101
|
E-cadherin expression is correlated with focal adhesion kinase inhibitor resistance in Merlin-negative malignant mesothelioma cells. Oncogene 2017; 36:5522-5531. [PMID: 28553954 DOI: 10.1038/onc.2017.147] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/13/2017] [Accepted: 04/14/2017] [Indexed: 12/15/2022]
Abstract
Malignant mesothelioma (MM) is an aggressive tumor commonly caused by asbestos exposure after a long latency. Focal adhesion kinase (FAK) inhibitors inhibit the cell growth of Merlin-deficient MM cells; however, their clinical efficacy has not been clearly determined. The aim of this study was to evaluate the growth inhibitory effect of the FAK inhibitor VS-4718 on MM cell lines and identify biomarkers for its efficacy. Although most Merlin-deficient cell lines were sensitive to VS-4718 compared with control MeT-5A cells, a subset of these cell lines exhibited resistance to this drug. Microarray and qRT-PCR analyses using RNA isolated from Merlin-deficient MM cell lines revealed a significant correlation between E-cadherin mRNA levels and VS-4718 resistance. Merlin- and E-cadherin-negative Y-MESO-22 cells underwent apoptosis upon treatment with a low concentration of VS-4718, whereas Merlin-negative, E-cadherin-positive Y-MESO-9 cells did not undergo VS-4718-induced apoptosis. Furthermore, E-cadherin knockdown in Merlin-negative MM cells significantly sensitized cells to VS-4718 and induced apoptotic cell death upon VS-4718 treatment. Together, our results suggest that E-cadherin serves as a predictive biomarker for molecular target therapy with FAK inhibitors for patients with mesothelioma and that its expression endows MM cells with resistance to FAK inhibitors.
Collapse
|
102
|
Xing J, Mei T, Luo K, Li Z, Yang A, Li Z, Xie Z, Zhang Z, Dong S, Hou T, Xu J, Luo F. A nano-scaled and multi-layered recombinant fibronectin/cadherin chimera composite selectively concentrates osteogenesis-related cells and factors to aid bone repair. Acta Biomater 2017; 53:470-482. [PMID: 28193541 DOI: 10.1016/j.actbio.2017.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/05/2017] [Accepted: 02/09/2017] [Indexed: 01/06/2023]
Abstract
Easily accessible and effective bone grafts are in urgent need in clinic. The selective cell retention (SCR) strategy, by which osteogenesis-related cells and factors are enriched from bone marrow into bio-scaffolds, holds great promise. However, the retention efficacy is limited by the relatively low densities of osteogenesis-related cells and factors in marrow; in addition, a lack of satisfactory surface modifiers for scaffolds further exacerbates the dilemma. To address this issue, a multi-layered construct consisting of a recombinant fibronectin/cadherin chimera was established via a layer-by-layer self-assembly technique (LBL-rFN/CDH) and used to modify demineralised bone matrix (DBM) scaffolds. The modification was proven stable and effective. By the mechanisms of physical interception and more importantly, chemical recognition (fibronectin/integrins), the LBL-rFN/CDH modification significantly improved the retention efficacy and selectivity for osteogenesis-related cells, e.g., monocytes, mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs), and bioactive factors, e.g., bFGF, BMP-2 and SDF-1α. Moreover, the resulting composite (designated as DBM-LBL-rFN/CDH) not only exhibited a strong MSC-recruiting capacity after SCR, but also provided favourable microenvironments for the proliferation and osteogenic differentiation of MSCs. Eventually, bone repair was evidently improved. Collectively, DBM-LBL-rFN/CDH presented a suitable biomaterial for SCR and a promising solution for tremendous need for bone grafts. STATEMENT OF SIGNIFICANCE There is an urgent need for effective bone grafts. With the potential of integrating osteogenicity, osteoinductivity and osteoconductivity, selective cell retention (SCR) technology brings hope for developing ideal grafts. However, it is constrained by low efficacy and selectivity. Thus, we modified demineralized bone matrix with nano-scaled and multi-layered recombinant fibronectin/cadherin chimera (DBM-rFN/CDH-LBL), and evaluate its effects on SCR and bone repair. DBM-rFN/CDH-LBL significantly improved the efficacy and selectivity of SCR via physical interception and chemical recognition. The post-enriched DBM-rFN/CDH-LBL provided favourable microenvironments to facilitate the migration, proliferation and osteogenic differentiation of MSCs, thus accelerating bone repair. Conclusively, DBM-rFN/CDH-LBL presents a novel biomaterial with advantages including high cost-effectiveness, more convenience for storage and transport and can be rapidly constructed intraoperatively.
Collapse
Affiliation(s)
- Junchao Xing
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China; Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China; Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Tieniu Mei
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China; Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China; Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Keyu Luo
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China; Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China; Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Zhiqiang Li
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China; Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China; Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Aijun Yang
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China; Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China; Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Zhilin Li
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China; Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China; Tissue Engineering Laboratory of Chongqing City, Chongqing, China; Department of Spine, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, China
| | - Zhao Xie
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China; Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China; Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Zehua Zhang
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China; Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China; Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Shiwu Dong
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China; Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China; Tissue Engineering Laboratory of Chongqing City, Chongqing, China; Department of Biomedical Materials Science, College of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Tianyong Hou
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China; Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China; Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Jianzhong Xu
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China; Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China; Tissue Engineering Laboratory of Chongqing City, Chongqing, China.
| | - Fei Luo
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China; Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China; Tissue Engineering Laboratory of Chongqing City, Chongqing, China.
| |
Collapse
|
103
|
PAK5 mediates cell: cell adhesion integrity via interaction with E-cadherin in bladder cancer cells. Biochem J 2017; 474:1333-1346. [PMID: 28232500 DOI: 10.1042/bcj20160875] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 12/26/2022]
Abstract
Urothelial bladder cancer is a major cause of morbidity and mortality worldwide, causing an estimated 150 000 deaths per year. Whilst non-muscle-invasive bladder tumours can be effectively treated, with high survival rates, many tumours recur, and some will progress to muscle-invasive disease with a much poorer long-term prognosis. Thus, there is a pressing need to understand the molecular transitions occurring within the progression of bladder cancer to an invasive disease. Tumour invasion is often associated with a down-regulation of E-cadherin expression concomitant with a suppression of cell:cell junctions, and decreased levels of E-cadherin expression have been reported in higher grade urothelial bladder tumours. We find that expression of E-cadherin in a panel of bladder cancer cell lines correlated with the presence of cell:cell junctions and the level of PAK5 expression. Interestingly, exogenous PAK5 has recently been described to be associated with cell:cell junctions and we now find that endogenous PAK5 is localised to cell junctions and interacts with an E-cadherin complex. Moreover, depletion of PAK5 expression significantly reduced junctional integrity. These data suggest a role for PAK5 in maintaining junctional stability and we find that, in both our own patient samples and a commercially available dataset, PAK5mRNA levels are reduced in human bladder cancer compared with normal controls. Taken together, the present study proposes that PAK5 expression levels could be used as a novel prognostic marker for bladder cancer progression.
Collapse
|
104
|
Zhou ZL, Ma J, Tong MH, Chan BP, Wong AST, Ngan AHW. Nanomechanical measurement of adhesion and migration of leukemia cells with phorbol 12-myristate 13-acetate treatment. Int J Nanomedicine 2016; 11:6533-6545. [PMID: 27994457 PMCID: PMC5153271 DOI: 10.2147/ijn.s118065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The adhesion and traction behavior of leukemia cells in their microenvironment is directly linked to their migration, which is a prime issue affecting the release of cancer cells from the bone marrow and hence metastasis. In assessing the effectiveness of phorbol 12-myristate 13-acetate (PMA) treatment, the conventional batch-cell transwell-migration assay may not indicate the intrinsic effect of the treatment on migration, since the treatment may also affect other cellular behavior, such as proliferation or death. In this study, the pN-level adhesion and traction forces between single leukemia cells and their microenvironment were directly measured using optical tweezers and traction-force microscopy. The effects of PMA on K562 and THP1 leukemia cells were studied, and the results showed that PMA treatment significantly increased cell adhesion with extracellular matrix proteins, bone marrow stromal cells, and human fibroblasts. PMA treatment also significantly increased the traction of THP1 cells on bovine serum albumin proteins, although the effect on K562 cells was insignificant. Western blots showed an increased expression of E-cadherin and vimentin proteins after the leukemia cells were treated with PMA. The study suggests that PMA upregulates adhesion and thus suppresses the migration of both K562 and THP1 cells in their microenvironment. The ability of optical tweezers and traction-force microscopy to measure directly pN-level cell–protein or cell–cell contact was also demonstrated.
Collapse
Affiliation(s)
| | - Jing Ma
- School of Biological Sciences, University of Hong Kong, Hong Kong, People's Republic of China
| | | | | | - Alice Sze Tsai Wong
- School of Biological Sciences, University of Hong Kong, Hong Kong, People's Republic of China
| | | |
Collapse
|
105
|
Lin YC, Frei JA, Kilander MBC, Shen W, Blatt GJ. A Subset of Autism-Associated Genes Regulate the Structural Stability of Neurons. Front Cell Neurosci 2016; 10:263. [PMID: 27909399 PMCID: PMC5112273 DOI: 10.3389/fncel.2016.00263] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a range of neurological conditions that affect individuals’ ability to communicate and interact with others. People with ASD often exhibit marked qualitative difficulties in social interaction, communication, and behavior. Alterations in neurite arborization and dendritic spine morphology, including size, shape, and number, are hallmarks of almost all neurological conditions, including ASD. As experimental evidence emerges in recent years, it becomes clear that although there is broad heterogeneity of identified autism risk genes, many of them converge into similar cellular pathways, including those regulating neurite outgrowth, synapse formation and spine stability, and synaptic plasticity. These mechanisms together regulate the structural stability of neurons and are vulnerable targets in ASD. In this review, we discuss the current understanding of those autism risk genes that affect the structural connectivity of neurons. We sub-categorize them into (1) cytoskeletal regulators, e.g., motors and small RhoGTPase regulators; (2) adhesion molecules, e.g., cadherins, NCAM, and neurexin superfamily; (3) cell surface receptors, e.g., glutamatergic receptors and receptor tyrosine kinases; (4) signaling molecules, e.g., protein kinases and phosphatases; and (5) synaptic proteins, e.g., vesicle and scaffolding proteins. Although the roles of some of these genes in maintaining neuronal structural stability are well studied, how mutations contribute to the autism phenotype is still largely unknown. Investigating whether and how the neuronal structure and function are affected when these genes are mutated will provide insights toward developing effective interventions aimed at improving the lives of people with autism and their families.
Collapse
Affiliation(s)
- Yu-Chih Lin
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Jeannine A Frei
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Michaela B C Kilander
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Wenjuan Shen
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Gene J Blatt
- Laboratory of Autism Neurocircuitry, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| |
Collapse
|
106
|
Izaguirre MF, Casco VH. E-cadherin roles in animal biology: A perspective on thyroid hormone-influence. Cell Commun Signal 2016; 14:27. [PMID: 27814736 PMCID: PMC5097364 DOI: 10.1186/s12964-016-0150-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/26/2016] [Indexed: 01/15/2023] Open
Abstract
The establishment, remodeling and maintenance of tissular architecture during animal development, and even across juvenile to adult life, are deeply regulated by a delicate interplay of extracellular signals, cell membrane receptors and intracellular signal messengers. It is well known that cell adhesion molecules (cell-cell and cell-extracellular matrix) play a critical role in these processes. Particularly, adherens junctions (AJs) mediated by E-cadherin and catenins determine cell-cell contact survival and epithelia function. Consequently, this review seeks to encompass the complex and prolific knowledge about E-cadherin roles during physiological and pathological states, particularly focusing on the influence exerted by the thyroid hormone (TH).
Collapse
Affiliation(s)
- María Fernanda Izaguirre
- Laboratorio de Microscopia Aplicada a Estudios Moleculares y Celulares, Facultad de Ingeniería (Bioingeniería-Bioinformática), Universidad Nacional de Entre Ríos, Ruta 11, Km 10, Oro Verde, Entre Ríos, Argentina
| | - Victor Hugo Casco
- Laboratorio de Microscopia Aplicada a Estudios Moleculares y Celulares, Facultad de Ingeniería (Bioingeniería-Bioinformática), Universidad Nacional de Entre Ríos, Ruta 11, Km 10, Oro Verde, Entre Ríos, Argentina.
| |
Collapse
|
107
|
Patel DH, Sharma N. Inhibitory effect of quercetin on epithelial to mesenchymal transition in SK-MEL-28 human melanoma cells defined by in vitro analysis on 3D collagen gels. Onco Targets Ther 2016; 9:6445-6459. [PMID: 27799792 PMCID: PMC5077264 DOI: 10.2147/ott.s109253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Considering the emerging concept of complementary and alternative medicine under the paucity of effective treatment for melanoma, we aimed to understand the effect of quercetin (Qu) on collagen I-induced epithelial-mesenchymal transition (EMT) in melanoma cells. To investigate the effect of Qu in melanoma cells, we used multiple methods, including real-time reverse transcription polymerase chain reaction, migration assay, and wound healing assay. We found that EMT was altered by Qu in melanoma cells. Qu-treated cells exhibited decreased migration and invasion activities. Mechanistically, a high expression of epithelial markers and a decrease in the expression of mesenchymal markers were found to be associated with reversal of EMT in melanoma cells. Time-dependent apoptosis was observed in Qu-treated melanoma cells, which was further confirmed by the upregulation in the protein levels of Caspase 3, a proapoptotic marker. Thus, our findings suggest Qu as a promising dietary compound under the new complementary and alternative medicine category of therapeutic drugs in the chemoprevention of melanoma.
Collapse
Affiliation(s)
- Dhairya H Patel
- Symbiosis School of Biomedical Sciences, Symbiosis International University, Gram - Lavale, Taluka - Mulshi, Pune, India
| | - Neeti Sharma
- Symbiosis School of Biomedical Sciences, Symbiosis International University, Gram - Lavale, Taluka - Mulshi, Pune, India
| |
Collapse
|
108
|
Abstract
Treatment of malignant disease is of paramount importance in modern medicine. In 2012, it was estimated that 162,000 people died from cancer in the UK which illustrates a fundamental problem. Traditional treatments for cancer have various drawbacks, and this creates a considerable need for specific, molecular targets to overcome cancer spread. Epithelial protein lost in neoplasm (EPLIN) is an actin-associated molecule which has been implicated in the development and progression of various cancers including breast, prostate, oesophageal and lung where EPLIN expression is frequently lost as the cancer progresses. EPLIN is important in the regulation of actin dynamics and has multiple associations at epithelial cells junctions. Thus, EPLIN loss in cancer may have significant effects on cancer cell migration and invasion, increasing metastatic potential. Overexpression of EPLIN has proved to be an effective tool for manipulating cancerous traits such as reducing cell growth and cell motility and rendering cells less invasive illustrating the therapeutic potential of EPLIN. Here, we review the current state of knowledge of EPLIN, highlighting EPLIN involvement in regulating cytoskeletal dynamics, signalling pathways and implications in cancer and metastasis.
Collapse
Affiliation(s)
- Ross J Collins
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK.
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK
| | - Rachel Hargest
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK
| | - Malcolm D Mason
- Department of Clinical Oncology, Cardiff University School of Medicine, Cardiff, UK
| | - Andrew J Sanders
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK
| |
Collapse
|
109
|
Payan-Carreira R, Pires M, Santos C, Holst BS, Colaço J, Rodriguez-Martinez H. Immunolocalization of E-cadherin and β-catenin in the cyclic and early pregnant canine endometrium. Theriogenology 2016; 86:1092-1101. [DOI: 10.1016/j.theriogenology.2016.03.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 12/29/2022]
|
110
|
Winklbauer R. Cell adhesion strength from cortical tension - an integration of concepts. J Cell Sci 2016; 128:3687-93. [PMID: 26471994 DOI: 10.1242/jcs.174623] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Morphogenetic mechanisms such as cell movement or tissue separation depend on cell attachment and detachment processes, which involve adhesion receptors as well as the cortical cytoskeleton. The interplay between the two components is of stunning complexity. Most strikingly, the binding energy of adhesion molecules is usually too small for substantial cell-cell attachment, pointing to a main deficit in our present understanding of adhesion. In this Opinion article, I integrate recent findings and conceptual advances in the field into a coherent framework for cell adhesion. I argue that active cortical tension is best viewed as an integral part of adhesion, and propose on this basis a non-arbitrary measure of adhesion strength - the tissue surface tension of cell aggregates. This concept of adhesion integrates heterogeneous molecular inputs into a single mechanical property and simplifies the analysis of attachment-detachment processes. It draws attention to the enormous variation of adhesion strengths among tissues, whose origin and function is little understood.
Collapse
Affiliation(s)
- Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
111
|
Clarke DN, Miller PW, Lowe CJ, Weis WI, Nelson WJ. Characterization of the Cadherin-Catenin Complex of the Sea Anemone Nematostella vectensis and Implications for the Evolution of Metazoan Cell-Cell Adhesion. Mol Biol Evol 2016; 33:2016-29. [PMID: 27189570 PMCID: PMC4948710 DOI: 10.1093/molbev/msw084] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The cadherin-catenin complex (CCC) mediates cell-cell adhesion in bilaterian animals by linking extracellular cadherin-based adhesions to the actin cytoskeleton. However, it is unknown whether the basic organization of the complex is conserved across all metazoans. We tested whether protein interactions and actin-binding properties of the CCC are conserved in a nonbilaterian animal, the sea anemone Nematostella vectensis We demonstrated that N. vectensis has a complete repertoire of cadherin-catenin proteins, including two classical cadherins, one α-catenin, and one β-catenin. Using size-exclusion chromatography and multi-angle light scattering, we showed that α-catenin and β-catenin formed a heterodimer that bound N. vectensis Cadherin-1 and -2. Nematostella vectensis α-catenin bound F-actin with equivalent affinity as either a monomer or an α/β-catenin heterodimer, and its affinity for F-actin was, in part, regulated by a novel insert between the N- and C-terminal domains. Nematostella vectensis α-catenin inhibited Arp2/3 complex-mediated nucleation of actin filaments, a regulatory property previously thought to be unique to mammalian αE-catenin. Thus, despite significant differences in sequence, the key interactions of the CCC are conserved between bilaterians and cnidarians, indicating that the core function of the CCC as a link between cell adhesions and the actin cytoskeleton is ancestral in the eumetazoans.
Collapse
Affiliation(s)
| | - Phillip W Miller
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine
| | | | - William I Weis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine Department of Structural Biology, Stanford University School of Medicine
| | - William James Nelson
- Department of Biology, Stanford University Department of Molecular and Cellular Physiology, Stanford University School of Medicine
| |
Collapse
|
112
|
Liu X, Yun F, Shi L, Li ZH, Luo NR, Jia YF. Roles of Signaling Pathways in the Epithelial-Mesenchymal Transition in Cancer. Asian Pac J Cancer Prev 2016; 16:6201-6. [PMID: 26434817 DOI: 10.7314/apjcp.2015.16.15.6201] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a cellular process though which an epithelial phenotype can be converted into a phenotype of mesenchymal cells. Under physiological conditions EMT is important for embryogenesis, organ development, wound repair and tissue remodeling. However, EMT may also be activated under pathologic conditions, especially in carcinogenesis and metastatic progression. Major signaling pathways involved in EMT include transforming growth factor β(TGF-β), Wnt, Notch, Hedgehog and other signaling pathways. These pathways are related to several transcription factors, including Twist, Smads and zinc finger proteins snail and slug. These interact with each other to provide crosstalk between the relevant signaling pathways. This review lays emphasis on studying the relationship between EMT and signaling pathways in carcinogenesis and metastatic progression.
Collapse
Affiliation(s)
- Xia Liu
- Department of Pathology, The First Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China E-mail :
| | | | | | | | | | | |
Collapse
|
113
|
Rao SNR, Pearse DD. Regulating Axonal Responses to Injury: The Intersection between Signaling Pathways Involved in Axon Myelination and The Inhibition of Axon Regeneration. Front Mol Neurosci 2016; 9:33. [PMID: 27375427 PMCID: PMC4896923 DOI: 10.3389/fnmol.2016.00033] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/02/2016] [Indexed: 01/06/2023] Open
Abstract
Following spinal cord injury (SCI), a multitude of intrinsic and extrinsic factors adversely affect the gene programs that govern the expression of regeneration-associated genes (RAGs) and the production of a diversity of extracellular matrix molecules (ECM). Insufficient RAG expression in the injured neuron and the presence of inhibitory ECM at the lesion, leads to structural alterations in the axon that perturb the growth machinery, or form an extraneous barrier to axonal regeneration, respectively. Here, the role of myelin, both intact and debris, in antagonizing axon regeneration has been the focus of numerous investigations. These studies have employed antagonizing antibodies and knockout animals to examine how the growth cone of the re-growing axon responds to the presence of myelin and myelin-associated inhibitors (MAIs) within the lesion environment and caudal spinal cord. However, less attention has been placed on how the myelination of the axon after SCI, whether by endogenous glia or exogenously implanted glia, may alter axon regeneration. Here, we examine the intersection between intracellular signaling pathways in neurons and glia that are involved in axon myelination and axon growth, to provide greater insight into how interrogating this complex network of molecular interactions may lead to new therapeutics targeting SCI.
Collapse
Affiliation(s)
- Sudheendra N R Rao
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, FL, USA
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of MedicineMiami, FL, USA; The Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, USA; The Neuroscience Program, University of Miami Miller School of MedicineMiami, FL, USA; The Interdisciplinary Stem Cell Institute, University of Miami Miller School of MedicineMiami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical CenterMiami, FL, USA
| |
Collapse
|
114
|
Wickline ED, Dale IW, Merkel CD, Heier JA, Stolz DB, Kwiatkowski AV. αT-Catenin Is a Constitutive Actin-binding α-Catenin That Directly Couples the Cadherin·Catenin Complex to Actin Filaments. J Biol Chem 2016; 291:15687-99. [PMID: 27231342 PMCID: PMC4957052 DOI: 10.1074/jbc.m116.735423] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Indexed: 11/06/2022] Open
Abstract
α-Catenin is the primary link between the cadherin·catenin complex and the actin cytoskeleton. Mammalian αE-catenin is allosterically regulated: the monomer binds the β-catenin·cadherin complex, whereas the homodimer does not bind β-catenin but interacts with F-actin. As part of the cadherin·catenin complex, αE-catenin requires force to bind F-actin strongly. It is not known whether these properties are conserved across the mammalian α-catenin family. Here we show that αT (testes)-catenin, a protein unique to amniotes that is expressed predominantly in the heart, is a constitutive actin-binding α-catenin. We demonstrate that αT-catenin is primarily a monomer in solution and that αT-catenin monomer binds F-actin in cosedimentation assays as strongly as αE-catenin homodimer. The β-catenin·αT-catenin heterocomplex also binds F-actin with high affinity unlike the β-catenin·αE-catenin complex, indicating that αT-catenin can directly link the cadherin·catenin complex to the actin cytoskeleton. Finally, we show that a mutation in αT-catenin linked to arrhythmogenic right ventricular cardiomyopathy, V94D, promotes homodimerization, blocks β-catenin binding, and in cardiomyocytes disrupts localization at cell-cell contacts. Together, our data demonstrate that αT-catenin is a constitutively active actin-binding protein that can physically couple the cadherin·catenin complex to F-actin in the absence of tension. We speculate that these properties are optimized to meet the demands of cardiomyocyte adhesion.
Collapse
Affiliation(s)
- Emily D Wickline
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Ian W Dale
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Chelsea D Merkel
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Jonathon A Heier
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Donna B Stolz
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Adam V Kwiatkowski
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
115
|
Carvalho S, Catarino TA, Dias AM, Kato M, Almeida A, Hessling B, Figueiredo J, Gärtner F, Sanches JM, Ruppert T, Miyoshi E, Pierce M, Carneiro F, Kolarich D, Seruca R, Yamaguchi Y, Taniguchi N, Reis CA, Pinho SS. Preventing E-cadherin aberrant N-glycosylation at Asn-554 improves its critical function in gastric cancer. Oncogene 2016; 35:1619-1631. [PMID: 26189796 PMCID: PMC4856288 DOI: 10.1038/onc.2015.225] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 11/09/2022]
Abstract
E-cadherin is a central molecule in the process of gastric carcinogenesis and its posttranslational modifications by N-glycosylation have been described to induce a deleterious effect on cell adhesion associated with tumor cell invasion. However, the role that site-specific glycosylation of E-cadherin has in its defective function in gastric cancer cells needs to be determined. Using transgenic mice models and human clinical samples, we demonstrated that N-acetylglucosaminyltransferase V (GnT-V)-mediated glycosylation causes an abnormal pattern of E-cadherin expression in the gastric mucosa. In vitro models further indicated that, among the four potential N-glycosylation sites of E-cadherin, Asn-554 is the key site that is selectively modified with β1,6 GlcNAc-branched N-glycans catalyzed by GnT-V. This aberrant glycan modification on this specific asparagine site of E-cadherin was demonstrated to affect its critical functions in gastric cancer cells by affecting E-cadherin cellular localization, cis-dimer formation, molecular assembly and stability of the adherens junctions and cell-cell aggregation, which was further observed in human gastric carcinomas. Interestingly, manipulating this site-specific glycosylation, by preventing Asn-554 from receiving the deleterious branched structures, either by a mutation or by silencing GnT-V, resulted in a protective effect on E-cadherin, precluding its functional dysregulation and contributing to tumor suppression.
Collapse
Affiliation(s)
- S Carvalho
- Instituto de Investigação e Inovação em Saúde (Institute for Research and Innovation in Health), University of Porto, Portugal/Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - TA Catarino
- Instituto de Investigação e Inovação em Saúde (Institute for Research and Innovation in Health), University of Porto, Portugal/Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - AM Dias
- Instituto de Investigação e Inovação em Saúde (Institute for Research and Innovation in Health), University of Porto, Portugal/Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - M Kato
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, Wako, Saitama, Japan
| | - A Almeida
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Berlin, Germany
| | - B Hessling
- Center for Molecular Biology, University of Heidelberg, Heidelberg, Germany
| | - J Figueiredo
- Instituto de Investigação e Inovação em Saúde (Institute for Research and Innovation in Health), University of Porto, Portugal/Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - F Gärtner
- Instituto de Investigação e Inovação em Saúde (Institute for Research and Innovation in Health), University of Porto, Portugal/Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - JM Sanches
- Institute for Systems and Robotics (ISR/IST), LARSyS, Instituto Superior Técnico, University of Lisbon, Lisboa, Portugal
| | - T Ruppert
- Center for Molecular Biology, University of Heidelberg, Heidelberg, Germany
| | - E Miyoshi
- Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka, Japan
| | - M Pierce
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - F Carneiro
- Instituto de Investigação e Inovação em Saúde (Institute for Research and Innovation in Health), University of Porto, Portugal/Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Medical Faculty, University of Porto, Porto, Portugal
- Department of Pathology, Hospital S. Joao, Porto, Portugal
| | - D Kolarich
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - R Seruca
- Instituto de Investigação e Inovação em Saúde (Institute for Research and Innovation in Health), University of Porto, Portugal/Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Medical Faculty, University of Porto, Porto, Portugal
| | - Y Yamaguchi
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, Wako, Saitama, Japan
| | - N Taniguchi
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, Wako, Saitama, Japan
| | - CA Reis
- Instituto de Investigação e Inovação em Saúde (Institute for Research and Innovation in Health), University of Porto, Portugal/Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Medical Faculty, University of Porto, Porto, Portugal
| | - SS Pinho
- Instituto de Investigação e Inovação em Saúde (Institute for Research and Innovation in Health), University of Porto, Portugal/Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
116
|
de Kreuk BJ, Gingras AR, Knight JD, Liu JJ, Gingras AC, Ginsberg MH. Heart of glass anchors Rasip1 at endothelial cell-cell junctions to support vascular integrity. eLife 2016; 5:e11394. [PMID: 26780829 PMCID: PMC4733052 DOI: 10.7554/elife.11394] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/07/2015] [Indexed: 11/21/2022] Open
Abstract
Heart of Glass (HEG1), a transmembrane receptor, and Rasip1, an endothelial-specific Rap1-binding protein, are both essential for cardiovascular development. Here we performed a proteomic screen for novel HEG1 interactors and report that HEG1 binds directly to Rasip1. Rasip1 localizes to forming endothelial cell (EC) cell-cell junctions and silencing HEG1 prevents this localization. Conversely, mitochondria-targeted HEG1 relocalizes Rasip1 to mitochondria in cells. The Rasip1-binding site in HEG1 contains a 9 residue sequence, deletion of which abrogates HEG1’s ability to recruit Rasip1. HEG1 binds to a central region of Rasip1 and deletion of this domain eliminates Rasip1’s ability to bind HEG1, to translocate to EC junctions, to inhibit ROCK activity, and to maintain EC junctional integrity. These studies establish that the binding of HEG1 to Rasip1 mediates Rap1-dependent recruitment of Rasip1 to and stabilization of EC cell-cell junctions. DOI:http://dx.doi.org/10.7554/eLife.11394.001 Blood vessels are lined with cells known as vascular endothelial cells. These cells are connected to each other at junctions that consist of several different proteins. The junctions help to control how the blood vessel develops and provide a barrier that controls the movement of water and certain other molecules through the vessel wall. This barrier becomes weakened in diseases like sepsis and atherosclerosis. Two proteins that are essential for the heart and blood vessels to develop correctly are called “Heart of Glass” (HEG1) and Rasip1. Although a protein has been identified that binds to HEG1 at the cell junctions, this binding only involves a small region of HEG1. This led de Kreuk, Gingras et al. to look for other proteins that interact with HEG1 and that might be important for controlling the development of the blood vessels. This revealed that HEG1 binds directly to Rasip1. Further experiments revealed that HEG1 is essential for targeting Rasip1 to the junctions between the endothelial cells, and that this helps to stabilize the cell junctions. Mutant forms of Rasip1 that lacked a particular sequence in the middle of the protein were unable to bind to HEG1 and did not localize to the cell junctions. These studies open the door to future work to define how the interaction of Rasip1 and HEG1 is controlled and how Rasip1 stabilizes blood vessels. DOI:http://dx.doi.org/10.7554/eLife.11394.002
Collapse
Affiliation(s)
- Bart-Jan de Kreuk
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Alexandre R Gingras
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - James Dr Knight
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Jian J Liu
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Mark H Ginsberg
- Department of Medicine, University of California, San Diego, San Diego, United States
| |
Collapse
|
117
|
Marjon KD, Termini CM, Karlen KL, Saito-Reis C, Soria CE, Lidke KA, Gillette JM. Tetraspanin CD82 regulates bone marrow homing of acute myeloid leukemia by modulating the molecular organization of N-cadherin. Oncogene 2015; 35:4132-40. [PMID: 26592446 PMCID: PMC4877306 DOI: 10.1038/onc.2015.449] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/18/2015] [Accepted: 10/22/2015] [Indexed: 11/16/2022]
Abstract
Communication between acute myeloid leukemia (AML) and the bone marrow microenvironment is known to control disease progression. Therefore, regulation of AML cell trafficking and adhesion to the bone marrow is of significant interest. In this study, we demonstrate that differential expression of the membrane scaffold CD82 modulates the bone marrow homing of AML cells. By combining mutational analysis and super-resolution imaging, we identify membrane protein clustering by CD82 as a regulator of AML cell adhesion and bone marrow homing. Cluster analysis of super-resolution data indicates that N-linked glycosylation and palmitoylation of CD82 are both critical modifications that control the microdomain organization of CD82 as well as the nanoscale clustering of associated adhesion protein, N-cadherin. We demonstrate that inhibition of CD82 glycosylation increases the molecular packing of N-cadherin and promotes the bone marrow homing of AML cells. In contrast, we find that inhibition of CD82 palmitoylation disrupts the formation and organization of N-cadherin clusters and significantly diminishes bone marrow trafficking of AML. Taken together, these data establish a mechanism where the membrane organization of CD82, through specific post-translational modifications, regulates N-cadherin clustering and membrane density, which impacts the in vivo trafficking of AML cells. As such, these observations provide an alternative model for targeting AML where modulation of protein organization within the membrane may be an effective treatment therapy to disrupt the bone marrow homing potential of AML cells.
Collapse
Affiliation(s)
- K D Marjon
- Department of Pathology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM, USA
| | - C M Termini
- Department of Pathology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM, USA
| | - K L Karlen
- Department of Pathology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM, USA
| | - C Saito-Reis
- Department of Pathology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM, USA
| | - C E Soria
- Department of Pathology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM, USA
| | - K A Lidke
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
| | - J M Gillette
- Department of Pathology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
118
|
Abstract
The bronchial epithelium is constantly exposed to a wide range of environmental materials present in inhaled air, including noxious gases and anthropogenic and natural particulates, such as gas and particles from car emissions, tobacco smoke, pollens, animal dander, and pathogens. As a fully differentiated, pseudostratified mucociliary epithelium, the bronchial epithelium protects the internal milieu of the lung from these agents by forming a physical barrier involving adhesive complexes and a chemical barrier involving secretion of mucus, which traps inhaled particles that can be cleared by the mucociliary escalator. It is a testament to the effectiveness of these two barriers that most environmental challenges are largely overcome without the need to develop an inflammatory response. However, as the initial cell of contact with the environment, the bronchial epithelium also plays a pivotal role in immune surveillance and appropriate activation of immune effector cells and antigen presenting cells in the presence of pathogens or other danger signals. Thus, the bronchial epithelium plays a central role in controlling tissue homeostasis and innate immunity. This review will discuss these barrier properties and how dysregulation of these homeostatic mechanisms can contribute to disease pathologies such as asthma.
Collapse
|
119
|
Shashikanth N, Petrova YI, Park S, Chekan J, Maiden S, Spano M, Ha T, Gumbiner BM, Leckband DE. Allosteric Regulation of E-Cadherin Adhesion. J Biol Chem 2015; 290:21749-61. [PMID: 26175155 DOI: 10.1074/jbc.m115.657098] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Indexed: 11/06/2022] Open
Abstract
Cadherins are transmembrane adhesion proteins that maintain intercellular cohesion in all tissues, and their rapid regulation is essential for organized tissue remodeling. Despite some evidence that cadherin adhesion might be allosterically regulated, testing of this has been hindered by the difficulty of quantifying altered E-cadherin binding affinity caused by perturbations outside the ectodomain binding site. Here, measured kinetics of cadherin-mediated intercellular adhesion demonstrated quantitatively that treatment with activating, anti-E-cadherin antibodies or the dephosphorylation of a cytoplasmic binding partner, p120(ctn), increased the homophilic binding affinity of E-cadherin. Results obtained with Colo 205 cells, which express inactive E-cadherin and do not aggregate, demonstrated that four treatments, which induced Colo 205 aggregation and p120(ctn) dephosphorylation, triggered quantitatively similar increases in E-cadherin affinity. Several processes can alter cell aggregation, but these results directly demonstrated the allosteric regulation of cell surface E-cadherin by p120(ctn) dephosphorylation.
Collapse
Affiliation(s)
| | - Yuliya I Petrova
- the Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, and
| | | | - Jillian Chekan
- Chemical and Biomolecular Engineering, University of Illinois, Urbana-Champaign, Illinois 61801
| | - Stephanie Maiden
- the Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, and
| | - Martha Spano
- the Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, and
| | - Taekjip Ha
- From the Departments of Biochemistry, Physics, and the Howard Hughes Medical Institute, Urbana, Illinois 61801
| | - Barry M Gumbiner
- the Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, and
| | - Deborah E Leckband
- From the Departments of Biochemistry, Chemical and Biomolecular Engineering, University of Illinois, Urbana-Champaign, Illinois 61801,
| |
Collapse
|
120
|
Ricciardi GRR, Adamo B, Ieni A, Licata L, Cardia R, Ferraro G, Franchina T, Tuccari G, Adamo V. Androgen Receptor (AR), E-Cadherin, and Ki-67 as Emerging Targets and Novel Prognostic Markers in Triple-Negative Breast Cancer (TNBC) Patients. PLoS One 2015; 10:e0128368. [PMID: 26039245 PMCID: PMC4454487 DOI: 10.1371/journal.pone.0128368] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/26/2015] [Indexed: 11/19/2022] Open
Abstract
Background TNBC is an aggressive subset of breast cancer (BC) without specific target therapy. Methods This observational, retrospective study included 45 cases of TNBC. The aim of this study was to evaluate the expression of the AR, E-cadherin and Ki-67 in relation to histological type, time to relapse and overall survival (OS). Immunohistochemistry (IHC) was carried out on formalin-fixed paraffin-embedded tumor samples obtained from patients defined TNBC. Results The AR was positive (IHC >10%) in 26.6%. E-cadherin (CDH1) expression was considered positive if the score was ≥ 2. This expression was negative in 53.3% cases. The Ki-67 index was ≥ 20% in 37.7%. Univariate analyses showed that AR, CDH1 and Ki-67 are significantly associated with OS. Multivariate analysis showed that AR and Ki-67 expression are independent variables associated with OS. The statistical analysis showed that patients with AR negative and Ki-67 positive expression have a significant correlation with poor outcome. Conclusions Our data suggest that the combination of AR and E-cadherin expression as well as Ki-67 status might be useful prognostic markers in TNBC. Hence, these molecular determinants could play an interesting role to classify subgroups of TNBC.
Collapse
MESH Headings
- Adult
- Aged
- Antigens, CD
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cadherins/genetics
- Cadherins/metabolism
- Carcinoma, Ductal, Breast/diagnosis
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Lobular/diagnosis
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/mortality
- Carcinoma, Lobular/pathology
- Carcinoma, Medullary/diagnosis
- Carcinoma, Medullary/genetics
- Carcinoma, Medullary/mortality
- Carcinoma, Medullary/pathology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Ki-67 Antigen/genetics
- Ki-67 Antigen/metabolism
- Middle Aged
- Multivariate Analysis
- Neoplasm Recurrence, Local/diagnosis
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/mortality
- Neoplasm Recurrence, Local/pathology
- Prognosis
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Retrospective Studies
- Survival Analysis
- Triple Negative Breast Neoplasms/diagnosis
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/mortality
- Triple Negative Breast Neoplasms/pathology
Collapse
Affiliation(s)
| | | | - Antonio Ieni
- Department of Human Pathology “Gaetano Barresi”, Section of Anatomic Pathology, University of Messina, Messina, Italy
| | - Luana Licata
- Department of Human Pathology “Gaetano Barresi”, Section of Anatomic Pathology, University of Messina, Messina, Italy
| | - Roberta Cardia
- Department of Human Pathology “Gaetano Barresi”, Section of Anatomic Pathology, University of Messina, Messina, Italy
| | - Giuseppa Ferraro
- Medical Oncology Unit AOOR Papardo-Piemonte & Department of Human Pathology University of Messina, Messina, Italy
| | - Tindara Franchina
- Medical Oncology Unit AOOR Papardo-Piemonte & Department of Human Pathology University of Messina, Messina, Italy
| | - Giovanni Tuccari
- Department of Human Pathology “Gaetano Barresi”, Section of Anatomic Pathology, University of Messina, Messina, Italy
| | - Vincenzo Adamo
- Medical Oncology Unit AOOR Papardo-Piemonte & Department of Human Pathology University of Messina, Messina, Italy
- * E-mail:
| |
Collapse
|
121
|
Abu Taha A, Schnittler HJ. Dynamics between actin and the VE-cadherin/catenin complex: novel aspects of the ARP2/3 complex in regulation of endothelial junctions. Cell Adh Migr 2015; 8:125-35. [PMID: 24621569 DOI: 10.4161/cam.28243] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Endothelial adherens junctions are critical for physiological and pathological processes such as differentiation, maintenance of entire monolayer integrity, and the remodeling. The endothelial-specific VE-cadherin/catenin complex provides the backbone of adherens junctions and acts in close interaction with actin filaments and actin/myosin-mediated contractility to fulfill the junction demands. The functional connection between the cadherin/catenin complex and actin filaments might be either directly through ?-catenins, or indirectly e.g., via linker proteins such as vinculin, p120ctn, ?-actinin, or EPLIN. However, both junction integrity and dynamic remodeling have to be contemporarily coordinated. The actin-related protein complex ARP2/3 and its activating molecules, such as N-WASP and WAVE, have been shown to regulate the lammellipodia-mediated formation of cell junctions in both epithelium and endothelium. Recent reports now demonstrate a novel aspect of the ARP2/3 complex and the nucleating-promoting factors in the maintenance of endothelial barrier function and junction remodeling of established endothelial cell junctions. Those mechanisms open novel possibilities; not only in fulfilling physiological demands but obtained information may be of critical importance in pathologies such as wound healing, angiogenesis, inflammation, and cell diapedesis.
Collapse
Affiliation(s)
- Abdallah Abu Taha
- Institute of Anatomy & Vascular Biology; WWU-Münster, Vesaliusweg 2-4; Münster, Germany
| | - Hans-J Schnittler
- Institute of Anatomy & Vascular Biology; WWU-Münster, Vesaliusweg 2-4; Münster, Germany
| |
Collapse
|
122
|
Braun AC, Olayioye MA. Rho regulation: DLC proteins in space and time. Cell Signal 2015; 27:1643-51. [PMID: 25889896 DOI: 10.1016/j.cellsig.2015.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/08/2015] [Indexed: 12/19/2022]
Abstract
Rho GTPases function as molecular switches that connect changes of the external environment to intracellular signaling pathways. They are active at various subcellular sites and require fast and tight regulation to fulfill their role as transducers of extracellular stimuli. New imaging technologies visualizing the active states of Rho proteins in living cells elucidated the necessity of precise spatiotemporal activation of the GTPases. The local regulation of Rho proteins is coordinated by the interaction with different guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) that turn on and off GTPase signaling to downstream effectors. GEFs and GAPs thus serve as critical signaling nodes that specify the amplitude and duration of a particular Rho signaling pathway. Despite their importance in Rho regulation, the molecular aspects underlying the spatiotemporal control of the regulators themselves are still largely elusive. In this review we will focus on the Deleted in Liver Cancer (DLC) family of RhoGAP proteins and summarize the evidence gathered over the past years revealing their different subcellular localizations that might account for isoform-specific functions. We will also highlight the importance of their tightly controlled expression in the context of neoplastic transformation.
Collapse
Affiliation(s)
- Anja C Braun
- University of Stuttgart, Institute of Cell Biology and Immunology, Allmandring 31, 70569 Stuttgart, Germany
| | - Monilola A Olayioye
- University of Stuttgart, Institute of Cell Biology and Immunology, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
123
|
Miyamoto Y, Sakane F, Hashimoto K. N-cadherin-based adherens junction regulates the maintenance, proliferation, and differentiation of neural progenitor cells during development. Cell Adh Migr 2015; 9:183-92. [PMID: 25869655 DOI: 10.1080/19336918.2015.1005466] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
This review addresses our current understanding of the regulatory mechanism by which N-cadherin, a classical cadherin, affects neural progenitor cells (NPCs) during development. N-cadherin is responsible for the integrity of adherens junctions (AJs), which develop in the sub-apical region of NPCs in the neural tube and brain cortex. The apical domain, which contains the sub-apical region, is involved in the switching from symmetric proliferative division to asymmetric neurogenic division of NPCs. In addition, N-cadherin-based AJ is deeply involved in the apico-basal polarity of NPCs and the regulation of Wnt-β-catenin, hedgehog (Hh), and Notch signaling. In this review, we discuss the roles of N-cadherin in the maintenance, proliferation, and differentiation of NPCs through components of AJ, β-catenin and αE-catenin.
Collapse
Key Words
- AJ, adherens junction
- EC, extracellular
- Fox, forkhead box
- Frz, frizzled
- GFAP, glial fibrillary acidic protein
- GSK3β, glycogen synthase kinase 3β
- Hes, hairly/enhancer of split
- Hh, hedgehog
- IP, intermediate progenitor
- KO, knockout
- LEF, lymphocyte enhancer factor
- N-cadherin
- NPC, neural progenitor cell
- Par, partition defective complex protein
- Ptc, Pached
- Smo, smoothened
- Sox2, sry (sex determining region Y)-box containing gene 2
- TA cell, transient amplifying cell; ZO-1, Zonula Occludens-1.
- TCF, T-cell factor
- aPKC, atypical protein kinase C
- adherens junction
- apico-basal polarity
- iPSC, induced pluripotent stem cell
- neural progenitor cells
- ngn2, neurogenin 2
- shRNA, short hairpin RNA
- β-catenin
Collapse
Affiliation(s)
- Yasunori Miyamoto
- a The Graduate School of Humanities and Sciences; Ochanomizu University ; Tokyo , Japan
| | | | | |
Collapse
|
124
|
WNT/β-Catenin Signaling Regulates Multiple Steps of Myogenesis by Regulating Step-Specific Targets. Mol Cell Biol 2015; 35:1763-76. [PMID: 25755281 DOI: 10.1128/mcb.01180-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 02/27/2015] [Indexed: 12/23/2022] Open
Abstract
Molecules involved in WNT/β-catenin signaling show specific spatiotemporal expression and play vital roles in myogenesis; however, it is still largely unknown how WNT/β-catenin signaling regulates each step of myogenesis. Here, we show that WNT/β-catenin signaling can control diverse biological processes of myogenesis by regulating step-specific molecules. In order to identify the temporally specific roles of WNT/β-catenin signaling molecules in muscle development and homeostasis, we used in vitro culture systems for both primary mouse myoblasts and C2C12 cells, which can differentiate into myofibers. We found that a blockade of WNT/β-catenin signaling in the proliferating cells decreases proliferation activity, but does not induce cell death, through the regulation of genes cyclin A2 (Ccna2) and cell division cycle 25C (Cdc25c). During muscle differentiation, the inhibition of WNT/β-catenin signaling blocks myoblast fusion through the inhibition of the Fermitin family homolog 2 (Fermt2) gene. Blocking WNT/β-catenin signaling in the well-differentiated myofibers results in the failure of maintenance of their structure by disruption of cadherin/β-catenin/actin complex formation, which plays a crucial role in connecting a myofiber's cytoskeleton to the surrounding extracellular matrix. Thus, our results indicate that WNT/β-catenin signaling can regulate multiple steps of myogenesis, including cell proliferation, myoblast fusion, and homeostasis, by targeting step-specific molecules.
Collapse
|
125
|
Corallino S, Malabarba MG, Zobel M, Di Fiore PP, Scita G. Epithelial-to-Mesenchymal Plasticity Harnesses Endocytic Circuitries. Front Oncol 2015; 5:45. [PMID: 25767773 PMCID: PMC4341543 DOI: 10.3389/fonc.2015.00045] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/09/2015] [Indexed: 02/01/2023] Open
Abstract
The ability of cells to alter their phenotypic and morphological characteristics, known as cellular plasticity, is critical in normal embryonic development and adult tissue repair and contributes to the pathogenesis of diseases, such as organ fibrosis and cancer. The epithelial-to-mesenchymal transition (EMT) is a type of cellular plasticity. This transition involves genetic and epigenetic changes as well as alterations in protein expression and post-translational modifications. These changes result in reduced cell-cell adhesion, enhanced cell adhesion to the extracellular matrix, and altered organization of the cytoskeleton and of cell polarity. Among these modifications, loss of cell polarity represents the nearly invariable, distinguishing feature of EMT that frequently precedes the other traits or might even occur in their absence. EMT transforms cell morphology and physiology, and hence cell identity, from one typical of cells that form a tight barrier, like epithelial and endothelial cells, to one characterized by a highly motile mesenchymal phenotype. Time-resolved proteomic and phosphoproteomic analyses of cells undergoing EMT recently identified thousands of changes in proteins involved in many cellular processes, including cell proliferation and motility, DNA repair, and - unexpectedly - membrane trafficking (1). These results have highlighted a picture of great complexity. First, the EMT transition is not an all-or-none response but rather a gradual process that develops over time. Second, EMT events are highly dynamic and frequently reversible, involving both cell-autonomous and non-autonomous mechanisms. The net results is that EMT generates populations of mixed cells, with partial or full phenotypes, possibly accounting (at least in part) for the physiological as well as pathological cellular heterogeneity of some tissues. Endocytic circuitries have emerged as complex connectivity infrastructures for numerous cellular networks required for the execution of different biological processes, with a primary role in the control of polarized functions. Thus, they may be relevant for controlling EMT or certain aspects of it. Here, by discussing a few paradigmatic cases, we will outline how endocytosis may be harnessed by the EMT process to promote dynamic changes in cellular identity, and to increase cellular flexibility and adaptation to micro-environmental cues, ultimately impacting on physiological and pathological processes, first and foremost cancer progression.
Collapse
Affiliation(s)
| | - Maria Grazia Malabarba
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM) , Milan , Italy ; Dipartimento di Scienze della Salute, Università degli Studi di Milano , Milan , Italy
| | - Martina Zobel
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM) , Milan , Italy
| | - Pier Paolo Di Fiore
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM) , Milan , Italy ; Dipartimento di Scienze della Salute, Università degli Studi di Milano , Milan , Italy ; Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia , Milan , Italy
| | - Giorgio Scita
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM) , Milan , Italy ; Dipartimento di Scienze della Salute, Università degli Studi di Milano , Milan , Italy
| |
Collapse
|
126
|
Kumar A, Gupta T, Berzsenyi S, Giangrande A. N-cadherin negatively regulates collective Drosophila glial migration via actin cytoskeleton remodeling. J Cell Sci 2015; 128:900-12. [DOI: 10.1242/jcs.157974] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cell migration is an essential and highly regulated process. During development, glia and neurons migrate over long distances, in most cases collectively, to reach their final destination and build the sophisticated architecture of the nervous system, the most complex tissue of the body. Collective migration is highly stereotyped and efficient, defects in the process leading to severe human diseases that include mental retardation. This dynamic process entails extensive cell communication and coordination, hence the real challenge is to analyze it in the whole organism and at cellular resolution. We here investigate the impact of the N-cadherin adhesion molecule on collective glial migration using the Drosophila developing wing and cell-type specific manipulation of gene expression. We show that N-cadherin timely accumulates in glial cells and that its levels affect migration efficiency. N-cadherin works as a molecular brake in a dosage dependent manner by negatively controlling actin nucleation and cytoskeleton remodeling through α/β catenins. This is the first in vivo evidence for N-cadherin negatively and cell autonomously controlling collective migration.
Collapse
|
127
|
Guette C, Valo I, Vétillard A, Coqueret O. Olfactomedin-4 is a candidate biomarker of solid gastric, colorectal, pancreatic, head and neck, and prostate cancers. Proteomics Clin Appl 2014; 9:58-63. [PMID: 25400027 DOI: 10.1002/prca.201400083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/26/2014] [Accepted: 11/10/2014] [Indexed: 12/13/2022]
Abstract
Olfactomedin-4 (OLFM4, OLM4) is a 72 kDa secreted glycoprotein belonging to the olfactomedin family. The OLFM4 gene expression is regulated by the transcription factors NF-kappa B and AP-1, and the OLM4 functions are poorly understood. OLM4 has been described as being able to interact with cell surface proteins such as lectins and concanavalin-A suggesting that one function of OLM4 is to regulate cell adhesion and migration. OLM4 is a marker for intestinal stem cells and is expressed at the bottom of the intestinal crypts. Expression of OLM4 during tumor development showed that OLM4 expression is increased in the early stages of tumor initiation. As OLM4 is a secreted protein, it is a prime candidate for biomarker research for tumor detection or progression. Levels of circulating OLM4 were significantly higher in patients with gastric, colorectal, and pancreatic cancers than in healthy subjects.
Collapse
Affiliation(s)
- Catherine Guette
- Institut de Cancerologie de l'Ouest Paul Papin, INSERM U892, Angers, France
| | | | | | | |
Collapse
|
128
|
Melatonin inhibits thermal injury–induced hyperpermeability in microvascular endothelial cells. J Trauma Acute Care Surg 2014; 77:899-905; discussion 905. [DOI: 10.1097/ta.0000000000000346] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
129
|
Chichger H, Duong H, Braza J, Harrington EO. p18, a novel adaptor protein, regulates pulmonary endothelial barrier function via enhanced endocytic recycling of VE-cadherin. FASEB J 2014; 29:868-81. [PMID: 25404710 DOI: 10.1096/fj.14-257212] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vascular permeability is a hallmark of several disease states including acute lung injury (ALI). Endocytosis of VE-cadherin, away from the interendothelial junction (IEJ), causes acute endothelial barrier permeability. A novel protein, p18, anchors to the endosome membrane and plays a role in late endosomal signaling via MAPK and mammalian target of rapamycin. However, the fate of the VE-cadherin-positive endosome has yet to be elucidated. We sought to elucidate a role for p18 in VE-cadherin trafficking and thus endothelial barrier function, in settings of ALI. Endothelial cell (EC) resistance, whole-cell ELISA, and filtration coefficient were studied in mice or lung ECs overexpressing wild-type or nonendosomal-binding mutant p18, using green fluorescent protein as a control. We demonstrate a protective role for the endocytic protein p18 in endothelial barrier function in settings of ALI in vitro and in vivo, through enhanced recycling of VE-cadherin-positive early endosomes to the IEJ. In settings of LPS-induced ALI, we show that Src tethered to the endosome tyrosine phosphorylates p18 concomitantly with VE-cadherin internalization and pulmonary edema formation. We conclude that p18 regulates pulmonary endothelial barrier function in vitro and in vivo, by enhancing recycling of VE-cadherin-positive endosomes to the IEJ.
Collapse
Affiliation(s)
- Havovi Chichger
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Huetran Duong
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Julie Braza
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Elizabeth O Harrington
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
130
|
Takahashi K, Matafonov A, Sumarriva K, Ito H, Lauhan C, Zemel D, Tsuboi N, Chen J, Reynolds A, Takahashi T. CD148 tyrosine phosphatase promotes cadherin cell adhesion. PLoS One 2014; 9:e112753. [PMID: 25386896 PMCID: PMC4227875 DOI: 10.1371/journal.pone.0112753] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/14/2014] [Indexed: 01/06/2023] Open
Abstract
CD148 is a transmembrane tyrosine phosphatase that is expressed at cell junctions. Recent studies have shown that CD148 associates with the cadherin/catenin complex and p120 catenin (p120) may serve as a substrate. However, the role of CD148 in cadherin cell-cell adhesion remains unknown. Therefore, here we addressed this issue using a series of stable cells and cell-based assays. Wild-type (WT) and catalytically inactive (CS) CD148 were introduced to A431D (lacking classical cadherins), A431D/E-cadherin WT (expressing wild-type E-cadherin), and A431D/E-cadherin 764AAA (expressing p120-uncoupled E-cadherin mutant) cells. The effects of CD148 in cadherin adhesion were assessed by Ca2+ switch and cell aggregation assays. Phosphorylation of E-cadherin/catenin complex and Rho family GTPase activities were also examined. Although CD148 introduction did not alter the expression levels and complex formation of E-cadherin, p120, and β-catenin, CD148 WT, but not CS, promoted cadherin contacts and strengthened cell-cell adhesion in A431D/E-cadherin WT cells. This effect was accompanied by an increase in Rac1, but not RhoA and Cdc42, activity and largely diminished by Rac1 inhibition. Further, we demonstrate that CD148 reduces the tyrosine phosphorylation of p120 and β-catenin; causes the dephosphorylation of Y529 suppressive tyrosine residue in Src, a well-known CD148 site, increasing Src activity and enhancing the phosphorylation of Y228 (a Src kinase site) in p120, in E-cadherin contacts. Consistent with these findings, CD148 dephosphorylated both p120 and β-catenin in vitro. The shRNA-mediated CD148 knockdown in A431 cells showed opposite effects. CD148 showed no effects in A431D and A431D/E-cadherin 764AAA cells. In aggregate, these findings provide the first evidence that CD148 promotes E-cadherin adhesion by regulating Rac1 activity concomitant with modulation of p120, β-catenin, and Src tyrosine phosphorylation. This effect requires E-cadherin and p120 association.
Collapse
Affiliation(s)
- Keiko Takahashi
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Anton Matafonov
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Katherine Sumarriva
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Hideyuki Ito
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Colette Lauhan
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Dana Zemel
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Nobuo Tsuboi
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Jin Chen
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Albert Reynolds
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Takamune Takahashi
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- * E-mail:
| |
Collapse
|
131
|
Yin J, Zeng F, Wu N, Kang K, Yang Z, Yang H. Interleukin-8 promotes human ovarian cancer cell migration by epithelial-mesenchymal transition induction in vitro. Clin Transl Oncol 2014; 17:365-70. [PMID: 25373532 DOI: 10.1007/s12094-014-1240-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 10/01/2014] [Indexed: 12/14/2022]
Abstract
PURPOSE It has been well established that high serum levels of interleukin-8 (IL-8) in ovarian cancer result in a poor clinical outcome. Thus, the aim of this study was investigating the role of IL-8 in ovarian cancer development. METHODS Two human ovarian cancer cell lines (SKOV3 and OVCAR3) were cocultured with IL-8 (100 ng/L) for 24 h, then cell migration was determined by transwell assay. Epithelial-mesenchymal transition (EMT)-associated proteins including E-cadherin and β-catenin, and phosphorylation status of β-catenin were investigated by Western blot analysis. RESULTS After treatment with IL-8 (100 ng/L) for 24 h, transwell assay result showed that the number of migrated ovarian cells increased significantly. Western blot analysis revealed that protein levels of E-cadherin were decreased, while that of β-catenin were elevated both in IL-8 pretreated SKOV3 and OVCAR3 cells. We further found that phosphorylation status of β-catenin were elevated either in cytoplasm or in nucleus of these two ovarian cancer cell lines after treatment with IL-8 for 24 h. CONCLUSIONS Our data suggest that IL-8 induces EMT in ovarian cancer cells and implicates its potential role in enhancing ovarian cancer cell metastasis.
Collapse
Affiliation(s)
- J Yin
- Department of Gynecology, The Ninth People's Hospital of Chongqing, 69 JiaLing Road, Chongqing, 400700, People's Republic of China
| | | | | | | | | | | |
Collapse
|
132
|
Speranza G, Della Volpe C, Catapano G. Surface wettability of model microporous membranes enhances rat liver cell functions in sub-confluent adherent culture in a continuous-flow recycle bioreactor depending on the ammonia concentration challenge. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
133
|
Fortugno P, Josselin E, Tsiakas K, Agolini E, Cestra G, Teson M, Santer R, Castiglia D, Novelli G, Dallapiccola B, Kurth I, Lopez M, Zambruno G, Brancati F. Nectin-4 mutations causing ectodermal dysplasia with syndactyly perturb the rac1 pathway and the kinetics of adherens junction formation. J Invest Dermatol 2014; 134:2146-2153. [PMID: 24577405 DOI: 10.1038/jid.2014.119] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 01/16/2014] [Accepted: 02/04/2014] [Indexed: 01/19/2023]
Abstract
Defective nectin-1 and -4 have been implicated in ectodermal dysplasia (ED) syndromes with variably associated features including orofacial and limb defects. In particular, nectin-1 mutations cause cleft lip/palate ED (CLPED1; OMIM#225060), whereas defective nectin-4 is associated with ED-syndactyly syndrome (EDSS1; OMIM#613573). Although the broad phenotypic overlap suggests a common mode of action of nectin-1 and -4, little is known about the pathogenic mechanisms involved. We report the identification of, to our knowledge, a previously undescribed nectin-4 homozygous p.Val242Met missense mutation in a patient with EDSS1. We used patient skin biopsy and primary keratinocytes, as well as nectin-4 ectopic expression in epithelial cell lines, to characterize functional consequences of p.Val242Met and p.Thr185Met mutations, the latter previously identified in compound heterozygosity with a truncating mutation. We show that nectin-4-altered expression perturbs nectin-1 clustering at keratinocyte contact sites and delays, but does not impede cell-cell aggregation and cadherin recruitment at adherens junctions (AJs). Moreover, trans-interaction of nectin-1 and -4 induces the activation of Rac1, a member of the Rho family of small GTPases, and regulates E-cadherin-mediated cell-cell adhesion. These data outline a synergistic action of nectin-1 and -4 in the early steps of AJ formation and implicate this interaction in modulating the Rac1 signaling pathway.
Collapse
Affiliation(s)
- Paola Fortugno
- Dermatology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emmanuelle Josselin
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille University, Marseille, France; Inserm-U1068 (Laboratoire d'Oncologie Moléculaire), CNRS-UMR7258, Marseille, France; Institut Paoli-Calmettes, Marseille, France
| | | | - Emanuele Agolini
- Mendel Laboratory, Casa Sollievo Della Sofferenza Hospital, IRCCS, San Giovanni Rotondo, Italy
| | - Gianluca Cestra
- IBPM, Consiglio Nazionale delle Ricerche, c/o Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Massimo Teson
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata IDI-IRCCS, Rome, Italy
| | - René Santer
- Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany
| | - Daniele Castiglia
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata IDI-IRCCS, Rome, Italy
| | - Giuseppe Novelli
- Genetics Section, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Bruno Dallapiccola
- Department of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ingo Kurth
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Marc Lopez
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille University, Marseille, France; Inserm-U1068 (Laboratoire d'Oncologie Moléculaire), CNRS-UMR7258, Marseille, France; Institut Paoli-Calmettes, Marseille, France
| | - Giovanna Zambruno
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata IDI-IRCCS, Rome, Italy
| | - Francesco Brancati
- Department of Medical, Oral and Biotechnological Sciences, Gabriele D'Annunzio University of Chieti-Pescara, Chieti, Italy; Medical Genetics Unit, Policlinico Tor Vergata University Hospital, Rome, Italy.
| |
Collapse
|
134
|
Noble PB, Pascoe CD, Lan B, Ito S, Kistemaker LEM, Tatler AL, Pera T, Brook BS, Gosens R, West AR. Airway smooth muscle in asthma: linking contraction and mechanotransduction to disease pathogenesis and remodelling. Pulm Pharmacol Ther 2014; 29:96-107. [PMID: 25062835 DOI: 10.1016/j.pupt.2014.07.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 07/12/2014] [Accepted: 07/15/2014] [Indexed: 02/07/2023]
Abstract
Asthma is an obstructive airway disease, with a heterogeneous and multifactorial pathogenesis. Although generally considered to be a disease principally driven by chronic inflammation, it is becoming increasingly recognised that the immune component of the pathology poorly correlates with the clinical symptoms of asthma, thus highlighting a potentially central role for non-immune cells. In this context airway smooth muscle (ASM) may be a key player, as it comprises a significant proportion of the airway wall and is the ultimate effector of acute airway narrowing. Historically, the contribution of ASM to asthma pathogenesis has been contentious, yet emerging evidence suggests that ASM contractile activation imparts chronic effects that extend well beyond the temporary effects of bronchoconstriction. In this review article we describe the effects that ASM contraction, in combination with cellular mechanotransduction and novel contraction-inflammation synergies, contribute to asthma pathogenesis. Specific emphasis will be placed on the effects that ASM contraction exerts on the mechanical properties of the airway wall, as well as novel mechanisms by which ASM contraction may contribute to more established features of asthma such as airway wall remodelling.
Collapse
Affiliation(s)
- Peter B Noble
- School of Anatomy, Physiology and Human Biology, University of Western Australia, WA, Australia
| | - Chris D Pascoe
- Center for Heart Lung Innovation, University of British Columbia, BC, Canada
| | - Bo Lan
- Center for Heart Lung Innovation, University of British Columbia, BC, Canada; Bioengineering College, Chongqing University, Chongqing, China
| | - Satoru Ito
- Department of Respiratory Medicine, Nagoya University, Aichi, Japan
| | - Loes E M Kistemaker
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Amanda L Tatler
- Division of Respiratory Medicine, University of Nottingham, United Kingdom
| | - Tonio Pera
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bindi S Brook
- School of Mathematical Sciences, University of Nottingham, United Kingdom
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Adrian R West
- Department of Physiology, University of Manitoba, MB, Canada; Biology of Breathing, Manitoba Institute of Child Health, MB, Canada.
| |
Collapse
|
135
|
van Geemen D, Smeets MWJ, van Stalborch AMD, Woerdeman LAE, Daemen MJAP, Hordijk PL, Huveneers S. F-actin-anchored focal adhesions distinguish endothelial phenotypes of human arteries and veins. Arterioscler Thromb Vasc Biol 2014; 34:2059-67. [PMID: 25012130 DOI: 10.1161/atvbaha.114.304180] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Vascular endothelial-cadherin- and integrin-based cell adhesions are crucial for endothelial barrier function. Formation and disassembly of these adhesions controls endothelial remodeling during vascular repair, angiogenesis, and inflammation. In vitro studies indicate that vascular cytokines control adhesion through regulation of the actin cytoskeleton, but it remains unknown whether such regulation occurs in human vessels. We aimed to investigate regulation of the actin cytoskeleton and cell adhesions within the endothelium of human arteries and veins. APPROACH AND RESULTS We used an ex vivo protocol for immunofluorescence in human vessels, allowing detailed en face microscopy of endothelial monolayers. We compared arteries and veins of the umbilical cord and mesenteric, epigastric, and breast tissues and find that the presence of central F-actin fibers distinguishes the endothelial phenotype of adult arteries from veins. F-actin in endothelium of adult veins as well as in umbilical vasculature predominantly localizes cortically at the cell boundaries. By contrast, prominent endothelial F-actin fibers in adult arteries anchor mostly to focal adhesions containing integrin-binding proteins paxillin and focal adhesion kinase and follow the orientation of the extracellular matrix protein fibronectin. Other arterial F-actin fibers end in vascular endothelial-cadherin-based endothelial focal adherens junctions. In vitro adhesion experiments on compliant substrates demonstrate that formation of focal adhesions is strongly induced by extracellular matrix rigidity, irrespective of arterial or venous origin of endothelial cells. CONCLUSIONS Our data show that F-actin-anchored focal adhesions distinguish endothelial phenotypes of human arteries from veins. We conclude that the biomechanical properties of the vascular extracellular matrix determine this endothelial characteristic.
Collapse
Affiliation(s)
- Daphne van Geemen
- From the Department of Molecular Cell Biology, Sanquin Research and Swammerdam Institute for Life Sciences, Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.v.G., M.W.J.S., A.-M.D.v.S., P.L.H., S.H.); Department of Plastic and Reconstructive Surgery, the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands (L.A.E.W.); and Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.J.A.P.D.)
| | - Michel W J Smeets
- From the Department of Molecular Cell Biology, Sanquin Research and Swammerdam Institute for Life Sciences, Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.v.G., M.W.J.S., A.-M.D.v.S., P.L.H., S.H.); Department of Plastic and Reconstructive Surgery, the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands (L.A.E.W.); and Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.J.A.P.D.)
| | - Anne-Marieke D van Stalborch
- From the Department of Molecular Cell Biology, Sanquin Research and Swammerdam Institute for Life Sciences, Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.v.G., M.W.J.S., A.-M.D.v.S., P.L.H., S.H.); Department of Plastic and Reconstructive Surgery, the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands (L.A.E.W.); and Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.J.A.P.D.)
| | - Leonie A E Woerdeman
- From the Department of Molecular Cell Biology, Sanquin Research and Swammerdam Institute for Life Sciences, Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.v.G., M.W.J.S., A.-M.D.v.S., P.L.H., S.H.); Department of Plastic and Reconstructive Surgery, the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands (L.A.E.W.); and Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.J.A.P.D.)
| | - Mat J A P Daemen
- From the Department of Molecular Cell Biology, Sanquin Research and Swammerdam Institute for Life Sciences, Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.v.G., M.W.J.S., A.-M.D.v.S., P.L.H., S.H.); Department of Plastic and Reconstructive Surgery, the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands (L.A.E.W.); and Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.J.A.P.D.)
| | - Peter L Hordijk
- From the Department of Molecular Cell Biology, Sanquin Research and Swammerdam Institute for Life Sciences, Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.v.G., M.W.J.S., A.-M.D.v.S., P.L.H., S.H.); Department of Plastic and Reconstructive Surgery, the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands (L.A.E.W.); and Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.J.A.P.D.)
| | - Stephan Huveneers
- From the Department of Molecular Cell Biology, Sanquin Research and Swammerdam Institute for Life Sciences, Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.v.G., M.W.J.S., A.-M.D.v.S., P.L.H., S.H.); Department of Plastic and Reconstructive Surgery, the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands (L.A.E.W.); and Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.J.A.P.D.).
| |
Collapse
|
136
|
Kumawat K, Koopmans T, Gosens R. β-catenin as a regulator and therapeutic target for asthmatic airway remodeling. Expert Opin Ther Targets 2014; 18:1023-34. [PMID: 25005144 DOI: 10.1517/14728222.2014.934813] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Pathological alteration in the airway structure, termed as airway remodeling, is a hallmark feature of individuals with asthma and has been described to negatively impact lung function in asthmatics. Recent studies have raised considerable interest in the regulatory role of β-catenin in remodeling asthmatic airways. The WNT/β-catenin signaling pathway is the key to normal lung development and tightly coordinates the maintenance of tissue homeostasis under steady-state conditions. Several studies indicate the crucial role of β-catenin signaling in airway remodeling in asthma and suggest that this pathway may be activated by both the growth factors and mechanical stimuli such as bronchoconstriction. AREAS COVERED In this review, we discuss recent literature regarding the mechanisms of β-catenin signaling activation and its mechanistic role in asthmatic airway remodeling. Further, we discuss the possibilities of therapeutic targeting of β-catenin. EXPERT OPINION The aberrant activation of β-catenin signaling by both WNT-dependent and -independent mechanisms in asthmatic airways plays a key role in remodeling the airways, including cell proliferation, differentiation, tissue repair and extracellular matrix production. These findings are interesting from both a mechanistic and therapeutic perspective, as several drug classes have now been described that target β-catenin signaling directly.
Collapse
Affiliation(s)
- Kuldeep Kumawat
- University of Groningen, Groningen Research Institute for Asthma and COPD, Department of Molecular Pharmacology , A. Deusinglaan 1, 9713 AV Groningen , The Netherlands +31 50 363 8177 ; +31 50 363 6908 ;
| | | | | |
Collapse
|
137
|
McEwen AE, Maher MT, Mo R, Gottardi CJ. E-cadherin phosphorylation occurs during its biosynthesis to promote its cell surface stability and adhesion. Mol Biol Cell 2014; 25:2365-74. [PMID: 24966173 PMCID: PMC4142610 DOI: 10.1091/mbc.e14-01-0690] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
E-cadherin is highly phosphorylated within its β-catenin-binding region, and this phosphorylation increases its affinity for β-catenin in vitro. However, the identification of key serines responsible for most cadherin phosphorylation and the adhesive consequences of modification at such serines have remained unknown. In this study, we show that as few as three serines in the β-catenin-binding domain of E-cadherin are responsible for most radioactive phosphate incorporation. These serines are required for binding to β-catenin and the mutual stability of both E-cadherin and β-catenin. Cells expressing a phosphodeficient (3S>A) E-cadherin exhibit minimal cell-cell adhesion due to enhanced endocytosis and degradation through a lysosomal compartment. Conversely, negative charge substitution at these serines (3S>D) antagonizes cadherin endocytosis and restores wild-type levels of adhesion. The cadherin kinase is membrane proximal and modifies the cadherin before it reaches the cell surface. Together these data suggest that E-cadherin phosphorylation is largely constitutive and integral to cadherin-catenin complex formation, surface stability, and function.
Collapse
Affiliation(s)
- Abbye E McEwen
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611Driskill Graduate Training Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Meghan T Maher
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611Driskill Graduate Training Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Rigen Mo
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611Molecular Oncology Group, Kadmon Research Institute, New York, NY 10016
| | - Cara J Gottardi
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
138
|
Mutation screen and RNA analysis disclose the changed splicing of the E-cadherin transcription in gastric cancer. Fam Cancer 2014; 12:547-54. [PMID: 23435907 DOI: 10.1007/s10689-013-9619-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Gastric cancer (GC) is considered to be one of the leading cancers in East Asians, and mutations in the CDH1 gene and the reduced expression of E-cadherin are the most frequent genetic alterations in gastric cancer. In this paper, we reported two novel germline CDH1 nonsynonymous mutations, c.1296 C>G (N432 K) and c.1297 G>A (D433 N) detected in sporadic Chinese GC patients. RNA splicing analysis was used to evaluate mutations' effects on E-cadherin transcription and exon definition. We revealed that the c.1296 C>G (N432 K) variant can generate the E-cadherin exon9-skipping and may be a disease-causing mutation, while the c.1297 G>A (D433 N) mutation not. Moreover, we demonstrated the E-cadherin 1054del83 transcript is a frequent event in Chinese GC patients.
Collapse
|
139
|
Nilsson GMA, Akhtar N, Kannius-Janson M, Baeckström D. Loss of E-cadherin expression is not a prerequisite for c-erbB2-induced epithelial-mesenchymal transition. Int J Oncol 2014; 45:82-94. [PMID: 24807161 PMCID: PMC4079157 DOI: 10.3892/ijo.2014.2424] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/11/2014] [Indexed: 12/02/2022] Open
Abstract
Recent research into the mechanisms of tumour cell invasiveness has highlighted the parallels between carcinogenesis and epithelial-mesenchymal transition (EMT), originally described as a developmental transdifferentiation program but also implicated in fibrosis and cancer. In a model system for mammary carcinogenesis, we previously observed that induced signalling from a homodimer of the c-erbB2 (HER2) receptor tyrosine kinase in an initially non-malignant mammary cell line caused EMT where i) cell scattering occurred before downregulation of the cell-cell adhesion molecule E-cadherin and ii) the progress of EMT was dramatically delayed when cells were grown at high density. Here, we have further analysed these phenomena. Ectopic expression of E-cadherin concomitant with c-erbB2 signalling was unable to impede the progression of EMT, suggesting that E-cadherin downregulation is not required for EMT. Furthermore, fibroblast-like cells isolated after EMT induced in the presence or absence of ectopic E-cadherin expression showed highly similar morphology and vimentin expression. E-cadherin expressed in these fibroblastic cells had a subcellular localisation similar to that found in epithelial cells, but it exhibited a much weaker attachment to the cytoskeleton, suggesting cytoskeletal rearrangements as an important mechanism in EMT-associated cell scattering. We also investigated whether density-dependent inhibition of EMT is mediated by E-cadherin as a sensor for cell-cell contact, by expressing dominant-negative E-cadherin. While expression of this mutant weakened cell-cell adhesion, it failed to facilitate EMT at high cell densities. These results indicate that loss of E-cadherin expression is a consequence rather than a cause of c-erbB2-induced EMT and that density-dependent inhibition of EMT is not mediated by E-cadherin signalling.
Collapse
Affiliation(s)
- Gisela M A Nilsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Noreen Akhtar
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Marie Kannius-Janson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Dan Baeckström
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
140
|
Matsushita K, Itoh S, Ikeda S, Yamamoto Y, Yamauchi Y, Hayashi M. LIF/STAT3/SOCS3 Signaling Pathway in Murine Bone Marrow Stromal Cells Suppresses Osteoblast Differentiation. J Cell Biochem 2014; 115:1262-8. [DOI: 10.1002/jcb.24777] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/22/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Kenta Matsushita
- Department of Restorative Dentistry and Endodontology; Osaka University Graduate School of Dentistry; Osaka Japan
| | - Shousaku Itoh
- Department of Restorative Dentistry and Endodontology; Osaka University Graduate School of Dentistry; Osaka Japan
| | - Shun Ikeda
- Department of Restorative Dentistry and Endodontology; Osaka University Graduate School of Dentistry; Osaka Japan
| | - Yumiko Yamamoto
- Department of Restorative Dentistry and Endodontology; Osaka University Graduate School of Dentistry; Osaka Japan
| | - Yukako Yamauchi
- Department of Restorative Dentistry and Endodontology; Osaka University Graduate School of Dentistry; Osaka Japan
| | - Mikako Hayashi
- Department of Restorative Dentistry and Endodontology; Osaka University Graduate School of Dentistry; Osaka Japan
| |
Collapse
|
141
|
Methoxy-poly(ethylene glycol) modified poly(L-lactide) enhanced cell affinity of human bone marrow stromal cells by the upregulation of 1-cadherin and delta-2-catenin. BIOMED RESEARCH INTERNATIONAL 2014; 2014:738239. [PMID: 24834434 PMCID: PMC4009123 DOI: 10.1155/2014/738239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 03/07/2014] [Accepted: 03/12/2014] [Indexed: 01/24/2023]
Abstract
Poly(l-lactide) (PLLA), a versatile biodegradable polymer, is one of the most commonly-used materials for tissue engineering applications. To improve cell affinity for PLLA, poly(ethylene glycol) (PEG) was used to develop diblock copolymers. Human bone marrow stromal cells (hBMSCs) were cultured on MPEG-b-PLLA copolymer films to determine the effects of modification on the attachment and proliferation of hBMSC. The mRNA expression of 84 human extracellular matrix (ECM) and adhesion molecules was analyzed using RT-qPCR to understand the underlying mechanisms. It was found that MPEG-b-PLLA copolymer films significantly improved cell adhesion, extension, and proliferation. This was found to be related to the significant upregulation of two adhesion genes, CDH1 and CTNND2, which encode 1-cadherin and delta-2-catenin, respectively, two key components for the cadherin-catenin complex. In summary, MPEG-b-PLLA copolymer surfaces improved initial cell adhesion by stimulation of adhesion molecule gene expression.
Collapse
|
142
|
Truffi M, Dubreuil V, Liang X, Vacaresse N, Nigon F, Han SP, Yap AS, Gomez GA, Sap J. RPTPα controls epithelial adherens junctions, linking E-cadherin engagement to c-Src-mediated phosphorylation of cortactin. J Cell Sci 2014; 127:2420-32. [PMID: 24652832 DOI: 10.1242/jcs.134379] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Epithelial junctions are fundamental determinants of tissue organization, subject to regulation by tyrosine phosphorylation. Homophilic binding of E-cadherin activates tyrosine kinases, such as Src, that control junctional integrity. Protein tyrosine phosphatases (PTPs) also contribute to cadherin-based adhesion and signaling, but little is known about their specific identity or functions at epithelial junctions. Here, we report that the receptor PTP RPTPα (human gene name PTPRA) is recruited to epithelial adherens junctions at the time of cell-cell contact, where it is in molecular proximity to E-cadherin. RPTPα is required for appropriate cadherin-dependent adhesion and for cyst architecture in three-dimensional culture. Loss of RPTPα impairs adherens junction integrity, as manifested by defective E-cadherin accumulation and peri-junctional F-actin density. These effects correlate with a role for RPTPα in cellular (c)-Src activation at sites of E-cadherin engagement. Mechanistically, RPTPα is required for appropriate tyrosine phosphorylation of cortactin, a major Src substrate and a cytoskeletal actin organizer. Expression of a phosphomimetic cortactin mutant in RPTPα-depleted cells partially rescues F-actin and E-cadherin accumulation at intercellular contacts. These findings indicate that RPTPα controls cadherin-mediated signaling by linking homophilic E-cadherin engagement to cortactin tyrosine phosphorylation through c-Src.
Collapse
Affiliation(s)
- Marta Truffi
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Bâtiment Lamarck, Case 7042, 35 Rue Hélène Brion, F-75205 Paris Cedex 13, France
| | - Véronique Dubreuil
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Bâtiment Lamarck, Case 7042, 35 Rue Hélène Brion, F-75205 Paris Cedex 13, France
| | - Xuan Liang
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Nathalie Vacaresse
- Biotech Research and Innovation Centre and Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Fabienne Nigon
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Bâtiment Lamarck, Case 7042, 35 Rue Hélène Brion, F-75205 Paris Cedex 13, France
| | - Siew Ping Han
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Alpha S Yap
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Guillermo A Gomez
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Jan Sap
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Bâtiment Lamarck, Case 7042, 35 Rue Hélène Brion, F-75205 Paris Cedex 13, France Biotech Research and Innovation Centre and Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
143
|
Bravi L, Dejana E, Lampugnani MG. VE-cadherin at a glance. Cell Tissue Res 2014; 355:515-22. [PMID: 24643676 DOI: 10.1007/s00441-014-1843-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
Abstract
Although being a monolayer the vascular endothelium controls fundamental vessel functions such as permeability, leukocyte extravasation and angiogenesis. The endothelial selective transmembrane constituent of adherens junctions, Vascular Endothelial- (VE-) cadherin plays a crucial role in the regulation of such activities. The signaling pathways controlled by VE-cadherin as well as the ones that regulate VE-cadherin activity start to be elucidated. This delineates a complex network of molecular and functional interactions that can be altered in pathologies.
Collapse
Affiliation(s)
- Luca Bravi
- FIRC Institute of Molecular Oncology (IFOM) Fondazione, Via Adamello 16, 20139, Milan, Italy
| | | | | |
Collapse
|
144
|
Yang W, Yan L, Wu C, Zhao X, Tang J. Fungal invasion of epithelial cells. Microbiol Res 2014; 169:803-10. [PMID: 24670964 DOI: 10.1016/j.micres.2014.02.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/23/2014] [Accepted: 02/24/2014] [Indexed: 12/13/2022]
Abstract
Interaction between host cells and invasive Candida plays a large role in the pathogenicity of Candida species. Fungal-induced endocytosis and active penetration are the two distinct, yet complementary invasion mechanisms of invasive candidiasis. Induced endocytosis is a microorganism-triggered, epithelial-driven, clathrin-mediated and actin-dependent process. During the fundamental pathological process of induced endocytosis, invasins (Als3 and Ssa1), which mediate the binding of host epithelial surface proteins, are expressed by Candida species on the hyphal surface. Sequentially, the interaction between invasins and host epithelial surface proteins stimulates the recruitment of clathrin, dynamin and cortactin to the sites where Candida enters epithelial cells, which in turn induce the actin cytoskeleton reorganization. Actin cytoskeleton provides the force required for fungal internalization. Parallely, active penetration of Candida can directly pass through epithelial cells possibly due to progressive elongation of hyphae and physical forces. Several molecules, such as secreted hydrolases and Als3, can affect the protective barrier of the epithelium and make Candida actively penetrate into epithelial cells through intercellular gaps of epithelial layers.
Collapse
Affiliation(s)
- Weiming Yang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, PR China
| | - Lei Yan
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, PR China
| | - Chunrong Wu
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, PR China
| | - Xiangwang Zhao
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, PR China
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, PR China.
| |
Collapse
|
145
|
Affiliation(s)
- Ronen Zaidel-Bar
- Mechanobiology Institute Singapore and Department of Bioengineering, National University of Singapore, Singapore 117411.
| |
Collapse
|
146
|
Linch M, Sanz-Garcia M, Rosse C, Riou P, Peel N, Madsen CD, Sahai E, Downward J, Khwaja A, Dillon C, Roffey J, Cameron AJ, Parker PJ. Regulation of polarized morphogenesis by protein kinase C iota in oncogenic epithelial spheroids. Carcinogenesis 2014; 35:396-406. [PMID: 24072773 PMCID: PMC3908745 DOI: 10.1093/carcin/bgt313] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 08/07/2013] [Accepted: 08/24/2013] [Indexed: 12/20/2022] Open
Abstract
Protein kinase C iota (PKCι), a serine/threonine kinase required for cell polarity, proliferation and migration, is commonly up- or downregulated in cancer. PKCι is a human oncogene but whether this is related to its role in cell polarity and what repertoire of oncogenes acts in concert with PKCι is not known. We developed a panel of candidate oncogene expressing Madin-Darby canine kidney (MDCK) cells and demonstrated that H-Ras, ErbB2 and phosphatidylinositol 3-kinase transformation led to non-polar spheroid morphogenesis (dysplasia), whereas MDCK spheroids expressing c-Raf or v-Src were largely polarized. We show that small interfering RNA (siRNA)-targeting PKCι decreased the size of all spheroids tested and partially reversed the aberrant polarity phenotype in H-Ras and ErbB2 spheroids only. This indicates distinct requirements for PKCι and moreover that different thresholds of PKCι activity are required for these phenotypes. By manipulating PKCι function using mutant constructs, siRNA depletion or chemical inhibition, we have demonstrated that PKCι is required for polarization of parental MDCK epithelial cysts in a 3D matrix and that there is a threshold of PKCι activity above and below which, disorganized epithelial morphogenesis results. Furthermore, treatment with a novel PKCι inhibitor, CRT0066854, was able to restore polarized morphogenesis in the dysplastic H-Ras spheroids. These results show that tightly regulated PKCι is required for normal-polarized morphogenesis in mammalian cells and that H-Ras and ErbB2 cooperate with PKCι for loss of polarization and dysplasia. The identification of a PKCι inhibitor that can restore polarized morphogenesis has implications for the treatment of Ras and ErbB2 driven malignancies.
Collapse
Affiliation(s)
- Mark Linch
- Department of Protein Phosphorylation, Cancer Research UK London Research Institute, London WC2A 3LY, UK
- Sarcoma Unit, Royal Marsden Hospital, London SW3 6JJ, UK
| | - Marta Sanz-Garcia
- Department of Protein Phosphorylation, Cancer Research UK London Research Institute, London WC2A 3LY, UK
| | - Carine Rosse
- Department of Protein Phosphorylation, Cancer Research UK London Research Institute, London WC2A 3LY, UK
| | - Philippe Riou
- Department of Protein Phosphorylation, Cancer Research UK London Research Institute, London WC2A 3LY, UK
| | - Nick Peel
- Department of Protein Phosphorylation, Cancer Research UK London Research Institute, London WC2A 3LY, UK
| | | | | | - Julian Downward
- Department of Signal Transduction Laboratories, Cancer Research UK London Research Institute, London WC2A 3LY, UK
| | - Asim Khwaja
- Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Christian Dillon
- Cancer Research Technology Discovery Laboratories, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK and
| | - Jon Roffey
- Cancer Research Technology Discovery Laboratories, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK and
| | - Angus J.M. Cameron
- Department of Protein Phosphorylation, Cancer Research UK London Research Institute, London WC2A 3LY, UK
| | - Peter J. Parker
- Department of Protein Phosphorylation, Cancer Research UK London Research Institute, London WC2A 3LY, UK
- Division of Cancer Studies, King’s College London, London SE1 1UL, UK
| |
Collapse
|
147
|
Wang Q, Lin JLC, Erives AJ, Lin CI, Lin JJC. New insights into the roles of Xin repeat-containing proteins in cardiac development, function, and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 310:89-128. [PMID: 24725425 DOI: 10.1016/b978-0-12-800180-6.00003-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the discovery of Xin repeat-containing proteins in 1996, the importance of Xin proteins in muscle development, function, regeneration, and disease has been continuously implicated. Most Xin proteins are localized to myotendinous junctions of the skeletal muscle and also to intercalated discs (ICDs) of the heart. The Xin gene is only found in vertebrates, which are characterized by a true chambered heart. This suggests that the evolutionary origin of the Xin gene may have played a key role in vertebrate origins. Diverse vertebrates including mammals possess two paralogous genes, Xinα (or Xirp1) and Xinβ (or Xirp2), and this review focuses on the role of their encoded proteins in cardiac muscles. Complete loss of mouse Xinβ (mXinβ) results in the failure of forming ICD, severe growth retardation, and early postnatal lethality. Deletion of mouse Xinα (mXinα) leads to late-onset cardiomyopathy with conduction defects. Molecular studies have identified three classes of mXinα-interacting proteins: catenins, actin regulators/modulators, and ion-channel subunits. Thus, mXinα acts as a scaffolding protein modulating the N-cadherin-mediated adhesion and ion-channel surface expression. Xin expression is significantly upregulated in early stages of stressed hearts, whereas Xin expression is downregulated in failing hearts from various human cardiomyopathies. Thus, mutations in these Xin loci may lead to diverse cardiomyopathies and heart failure.
Collapse
Affiliation(s)
- Qinchuan Wang
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
| | | | - Albert J Erives
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
| | - Cheng-I Lin
- Institute of Physiology, National Defense Medical Center, Taipei, Taiwan, ROC
| | | |
Collapse
|
148
|
Christensen IB, Gyldenholm T, Damkier HH, Praetorius J. Polarization of membrane associated proteins in the choroid plexus epithelium from normal and slc4a10 knockout mice. Front Physiol 2013; 4:344. [PMID: 24348423 PMCID: PMC3842056 DOI: 10.3389/fphys.2013.00344] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/07/2013] [Indexed: 12/18/2022] Open
Abstract
The choroid plexus epithelium (CPE) has served as a model-epithelium for cell polarization and transport studies and plays a crucial role for cerebrospinal fluid (CSF) production. The normal luminal membrane expression of Na(+),K(+)-ATPase, aquaporin-1 and Na(+)/H(+) exchanger 1 in the choroid plexus is severely affected by deletion of the slc4a10 gene that encodes the bicarbonate transporting protein Ncbe/NBCn2. The causes for these deviations from normal epithelial polarization and redistribution following specific gene knockout are unknown, but may be significant for basic epithelial cell biology. Therefore, a more comprehensive analysis of cell polarization in the choroid plexus is warranted. We find that the cytoskeleton in the choroid plexus contains αI-, αII-, βI-, and βII-spectrin isoforms along with the anchoring protein ankyrin-3, most of which are mainly localized in the luminal membrane domain. Furthermore, we find α-adducin localized near the plasma membranes globally, but with only faint expression in the luminal membrane domain. In slc4a10 knockout mice, the abundance of β1 Na(+),K(+)-ATPase subunits in the luminal membrane is markedly reduced. Anion exchanger 2 abundance is increased in slc4a10 knockout and its anchor protein, α-adducin is almost exclusively found near the basolateral domain. The αI- and βI-spectrin abundances are also decreased in the slc4a10 knockout, where the basolateral domain expression of αI-spectrin is exchanged for a strictly luminal domain localization. E-cadherin expression is unchanged in the slc4a10 knockout, while small decreases in abundance are observed for its probable adaptor proteins, the catenins. Interestingly, the abundance of the tight junction protein claudin-2 is significantly reduced in the slc4a10 knockouts, which may critically affect paracellular transport in this epithelium. The observations allow the generation of new hypotheses on basic cell biological paradigms that can be tested experimentally in future studies.
Collapse
Affiliation(s)
- Inga B Christensen
- Department of Biomedicine, Faculty of Health, Aarhus University Aarhus, Denmark
| | - Tua Gyldenholm
- Department of Biomedicine, Faculty of Health, Aarhus University Aarhus, Denmark
| | - Helle H Damkier
- Department of Biomedicine, Faculty of Health, Aarhus University Aarhus, Denmark
| | - Jeppe Praetorius
- Department of Biomedicine, Faculty of Health, Aarhus University Aarhus, Denmark
| |
Collapse
|
149
|
Miller RK, Hong JY, Muñoz WA, McCrea PD. Beta-catenin versus the other armadillo catenins: assessing our current view of canonical Wnt signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:387-407. [PMID: 23481204 DOI: 10.1016/b978-0-12-394311-8.00017-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The prevailing view of canonical Wnt signaling emphasizes the role of beta-catenin acting downstream of Wnt activation to regulate transcriptional activity. However, emerging evidence indicates that other armadillo catenins in vertebrates, such as members of the p120 subfamily, convey parallel signals to the nucleus downstream of canonical Wnt pathway activation. Their study is thus needed to appreciate the networked mechanisms of canonical Wnt pathway transduction, especially as they may assist in generating the diversity of Wnt effects observed in development and disease. In this chapter, we outline evidence of direct canonical Wnt effects on p120 subfamily members in vertebrates and speculate upon these catenins' roles in conjunction with or aside from beta-catenin.
Collapse
Affiliation(s)
- Rachel K Miller
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | |
Collapse
|
150
|
Abu Taha A, Taha M, Seebach J, Schnittler HJ. ARP2/3-mediated junction-associated lamellipodia control VE-cadherin-based cell junction dynamics and maintain monolayer integrity. Mol Biol Cell 2013; 25:245-56. [PMID: 24227887 PMCID: PMC3890345 DOI: 10.1091/mbc.e13-07-0404] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The ARP2/3 complex controls junction-associated intermittent lamellipodia (JAIL), which trigger VE-cadherin adhesion and dynamics. JAIL formation maintains paraendothelial barrier function under physiological conditions and depends on the local VE-cadherin concentration. Maintenance and remodeling of endothelial cell junctions critically depend on the VE-cadherin/catenin complex and its interaction with the actin filament cytoskeleton. Here we demonstrate that local lack of vascular endothelial (VE)-cadherin at established cell junctions causes actin-driven and actin-related protein 2/3 complex (ARP2/3)–controlled lamellipodia to appear intermittently at those sites. Lamellipodia overlap the VE-cadherin–free adjacent plasma membranes and facilitate formation of new VE-cadherin adhesion sites, which quickly move into the junctions, driving VE-cadherin dynamics and remodeling. Inhibition of the ARP2/3 complex by expression of the N-WASP (V)CA domain or application of two ARP2/3 inhibitors, CK-548 and CK-666, blocks VE-cadherin dynamics and causes intercellular gaps. Furthermore, expression of carboxy-terminal–truncated VE-cadherin increases the number of ARP2/3-controlled lamellipodia, whereas overexpression of wild-type VE-cadherin largely blocks it and decreases cell motility. The data demonstrate a functional interrelationship between VE-cadherin–mediated cell adhesion and actin-driven, ARP2/3-controlled formation of new VE-cadherin adhesion sites via intermittently appearing lamellipodia at established cell junctions. This coordinated mechanism controls VE-cadherin dynamics and cell motility and maintains monolayer integrity, thus potentially being relevant in disease and angiogenesis.
Collapse
Affiliation(s)
- Abdallah Abu Taha
- Institute of Anatomy and Vascular Biology, WWU-Münster, 48149 Münster, Germany
| | | | | | | |
Collapse
|