101
|
Vijeta A, Casadevall C, Roy S, Reisner E. Visible-Light Promoted C-O Bond Formation with an Integrated Carbon Nitride-Nickel Heterogeneous Photocatalyst. Angew Chem Int Ed Engl 2021; 60:8494-8499. [PMID: 33559927 PMCID: PMC8048670 DOI: 10.1002/anie.202016511] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Indexed: 11/10/2022]
Abstract
Ni-deposited mesoporous graphitic carbon nitride (Ni-mpg-CNx ) is introduced as an inexpensive, robust, easily synthesizable and recyclable material that functions as an integrated dual photocatalytic system. This material overcomes the need of expensive photosensitizers, organic ligands and additives as well as limitations of catalyst deactivation in the existing photo/Ni dual catalytic cross-coupling reactions. The dual catalytic Ni-mpg-CNx is demonstrated for C-O coupling between aryl halides and aliphatic alcohols under mild condition. The reaction affords the ether product in good-to-excellent yields (60-92 %) with broad substrate scope, including heteroaryl and aryl halides bearing electron-withdrawing, -donating and neutral groups. The heterogeneous Ni-mpg-CNx can be easily recovered from the reaction mixture and reused over multiple cycles without loss of activity. The findings highlight exciting opportunities for dual catalysis promoted by a fully heterogeneous system.
Collapse
Affiliation(s)
- Arjun Vijeta
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Carla Casadevall
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Souvik Roy
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Current address: School of ChemistryUniversity of LincolnJoseph Banks LaboratoriesLincolnLN6 7DLUK
| | - Erwin Reisner
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
102
|
Abstract
HCN-derived polymers are a heterogeneous group of complex substances synthesized from pure HCN; from its salts; from its oligomers, specifically its trimer and tetramer, amino-nalono-nitrile (AMN) and diamino-maleo-nitrile (DAMN), respectively; or from its hydrolysis products, such as formamide, under a wide range of experimental conditions. The characteristics and properties of HCN-derived polymers depend directly on the synthetic conditions used for their production and, by extension, their potential applications. These puzzling systems have been known mainly in the fields of prebiotic chemistry and in studies on the origins of life and astrobiology since the first prebiotic production of adenine by Oró in the early years of the 1960s. However, the first reference regarding their possible role in prebiotic chemistry was mentioned in the 19th century by Pflüger. Currently, HCN-derived polymers are considered keys in the formation of the first and primeval protometabolic and informational systems, and they may be among the most readily formed organic macromolecules in the solar system. In addition, HCN-derived polymers have attracted a growing interest in materials science due to their potential biomedical applications as coatings and adhesives; they have also been proposed as valuable models for multifunctional materials with emergent properties such as semi-conductivity, ferroelectricity, catalysis and photocatalysis, and heterogeneous organo-synthesis. However, the real structures and the formation pathways of these fascinating substances have not yet been fully elucidated; several models based on either computational approaches or spectroscopic and analytical techniques have endeavored to shed light on their complete nature. In this review, a comprehensive perspective of HCN-derived polymers is presented, taking into account all the aspects indicated above.
Collapse
|
103
|
Ghasemi SA, Mirhosseini H, Kühne TD. Thermodynamically stable polymorphs of nitrogen-rich carbon nitrides: a C 3N 5 study. Phys Chem Chem Phys 2021; 23:6422-6432. [PMID: 33710185 DOI: 10.1039/d0cp06185a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have carried out an extensive search for stable polymorphs of carbon nitride with C3N5 stoichiometry using the minima hopping method. Contrary to the widely held opinion that stacked, planar, graphite-like structures are energetically the most stable carbon nitride polymorphs for various nitrogen contents, we find that this does not apply for nitrogen-rich materials owing to the high abundance of N-N bonds. In fact, our results disclose novel morphologies with moieties not previously considered for C3N5. We demonstrate that nitrogen-rich compounds crystallize in a large variety of different structures due to particular characteristics of their energy landscapes. The newly found low-energy structures of C3N5 have band gaps within good agreement with the values measured in experimental studies.
Collapse
Affiliation(s)
- S Alireza Ghasemi
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany.
| | | | | |
Collapse
|
104
|
Kuna E, Mrdenovic D, Jönsson-Niedziółka M, Pieta P, Pieta IS. Bimetallic nanocatalysts supported on graphitic carbon nitride for sustainable energy development: the shape-structure-activity relation. NANOSCALE ADVANCES 2021; 3:1342-1351. [PMID: 36132874 PMCID: PMC9416898 DOI: 10.1039/d0na01063d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/06/2021] [Accepted: 01/19/2021] [Indexed: 06/16/2023]
Abstract
The catalytic performance of metal nanoparticles (NPs), including activity, selectivity, and durability, depends on their shape and structure at the molecular level. Consequently, metal NPs of different size and shape, e.g., nanobelts, nanocubes, nanoflakes, and nanowires, demonstrate different reactivity and provide different reaction rates depending on the facet exposed. In this context, the present review aims to summarize the shape-structure-activity relation of metallic nanocatalysts. Moreover, keeping in mind that the application of noble metal catalysts is expensive, we would like to draw the reader's attention to bimetallic nanocatalysts supported on graphitic carbon nitride. One of the advantages of these systems is the possibility to minimize the use of noble metals by introducing another metal either to the parent NPs and/or modifying the support materials. The development and optimization of bimetallic nanocatalysts might provide the new class of materials with superior, tunable performance, thermal stability and reduced costs compared to presently available commercial catalysts. Therefore, further application of these bimetallic composites for sustainable development in energy, green chemicals/fuels and environmental protection will be discussed.
Collapse
Affiliation(s)
- Ewelina Kuna
- Institute of Physical Chemistry Polish Academy of Sciences 01-224 Warsaw Poland
| | - Dusan Mrdenovic
- Institute of Physical Chemistry Polish Academy of Sciences 01-224 Warsaw Poland
| | | | - Piotr Pieta
- Institute of Physical Chemistry Polish Academy of Sciences 01-224 Warsaw Poland
| | - Izabela S Pieta
- Institute of Physical Chemistry Polish Academy of Sciences 01-224 Warsaw Poland
| |
Collapse
|
105
|
Mitchell E, Law A, Godin R. Experimental determination of charge carrier dynamics in carbon nitride heterojunctions. Chem Commun (Camb) 2021; 57:1550-1567. [PMID: 33491708 DOI: 10.1039/d0cc06841a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Carbon nitride (CNx) is an emerging photocatalyst with the potential to efficiently produce solar fuels. CNx heterojunctions often show significant photocatalytic activity improvements. We review the charge carrier dynamics in a range of CNx heterojunctions including carbon-based material, black phosphorus, Ru complexes, molybdenum sulphide and metal phosphides. Time resolved photoluminescence (TRPL) and transient absorption spectroscopy (TAS) were the most common techniques employed for experimental charge carrier dynamics measurements. The low photoluminescence quantum yield of CNx appeared to limit the depth of conclusions from TRPL, with both lengthening and shortening of the TRPL lifetimes observed and attributed to enhanced charge separation. Overall, the charge carrier dynamics studies often showed a relative lifetime change of ∼2-fold and an activity improvement of >10-fold. We highlight the need for the use of a wider range of techniques to monitor the charge carrier dynamics for conclusive determination of photophysics-activity relationships and elucidation of improvement mechanisms.
Collapse
Affiliation(s)
- Emma Mitchell
- Department of Chemistry, The University of British Columbia, 3247 University Way, Kelowna, BC, V1V 1V7, Canada
| | | | | |
Collapse
|
106
|
Modifying Electronic and Elastic Properties of 2-Dimensional [110] Diamond by Nitrogen Substitution. C — JOURNAL OF CARBON RESEARCH 2021. [DOI: 10.3390/c7010008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
One type of two-dimensional diamonds that are derived from [111] direction, so-called diamane, has been previously shown to be stabilized by N-substitution, where the passivation of dangling bonds is no longer needed. In the present work, we theoretically demonstrated that another type of two-dimensional diamonds derived from [110] direction exhibiting a washboard conformation can also be stabilized by N-substitution. Three structural models of washboard-like carbon nitrides with compositions of C6N2, C5N3, and C4N4 are studied together with the fully hydrogenated washboard-like diamane (C8H4). The result shows that the band gap of this type structure is only open the dangling bonds that are entirely diminished through N-substitution. By increasing the N content, the C11 and C22 are softer and the C33 is stiffer where their bulk modulus are in the same order, which is approximately 550 GPa. When comparing with the hydrogenated phase, the N-substituted phases have higher elastic constants and bulk modulus, suggesting that they are possibly harder than the fully hydrogenated diamane.
Collapse
|
107
|
Shinozaki A, Mimura K, Nishida T, Cody GD. Polymerization Mechanism of Nitrogen-Containing Heteroaromatic Compound Under High-Pressure and High-Temperature Conditions. J Phys Chem A 2021; 125:376-386. [PMID: 33356271 DOI: 10.1021/acs.jpca.0c08288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrogenated carbon nitride is synthesized by polymerization of 1,5-naphthyridine, a nitrogen-containing heteroaromatic compound, under high-pressure and high-temperature conditions. The polymerization progressed significantly at temperatures above 573 K at 0.5 GPa and above 623 K at 1.5 GPa. The reaction temperature was relatively lower than that observed for pure naphthalene, suggesting that the reaction temperature is considerably lowered when nitrogen atoms exist in the aromatic ring structure. The polymerization reaction largely progresses without significant change in the N/C ratio. Three types of dimerization are identified; naphthylation, exact dimerization, and dimerization with hydrogenation as determined from the gas chromatograph-mass spectrometry analysis of soluble products. Infrared spectra suggest that hydrogenation products were likely to be formed with sp3 carbon and NH bonding. Solid-state 13C nuclear magnetic resonance reveals that the sp3/sp2 ratio is 0.14 in both the insoluble solids synthesized at 0.5 and 1.5 GPa. Not only the dimers but also soluble heavier oligomers and insoluble polymers formed through more extensive polymerization. The major reaction mechanism of 1,5-Nap was common to both the 0.5 and 1.5 GPa experiments, although the required reaction temperature increased with increasing pressure and aromatic rings preferentially remained at the higher pressure.
Collapse
Affiliation(s)
- Ayako Shinozaki
- Faculty of Science, Hokkaido University, N10 W8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Koichi Mimura
- Department of Earth and Planetary Sciences, Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan
| | - Tamihito Nishida
- Department of Earth and Planetary Sciences, Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan
| | - George D Cody
- Earth and Planets Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, NW, Washington, DC 20015, United States
| |
Collapse
|
108
|
Bu H, Yang B, Yuan H, Yuan X, Wang H, Qi S, Ma X, Zhao M. New Spiral Form of Carbon Nitride with Ultrasoftness and Tunable Electronic Structures. ACS OMEGA 2021; 6:516-522. [PMID: 33458503 PMCID: PMC7807741 DOI: 10.1021/acsomega.0c04997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
The structural diversity and multifunctionality of carbon nitride materials distinct from pure carbon materials are drawing increasing interest. Using first-principles calculations, we proposed a stable spiral structure of carbon nitride, namely spiral-C3N, which is composed of sp2-hybridized carbon and pyridine nitrogen with a 60° helical symmetry along the z-direction. The stability was verified from the cohesive energy, phonon spectrum, and elastic constants. Despite the strong covalent bonds of the spiral framework, the spiral-C3N exhibits a hardness lower than 12.00 GPa, in sharp contrast to the superhardness of cubic carbon nitrides reported in previous literature, which can be attributed to the unique porous configuration. The softness of the spiral-C3N was also confirmed by the small ideal strengths, which are, respectively, 33.00 GPa at a tensile strain of 0.22 along the [1̅21̅0] direction and 18.00 GPa at a shear strain of 0.52 in the (0001)[1̅21̅0] direction. Electronic band structure of spiral-C3N exhibits metallic features. A metal-semiconductor transition can be triggered by hydrogenation of the pyridine nitrogen atoms of spiral-C3N. Such a new three-dimensional spiral framework of sp2-hyperdized carbon and nitrogen atoms not only enriches the family of carbon nitride materials but also finds application in energy conversion and storage.
Collapse
Affiliation(s)
- Hongxia Bu
- College
of Physics and Electronic Engineering, Qilu
Normal University, Jinan, Shandong 250200, China
| | - Bo Yang
- School
of Science, Shandong Jianzhu University, Jinan, Shandong 250101, China
| | - Huimin Yuan
- College
of Physics and Electronic Engineering, Qilu
Normal University, Jinan, Shandong 250200, China
| | - Xiaojuan Yuan
- College
of Physics and Electronic Engineering, Qilu
Normal University, Jinan, Shandong 250200, China
| | - Hui Wang
- College
of Physics and Electronic Engineering, Qilu
Normal University, Jinan, Shandong 250200, China
| | - Siyun Qi
- School
of Physics & State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Xikui Ma
- School
of Physics & State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Mingwen Zhao
- School
of Physics & State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
109
|
Silva IF, Teixeira IF, Rios RDF, do Nascimento GM, Binatti I, Victória HFV, Krambrock K, Cury LA, Teixeira APC, Stumpf HO. Amoxicillin photodegradation under visible light catalyzed by metal-free carbon nitride: An investigation of the influence of the structural defects. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123713. [PMID: 33113722 DOI: 10.1016/j.jhazmat.2020.123713] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Herein, the structural defects of metal-free polymeric carbon nitrides were controlled by making use of different precursors in their syntheses, i.e. melamine (CN-M) and thiourea (CN-T), as well as a 1:1 mixture of them (CN-1M:1 T). By controlling the structural defects, the electronic, morphological and chemical properties were modified. Additionally, the activities of synthesized PCNs were evaluated for amoxicillin photodegradation under visible light irradiation (16 mW cm-2). The results of photocatalytic tests showed that CN-T material has better efficiency (100 % removal within 48 h), which is directly related to the greater number of defects present in its structure with consequent improvement of electron-hole pairs separation efficiency. The CN-T material showed excellent stability with only 13 % decrease in its photocatalytic activity after the third cycle. A mechanism for amoxicillin degradation by CN-T was proposed based on the ESI-MS and the in situ EPR allied with spin trapping method investigations.
Collapse
Affiliation(s)
- Ingrid F Silva
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Ivo F Teixeira
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Regiane D F Rios
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Gustavo M do Nascimento
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, Santo André, SP, 09210-580, Brazil
| | - Ildefonso Binatti
- Departamento de Química, Centro Federal de Educação Tecnológica de Minas Gerais, 30421-169, Belo Horizonte, MG, Brazil
| | - Henrique F V Victória
- Departamento de Física, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Klaus Krambrock
- Departamento de Física, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Luiz A Cury
- Departamento de Física, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Ana Paula C Teixeira
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Humberto O Stumpf
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
110
|
Cen Z, Kang Y, Lu R, Yu A. Electrostatic interaction mechanism of visible light absorption broadening in ion-doped graphitic carbon nitride. RSC Adv 2021; 11:22652-22660. [PMID: 35480457 PMCID: PMC9034361 DOI: 10.1039/d1ra02617h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/15/2021] [Indexed: 01/11/2023] Open
Abstract
H2O2 treated K-doped graphitic carbon nitride presents an enhanced visible light absorption, which is due to the electrostatic attraction between K ions and OOH ions inside graphitic carbon nitride.
Collapse
Affiliation(s)
- Zengyu Cen
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- P. R. China
| | - Yuna Kang
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- P. R. China
| | - Rong Lu
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- P. R. China
| | - Anchi Yu
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- P. R. China
| |
Collapse
|
111
|
Vilé G. Photocatalytic materials and light-driven continuous processes to remove emerging pharmaceutical pollutants from water and selectively close the carbon cycle. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01713b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Past and present technologies for wastewater purification and future research directions are critically discussed in this review.
Collapse
Affiliation(s)
- Gianvito Vilé
- Department of Chemistry
- Materials, and Chemical Engineering “Giulio Natta”
- Politecnico di Milano
- IT-20133 Milano
- Italy
| |
Collapse
|
112
|
Phang SJ, Goh JM, Tan LL, Lee WPC, Ong WJ, Chai SP. Metal-free n/n-junctioned graphitic carbon nitride (g-C 3N 4): a study to elucidate its charge transfer mechanism and application for environmental remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4388-4403. [PMID: 32940840 DOI: 10.1007/s11356-020-10814-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Graphitic carbon nitride (g-C3N4) has been regarded as a promising visible light-driven photocatalyst ascribable to its tailorable structures, thermal stability and chemical inertness. Enhanced photocatalytic activity is achievable by the construction of homojunction nanocomposites to reduce the undesired recombination of photogenerated charge carriers. In the present work, a novel g-C3N4/g-C3N4 metal-free homojunction photocatalyst was synthesized via hydrothermal polymerization. The g-C3N4/g-C3N4 derived from urea and thiourea demonstrated admirable photocatalytic activity towards rhodamine B (RhB) degradation upon irradiation of an 18 W LED light. The viability of the photoreaction with a low-powered excitation source highlighted the economic and environmental benefits of the process. The optimal g-C3N4/g-C3N4 homojunction photocatalyst exhibited a 2- and 1.8-fold increase in efficiency in relative to pristine g-C3N4 derived from urea and thiourea respectively. The enhanced photocatalytic performance is credited to the improved interfacial transfer and separation of electron-hole pairs across the homojunction interface. Furthermore, an excellent photochemical stability and durability is displayed by g-C3N4/g-C3N4 after three consecutive cycles. In addition, a plausible photocatalytic mechanism was proposed based on various scavenging tests. Overall, experimental results generated from this study is expected to intrigue novel research inspirations in developing metal-free homojunction photocatalysts to be feasible for large-scale wastewater treatment without compromising economically. Graphical abstract.
Collapse
Affiliation(s)
- Sue Jiun Phang
- School of Engineering and Physical Sciences, Heriot-Watt University Malaysia, Jalan Venna P5/2, Precinct 5, 62200, Putrajaya, Malaysia
| | - Jin Mei Goh
- School of Engineering and Physical Sciences, Heriot-Watt University Malaysia, Jalan Venna P5/2, Precinct 5, 62200, Putrajaya, Malaysia
| | - Lling-Lling Tan
- Multidisciplinary Platform of Advanced Engineering, Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Wuen Pei Cathie Lee
- Multidisciplinary Platform of Advanced Engineering, Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
- Entropic Interface Group, Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Wee-Jun Ong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, 43900, Sunsuria City, Selangor Darul Ehsan, Malaysia
| | - Siang-Piao Chai
- Multidisciplinary Platform of Advanced Engineering, Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
113
|
Sulfuric Acid Treated g-CN as a Precursor to Generate High-Efficient g-CN for Hydrogen Evolution from Water under Visible Light Irradiation. Catalysts 2020. [DOI: 10.3390/catal11010037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Modifying the physical, chemical structures of graphitic carbon nitride (g-CN) to improve its optoelectronic properties is the most efficient way to meet a high photoactivity for clean and sustainable energy production. Herein, a higher monomeric precursor for synthesizing improved micro-and electronic structure possessing g-CN was prepared by high-concentrated sulfuric acid (SA) treatment of bulk type g-CN (BCN). Several structural analyses show that after the SA treatment of BCN, the polymeric melon-based structure is torn down to cyameluric or cyanuric acid-based material. After re-polycondensation of this material as a precursor, the resulting g-CN has more condensed microstructure, carbon and oxygen contents than BCN, indicating that C, O co-doping by corrosive acid of SA. This g-CN shows a much better visible light absorption and diminished radiative charge recombination by the charge localization effect induced by heteroatoms. As a result, this condensed C, O co-doped g-CN shows the enhanced photocatalytic hydrogen evolution rate of 4.57 µmol/h from water under the visible light (>420 nm) by almost two times higher than that of BCN (2.37 µmol/h). This study highlights the enhanced photocatalytic water splitting performance as well as the provision of the higher monomeric precursor for improved g-CN.
Collapse
|
114
|
Rabe EJ, Goldwyn HJ, Hwang D, Masiello DJ, Schlenker CW. Intermolecular Hydrogen Bonding Tunes Vibronic Coupling in Heptazine Complexes. J Phys Chem B 2020; 124:11680-11689. [PMID: 33315409 DOI: 10.1021/acs.jpcb.0c07719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To better understand how hydrogen bonding influences the excited-state landscapes of aza-aromatic materials, we studied hydrogen-bonded complexes of 2,5,8-tris (4-methoxyphenyl)-1,3,4,6,7,9,9b-heptaazaphenalene (TAHz), a molecular photocatalyst related to graphitic carbon nitride, with a variety of phenol derivatives (R-PhOH). By varying the electron-withdrawing character of the para-substituent on the phenol, we can modulate the strength of the hydrogen bond. Using time-resolved photoluminescence, we extract a spectral component associated with the R-PhOH-TAHz hydrogen-bonded complex. Surprisingly, we noticed a striking change in the relative amplitude of vibronic peaks in the TAHz-centered emission as a function of R-group on phenol. To gain a physical understanding of these spectral changes, we employed a displaced-oscillator model of molecular emission to fit these spectra. This fit assumes that two vibrational modes are dominantly coupled to the emissive electronic transition and extracts their frequencies and relative nuclear displacements (related to the Huang-Rhys factor). With the aid of quantum chemical calculations, we found that heptazine ring-breathing and ring-puckering modes are likely responsible for the observed vibronic progression, and both modes indicate decreasing molecular distortion in the excited state with increasing hydrogen bond strength. This finding offers new insights into intermolecular excited-state hydrogen bonding, which is a crucial step toward controlling excited-state proton-coupled electron transfer and proton transfer reactions.
Collapse
Affiliation(s)
- Emily J Rabe
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Harrison J Goldwyn
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Doyk Hwang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - David J Masiello
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Cody W Schlenker
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.,Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195-1652, United States.,Clean Energy Institute, University of Washington, Seattle, Washington 98195-1653, United States
| |
Collapse
|
115
|
Kossmann J, Heil T, Antonietti M, López‐Salas N. Guanine-Derived Porous Carbonaceous Materials: Towards C 1 N 1. CHEMSUSCHEM 2020; 13:6643-6650. [PMID: 33090683 PMCID: PMC7756593 DOI: 10.1002/cssc.202002274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Herein, the basic nature of noble covalent, sp2-conjugated materials prepared via direct condensation of guanine in the presence of an inorganic salt melt as structure directing agent was studied. At temperatures below 700 °C stable and more basic addition products with at C/N ratio of 1 (C1 N1 adducts) and with rather uniform micropore sizes were formed. Carbonization at higher temperatures broke the structural motif, and N-doped carbons with 11 wt % and surface areas of 1900 m2 g-1 were obtained. The capability for CO2 sorption and catalytic activity of the materials depended of both their basicity and their pore morphology. The optimization of the synthetic parameters led to very active (100 % conversion) and highly selective (99 % selectivity) heterogeneous base catalysts, as exemplified with the model Knoevenagel condensation of benzaldehyde with malononitrile. The high stability upon oxidation of these covalent materials and their basicity open new perspectives in heterogeneous organocatalysis.
Collapse
Affiliation(s)
- Janina Kossmann
- Colloid Chemistry DepartmentMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Tobias Heil
- Colloid Chemistry DepartmentMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Markus Antonietti
- Colloid Chemistry DepartmentMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Nieves López‐Salas
- Colloid Chemistry DepartmentMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
116
|
Yang H, Wang Z, Liu S, Shen Y, Zhang Y. Molecular engineering of CxNy: Topologies, electronic structures and multidisciplinary applications. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.07.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
117
|
Gross P, Höppe HA. Biuret-A Crucial Reaction Intermediate for Understanding Urea Pyrolysis To Form Carbon Nitrides: Crystal-Structure Elucidation and In Situ Diffractometric, Vibrational and Thermal Characterisation. Chemistry 2020; 26:14366-14376. [PMID: 32573843 PMCID: PMC7702053 DOI: 10.1002/chem.202001396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/06/2020] [Indexed: 11/19/2022]
Abstract
The crystal structure of biuret was elucidated by means of XRD analysis of single crystals grown through slow evaporation from a solution in ethanol. It crystallises in its own structure type in space group C2/c (a=15.4135(8) Å, b=6.6042(3) Å, c=9.3055(4) Å, Z=8). Biuret decomposition was studied in situ by means of temperature-programmed powder XRD and FTIR spectroscopy, to identify a co-crystalline biuret-cyanuric acid phase as a previously unrecognised reaction intermediate. Extensive thermogravimetric studies of varying crucible geometry, heating rate and initial sample mass reveal that the concentration of reactive gases at the interface to the condensed sample residues is a crucial parameter for the prevailing decomposition pathway. Taking these findings into consideration, a study on the optimisation of carbon nitride synthesis from urea on the gram scale, with standard solid-state laboratory techniques, is presented. Finally, a serendipitously encountered self-coating of the crucible inner walls by graphite during repeated synthetic cycles, which prove to be highly beneficial for the obtained yields, is reported.
Collapse
Affiliation(s)
- Peter Gross
- Lehrstuhl für FestkörperchemieUniversität AugsburgUniversitätsstr. 186159AugsburgGermany
| | - Henning A. Höppe
- Lehrstuhl für FestkörperchemieUniversität AugsburgUniversitätsstr. 186159AugsburgGermany
| |
Collapse
|
118
|
Abstract
Earth-abundant Mn-based oxide nanoparticles are supported on carbon nitride using two different immobilization methods and tested for the oxygen reduction reaction. Compared to the metal free CN, the immobilization of Mn oxide enhances not only the electrocatalytic activity but also the selectivity towards the 4e- reduction reaction of O2 to H2O. The XPS analysis reveals the interaction of the pyridine N species with Mn3O4 nanoparticles being particularly beneficial. This interaction is realized—although to a limited extent—when preparing the catalysts via impregnation; via the oleic acid route it is not observed. Whilst this work shows the potential of these systems to catalyze the ORR, the main limiting factor is still the poor conductivity of the support which leads to overpotential.
Collapse
|
119
|
Abdelhafeez IA, Chen J, Zhou X. Scalable one-step template-free synthesis of ultralight edge-functionalized g-C3N4 nanosheets with enhanced visible light photocatalytic performance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
120
|
Loske L, Nakagawa K, Yoshioka T, Matsuyama H. 2D Nanocomposite Membranes: Water Purification and Fouling Mitigation. MEMBRANES 2020; 10:E295. [PMID: 33092187 PMCID: PMC7589742 DOI: 10.3390/membranes10100295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 11/17/2022]
Abstract
In this study, the characteristics of different types of nanosheet membranes were reviewed in order to determine which possessed the optimum propensity for antifouling during water purification. Despite the tremendous amount of attention that nanosheets have received in recent years, their use to render membranes that are resistant to fouling has seldom been investigated. This work is the first to summarize the abilities of nanosheet membranes to alleviate the effect of organic and inorganic foulants during water treatment. In contrast to other publications, single nanosheets, or in combination with other nanomaterials, were considered to be nanostructures. Herein, a broad range of materials beyond graphene-based nanomaterials is discussed. The types of nanohybrid membranes considered in the present work include conventional mixed matrix membranes, stacked membranes, and thin-film nanocomposite membranes. These membranes combine the benefits of both inorganic and organic materials, and their respective drawbacks are addressed herein. The antifouling strategies of nanohybrid membranes were divided into passive and active categories. Nanosheets were employed in order to induce fouling resistance via increased hydrophilicity and photocatalysis. The antifouling properties that are displayed by two-dimensional (2D) nanocomposite membranes also are examined.
Collapse
Affiliation(s)
- Lara Loske
- Department of Environmental, Process & Energy Engineering, Management Center Innsbruck (MCI)—The Entrepreneurial School, Maximilianstrasse 2, 6020 Innsbruck, Austria;
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Keizo Nakagawa
- Research Center for Membrane and Film Technology, Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan;
| | - Tomohisa Yoshioka
- Research Center for Membrane and Film Technology, Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan;
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Research Center for Membrane and Film Technology, Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan;
| |
Collapse
|
121
|
In Situ DRIFTS Investigation of Ethylene Oxidation on Ag and Ag/Cu on Reduced Graphene Oxide. Catal Letters 2020. [DOI: 10.1007/s10562-020-03208-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
122
|
Alwin E, Nowicki W, Wojcieszak R, Zieliński M, Pietrowski M. Elucidating the structure of the graphitic carbon nitride nanomaterials via X-ray photoelectron spectroscopy and X-ray powder diffraction techniques. Dalton Trans 2020; 49:12805-12813. [PMID: 32959849 DOI: 10.1039/d0dt02325f] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
By using the most popular method of thermal condensation of dicyandiamide in a semi-closed system, graphitic carbon nitrides (gCNs) were synthesized at 500, 550, and 600 °C. The resulting materials were comprehensively analyzed via X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRD)techniques. We show that the use of routine analytical methods provides an insight into the structure of the carbon nitride materials. The analysis of geometric linear structures and fully condensed structure of polymeric carbon nitrides was performed and the ranges within which the contents of different nitrogen species (pyridine, amine, imine and quaternary nitrogen) can change were determined. This analysis, in combination with quantitative XPS studies, permits to state that the carbon nitride structure prepared by the thermal condensation of dicyandiamide is closer to the structure in which poly(aminoimino)heptazine subunits are linked into chains rather than the structure involving fully-condensed polyheptazine network. The XRD analysis proved that the 3D crystal structure of carbon nitride is described more correctly by the orthorhombic cell and space group P21212 applied to condensed chains of poly(aminoimino)heptazine (melon) and not by the hexagonal cell with the space group P6m2.
Collapse
Affiliation(s)
- Emilia Alwin
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland. and Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Waldemar Nowicki
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Robert Wojcieszak
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Michał Zieliński
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Mariusz Pietrowski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| |
Collapse
|
123
|
|
124
|
Rohdenburg M, Fröch JE, Martinović P, Lobo CJ, Swiderek P. Combined Ammonia and Electron Processing of a Carbon-Rich Ruthenium Nanomaterial Fabricated by Electron-Induced Deposition. MICROMACHINES 2020; 11:mi11080769. [PMID: 32806527 PMCID: PMC7466110 DOI: 10.3390/mi11080769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 01/22/2023]
Abstract
Ammonia (NH3)-assisted purification of deposits fabricated by focused electron beam-induced deposition (FEBID) has recently been proven successful for the removal of halide contaminations. Herein, we demonstrate the impact of combined NH3 and electron processing on FEBID deposits containing hydrocarbon contaminations that stem from anionic cyclopentadienyl-type ligands. For this purpose, we performed FEBID using bis(ethylcyclopentadienyl)ruthenium(II) as the precursor and subjected the resulting deposits to NH3 and electron processing, both in an environmental scanning electron microscope (ESEM) and in a surface science study under ultrahigh vacuum (UHV) conditions. The results provide evidence that nitrogen from NH3 is incorporated into the carbon content of the deposits which results in a covalent nitride material. This approach opens a perspective to combine the promising properties of carbon nitrides with respect to photocatalysis or nanosensing with the unique 3D nanoprinting capabilities of FEBID, enabling access to a novel class of tailored nanodevices.
Collapse
Affiliation(s)
- Markus Rohdenburg
- Institute for Applied and Physical Chemistry (IAPC), Fachbereich 2 (Chemie/Biologie), University of Bremen, Leobener Str. 5 (NW2), 28359 Bremen, Germany;
- Correspondence: (M.R.); (P.S.); Tel.: +49-421-218-63203 (M.R.); +49-421-218-63200 (P.S.)
| | - Johannes E. Fröch
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (J.E.F.); (C.J.L.)
| | - Petra Martinović
- Institute for Applied and Physical Chemistry (IAPC), Fachbereich 2 (Chemie/Biologie), University of Bremen, Leobener Str. 5 (NW2), 28359 Bremen, Germany;
| | - Charlene J. Lobo
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (J.E.F.); (C.J.L.)
| | - Petra Swiderek
- Institute for Applied and Physical Chemistry (IAPC), Fachbereich 2 (Chemie/Biologie), University of Bremen, Leobener Str. 5 (NW2), 28359 Bremen, Germany;
- Correspondence: (M.R.); (P.S.); Tel.: +49-421-218-63203 (M.R.); +49-421-218-63200 (P.S.)
| |
Collapse
|
125
|
Sun T, Wang C, Xu Y. Covalent Triazine Framework Nanosheets for Efficient Energy Storage and Conversion. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0179-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
126
|
Fu Y, Xu K, Wu J, Zhang Z, He J. The effects of morphology and temperature on the tensile characteristics of carbon nitride nanothreads. NANOSCALE 2020; 12:12462-12475. [PMID: 32495792 DOI: 10.1039/d0nr03206a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Very recently synthesized carbon nitride nanothreads (CNNTs) by compressing crystalline pyridine show outperform diamond nanothreads in chemical and physical properties. Here, using first-principles-based ReaxFF molecular dynamics (MD) simulations, a comprehensive investigation on the mechanical characteristics of seven experimentally synthesized CNNTs has been performed. All CNNTs exhibit unique tensile properties that change with molecular morphology, atomic arrangement and the distribution of nitrogen in the skeleton. The CNNTs with more effective covalent bonds at cross-sections are more mechanically robust. Surprisingly, a tiny CNNT with periodic unit structures of 5462-cage shows extreme ductility because of the formation of a linear polymer via 4-step dissociation-and-reformation of bonds at extremely low temperatures in the range of 1-15 K; however, it shows brittle failure at one cross-section with low ductility at higher temperatures similar to other CNNTs at different temperatures; this offers a feasible way to design a kind of lightweight material that can be used in ultra-low temperature conditions, for example, the harsh deep space environment. The results also show that temperature significantly affects the fracture stress and rupture strain but not the effective stiffness. The analysis of atomic bond orders and bond lengthening reveals that the unique nonlinear elasticity of CNNTs is attributed to the occurrence of local bond transformations. This study provides physical insights into the tensile characteristics of CNNTs for the design and application of CNNT-based nanostructures as multifunctional materials.
Collapse
Affiliation(s)
- Yuequn Fu
- NTNU Nanomechanical Lab, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway.
| | | | | | | | | |
Collapse
|
127
|
Alwin E, Kočí K, Wojcieszak R, Zieliński M, Edelmannová M, Pietrowski M. Influence of High Temperature Synthesis on the Structure of Graphitic Carbon Nitride and Its Hydrogen Generation Ability. MATERIALS 2020; 13:ma13122756. [PMID: 32560554 PMCID: PMC7344968 DOI: 10.3390/ma13122756] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022]
Abstract
Graphitic carbon nitride (g-C3N4) was obtained by thermal polymerization of dicyandiamide, thiourea or melamine at high temperatures (550 and 600 °C), using different heating rates (2 or 10 °C min−1) and synthesis times (0 or 4 h). The effects of the synthesis conditions and type of the precursor on the efficiency of g-C3N4 were studied. The most efficient was the synthesis from dicyandiamide, 53%, while the efficiency in the process of synthesis from melamine and thiourea were much smaller, 26% and 11%, respectively. On the basis of the results provided by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (FTIR), ultraviolet–visible spectroscopy (UV–vis), thermogravimetric analysis (TGA), elemental analysis (EA), the best precursor and the optimum conditions of synthesis of g-C3N4 were identified to get the product of the most stable structure, the highest degree of ordering and condensation of structure and finally the highest photocatalytic activity. It was found that as the proton concentration decreased and the degree of condensation increased, the hydrogen yields during the photocatalytic decomposition of water–methanol solution were significantly enhanced. The generation of hydrogen was 1200 µmol g−1 and the selectivity towards hydrogen of more than 98%.
Collapse
Affiliation(s)
- Emilia Alwin
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (E.A.); (M.Z.)
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France;
| | - Kamila Kočí
- Institute of Environmental Technology, VŠB-Technical University of Ostrava, 17 listopadu 15/2172, 70800 Ostrava, Czech Republic; (K.K.); (M.E.)
| | - Robert Wojcieszak
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France;
| | - Michał Zieliński
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (E.A.); (M.Z.)
| | - Miroslava Edelmannová
- Institute of Environmental Technology, VŠB-Technical University of Ostrava, 17 listopadu 15/2172, 70800 Ostrava, Czech Republic; (K.K.); (M.E.)
| | - Mariusz Pietrowski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (E.A.); (M.Z.)
- Correspondence:
| |
Collapse
|
128
|
Affiliation(s)
- Michele Melchionna
- Chemistry Department, INSTM and ICCOM-CNR Trieste Research Unit, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Paolo Fornasiero
- Chemistry Department, INSTM and ICCOM-CNR Trieste Research Unit, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| |
Collapse
|
129
|
Palaniappan N, Cole IS, Damodaran K, Kuznetsov A, Justin Thomas KR, K B. Experimental and DFT studies of porous carbon covalently functionalized by polyaniline as a corrosion inhibition barrier on nickel-based alloys in acidic media. RSC Adv 2020; 10:12151-12165. [PMID: 35497596 PMCID: PMC9050735 DOI: 10.1039/d0ra00593b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/15/2020] [Indexed: 11/29/2022] Open
Abstract
In acidic medium, nickel alloys severely suffer from long term corrosion problems as a result of the breakdown of their passivating oxide. The present study considers polyaniline functionalized fish-scale graphitic carbon as an anticorrosion coating on the nickel alloy surface. The fish-scale porous carbon materials are characterized by XRD, ATR-FITR, UV, Raman, TGA, SS NMR, FESEM, and TEM methods. The surface of the alloy is covalently bound with a polyaniline long chain protonated polymer so that the polyaniline functionalized honeycomb fish-scale carbon structure can exchange electrons with the metal surface. The corrosion inhibition efficiency has been investigated in different acid media like sulfuric acid and hydrochloric acid by electrochemical methods. Polyaniline functionalized porous carbon showed in 1 M H2SO4 inhibition efficiency around 64% and in 1 M HCl inhibition efficiency was around 74%. The inhibition efficiency was higher in HCl because chloride ions were not able to penetrate the graphitic sheet. The novelty of this coating is in the fact that the polyaniline functionalized porous carbon has high conductivity and is electrochemically stable in acidic medium. It is able to donate electrons to the polarized metal surface. Polyaniline functionalized fish scale carbon chemisorption on 111 nickel alloy surface by polyaniline polaron nitrogen free electron.![]()
Collapse
Affiliation(s)
- N Palaniappan
- School of Chemical Sciences, Central University of Gujarat India
| | - I S Cole
- Advance Manufacturing and Fabrication Research and Innovation, RMIT University Melbourne Victoria 3100 Australia
| | - K Damodaran
- Chemistry Department, Pittsburgh University USA
| | - A Kuznetsov
- Department of Chemistry, Universidad Técnica Federico Santa Maria, Campus Vitacura Santiago Chile
| | - K R Justin Thomas
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee Roorkee 247667 India
| | | |
Collapse
|
130
|
Ma B, Chen G, Fave C, Chen L, Kuriki R, Maeda K, Ishitani O, Lau TC, Bonin J, Robert M. Efficient Visible-Light-Driven CO 2 Reduction by a Cobalt Molecular Catalyst Covalently Linked to Mesoporous Carbon Nitride. J Am Chem Soc 2020; 142:6188-6195. [PMID: 32148034 DOI: 10.1021/jacs.9b13930] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Achieving visible-light-driven carbon dioxide reduction with high selectivity control and durability while using only earth abundant elements requires new strategies. Hybrid catalytic material was prepared upon covalent grafting a Co-quaterpyridine molecular complex to semiconductive mesoporous graphitic carbon nitride (mpg-C3N4) through an amide linkage. The molecular material was characterized by various spectroscopic techniques, including XPS, IR, and impedance spectroscopy. It proved to be a selective catalyst for CO production in acetonitrile using a solar simulator with a high 98% selectivity, while being remarkably robust since no degradation was observed after 4 days of irradiation (ca. 500 catalytic cycles). This unique combination of a selective molecular catalyst with a simple and robust semiconductive material opens new pathways for CO2 catalytic light-driven reduction.
Collapse
Affiliation(s)
- Bing Ma
- Laboratoire d'Electrochimie Moléculaire, CNRS, Université de Paris, 15 Rue Jean-Antoine de Baïf, F-75013 Paris, France
| | - Gui Chen
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, P. R. China
| | - Claire Fave
- Laboratoire d'Electrochimie Moléculaire, CNRS, Université de Paris, 15 Rue Jean-Antoine de Baïf, F-75013 Paris, France
| | - Lingjing Chen
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, P. R. China
| | - Ryo Kuriki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-1 Okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Kazuhiko Maeda
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-1 Okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Osamu Ishitani
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-1 Okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Julien Bonin
- Laboratoire d'Electrochimie Moléculaire, CNRS, Université de Paris, 15 Rue Jean-Antoine de Baïf, F-75013 Paris, France
| | - Marc Robert
- Laboratoire d'Electrochimie Moléculaire, CNRS, Université de Paris, 15 Rue Jean-Antoine de Baïf, F-75013 Paris, France
| |
Collapse
|
131
|
Abdelhafeez I, Zhou X, Yao Q, Yu Z, Gong Y, Chen J. Multifunctional Edge-Activated Carbon Nitride Nanosheet-Wrapped Polydimethylsiloxane Sponge Skeleton for Selective Oil Absorption and Photocatalysis. ACS OMEGA 2020; 5:4181-4190. [PMID: 32149248 PMCID: PMC7057679 DOI: 10.1021/acsomega.9b03994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Developing green 3D porous materials integrating multitasking environmental remediation with high efficiency and reusability is considered to be a promising sustainable approach and is urgently required. Herein, we have successfully prepared a facile, ecofriendly, and robust multifunctional composite sponge of carbon nitride (CN) nanosheets wrapping an elastomer polydimethylsiloxane (PDMS) skeleton without harsh treatments. The composite sponge (CN@PDMS) exhibits excellent hydrophobic and superoleophilic properties with a water contact angle of 133.2°. This sponge also shows high selective absorption of organic solvents and oils with high recyclability after 10 absorption cycles. Furthermore, the CN@PDMS sponge has a high ability for demulsification of the oil-in-water emulsion as well. The as-prepared sponge displays high thermal stability, retaining 82.16% of its original weight up to 550 °C, and extraordinary prolonged stability in harsh corrosive solutions over 35 h compared with the pristine PDMS sponge. Additionally, the CN@PDMS sponge exhibits a high ability for adsorption and photodegradation of rhodamine B under visible light irradiation with self-cleaning and high reusability over 5 runs. Such a sustainable strategy would provide new ways for broad environmental applications.
Collapse
Affiliation(s)
- Islam
A. Abdelhafeez
- State
Key Laboratory of Pollution Control and Resources Reuse, College of
Environmental Science and Engineering, Tongji
University, Shanghai 200092, P. R. China
- Soils,
Water and Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt
| | - Xuefei Zhou
- State
Key Laboratory of Pollution Control and Resources Reuse, College of
Environmental Science and Engineering, Tongji
University, Shanghai 200092, P. R. China
- Key
Laboratory of Yangtze Water Environment for Ministry of Education, Tongji University, Shanghai 200092, P. R.
China
| | - Quifang Yao
- State
Key Laboratory of Pollution Control and Resources Reuse, College of
Environmental Science and Engineering, Tongji
University, Shanghai 200092, P. R. China
| | - Zhenjiang Yu
- State
Key Laboratory of Pollution Control and Resources Reuse, College of
Environmental Science and Engineering, Tongji
University, Shanghai 200092, P. R. China
| | - Yufeng Gong
- State
Key Laboratory of Pollution Control and Resources Reuse, College of
Environmental Science and Engineering, Tongji
University, Shanghai 200092, P. R. China
| | - Jiabin Chen
- State
Key Laboratory of Pollution Control and Resources Reuse, College of
Environmental Science and Engineering, Tongji
University, Shanghai 200092, P. R. China
| |
Collapse
|
132
|
Park HL, Kim H, Lim D, Zhou H, Kim YH, Lee Y, Park S, Lee TW. Retina-Inspired Carbon Nitride-Based Photonic Synapses for Selective Detection of UV Light. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906899. [PMID: 31984573 DOI: 10.1002/adma.201906899] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/21/2019] [Indexed: 05/28/2023]
Abstract
Photonic synapses combine sensing and processing in a single device, so they are promising candidates to emulate visual perception of a biological retina. However, photonic synapses with wavelength selectivity, which is a key property for visual perception, have not been developed so far. Herein, organic photonic synapses that selectively detect UV rays and process various optical stimuli are presented. The photonic synapses use carbon nitride (C3 N4 ) as an UV-responsive floating-gate layer in transistor geometry. C3 N4 nanodots dominantly absorb UV light; this trait is the basis of UV selectivity in these photonic synapses. The presented devices consume only 18.06 fJ per synaptic event, which is comparable to the energy consumption of biological synapses. Furthermore, in situ modulation of exposure to UV light is demonstrated by integrating the devices with UV transmittance modulators. These smart systems can be further developed to combine detection and dose-calculation to determine how and when to decrease UV transmittance for preventive health care.
Collapse
Affiliation(s)
- Hea-Lim Park
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Haeju Kim
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Donggyu Lim
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Huanyu Zhou
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- BK21 PLUS SNU Materials Division for Educating Creative Global Leaders, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Young-Hoon Kim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- BK21 PLUS SNU Materials Division for Educating Creative Global Leaders, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yeongjun Lee
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- BK21 PLUS SNU Materials Division for Educating Creative Global Leaders, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sungjin Park
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- BK21 PLUS SNU Materials Division for Educating Creative Global Leaders, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Research Institute of Advanced Materials, Nano Systems Institute (NSI), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
133
|
Tyagi D, Wang H, Huang W, Hu L, Tang Y, Guo Z, Ouyang Z, Zhang H. Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. NANOSCALE 2020; 12:3535-3559. [PMID: 32003390 DOI: 10.1039/c9nr10178k] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Monitoring harmful and toxic chemicals, gases, microorganisms, and radiation has been a challenge to the scientific community for the betterment of human health and environment. Two-dimensional (2D)-material-based sensors are highly efficient and compatible with modern fabrication technology, which yield data that can be proficiently used for health and environmental monitoring. Graphene and its oxides, black phosphorus (BP), transition metal dichalcogenides (TMDCs), metal oxides, and other 2D nanomaterials have demonstrated properties that have been alluring for the manufacture of highly sensitive sensors due to their unique material properties arising from their inherent structures. This review summarizes the properties of 2D nanomaterials that can provide a platform to develop high-performance sensors. In this review, we have also discussed the advances made in the field of infrared photodetectors and electrochemical sensors and how the structural properties of 2D nanomaterials affect sensitivity and performance. Further, this review highlights 2D-nanomaterial-based electrochemical sensors that can be used to check for contaminations from heavy metals, organic/inorganic compounds, poisonous gases, pesticides, bacteria, antibiotics, etc., in water or air, which are severe risks to human wellbeing as well as the environment. Moreover, the limitations, future prospects, and challenges for the development of sensors based on 2D materials are also discussed for future advancements.
Collapse
Affiliation(s)
- Deepika Tyagi
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China. and College of Electronic Science and Technology of Shenzhen University, THz Technical Research Center of Shenzhen University, Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Huide Wang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Weichun Huang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, P. R. China
| | - Lanping Hu
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, P. R. China
| | - Yanfeng Tang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, P. R. China
| | - Zhinan Guo
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Zhengbiao Ouyang
- College of Electronic Science and Technology of Shenzhen University, THz Technical Research Center of Shenzhen University, Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| |
Collapse
|
134
|
Shi LB, Cao S, Yang M, You Q, Zhang KC, Bao Y, Zhang YJ, Niu YY, Qian P. Theoretical prediction of intrinsic electron mobility of monolayer InSe: first-principles calculation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:065306. [PMID: 31671411 DOI: 10.1088/1361-648x/ab534f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, a novel two-dimensional (2D) semiconductor, InSe, has attracted great attention due to its potential applications in optoelectronic devices and field effect transistors. In this study, phonon-limited mobility is investigated by the first-principles calculation. At 300 K, the intrinsic electron mobilities calculated from the electron-phonon coupling (EPC) matrix element are as high as [Formula: see text] (zigzag direction) and [Formula: see text] [Formula: see text] (Armchair direction), respectively. The deformation potential theory (DPT) based on longitudinal acoustic and optical phonon scattering is also employed to investigate electron mobility. The mobility from optical phonon scattering is much higher than that from longitudinal acoustic phonon scattering. If the polarization characteristics of InSe are not considered, the electron mobility calculated from EPC matrix element is closed to that from the longitudinal acoustic phonon DPT. In this study, we have also investigated the effect of polarization properties in 2D InSe on electron mobility. At 300 K, the electron mobility for including Fröhlich interaction is reduced to [Formula: see text] and [Formula: see text] [Formula: see text]. Therefore, the electron mobility for InSe is controlled by the scattering from polar phonons. The mobility can be increased to [Formula: see text] and [Formula: see text] [Formula: see text] under 4% biaxial strain. This result is compared with the experiment, and some disagreements are explained.
Collapse
Affiliation(s)
- Li-Bin Shi
- School of Mathematics and Physics, Bohai University, Liaoning Jinzhou 121013, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Praus P, Smýkalová A, Foniok K, Velíšek P, Cvejn D, Žádný J, Storch J. Post-Synthetic Derivatization of Graphitic Carbon Nitride with Methanesulfonyl Chloride: Synthesis, Characterization and Photocatalysis. NANOMATERIALS 2020; 10:nano10020193. [PMID: 31979003 PMCID: PMC7074974 DOI: 10.3390/nano10020193] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 11/16/2022]
Abstract
Bulk graphitic carbon nitride (CN) was synthetized by heating of melamine at 550 °C, and the exfoliated CN (ExCN) was prepared by heating of CN at 500 °C. Sulfur-doped CN was synthesized by heating of thiourea (S-CN) and by a novel procedure based on the post-synthetic derivatization of CN with methanesulfonyl (CH3SO2−) chloride (Mes-CN and Mes-ExCN). The obtained nanomaterials were investigated by common characterization methods and their photocatalytic activity was tested by means of the decomposition of acetic orange 7 (AO7) under ultraviolet A (UVA) irradiation. The content of sulfur in the modified CN decreased in the sequence of Mes-ExCN > Mes-CN > S-CN. The absorption of light decreased in the opposite manner, but no influence on the band gap energies was observed. The methanesulfonyl (mesyl) groups connected to primary and secondary amine groups were confirmed by high resolution mass spectrometry (HRMS). The photocatalytic activity decreased in the sequence of Mes-ExCN > ExCN > CN ≈ Mes-CN > S-CN. The highest activity of Mes-ExCN and ExCN was explained by the highest amounts of adsorbed Acetic Orange 7 (AO7). In addition, in the case of Mes-ExCN, chloride ions incorporated in the CN lattice enhanced the photocatalytic activity as well.
Collapse
Affiliation(s)
- Petr Praus
- Department of Chemistry, VŠB-Technical University of Ostrava, 700 80 Ostrava, Czech Republic; (A.S.); (K.F.)
- Institute of Environmental Technology, VŠB-Technical University of Ostrava, 708 00 Ostrava, Czech Republic
- Correspondence: (P.P.); (J.Ž.); Tel.: +420-59-732-1625 (P.P.); +420-220-390-236 (J.Ž.)
| | - Aneta Smýkalová
- Department of Chemistry, VŠB-Technical University of Ostrava, 700 80 Ostrava, Czech Republic; (A.S.); (K.F.)
- Institute of Environmental Technology, VŠB-Technical University of Ostrava, 708 00 Ostrava, Czech Republic
| | - Kryštof Foniok
- Department of Chemistry, VŠB-Technical University of Ostrava, 700 80 Ostrava, Czech Republic; (A.S.); (K.F.)
- Institute of Environmental Technology, VŠB-Technical University of Ostrava, 708 00 Ostrava, Czech Republic
| | - Petr Velíšek
- Department of Advanced Nanomaterials and Organic Synthesis, Institute of Chemical Process Fundamentals, v.v.i., Czech Academy of Sciences, Rozvojová 1/135, 165 02 Prague 6, Czech Republic; (P.V.); (J.S.)
| | - Daniel Cvejn
- ENET Centre, VŠB-Technical University of Ostrava, 708 00 Ostrava, Czech Republic;
| | - Jaroslav Žádný
- Department of Advanced Nanomaterials and Organic Synthesis, Institute of Chemical Process Fundamentals, v.v.i., Czech Academy of Sciences, Rozvojová 1/135, 165 02 Prague 6, Czech Republic; (P.V.); (J.S.)
- Correspondence: (P.P.); (J.Ž.); Tel.: +420-59-732-1625 (P.P.); +420-220-390-236 (J.Ž.)
| | - Jan Storch
- Department of Advanced Nanomaterials and Organic Synthesis, Institute of Chemical Process Fundamentals, v.v.i., Czech Academy of Sciences, Rozvojová 1/135, 165 02 Prague 6, Czech Republic; (P.V.); (J.S.)
| |
Collapse
|
136
|
Dai J, Ogbeide O, Macadam N, Sun Q, Yu W, Li Y, Su BL, Hasan T, Huang X, Huang W. Printed gas sensors. Chem Soc Rev 2020; 49:1756-1789. [DOI: 10.1039/c9cs00459a] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review presents the recent development of printed gas sensors based on functional inks.
Collapse
Affiliation(s)
- Jie Dai
- Institute of Advanced Materials (IAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- P. R. China
| | | | | | - Qian Sun
- Institute of Advanced Materials (IAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE)
| | - Wenbei Yu
- Cambridge Graphene Centre
- University of Cambridge
- Cambridge CB3 0FA
- UK
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
| | - Yu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Bao-Lian Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Tawfique Hasan
- Cambridge Graphene Centre
- University of Cambridge
- Cambridge CB3 0FA
- UK
| | - Xiao Huang
- Institute of Advanced Materials (IAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- P. R. China
| | - Wei Huang
- Institute of Advanced Materials (IAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE)
| |
Collapse
|
137
|
Lin TJ, Chiu CC. Influence of nonmetal dopants on charge separation of graphitic carbon nitride by time-dependent density functional theory. Phys Chem Chem Phys 2020; 22:647-657. [DOI: 10.1039/c9cp06175d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We examined the charge separation performance of phosphorus-, oxygen-, and sulfur-doped g-C3N4 by using time dependent density functional theory and wave function analysis.
Collapse
Affiliation(s)
- Tzu-Jen Lin
- Department of Chemical Engineering
- Chung Yuan Christian University
- Taoyuan City
- Taiwan
- Luh Hwa Research Center for Circular Economy
| | - Cheng-chau Chiu
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei
- Taiwan
| |
Collapse
|
138
|
Zhu A, Qiao L, Tan P, Pan J. Interfaces of graphitic carbon nitride-based composite photocatalysts. Inorg Chem Front 2020. [DOI: 10.1039/d0qi01026j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review concentrates on the interface issues of g-C3N4-based photocatalysts, including methods for constructing interfaces, techniques for identifying interfaces, and the types and roles of the as-developed interfaces.
Collapse
Affiliation(s)
- Anquan Zhu
- State Key Laboratory for Powder Metallurgy
- Central South University
- Changsha 410083
- P. R. China
| | - Lulu Qiao
- State Key Laboratory for Powder Metallurgy
- Central South University
- Changsha 410083
- P. R. China
| | - Pengfei Tan
- State Key Laboratory for Powder Metallurgy
- Central South University
- Changsha 410083
- P. R. China
| | - Jun Pan
- State Key Laboratory for Powder Metallurgy
- Central South University
- Changsha 410083
- P. R. China
| |
Collapse
|
139
|
Ben-Refael A, Benisti I, Paz Y. Transient photoinduced phenomena in graphitic carbon nitride as measured at nanoseconds resolution by step-scan FTIR. Catal Today 2020. [DOI: 10.1016/j.cattod.2018.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
140
|
Aleksandrzak M, Jedrzejczak-Silicka M, Sielicki K, Piotrowska K, Mijowska E. Size-Dependent in Vitro Biocompatibility and Uptake Process of Polymeric Carbon Nitride. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47739-47749. [PMID: 31774643 DOI: 10.1021/acsami.9b17427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polymeric carbon nitride (PCN), which demonstrates unique properties, has been widely explored, mostly in photocatalysis; however, the evaluation of its biocompatibility is still needed. Herein, the cytocompatibility of PCN with different lateral size distributions (A-PCN with 160 nm, B-PCN with 20 nm, and C-PCN with 10 nm dominating lateral sizes) was investigated. The viability of three cell lines (L929, MCF-7, and HepG2) has been determined using cell counting kit-8 (CCK-8), neutral red uptake (NRU), and lactate dehydrogenase (LDH) leakage assays. It was found that the highest cytotoxicity of PCN was observed for flakes with a lateral size of ∼20 nm (B-PCN) in three cell lines after 48 h of exposition. The uptake process of B-PCN sheets labeled with fluorescein isothiocyanate (FITC) by cells was also the most effective. Confocal laser scanning microscopy and atomic force microscopy revealed the nanomaterial distribution throughout the cytoplasm and perinuclear region. The results demonstrated the correlation among size, internalization process, and cytocompatibility of the tested polymeric carbon nitride structures.
Collapse
Affiliation(s)
- Malgorzata Aleksandrzak
- Department of Physicochemistry of Nanomaterials, Faculty of Chemical Technology and Engineering , West Pomeranian University of Technology, Szczecin , Piastow Ave. 42 , 71-065 Szczecin , Poland
| | - Magdalena Jedrzejczak-Silicka
- Laboratory of Cytogenetics , West Pomeranian University of Technology, Szczecin , Klemensa Janickiego 29 , 71-270 Szczecin Poland
| | - Krzysztof Sielicki
- Department of Physicochemistry of Nanomaterials, Faculty of Chemical Technology and Engineering , West Pomeranian University of Technology, Szczecin , Piastow Ave. 42 , 71-065 Szczecin , Poland
| | - Katarzyna Piotrowska
- Department of Physiology , Pomeranian Medical University , Powstancow Wlkp. 72 , 70-111 Szczecin , Poland
| | - Ewa Mijowska
- Department of Physicochemistry of Nanomaterials, Faculty of Chemical Technology and Engineering , West Pomeranian University of Technology, Szczecin , Piastow Ave. 42 , 71-065 Szczecin , Poland
| |
Collapse
|
141
|
Graphitic Carbon Nitride Doped Copper-Manganese Alloy as High-Performance Electrode Material in Supercapacitor for Energy Storage. NANOMATERIALS 2019; 10:nano10010002. [PMID: 31861281 PMCID: PMC7023178 DOI: 10.3390/nano10010002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 11/17/2022]
Abstract
Here, we report the synthesis of copper-manganese alloy (CuMnO2) using graphitic carbon nitride (gCN) as a novel support material. The successful formation of CuMnO2-gCN was confirmed through spectroscopic, optical, and other characterization techniques. We have applied this catalyst as the energy storage material in the alkaline media and it has shown good catalytic behavior in supercapacitor applications. The CuMnO2-gCN demonstrates outstanding electrocapacitive performance, having high capacitance (817.85 A·g-1) and well-cycling stability (1000 cycles) when used as a working electrode material for supercapacitor applications. For comparison, we have also used the gCN and Cu2O-gCN for supercapacitor applications. This study proposes a simple path for the extensive construction of self-attaining double metal alloy with control size and uniformity in high-performance energy-storing materials.
Collapse
|
142
|
Paz Y. Transient IR spectroscopy as a tool for studying photocatalytic materials. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:503004. [PMID: 31469092 DOI: 10.1088/1361-648x/ab3eda] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Over the years, a considerable amount of attention has been given to the thermodynamics of photocatalysts, i.e. to the location of their valence and conduction bands on the energy scale. The kinetics of the photoinduced charge carriers at short times (i.e. prior to their surface redox reactions) is no less important. While significant work on the transient electronic spectra of photocatalysts has been performed, the transient vibrational spectra of this class of materials was hardly studied. This manuscript aims to increase the scientific awareness to the potential of transient IR spectroscopy (TRIR) as a complementary tool for understanding the first, crucial, steps of photocatalytic processes in solid photocatalysts. This was done herein first by describing the various techniques currently in use for measuring transient IR signals of photo-excited systems and discussing their pros and cons. Then, a variety of examples is given, representing different types of photocatalysts such as oxides (TiO2, NaTaO3, BiOCl, BiVO4), photosensitized oxides (dye-sensitized TiO2), organic polymers (graphitic carbon nitride) and organo-metalic photocatalysts (rhenium bipyridyl complexes). These examples span from materials with no IR fingerprint signals (TiO2) to materials having a distinct spectrum showing well-defined, localized, relatively narrow, vibrational bands (carbon nitride). In choosing the given-above examples, care was made to represent the several pump & probe techniques that are applied when studying transient IR spectroscopy, namely dispersive, transient 2D-IR spectroscopy and step-scan IR spectroscopy. It is hoped that this short review will contribute to expanding the use of TRIR as a viable and important technique among the arsenal of tools struggling to solve the mysteries behind photocatalysis.
Collapse
Affiliation(s)
- Yaron Paz
- Department of Chemical Engineering, Technion, Haifa, Israel
| |
Collapse
|
143
|
Zhang D, Xu T, Li C, Xu W, Wang J, Bai J. Synthesis of carbon fibers support graphitic carbon nitride immobilize ZnBr2 catalyst in the catalytic reaction between styrene oxide and CO2. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
144
|
Abstract
A bifunctional thin film photocatalyst consisting of graphitic carbon nitride on tungsten trioxide (g-C3N4/WO3) is introduced for the improvement of photocatalytic activity concerning hexavalent chromium reduction and methylene blue dye removal in water, compared to the bare, widely used WO3 semiconductor. A bilayered structure was formed, which is important for the enhancement of the charge carriers’ separation. The characterization of morphological, structural, optoelectronic, and vibrational properties of the photocatalysts permitted a better understanding of their photocatalytic activity for both dye degradation and Cr+6 elimination in water and the analysis of the photocatalytic kinetics permitted the determination of the corresponding pseudo-first-order reaction constants (k). Trapping experiments performed under UV illumination revealed that the main active species for the photocatalytic reduction of Cr+6 ions are electrons, whereas in the case of methylene blue azo-dye (MB) oxidation, the activation of the corresponding photocatalytic degradation comes via both holes and superoxide radicals.
Collapse
|
145
|
Nguyen TP, Nguyen DLT, Nguyen VH, Le TH, Vo DVN, Ly QV, Kim SY, Le QV. Recent Progress in Carbon-Based Buffer Layers for Polymer Solar Cells. Polymers (Basel) 2019; 11:E1858. [PMID: 31717989 PMCID: PMC6918399 DOI: 10.3390/polym11111858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/23/2019] [Accepted: 11/05/2019] [Indexed: 12/04/2022] Open
Abstract
Carbon-based materials are promising candidates as charge transport layers in various optoelectronic devices and have been applied to enhance the performance and stability of such devices. In this paper, we provide an overview of the most contemporary strategies that use carbon-based materials including graphene, graphene oxide, carbon nanotubes, carbon quantum dots, and graphitic carbon nitride as buffer layers in polymer solar cells (PSCs). The crucial parameters that regulate the performance of carbon-based buffer layers are highlighted and discussed in detail. Furthermore, the performances of recently developed carbon-based materials as hole and electron transport layers in PSCs compared with those of commercially available hole/electron transport layers are evaluated. Finally, we elaborate on the remaining challenges and future directions for the development of carbon-based buffer layers to achieve high-efficiency and high-stability PSCs.
Collapse
Affiliation(s)
- Thang Phan Nguyen
- Laboratory of Advanced Materials Chemistry, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Dang Le Tri Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; (D.L.T.N.); (Q.V.L.)
| | - Van-Huy Nguyen
- Key Laboratory of Advanced Materials for Energy and Environmental Applications, Lac Hong University, Bien Hoa 810000, Vietnam;
| | - Thu-Ha Le
- Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University–Ho Chi Minh City (VNU–HCM), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City 700000, Viet Nam;
| | - Dai-Viet N. Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam;
| | - Quang Viet Ly
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; (D.L.T.N.); (Q.V.L.)
- State Key Laboratory of Separation Membrane and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; (D.L.T.N.); (Q.V.L.)
| |
Collapse
|
146
|
Silva WO, Silva GC, Webster RF, Benedetti TM, Tilley RD, Ticianelli EA. Electrochemical Reduction of CO
2
on Nitrogen‐Doped Carbon Catalysts With and Without Iron. ChemElectroChem 2019. [DOI: 10.1002/celc.201901144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Wanderson O. Silva
- Department of Physical Chemistry São Carlos Institute of Chemistry – USP Av. Trabalhador São-carlense, 400 São Carlos, SP Brazil
| | - Gabriel C. Silva
- Department of Physical Chemistry São Carlos Institute of Chemistry – USP Av. Trabalhador São-carlense, 400 São Carlos, SP Brazil
| | - Richard F. Webster
- Electron Microscope Unit Mark Wainwright Analytical Centre The University of New South Wales Sydney, NSW 2052 Australia
| | - Tania M. Benedetti
- School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
| | - Richard D. Tilley
- Electron Microscope Unit Mark Wainwright Analytical Centre The University of New South Wales Sydney, NSW 2052 Australia
- School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
| | - Edson A. Ticianelli
- Department of Physical Chemistry São Carlos Institute of Chemistry – USP Av. Trabalhador São-carlense, 400 São Carlos, SP Brazil
| |
Collapse
|
147
|
Dizajghorbani-Aghdam H, Miller TS, Malekfar R, McMillan PF. SERS-Active Cu Nanoparticles on Carbon Nitride Support Fabricated Using Pulsed Laser Ablation. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1223. [PMID: 31470589 PMCID: PMC6780541 DOI: 10.3390/nano9091223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 11/30/2022]
Abstract
We report a single-step route to co-deposit Cu nanoparticles with a graphitic carbon nitride (gCN) support using nanosecond Ce:Nd:YAG pulsed laser ablation from a Cu metal target coated using acetonitrile (CH3CN). The resulting Cu/gCN hybrids showed strong optical absorption in the visible to near-IR range and exhibited surface-enhanced Raman or resonance Raman scattering (SERS or SERRS) enhancement for crystal violet (CV), methylene blue (MB), and rhodamine 6G (R6G) used as probe analyte molecules adsorbed on the surface. We have characterized the Cu nanoparticles and the nature of the gCN support materials using a range of spectroscopic, structural, and compositional analysis techniques.
Collapse
Affiliation(s)
- Hossein Dizajghorbani-Aghdam
- Atomic and Molecular Group, Physics Department, Faculty of Basic Sciences, Tarbiat Modares University, Tehran 14115-175, Iran
| | - Thomas S Miller
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Rasoul Malekfar
- Atomic and Molecular Group, Physics Department, Faculty of Basic Sciences, Tarbiat Modares University, Tehran 14115-175, Iran.
| | - Paul F McMillan
- Department of Chemistry, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| |
Collapse
|
148
|
Photocatalytic Selective Oxidation of Organic Compounds in Graphitic Carbon Nitride Systems: A Review. THEOR EXP CHEM+ 2019. [DOI: 10.1007/s11237-019-09607-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
149
|
Tangeysh B, Odhner JH, Wang Y, Wayland BB, Levis RJ. Formation of Copper(I) Oxide- and Copper(I) Cyanide-Polyacetonitrile Nanocomposites through Strong-Field Laser Processing of Acetonitrile Solutions of Copper(II) Acetate Dimer. J Phys Chem A 2019; 123:6430-6438. [PMID: 31266303 DOI: 10.1021/acs.jpca.9b04206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Irradiation studies of acetonitrile solutions of copper(II) acetate dimer ([Cu(OAc)2]2) using high energy, simultaneously spatially and temporally focused (SSTF) ultrashort laser pulses are reported. Under ambient conditions, irradiation for relatively short periods of time (10-20 s) selectively produces relatively small, narrowly size-dispersed (3.5 ± 0.7 nm) copper(I) oxide nanoparticles (Cu2O NPs) embedded in CuCN-polyacetonitrile polymers generated in situ by the laser. The Cu2O NPs become embedded in a CuCN-polyacetonitrile network as they form, stabilizing them and protecting the air-sensitive material from oxygen. Laser irradiation of acetonitrile causes fragmentation into transient radicals that initiate and terminate polymerization of acetonitrile. Control and mechanistic investigations reveal that HCN formed during laser irradiation reacts rapidly to reduce the Cu(II) centers in [Cu(OAc)2]2, leading to the formation of CuCN or, in the presence of water, Cu2O nanoparticles that bind and cross-link CuCN-polyacetonitrile chains. The acetate-bridged Cu(II) dimer unit is a required structural feature that functions to preorganize and direct the Cu(II) reduction and selective formation of CuCN and Cu2O nanoparticles. This study illustrates how rapid deposition of energy using shaped, ultrashort laser pulses can initiate multiple photolytic and thermal processes that lead to the selective formation of composite nanoparticle/polymer materials for applications in electronics and catalysis.
Collapse
Affiliation(s)
- Behzad Tangeysh
- Department of Chemistry and the Center for Advanced Photonics Research , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Johanan H Odhner
- Department of Chemistry and the Center for Advanced Photonics Research , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Yu Wang
- Department of Chemistry and the Center for Advanced Photonics Research , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Bradford B Wayland
- Department of Chemistry and the Center for Advanced Photonics Research , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Robert J Levis
- Department of Chemistry and the Center for Advanced Photonics Research , Temple University , Philadelphia , Pennsylvania 19122 , United States
| |
Collapse
|
150
|
Nian Q, Wang X, Wang M, Zuo G. A hybrid material composed of graphitic carbon nitride and magnetite (Fe3O4) for magnetic solid-phase extraction of trace levels of hydroxylated polycyclic aromatic hydrocarbons. Mikrochim Acta 2019; 186:497. [DOI: 10.1007/s00604-019-3607-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/13/2019] [Indexed: 12/18/2022]
|