cDNA sequence comprising the first 123 amino acids of human PRL, in which cysteine 58 was or not mutated to serine, was codon-optimized. The optimized constructs achieved a 6-fold increase in mRNA expression but showed no change in protein production and reduced protein secretion when expressed in human embryo kidney (HEK293T/17) cells. Limited vasoinhibin levels associated with the activation of the unfolded protein response (UPR) and endoplasmic reticulum-associated degradation (ERAD) as revealed by the upregulation of UPR (Bip, Xbp-1, and Chop) and ERAD (Hrd1, Os9, and Sel1l) target genes. Mutation to serine introduced a new N-glycosylation site and associated with increased glycosylation and release of glycosylated vasoinhibin isoforms having reduced antiangiogenic properties. We conclude that overexpression and excessive glycosylation lead to protein degradation and reduced bioactivity, respectively, negatively affecting the production of recombinant vasoinhibin in mammalian cells.
Collapse
Affiliation(s)
- Bibiana Moreno-Carranza
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76230, Querétaro, México
| | - Juan Pablo Robles
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76230, Querétaro, México
| | - Hugo Cruces-Solís
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76230, Querétaro, México
| | | | - Eduardo Aguilar-Rivera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76230, Querétaro, México
| | - Marco Yupanki
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76230, Querétaro, México
| | | | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76230, Querétaro, México.
| |
Collapse
|
150
|
Ahat E, Xiang Y, Zhang X, Bekier ME, Wang Y. GRASP depletion-mediated Golgi destruction decreases cell adhesion and migration via the reduction of α5β1 integrin. Mol Biol Cell 2019; 30:766-777. [PMID: 30649990 PMCID: PMC6589770 DOI: 10.1091/mbc.e18-07-0462] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/03/2018] [Accepted: 01/09/2019] [Indexed: 11/21/2022] Open
Abstract
The Golgi apparatus is a membrane-bound organelle that serves as the center for trafficking and processing of proteins and lipids. To perform these functions, the Golgi forms a multilayer stacked structure held by GRASP55 and GRASP65 trans-oligomers and perhaps their binding partners. Depletion of GRASP proteins disrupts Golgi stack formation and impairs critical functions of the Golgi, such as accurate protein glycosylation and sorting. However, how Golgi destruction affects other cellular activities is so far unknown. Here, we report that depletion of GRASP proteins reduces cell attachment and migration. Interestingly, GRASP depletion reduces the protein level of α5β1 integrin, the major cell adhesion molecule at the surface of HeLa and MDA-MB-231 cells, due to decreased integrin protein synthesis. GRASP depletion also increases cell growth and total protein synthesis. These new findings enrich our understanding on the role of the Golgi in cell physiology and provide a potential target for treating protein-trafficking disorders.
Collapse
Affiliation(s)
- Erpan Ahat
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
| | - Yi Xiang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
| | - Xiaoyan Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
| | - Michael E. Bekier
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI 48109-1085
| |
Collapse
|