101
|
Fuchs E, Haas AK, Spooner RA, Yoshimura SI, Lord JM, Barr FA. Specific Rab GTPase-activating proteins define the Shiga toxin and epidermal growth factor uptake pathways. ACTA ACUST UNITED AC 2007; 177:1133-43. [PMID: 17562788 PMCID: PMC2064371 DOI: 10.1083/jcb.200612068] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rab family guanosine triphosphatases (GTPases) together with their regulators define specific pathways of membrane traffic within eukaryotic cells. In this study, we have investigated which Rab GTPase-activating proteins (GAPs) can interfere with the trafficking of Shiga toxin from the cell surface to the Golgi apparatus and studied transport of the epidermal growth factor (EGF) from the cell surface to endosomes. This screen identifies 6 (EVI5, RN-tre/USP6NL, TBC1D10A–C, and TBC1D17) of 39 predicted human Rab GAPs as specific regulators of Shiga toxin but not EGF uptake. We show that Rab43 is the target of RN-tre and is required for Shiga toxin uptake. In contrast, RabGAP-5, a Rab5 GAP, was unique among the GAPs tested and reduced the uptake of EGF but not Shiga toxin. These results suggest that Shiga toxin trafficking to the Golgi is a multistep process controlled by several Rab GAPs and their target Rabs and that this process is discrete from ligand-induced EGF receptor trafficking.
Collapse
Affiliation(s)
- Evelyn Fuchs
- Department of Cell Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | | | | | | | | | | |
Collapse
|
102
|
|
103
|
Marsden CJ, Smith DC, Roberts LM, Lord JM. Ricin: current understanding and prospects for an antiricin vaccine. Expert Rev Vaccines 2006; 4:229-37. [PMID: 15889996 DOI: 10.1586/14760584.4.2.229] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ricin is a potent cytotoxin that can be rapidly internalized into mammalian cells leading to cell death. The ease in obtaining the toxin and its deadly nature combine to implicate ricin as a convenient agent for bioterrorism. Research into the mechanism of toxicity, as well as strategies for treatment and protection from the toxin has been widely undertaken for a number of years. This article reviews the current understanding of the mechanism of action of the toxin, the clinical effects of ricin intoxication and how these relate to current and continuing prospects for vaccine development.
Collapse
Affiliation(s)
- Catherine J Marsden
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| | | | | | | |
Collapse
|
104
|
Lord JM, Roberts LM, Lencer WI. Entry of protein toxins into mammalian cells by crossing the endoplasmic reticulum membrane: co-opting basic mechanisms of endoplasmic reticulum-associated degradation. Curr Top Microbiol Immunol 2006; 300:149-68. [PMID: 16573240 DOI: 10.1007/3-540-28007-3_7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The catalytic polypeptides of certain bacterial and plant protein toxins reach their substrates in the cytosol of mammalian cells by retro-translocation from the endoplasmic reticulum (ER). Emerging evidence indicates that these proteins subvert the ER-associated protein degradation (ERAD) pathway that normally removes misfolded or unassembled proteins from the ER, to achieve retrotranslocation. Upon entering the ER lumen, the toxins are unfolded to be perceived as ERAD substrates. Toxins that retro-translocate from the ER have an unusually low lysine content to avoid ubiquitin-mediated proteasomal degradation. This allows the exported toxins to refold into the proteasome-resistant, biologically active conformation, and leads to cellular intoxication.
Collapse
Affiliation(s)
- J M Lord
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | | | | |
Collapse
|
105
|
Spooner RA, Smith DC, Easton AJ, Roberts LM, Lord JM. Retrograde transport pathways utilised by viruses and protein toxins. Virol J 2006; 3:26. [PMID: 16603059 PMCID: PMC1524934 DOI: 10.1186/1743-422x-3-26] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 04/07/2006] [Indexed: 11/15/2022] Open
Abstract
A model has been presented for retrograde transport of certain toxins and viruses from the cell surface to the ER that suggests an obligatory interaction with a glycolipid receptor at the cell surface. Here we review studies on the ER trafficking cholera toxin, Shiga and Shiga-like toxins, Pseudomonas exotoxin A and ricin, and compare the retrograde routes followed by these protein toxins to those of the ER trafficking SV40 and polyoma viruses. We conclude that there is in fact no obligatory requirement for a glycolipid receptor, nor even with a protein receptor in a lipid-rich environment. Emerging data suggests instead that there is no common pathway utilised for retrograde transport by all of these pathogens, the choice of route being determined by the particular receptor utilised.
Collapse
Affiliation(s)
- Robert A Spooner
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Daniel C Smith
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Andrew J Easton
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Lynne M Roberts
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - J Michael Lord
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
106
|
Smith DC, Spooner RA, Watson PD, Murray JL, Hodge TW, Amessou M, Johannes L, Lord JM, Roberts LM. Internalized Pseudomonas exotoxin A can exploit multiple pathways to reach the endoplasmic reticulum. Traffic 2006; 7:379-93. [PMID: 16536737 DOI: 10.1111/j.1600-0854.2006.00391.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Receptor-mediated internalization to the endoplasmic reticulum (ER) and subsequent retro-translocation to the cytosol are essential sequential processes required for the intoxication of mammalian cells by Pseudomonas exotoxin A (PEx). The toxin binds the alpha2-macroglobulin receptor/low-density lipoprotein receptor-related protein. Here, we show that in HeLa cells, PEx recruits a proportion of this receptor to detergent-resistant microdomains (DRMs). Uptake of receptor-bound PEx involves transport steps both directly from early endosomes to the trans-Golgi network (TGN) independently of Rab9 function and from late endosomes to the TGN in a Rab9-dependent manner. Furthermore, treatments that simultaneously perturb both Arf1-dependent and Rab6-dependent retrograde pathways show that PEx can use multiple routes to reach the ER. The Rab6-dependent route has only been described previously for cargo with lipid-sorting signals. These findings suggest that partial localization of PEx within DRM permits a choice of trafficking routes consistent with a model that DRM-associated toxins reach the ER on a lipid-dependent sorting pathway whilst non-DRM-associated PEx exploits the previously characterized KDEL receptor-mediated uptake pathway. Thus, unexpectedly, an ER-directed toxin with a proteinaceous receptor shows promiscuity in its intracellular trafficking pathways, exploiting routes controlled by both lipid- and protein-sorting signals.
Collapse
Affiliation(s)
- Daniel C Smith
- Molecular Cell Biology Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Slominska-Wojewodzka M, Gregers TF, Wälchli S, Sandvig K. EDEM is involved in retrotranslocation of ricin from the endoplasmic reticulum to the cytosol. Mol Biol Cell 2006; 17:1664-75. [PMID: 16452630 PMCID: PMC1415288 DOI: 10.1091/mbc.e05-10-0961] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The plant toxin ricin is transported retrogradely from the cell surface to the endoplasmic reticulum (ER) from where the enzymatically active part is retrotranslocated to the cytosol, presumably by the same mechanism as used by misfolded proteins. The ER degradation enhancing alpha-mannosidase I-like protein, EDEM, is responsible for directing aberrant proteins for ER-associated protein degradation. In this study, we have investigated whether EDEM is involved in ricin retrotranslocation. Overexpression of EDEM strongly protects against ricin. However, when the interaction between EDEM and misfolded proteins is inhibited by kifunensin, EDEM promotes retrotranslocation of ricin from the ER to the cytosol. Furthermore, puromycin, which inhibits synthesis and thereby transport of proteins into the ER, counteracted the protection seen in EDEM-transfected cells. Coimmunoprecipitation studies revealed that ricin can interact with EDEM and with Sec61alpha, and both kifunensin and puromycin increase these interactions. Importantly, vector-based RNA interference against EDEM, which leads to reduction of the cellular level of EDEM, decreased retrotranslocation of ricin A-chain to the cytosol. In conclusion, our results indicate that EDEM is involved in retrotranslocation of ricin from the ER to the cytosol.
Collapse
Affiliation(s)
- Monika Slominska-Wojewodzka
- Department of Biochemistry, Institute for Cancer Research, Faculty Division The Norwegian Radium Hospital, University of Oslo, Montebello, N-0310 Oslo, Norway
| | | | | | | |
Collapse
|
108
|
Endoplasmic Reticulum-associated Protein Degradation in Plant Cells. PLANT CELL MONOGRAPHS 2006. [DOI: 10.1007/7089_066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
109
|
Smith DC, Sillence DJ, Falguières T, Jarvis RM, Johannes L, Lord JM, Platt FM, Roberts LM. The association of Shiga-like toxin with detergent-resistant membranes is modulated by glucosylceramide and is an essential requirement in the endoplasmic reticulum for a cytotoxic effect. Mol Biol Cell 2005; 17:1375-87. [PMID: 16381816 PMCID: PMC1382325 DOI: 10.1091/mbc.e05-11-1035] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Receptor-mediated internalization to the endoplasmic reticulum (ER) and subsequent retro-translocation to the cytosol are essential sequential processes required for the productive intoxication of susceptible mammalian cells by Shiga-like toxin-1 (SLTx). Recently, it has been proposed that the observed association of certain ER-directed toxins and viruses with detergent-resistant membranes (DRM) may provide a general mechanism for their retrograde transport to endoplasmic reticulum (ER). Here, we show that DRM recruitment of SLTx bound to its globotriosylceramide (Gb(3)) receptor is mediated by the availability of other glycosphingolipids. Reduction in glucosylceramide (GlcCer) levels led to complete protection against SLTx and a reduced cell surface association of bound toxin with DRM. This reduction still allowed efficient binding and transport of the toxin to the ER. However, toxin sequestration within DRM of the ER was abolished under reduced GlcCer conditions, suggesting that an association of toxin with lipid microdomains or rafts in the ER (where these are defined by detergent insolubility) is essential for a later step leading to or involving retro-translocation of SLTx across the ER membrane. In support of this, we show that a number of ER residents, proteins intimately involved in the process of ER dislocation of misfolded proteins, are present in DRM.
Collapse
Affiliation(s)
- Daniel C Smith
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | | | | | | | | | | | |
Collapse
|
110
|
van Anken E, Braakman I. Versatility of the endoplasmic reticulum protein folding factory. Crit Rev Biochem Mol Biol 2005; 40:191-228. [PMID: 16126486 DOI: 10.1080/10409230591008161] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The endoplasmic reticulum (ER) is dedicated to import, folding and assembly of all proteins that travel along or reside in the secretory pathway of eukaryotic cells. Folding in the ER is special. For instance, newly synthesized proteins are N-glycosylated and by default form disulfide bonds in the ER, but not elsewhere in the cell. In this review, we discuss which features distinguish the ER as an efficient folding factory, how the ER monitors its output and how it disposes of folding failures.
Collapse
Affiliation(s)
- Eelco van Anken
- Department of Cellular Protein Chemistry, Bijvoet Center, Utrecht University, The Netherlands
| | | |
Collapse
|
111
|
Abstract
A number of protein toxins of bacterial and plant origin have cytosolic targets, and knowledge about these toxins have provided us with essential information about mechanisms that can be used to gain access to the cytosol as well as detailed knowledge about endocytosis and intracellular sorting. Such toxins include those that have two moieties, one (the B-moiety) that binds to cell surface receptors and another (the A-moiety) with enzymatic activity that enters the cytosol, as well as molecules that only have the enzymatically active moiety and therefore are inefficient in cell entry. The toxins discussed in the present article include bacterial toxins such as Shiga toxin and diphtheria toxin, as well as plant toxins such as ricin and ribosome-inactivating proteins without a binding moiety, such as gelonin. Toxins with a binding moiety can be used as vectors to translocate epitopes, intact proteins, and even nucleotides into the cytosol. The toxins fall into two main groups when it comes to cytosolic entry. Some toxins enter from endosomes in response to low endosomal pH, whereas others, including Shiga toxin and ricin, are transported all the way to the Golgi apparatus and the ER before they are translocated to the cytosol. Plant proteins such as gelonin that are without a binding moiety are taken up only by fluid-phase endocytosis, and normally they have a low toxicity. However, they can be used to test for disruption of endosomal membranes leading to cytosolic access of internalized molecules. Similarly to toxins with a binding moiety they are highly toxic when reaching the cytosol, thereby providing the investigator with an efficient tool to study endosomal disruption and induced transport to the cytosol. In conclusion, the protein toxins are useful tools to study transport and cytosolic translocation, and they can be used as vectors for transport to the interior of the cell.
Collapse
Affiliation(s)
- K Sandvig
- Institute for Cancer Research, The Norwegian Radium Hospital, University of Oslo, Montebello
| | | |
Collapse
|
112
|
Zhang C, Medina-Bolivar F, Buswell S, Cramer CL. Purification and stabilization of ricin B from tobacco hairy root culture medium by aqueous two-phase extraction. J Biotechnol 2005; 117:39-48. [PMID: 15831246 DOI: 10.1016/j.jbiotec.2004.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Accepted: 12/14/2004] [Indexed: 10/25/2022]
Abstract
Ricin B (RTB), the non-toxic lectin subunit of ricin, is a promising mucosal adjuvant and carrier for use in humans. RTB fusion proteins have been expressed in tobacco hairy root cultures, but the secreted RTB component of these proteins was vulnerable to protease degradation in the medium. Moreover, castor bean purified RTB spiked into tobacco hairy root culture media showed significant degradation after 24 h and complete loss of product after 72 h. Aqueous two-phase extraction (ATPE) was tested for fast recovery of RTB not only to partially purify the protein but also to improve its stability. Two different polyethylene glycol (PEG)/salt/water systems including PEG/potassium phosphate and PEG/sodium sulfate, were studied. RTB was shown to be favorably recovered in PEG/sodium sulfate systems. Statistical analysis indicated that the ionic strength of the system and the sodium sulfate concentration were important in optimizing the partition coefficient of RTB. A selectivity of almost three could be achieved for RTB in optimized systems, and RTB partitioned in the PEG-rich phase exhibited extended stability. Therefore, ATPE was shown to be effective in initial recovery/purification and stabilization of RTB and may hold promise for other unstable secreted proteins from hairy root culture.
Collapse
Affiliation(s)
- Chenming Zhang
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, 210 Seitz Hall, Blacksburg, VA 24061, USA.
| | | | | | | |
Collapse
|
113
|
Reed DG, Nopo-Olazabal LH, Funk V, Woffenden BJ, Reidy MJ, Dolan MC, Cramer CL, Medina-Bolivar F. Expression of functional hexahistidine-tagged ricin B in tobacco. PLANT CELL REPORTS 2005; 24:15-24. [PMID: 15599751 DOI: 10.1007/s00299-004-0901-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 10/30/2004] [Accepted: 11/01/2004] [Indexed: 05/24/2023]
Abstract
Ricin B (RTB), the lectin subunit of ricin, shows promise as an effective mucosal adjuvant and carrier for use in humans. In order to obtain a recombinant plant source of RTB that is devoid of the toxic ricin A subunit, we expressed RTB in Nicotiana tabacum. RTB was engineered with an N-terminal hexahistidine tag (His-RTB), which may affect protein stability. Lactose-affinity purification of His-RTB from leaves yielded three major glycosylated products of 32, 33.5 and 35 kDa. Their identity as RTB was verified by mass spectrometry and immunoblotting with anti-ricin antibodies. Functionality of His-RTB was confirmed by binding to asialofetuin, lactose and galactose.
Collapse
Affiliation(s)
- Deborah G Reed
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0331, USA
| | | | | | | | | | | | | | | |
Collapse
|