101
|
Mallick BN, Majumdar S, Faisal M, Yadav V, Madan V, Pal D. Role of norepinephrine in the regulation of rapid eye movement sleep. J Biosci 2002; 27:539-51. [PMID: 12381879 DOI: 10.1007/bf02705052] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sleep and wakefulness are instinctive behaviours that are present across the animal species. Rapid eye movement (REM) sleep is a unique biological phenomenon expressed during sleep. It evolved about 300 million years ago and is noticed in the more evolved animal species. Although it has been objectively identified in its present characteristic form about half a century ago, the mechanics of how REM is generated, and what happens upon its loss are not known. Nevertheless, extensive research has shown that norepinephrine plays a crucial role in its regulation. The present knowledge that has been reviewed in this manuscript suggests that neurons in the brain stem are responsible for controlling this state and presence of excess norepinephrine in the brain does not allow its generation. Furthermore, REM sleep loss increases levels of norepinephrine in the brain that affects several factors including an increase in Na-K ATPase activity. It has been argued that such increased norepinephrine is ultimately responsible for REM sleep deprivation, associated disturbances in at least some of the physiological conditions leading to alteration in behavioural expression and settling into pathological conditions.
Collapse
Affiliation(s)
- Birendra N Mallick
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India.
| | | | | | | | | | | |
Collapse
|
102
|
Moragues N, Ciofi P, Tramu G, Garret M. Localisation of GABA(A) receptor epsilon-subunit in cholinergic and aminergic neurones and evidence for co-distribution with the theta-subunit in rat brain. Neuroscience 2002; 111:657-69. [PMID: 12031352 DOI: 10.1016/s0306-4522(02)00033-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In situ hybridisation and immunohistochemical methodologies suggest the existence of a large diversity of GABA(A) receptor subtypes in the brain. These are hetero-oligomeric proteins modulated by a number of clinically important drugs, depending on their subunit composition. We recently cloned and localised the rat GABA(A) receptor epsilon-subunit by in situ hybridisation and immunohistochemical procedures. Here, in a dual-labelling immunohistochemical study in the rat brain, we used our affinity-purified antiserum to epsilon with antisera to markers of cholinergic, catecholaminergic, and serotonergic neurones. As far as cholinergic systems were concerned, epsilon-immunoreactivity was expressed in all forebrain cell-groups, as well as in the caudal lateral pontine tegmentum and dorsal motor nucleus of the vagus nerve. As far as dopaminergic systems were concerned, epsilon-immunoreactivity was found to be expressed in a great number of hypothalamic cell-groups (A15, A14 and A12) and in the substantia nigra pars compacta. The noradrenergic, and to a lesser extent, adrenergic cell-groups were all epsilon-immunoreactive. Also, epsilon-immunoreactivity was detected in all serotonergic cell-groups. We also revealed by in situ hybridisation in a monkey brain that epsilon mRNA was expressed in the locus coeruleus, as previously observed in rats. Finally, by using in situ hybridisation in rat brains, we compared the distribution of the mRNA of epsilon with that of the recently cloned theta-subunit of the GABA(A) receptor. Both subunits showed strikingly overlapping expression patterns throughout the brain, especially in the septum, preoptic areas, various hypothalamic nuclei, amygdala, and thalamus, as well as the aforementioned monoaminergic cell-groups. No theta-mRNA signals were detected in cholinergic cell-groups. Taken together with previously published evidence of the presence of the alpha3-subunit in monoamine- or acetylcholine-containing systems, our data suggest the existence of novel GABA(A) receptors comprising alpha3/epsilon in cholinergic and alpha3/theta/epsilon in monoaminergic cell-groups.
Collapse
Affiliation(s)
- N Moragues
- Laboratoire de Neurophysiologie CNRS-UMR 5543, Université Victor Segalen Bordeaux 2, 146 rue Léo-Saignat, 33076 Bordeaux, France
| | | | | | | |
Collapse
|
103
|
Abstract
GABA is the main inhibitory neurotransmitter of the CNS. It is well established that activation of GABA(A) receptors favors sleep. Three generations of hypnotics are based on these GABA(A) receptor-mediated inhibitory processes. The first and second generation of hypnotics (barbiturates and benzodiazepines respectively) decrease waking, increase slow-wave sleep and enhance the intermediate stage situated between slow-wave sleep and paradoxical sleep, at the expense of this last sleep stage. The third generation of hypnotics (imidazopyridines and cyclopyrrolones) act similarly on waking and slow-wave sleep but the slight decrease of paradoxical sleep during the first hours does not result from an increase of the intermediate stage. It has been shown that GABA(B) receptor antagonists increase brain-activated behavioral states (waking and paradoxical sleep: dreaming stage). Recently, a specific GABA(C) receptor antagonist was synthesized and found by i.c.v. infusion to increase waking at the expense of slow-wave sleep and paradoxical sleep. Since the sensitivity of GABA(C) receptors for GABA is higher than that of GABA(A) and GABA(B) receptors, GABA(C) receptor agonists and antagonists, when available for clinical practice, could open up a new era for therapy of troubles such as insomnia, epilepsy and narcolepsy. They could possibly act at lower doses, with fewer side effects than currently used drugs. This paper reviews the influence of different kinds of molecules that affect sleep and waking by acting on GABA receptors.
Collapse
Affiliation(s)
- Claude Gottesmann
- Laboratoire de Psychophysiologie, Faculté des Sciences, Université de Nice-Sophia Antipolis, 06108 Nice Cedex 2, France.
| |
Collapse
|
104
|
Thakkar MM, Strecker RE, McCarley RW. Phasic but not tonic REM-selective discharge of periaqueductal gray neurons in freely behaving animals: relevance to postulates of GABAergic inhibition of monoaminergic neurons. Brain Res 2002; 945:276-80. [PMID: 12126890 DOI: 10.1016/s0006-8993(02)02914-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To determine if ventrolateral periaqueductal gray contains neurons that selectively increase their discharge activity before and during rapid eye movement (REM) sleep, and hence might furnish GABAergic inhibition of monoaminergic neurons, we recorded the extracellular activity of 33 neurons across sleep-wakefulness in freely behaving cats. Several types of state-specific neuronal populations were found in the periaqueductal gray, although we did not find any neurons that had a tonic discharge increase before and during REM. Thus, these data suggest that, although periaqueductal gray neurons may regulate phasic components of REM sleep, they do not have the requisite tonic pre-REM and REM activity to be a source of GABAergic inhibition of monoaminergic neurons.
Collapse
Affiliation(s)
- Mahesh M Thakkar
- Department of Psychiatry, Harvard Medical School and Boston VA Healthcare system, 940 Belmont Street, Brockton, MA 02301, USA.
| | | | | |
Collapse
|
105
|
Joseph V, Pequignot JM, Van Reeth O. Neurochemical perspectives on the control of breathing during sleep. Respir Physiol Neurobiol 2002; 130:253-63. [PMID: 12093622 DOI: 10.1016/s0034-5687(02)00012-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A specific depression of minute ventilation occurs during sleep in normal subjects. This sleep-related ventilatory depression is partially related to mechanical events and upper airway atonia but some data also indicate that it is likely to be centrally mediated. This paper reviews the anatomical and neurochemical connections between sleep/wake- and respiratory-related areas in an attempt to identify the potential implication of sleep-related neurochemicals (serotonin, catecholamines, GABA, acetylcholine) in the sleep-related hypoventilation. The review of available data suggests that the sleep-related ventilatory depression depends upon the enhanced GABAergic activity together with a loss of suprapontine influence depending on the cessation of activity of the reticular formation. During REM sleep, an additional inhibitory activity emerges from the pontine cholinergic neurons, which contributes to the breathing irregularities and the associated depression of minute ventilation and ventilatory response to chemical stimuli. This model may contribute to a better understanding of the neurochemical environment of respiratory neurons during sleep, which remains a question of importance regarding the numerous pathological states that are linked to specific perturbations of breathing control during sleep.
Collapse
Affiliation(s)
- Vincent Joseph
- Centre d'Etudes des Rythmes Biologiques, ULB Hôpital Erasme, 808 Route de Lennik, 1070, Brussels, Belgium.
| | | | | |
Collapse
|
106
|
Abstract
Although there were several premonitory signs of a sleep stage with dreaming, it was only in 1953 that such a stage was identified with certainty. This paper analyses the observations and research related to this dreaming stage (rapid eye movement sleep) until 1964. During these 11 years of research, the main psychological and physiological characteristics of this sleep stage were first described. Where the few results or discussions were later questioned, today's current state of knowledge is briefly outlined.
Collapse
Affiliation(s)
- C Gottesmann
- Laboratoire de Psychophysiologie, Faculté des Sciences, Groupe de Neurobiologie Fondamentale et Clinique, Université de Nice-Sophia Antipolis, parc Valrose, 06108 2, Nice Cedex, France.
| |
Collapse
|
107
|
Mallick BN, Kaur S, Saxena RN. Interactions between cholinergic and GABAergic neurotransmitters in and around the locus coeruleus for the induction and maintenance of rapid eye movement sleep in rats. Neuroscience 2001; 104:467-85. [PMID: 11377848 DOI: 10.1016/s0306-4522(01)00062-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The noradrenergic "REM-off" neurons in the locus coeruleus cease firing, whereas some cholinergic and non-cholinergic "REM-on" neurons increase firing during rapid eye movement sleep. A reciprocal interaction between these neurons was proposed. However, acetylcholine did not inhibit neurons in the locus coeruleus. Nevertheless, since GABA levels increase during rapid eye movement sleep and picrotoxin injections into the locus coeruleus reduced rapid eye movement sleep, it was hypothesized that GABA in the locus coeruleus might play an intermediary inhibitory role for rapid eye movement sleep regulation. Therefore, the effects of GABA or carbachol (a mixed cholinergic agonist receptor) alone, as well as an agonist of one in presence of an antagonist of the other, in the locus coeruleus were investigated on sleep-wakefulness and rapid eye movement sleep. The cholinergic agonist carbachol increased, while the muscarinic antagonist receptor scopolamine decreased, the frequency of induction of rapid eye movement sleep per hour. In contrast, GABA and picrotoxin increased and decreased, respectively, the duration of rapid eye movement sleep per episode. However, when carbachol was injected in the presence of picrotoxin or GABA was injected in the presence of scopolamine, the effect of GABA or picrotoxin was dominant. Microinjection of both scopolamine and picrotoxin in combination reduced both the frequency of initiation as well as the duration per episode of rapid eye movement sleep. From these results we suggest that in the locus coeruleus cholinergic input modulates the frequency of induction of rapid eye movement sleep and this action is mediated through GABA interneurons, whereas the length of rapid eye movement sleep per episode is maintained by the presence of an optimum level of GABA. A model of neural connections for initiation and maintenance of rapid eye movement sleep is proposed and discussed.
Collapse
Affiliation(s)
- B N Mallick
- School of Life Sciences, Jawaharlal Nehru University, 110 067, New Delhi, India.
| | | | | |
Collapse
|
108
|
Pudovkina OL, Kawahara Y, de Vries J, Westerink BH. The release of noradrenaline in the locus coeruleus and prefrontal cortex studied with dual-probe microdialysis. Brain Res 2001; 906:38-45. [PMID: 11430860 DOI: 10.1016/s0006-8993(01)02553-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present study was undertaken to investigate and compare the properties of noradrenaline release in the locus coeruleus (LC) and prefrontal cortex (PFC). For that aim the dual-probe microdialysis technique was applied for simultaneous detection of noradrenaline levels in the LC and PFC in conscious rats. Calcium omission in the LC decreased noradrenaline levels in the LC, but increased its levels in the PFC. Novelty increased noradrenaline levels in both structures. Infusion of the alpha(2)-adrenoceptor agonist clonidine decreased extracellular noradrenaline in the LC as well as in the PFC. Infusion of the alpha(2A)-adrenoceptor antagonist BRL44408, or the alpha(1)-adrenoceptor agonist cirazoline into the LC or PFC caused a similar dose-dependent increase in both structures. When BRL44408 or cirazoline were infused into the LC, few effects were seen in the PFC. Infusion of the 5-HT(1A)-receptor agonist flesinoxan into the LC or the PFC decreased the release of noradrenaline in both structures. When flesinoxan was infused into the LC, no effects were seen in the PFC. When the GABA(A) antagonist bicuculline was applied to the LC, noradrenaline increased in the LC as well as in the PFC. It is concluded that the release of noradrenaline from somatodendritic sites and nerve terminals responded in a similar manner to presynaptic receptor modulation. The possible existence of dendritic noradrenaline release is discussed.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Adrenergic alpha-Antagonists/pharmacology
- Animals
- Bicuculline/pharmacology
- Calcium/deficiency
- Clonidine/pharmacology
- Environment, Controlled
- Extracellular Space/drug effects
- Extracellular Space/metabolism
- GABA Antagonists/pharmacology
- Imidazoles/pharmacology
- Indoles/pharmacology
- Isoindoles
- Isotonic Solutions/pharmacology
- Locus Coeruleus/drug effects
- Locus Coeruleus/metabolism
- Male
- Microdialysis
- Neural Pathways/drug effects
- Neural Pathways/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Norepinephrine/metabolism
- Piperazines/pharmacology
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/metabolism
- Rats
- Rats, Wistar
- Receptors, Adrenergic, alpha/drug effects
- Receptors, Adrenergic, alpha/metabolism
- Receptors, Serotonin/drug effects
- Receptors, Serotonin/metabolism
- Receptors, Serotonin, 5-HT1
- Ringer's Solution
- Serotonin Receptor Agonists/pharmacology
- Stress, Physiological/metabolism
- Stress, Physiological/physiopathology
- Tetrodotoxin/pharmacology
Collapse
Affiliation(s)
- O L Pudovkina
- Department of Biomonitoring and Sensoring, University Center for Pharmacy, University of Groningen, Deusinglaan 1, 9712 AV Groningen, The Netherlands.
| | | | | | | |
Collapse
|
109
|
Somogyi J, Llewellyn-Smith IJ. Patterns of colocalization of GABA, glutamate and glycine immunoreactivities in terminals that synapse on dendrites of noradrenergic neurons in rat locus coeruleus. Eur J Neurosci 2001; 14:219-28. [PMID: 11553275 DOI: 10.1046/j.0953-816x.2001.01638.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Amino acid transmitters play a key role in regulating the activity of noradrenergic neurons in the locus coeruleus. We investigated the anatomical substrate for this regulation by quantifying immunoreactivity for GABA, glutamate and glycine in terminals that contacted the dendrites of tyrosine hydroxylase-immunoreactive principal neurons in rat locus coeruleus. Pre-embedding peroxidase immunocytochemistry was used to detect tyrosine hydroxylase-immunoreactivity in Vibratome sections of tissue perfused with 2.5% glutaraldehyde. GABA, glutamate and glycine were localized with postembedding immunogold labelling. Gold particle densities over terminals were measured in three semiserial ultrathin sections, each reacted for a different amino acid. More than 90% (range among rats, 89%-95%) of the terminals analyzed (n = 288) were immunoreactive for at least one amino acid. A high proportion (39%-49%) were positive for two or three amino acids. About two-thirds (60%-69%) of the boutons contained GABA, of which more than half (51%-55%) also contained glycine. More than one-third (36%-38%) of the terminals were positive for glycine. Terminals immunoreactive for glycine alone were rare (0%-2%). About one-third of the terminals showed glutamate-immunoreactivity (32%-37%). GABA and/or glycine occurred in one-fifth to one-third of these. These results show that amino acid-immunoreactivity is present in almost all of the terminals that synapse on tyrosine hydroxylase-positive dendrites in locus coeruleus. Glutamate provides a major excitatory input. The almost complete colocalization of glycine with GABA suggests that the inhibitory input to locus coeruleus is predominantly GABAergic with a contribution from glycine in about half of the GABAergic boutons.
Collapse
Affiliation(s)
- J Somogyi
- Cardiovascular Neuroscience Group, Cardiovascular Medicine and Centre for Neuroscience, Flinders University, Bedford Park, SA 5042, Australia.
| | | |
Collapse
|
110
|
Activation of pontine and medullary motor inhibitory regions reduces discharge in neurons located in the locus coeruleus and the anatomical equivalent of the midbrain locomotor region. J Neurosci 2001. [PMID: 11069963 DOI: 10.1523/jneurosci.20-22-08551.2000] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of the pontine inhibitory area (PIA) including the middle portion of the pontine reticular nucleus, oral part (PnO), or the gigantocellular reticular nucleus (Gi) suppresses muscle tone in decerebrate animals. The locus coeruleus (LC) and midbrain locomotor region (MLR) have been implicated in the facilitation of muscle tone. In the current study we investigated whether PIA and Gi stimulation causes changes in activity in these brainstem motor facilitatory systems. PIA stimulation evoked bilateral muscle tone suppression and inhibited 26 of 28 LC units and 33 of 36 tonically active units located in the anatomical equivalent of the MLR (caudal half of the cuneiform nucleus and the pedunculopontine tegmental nucleus). Gi stimulation evoked bilateral suppression of hindlimb muscle tone and inhibited 20 of 35 LC units and 24 of 24 neurons located in the MLR as well as facilitated 11 of 35 LC units. GABA and glycine release in the vicinity of LC was increased by 20-40% during ipsilateral PnO stimulation inducing hindlimb muscle tone suppression on the same side of the body. We conclude that activation of pontine and medullary inhibitory regions produces a coordinated reduction in the activity of the LC units and neurons located in the MLR related to muscle tone facilitation. The linkage between activation of brainstem motor inhibitory systems and inactivation of brainstem facilitatory systems may underlie the reduction in muscle tone in sleep as well as the modulation of muscle tone in the isolated brainstem.
Collapse
|
111
|
Shouse MN, Staba RJ, Saquib SF, Farber PR. Long-lasting effects of feline amygdala kindling on monoamines, seizures and sleep. Brain Res 2001; 892:147-65. [PMID: 11172760 DOI: 10.1016/s0006-8993(00)03265-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This report describes the relationship between monoamines, sleep and seizures before and 1-month after amygdala kindling in young cats (<1 year old; n=8; six female and two male). Concentrations (fmoles of norepinephrine or NE, dopamine or DA and serotonin or 5-HT) were quantified in consecutive, 5-min microdialysis samples (2 microl/min infusion rate) from amygdala and locus ceruleus complex (LC) during four, 6-8-h polygraphic recordings before (n=2) and 1 month post-kindling (n=2); 5-min recording epochs were temporally adjusted to correspond to dialysate samples and differentiated according to dominant sleep or waking state (lasting > or =80% of 5-min epoch) and degree of spontaneous seizure activity (number and duration of focal versus generalized spikes and spike trains and behavioral seizure correlates). Post-kindling records in each cat were divided into two groups (n=1 record each) based on higher or lower spontaneous EEG and behavioral seizure activity and compared to pre-kindling records. We found: (1) before and after kindling, NE and 5-HT but not DA concentrations were significantly lower in sleep than waking at both sites; (2) after kindling, each cat showed cyclic patterns, as follows: (a) higher NE, 5-HT and DA concentrations accompanied increased seizure activity with delayed sleep onset latency and increased sleep fragmentation (reduced sleep state percentages, number of epochs and/or epoch duration) in one recording versus (b) lower monoaminergic concentrations accompanied reduced seizure activity, rapid sleep onset and reduced sleep disruption in the other recording. The alternating, post-kindling pattern suggested "rebound" effects which could explain some controversies in the literature about chronic effects of kindling on monoamines and sleep-waking state patterns.
Collapse
Affiliation(s)
- M N Shouse
- Department of Veterans Affairs, Greater Los Angeles Health Care System (151A3), Sepulveda, CA 91343, USA.
| | | | | | | |
Collapse
|
112
|
Moragues N, Ciofi P, Lafon P, Odessa MF, Tramu G, Garret M. cDNA cloning and expression of a gamma-aminobutyric acidA receptor epsilon-subunit in rat brain. Eur J Neurosci 2000. [DOI: 10.1046/j.1460-9568.2000.01343.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
113
|
Moragues N, Ciofi P, Lafon P, Odessa MF, Tramu G, Garret M. cDNA cloning and expression of a γ-aminobutyric acid Areceptor ε-subunit in rat brain. Eur J Neurosci 2000. [DOI: 10.1111/j.1460-9568.2000.01343.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
114
|
Urbain N, Gervasoni D, Soulière F, Lobo L, Rentéro N, Windels F, Astier B, Savasta M, Fort P, Renaud B, Luppi PH, Chouvet G. Unrelated course of subthalamic nucleus and globus pallidus neuronal activities across vigilance states in the rat. Eur J Neurosci 2000; 12:3361-74. [PMID: 10998119 DOI: 10.1046/j.1460-9568.2000.00199.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pallido-subthalamic pathway powerfully controls the output of the basal ganglia circuitry and has been implicated in movement disorders observed in Parkinson's disease (PD). To investigate the normal functioning of this pathway across the sleep-wake cycle, single-unit activities of subthalamic nucleus (STN) and globus pallidus (GP) neurons were examined, together with cortical electroencephalogram and nuchal muscular activity, in non-anaesthetized head-restrained rats. STN neurons shifted from a random discharge in wakefulness (W) to a bursting pattern in slow wave sleep (SWS), without any change in their mean firing rate. This burst discharge occurred in the 1-2 Hz range, but was not correlated with cortical slow wave activity. In contrast, GP neurons, with a mean firing rate higher in W than in SWS, exhibited a relatively regular discharge whatever the state of vigilance. During paradoxical sleep, both STN and GP neurons increased markedly their mean firing rate relative to W and SWS. Our results are not in agreement with the classical 'direct/indirect' model of the basal ganglia organization, as an inverse relationship between STN and GP activities is not observed under normal physiological conditions. Actually, because the STN discharge pattern appears dependent on coincident cortical activity, this nucleus can hardly be viewed as a relay along the indirect pathway, but might rather be considered as an input stage conveying corticothalamic information to the basal ganglia.
Collapse
Affiliation(s)
- N Urbain
- Laboratoire de Neuropharmacologie et Neurochimie, INSERM U512, Frnace.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Kilduff TS, Peyron C. The hypocretin/orexin ligand-receptor system: implications for sleep and sleep disorders. Trends Neurosci 2000; 23:359-65. [PMID: 10906799 DOI: 10.1016/s0166-2236(00)01594-0] [Citation(s) in RCA: 305] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The molecules originally described as the hypocretins and subsequently as the orexins were initially implicated in the control of food intake. Recent observations implicate this newly-described neurotransmitter system in the sleep disorder narcolepsy and, potentially, in the regulation of normal sleep processes. This article reviews the research that led to the isolation of the hypocretin/orexin peptides, their receptors and the activity of these molecules as we currently understand them. A model is proposed in which the cells that make these peptides might be involved in arousal state control.
Collapse
Affiliation(s)
- T S Kilduff
- Molecular Neurobiology Laboratory, SRI International, Menlo Park, CA 94025, USA
| | | |
Collapse
|
116
|
Soulière F, Urbain N, Gervasoni D, Schmitt P, Guillemort C, Fort P, Renaud B, Luppi PH, Chouvet G. Single-unit and polygraphic recordings associated with systemic or local pharmacology: a multi-purpose stereotaxic approach for the awake, anaesthetic-free, and head-restrained rat. J Neurosci Res 2000; 61:88-100. [PMID: 10861804 DOI: 10.1002/1097-4547(20000701)61:1<88::aid-jnr11>3.0.co;2-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In order to avoid any artifactual pharmacological interferences with anaesthetic agents, a procedure has been developed for working on the awake, anaesthetic-free rat in a head-restrained condition. It allows, on the same animal and over several consecutive days, single-unit recordings in combination with systemic or local pharmacology (microiontophoresis or micropressure ejections), as well as monitoring vigilance states via the electroencephalogram and the electromyogram. After the cementing of a special "U"-shaped device on its skull under general anaesthesia, the animal is progressively habituated to stay daily, for several hours, under a painless corresponding stereotaxic restraint. This system can be easily adapted to different stereotaxic frames and, because of its spatial flexibility for targetting the desired rostrocaudal or lateral positions, allows access to a large number of cerebral structures. Experiments performed on Globus Pallidus, Substantia Nigra, and Locus Coeruleus neurons, combining the different possibilities of this system, are reported. They demonstrate, on the awake anaesthetic-free head-restrained rat, and under suitable ethical conditions, the feasibility of single-unit recordings of identified neurons associated with the study of their pharmacological reactivity after systemic or local drug administrations without any other drug interferences, and in physiologically relevant conditions such as the spontaneous alternance of vigilance states.
Collapse
Affiliation(s)
- F Soulière
- Laboratoire de Neuropharmacologie et Neurochimie, INSERM U512, Université Claude Bernard Lyon 1, Lyon-Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Abstract
Extracellular electrophysiological recordings in freely moving cats have shown that serotonergic neurons from the dorsal raphe nucleus (DRN) fire tonically during wakefulness, decrease their activity during slow wave sleep (SWS), and are nearly quiescent during paradoxical sleep (PS). The mechanisms at the origin of the modulation of activity of these neurons are still unknown. Here, we show in the unanesthetized rat that the iontophoretic application of the GABA(A) antagonist bicuculline on dorsal raphe serotonergic neurons induces a tonic discharge during SWS and PS and an increase of discharge rate during quiet waking. These data strongly suggest that an increase of a GABAergic inhibitory tone present during wakefulness is responsible for the decrease of activity of the dorsal raphe serotonergic cells during slow wave and paradoxical sleep. In addition, by combining retrograde tracing with cholera toxin B subunit and glutamic acid decarboxylase immunohistochemistry, we demonstrate that the GABAergic innervation of the dorsal raphe nucleus arises from multiple distant sources and not only from interneurons as classically accepted. Among these afferents, GABAergic neurons located in the lateral preoptic area and the pontine ventral periaqueductal gray including the DRN itself could be responsible for the reduction of activity of the serotonergic neurons of the dorsal raphe nucleus during slow wave and paradoxical sleep, respectively.
Collapse
|
118
|
Thompson SC, Woods SC, Hendricks S, Bell SM, Figlewicz DP. Intraventricular insulin suppresses the acoustic startle response in rats. Physiol Behav 2000; 69:433-7. [PMID: 10913781 DOI: 10.1016/s0031-9384(99)00260-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We and others have previously reported that the hormone insulin alters brain noradrenergic function at the synaptic and molecular levels. In the present study, we examined the in vivo effect of insulin (administered chronically via osmotic minipumps at a dose of 5 mU/day into the third cerebral ventricle) on the acoustic startle response. Rats receiving chronic intraventricular insulin had a significantly reduced startle response relative to vehicle-treated controls (i.e., 47 +/- 21% of baseline control startle response). Because our previous findings suggest that on an acute basis, insulin may enhance endogenous noradrenergic activity by inhibiting norepinephrine reuptake, we speculate here that the chronic effect of insulin is similar to that of the noradrenergic reuptake blocker, desipramine, which has been reported to decrease baseline startle performance.
Collapse
Affiliation(s)
- S C Thompson
- Departments of Psychology, University of Nebraska, Omaha, NE 68182, USA
| | | | | | | | | |
Collapse
|
119
|
Chowdhury GM, Fujioka T, Nakamura S. Induction and adaptation of Fos expression in the rat brain by two types of acute restraint stress. Brain Res Bull 2000; 52:171-82. [PMID: 10822158 DOI: 10.1016/s0361-9230(00)00231-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present study was designed to examine whether both induction and adaptation of brain Fos expression during acute stress depend on the intensity and duration of stressors. For this purpose, different durations of two types of acute stress, mild (restraint) and severe (immobilization) stress, were employed. Stress-induced Fos expression was analyzed quantitatively by immunohistochemistry. Adaptation of Fos expression to the acute stressors was not apparent in the hypothalamic paraventricular nucleus (PVN) or locus coeruleus (LC) but was observed in the amygdala, hippocampus, and cerebral cortex. A higher level of Fos expression was seen in the PVN, LC, and amygdala, following severe stress than was seen following mild stress. In the hippocampus, the dentate gyrus showed reduced Fos expression in response to stressors, although both mild and severe acute stress increased Fos expression in other regions of the hippocampus. The cingulate cortex showed increased Fos expression during mild stress, whereas long-duration severe stress reduced Fos expression. In the somatosensory cortex, both stressors increased Fos expression. These results indicate that the PVN and LC are relatively resistant to adaptation to acute stress compared to other brain regions. In addition, the PVN, LC, and amygdala may play important roles in the perception of the severity of stress.
Collapse
Affiliation(s)
- G M Chowdhury
- Department of Physiology, Yamaguchi University School of Medicine, Ube, 755-8505, Yamaguchi, Japan
| | | | | |
Collapse
|
120
|
Shouse MN, Staba RJ, Saquib SF, Farber PR. Monoamines and sleep: microdialysis findings in pons and amygdala. Brain Res 2000; 860:181-9. [PMID: 10727641 DOI: 10.1016/s0006-8993(00)02013-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This is the first microdialysis report comparing concentrations (pg/microliter) of norepinephrine (NE), serotonin (5-HT) and dopamine (DA) derived from feline locus ceruleus complex (LC) and amygdala. NE and 5-HT declined progressively from waking to slow-wave-sleep (SWS) and then to rapid-eye-movement (REM) sleep. Concentrations of DA did not change at either collection site across the sleep-wake cycle. We conclude that release of NE and 5-HT release modulates physiologic components related to the sleep-wake cycle, but DA does not.
Collapse
Affiliation(s)
- M N Shouse
- Department of Veterans Affairs, Greater Los Angeles Health Care System, (151A3) Sepulveda, CA, USA.
| | | | | | | |
Collapse
|
121
|
Steininger TL, Gong H, Mcginty D, Szymusiak R. Subregional organization of preoptic area /anterior hypothalamic projections to arousal-related monoaminergic cell groups. J Comp Neurol 2000. [DOI: 10.1002/1096-9861(20010122)429:4<638::aid-cne10>3.0.co;2-y] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
122
|
Swann AC, Petty F, Bowden CL, Dilsaver SC, Calabrese JR, Morris DD. Mania: gender, transmitter function, and response to treatment. Psychiatry Res 1999; 88:55-61. [PMID: 10641586 DOI: 10.1016/s0165-1781(99)00069-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Noradrenergic and GABA systems may be involved in mania, but there is little information about relationships between the function of these systems and response to specific antimanic treatments. We investigated relationships between indices of catecholamine or GABA system function, pretreatment mania severity and antimanic response to divalproex, lithium, or placebo. Plasma GABA and urinary excretion of catecholamine metabolites were measured before randomization to lithium, divalproex or placebo in patients hospitalized for manic episodes. Severity of mania was evaluated using the Manic Syndrome, Behavior and Ideation and Mania Rating Scale scores from the SADS-C. Multiple regression analysis showed that pretreatment plasma GABA was related to severity of manic symptoms. This relationship seemed stronger in women. Multiple regression analysis showed that pretreatment levels of urinary MHPG correlated with improvement in manic syndrome scores. These data suggest that GABA and norepinephrine may be related to different aspects of the manic state and to its pharmacologic sensitivity.
Collapse
Affiliation(s)
- A C Swann
- Department of Psychiatry and Behavioral Sciences, University of Texas-Houston Medical School, 77030, USA.
| | | | | | | | | | | |
Collapse
|
123
|
Gottesmann C. The neurophysiology of sleep and waking: intracerebral connections, functioning and ascending influences of the medulla oblongata. Prog Neurobiol 1999; 59:1-54. [PMID: 10416960 DOI: 10.1016/s0301-0082(98)00094-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This paper focuses on the successive historical papers related to medulla oblongata (M.O.) intracerebral connections, its activities and ascending influences regulating sleep waking behavior. The M.O. certainly influences the quantitative and qualitative processes of waking. However, its neurophysiological properties are often concealed by those of the upper-situated brain stem structures. The M.O., particularly the solitary tract nucleus, is involved in sleep-inducing processes. This nucleus seem to act as a deactivating system of the above situated reticular formation, but it also impacts directly on the thalamocortical slow wave and spindle-inducing processes. The M.O. is significantly involved in paradoxical sleep mechanisms. Indeed, the mesopontine executive centers are unable to induce paradoxical sleep without the M.O. Moreover, stimulation of the solitary tract nucleus afferents can induce paradoxical sleep, and the M.O. metabolic functioning is specifically disturbed by paradoxical sleep deprivation. Finally. there seems to be a paradoxical sleep Zeitgeber. Our current knowledge shows that this lowest brain stem level is crucial for sleep waking mechanisms. It will undoubtedly be further highlighted by future electrophysiologial and neurochemical studies.
Collapse
Affiliation(s)
- C Gottesmann
- Laboratoire de Psychophysiologie, Faculté des Sciences, Université de Nice-Sophia Antipolis, Nice, France.
| |
Collapse
|
124
|
Abstract
We propose that sleep begins within small groups of highly interconnected neurons and is characterized by altered input --> output (i-->0) relationships for any specific neuronal group. Further, experimental findings suggest that growth factors, released locally in response to neuronal activity, and acting in paracrine and autocrine fashions, induce the altered i-->0 relationships. These growth factors also act to provide the structural basis for synapses. Thus, we envision that sleep mechanisms (neural use-dependent induction of growth factors and their subsequent effects on i-->0 relationships) cannot be separated from sleep function (growth factor-induced synaptic sculpturing). This mechanism/firnction is envisioned to take place in all areas of the brain, including sleep regulatory circuits as well as throughout the cortex. Finally, the "sleep" of neuronal groups (altered i-->o relationships) is coordinated by the known sleep regulatory circuits and activational-projection systems in the brain. The theory extends and integrates existing sleep theories to cover a broader range of phenomena.
Collapse
Affiliation(s)
- J M Krueger
- Washington State University, College of Veterinary Medicine, Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, PO Box 646520, Pullman, WA 99164-6520, USA.
| | | | | |
Collapse
|
125
|
Differential c-Fos expression in cholinergic, monoaminergic, and GABAergic cell groups of the pontomesencephalic tegmentum after paradoxical sleep deprivation and recovery. J Neurosci 1999. [PMID: 10191323 DOI: 10.1523/jneurosci.19-08-03057.1999] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multiple lines of evidence indicate that neurons within the pontomesencephalic tegmentum are critically involved in the generation of paradoxical sleep (PS). From single-unit recording studies, evidence suggests that unidentified but "possibly" cholinergic tegmental neurons discharge at higher rates during PS than during slow wave sleep or even waking and would thus play an active role, whereas "presumed" monoaminergic neurons cease firing during PS and would thus play a permissive role in PS generation. In the present study performed on rats, c-Fos immunostaining was used as a reflection of neuronal activity and combined with immunostaining for choline acetyltransferase (ChAT), serotonin (Ser), tyrosine hydroxylase (TH), or glutamic acid decarboxylase (GAD) for immunohistochemical identification of active neurons during PS recovery ( approximately 28% of recording time) as compared with PS deprivation (0%) and PS control (approximately 15%) conditions. With PS recovery, there was a significant increase in ChAT+/c-Fos+ cells, a significant decrease in Ser+/c-Fos+ and TH+/c-Fos+ cells, and a significant increase in GAD+/c-Fos+ cells. Across conditions, the percent PS was correlated positively with tegmental cholinergic c-Fos+ cells, negatively with raphe serotonergic and locus coeruleus noradrenergic c-Fos+ cells, and positively with codistributed and neighboring GABAergic c-Fos+ cells. These results support the hypothesis that cholinergic neurons are active, whereas monoaminergic neurons are inactive during PS. They moreover indicate that GABAergic neurons are active during PS and could thus be responsible for inhibiting neighboring monoaminergic neurons that may be essential in the generation of PS.
Collapse
|