101
|
Dunn SL, Young EA, Hall MD, McNulty S. Activation of astrocyte intracellular signaling pathways by interleukin-1 in rat primary striatal cultures. Glia 2002; 37:31-42. [PMID: 11746781 DOI: 10.1002/glia.10010] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The striatum has been implicated as the site of action mediating neurotoxic effects of interleukin-1 (IL-1) during ischemia. However, the molecular mechanisms underlying these events have yet to be fully addressed. In the present study, primary cultures of rat striatal cells were used as a model for the study of IL-1 signaling pathways in the striatum. Immunocytochemical analyses revealed that these cultures consisted of a mixture of neurones and astrocytes and demonstrated expression of the IL-1 type I receptor (IL-1RI) on both cell types. Treatment with IL-1 (3 units/ml) for 10 min increased phosphorylation of p38 MAP kinase in striatal cells. The endogenous IL-1RI inhibitor IL-1Ra (24 ng/ml) and the p38 MAP kinase inhibitor SB203580 (10 nM) both inhibited this response. Analysis of the effects of IL-1 on nuclear translocation of the transcription factor NF-kB revealed that NF-kB became activated in a time-dependent manner. Immunocytochemistry revealed that IL-1 stimulated p38 phosphorylation and NF-kB translocation in astrocytes only. TaqMan real-time quantitative PCR analysis revealed that IL-1 stimulated gene expression of tumor necrosis factor-alpha (TNF) in striatal cultures. The p38 MAP kinase inhibitor SB203580 failed to inhibit the effects of IL-1 on NF-kB translocation or gene transcription. These studies have demonstrated significant aspects of the IL-1 signaling cascade in cultured striatum. Of particular interest is the finding that IL-1 stimulated activation of p38 MAP kinase and NF-kB in striatal astrocytes exclusively.
Collapse
Affiliation(s)
- Sarah L Dunn
- Pfizer Global Research and Development, Cambridge Laboratories, Cambridge University Forvie Site, Cambridge, UK
| | | | | | | |
Collapse
|
102
|
Yoneda S, Tanihara H, Kido N, Honda Y, Goto W, Hara H, Miyawaki N. Interleukin-1beta mediates ischemic injury in the rat retina. Exp Eye Res 2001; 73:661-7. [PMID: 11747366 DOI: 10.1006/exer.2001.1072] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two types of experiment were performed to examine the role of interleukin-1beta in ischemia-induced damage in the rat retina. In the in vivo study, enzyme-linked immunosorbent assay was used to investigate the expression of immunoreactive interleukin-1beta in the rat retina following a hypertension-induced ischemia/reperfusion, while the effect of a recombinant human interleukin-1 receptor antagonist or an anti-interleukin-1beta neutralizing antibody on the ischemia-induced damage was examined histologically. A transient increase in the expression of immunoreactive interleukin-1beta was observed in the retina 3-12 hr after reperfusion, and morphometric evaluation at 7 days after the ischemia showed a decrease in cell numbers in the ganglion cell layer and a decreased thickness of the inner plexiform layer with no change in the other retinal layers. Intravitreal injection of interleukin-1 receptor antagonist (1 or 10 ng per eye) or anti-interleukin-1beta antibody (50 or 500 ng per eye) 5 min before the onset of the ischemia reduced the damage. In the in vitro study, interleukin-1 receptor antagonist (500 ng ml(-1)) significantly reduced glutamate-induced neurotoxicity in rat cultured retinal neurons. These results suggest that interleukin-1 plays an important role in mediating ischemic and excitotoxic damage in the retina, and that interleukin-1 inhibitors may be therapeutically useful against neuronal injury caused by optic nerve or retinal diseases such as glaucoma and central retinal artery or vein occlusion.
Collapse
Affiliation(s)
- S Yoneda
- Ophthalmic Research Division, Santen Pharmaceuticals Co. Ltd, 8916-16, Takayama, Ikoma 630-0101, Japan
| | | | | | | | | | | | | |
Collapse
|
103
|
Abstract
Cytokines have been implicated as mediators and inhibitors of diverse forms of neurodegeneration. They are induced in response to brain injury and have diverse actions that can cause, exacerbate, mediate and/or inhibit cellular injury and repair. Here we review evidence for the contribution of cytokines to acute neurodegeneration, focusing primarily on interleukin 1 (IL-1), tumour necrosis factor-alpha (TNFalpha) and transforming growth factor-beta (TGFbeta). TGFbeta seems to exert primarily neuroprotective actions, whereas TNFalpha might contribute to neuronal injury and exert protective effects. IL-1 mediates ischaemic, excitotoxic and traumatic brain injury, probably through multiple actions on glia, neurons and the vasculature. Understanding cytokine action in acute neurodegeneration could lead to novel and effective therapeutic strategies, some of which are already in clinical trials.
Collapse
|
104
|
Allan SM, Harrison DC, Read S, Collins B, Parsons AA, Philpott K, Rothwell NJ. Selective increases in cytokine expression in the rat brain in response to striatal injection of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate and interleukin-1. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 93:180-9. [PMID: 11589995 DOI: 10.1016/s0169-328x(01)00211-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A number of cytokines contribute to acute experimental neurodegeneration. The cytokine response can have detrimental or beneficial effects depending on the temporal profile and balance between pro- and anti-inflammatory molecules. Our recent data suggest that the pro-inflammatory cytokine interleukin-1beta (IL-1beta) acts at specific sites (e.g., the striatum) in the rat brain to cause distant cortical injury, when co-administered with the potent excitotoxin alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (S-AMPA). The objective of the present study was to investigate changes in the expression of several cytokines simultaneously in the rat striatum and cortex after intrastriatal administration of vehicle, S-AMPA or human recombinant (hr) IL-1beta alone or S-AMPA co-injected with hrIL-1beta using reverse transcription-polymerase chain reaction (RT-PCR; Taqman fluorogenic probes) and enzyme-linked immunosorbent assay (ELISA). Injection of S-AMPA alone increased IL-6 mRNA expression in the ipsilateral striatum after 8 h, whilst striatal injection of IL-1beta alone increased local IL-1beta and IL-1ra mRNAs. The levels of mRNA encoding IL-1alpha, IL-1beta, IL-1ra, IL-6, IL-10 and TNFalpha were markedly elevated in the ipsilateral cortex 8 h after co-injection of S-AMPA and hrIL-1beta. Cortical mRNA levels for IL-4, IL-18, TGFbeta and IFNgamma were not significantly different between treatment groups after 2 h or 8 h. A similar pattern of change in the levels of IL-1alpha and IL-6 protein was observed 8 h after treatment. These data demonstrate selective increases in the expression of cytokines in areas of remote cell death in response to administration of hrIL-1beta and S-AMPA. Such cytokines may be involved in the ensuing damage, and further clarification of their actions could aid future therapeutic strategies for several acute neurodegenerative disorders.
Collapse
Affiliation(s)
- S M Allan
- School of Biological Sciences, University of Manchester, 1.124 Stopford Building, Oxford Road, M13 9PT, Manchester, UK.
| | | | | | | | | | | | | |
Collapse
|
105
|
Nesic O, Xu GY, McAdoo D, High KW, Hulsebosch C, Perez-Pol R. IL-1 receptor antagonist prevents apoptosis and caspase-3 activation after spinal cord injury. J Neurotrauma 2001; 18:947-56. [PMID: 11565605 DOI: 10.1089/089771501750451857] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
One of the consequences of cytokine-orchestrated inflammation after CNS trauma is apoptosis. Our hypothesis is that cell death in the spinal cord after injury results in part from increased synthesis and release of IL-1beta. Using a ribonuclease protection assay, we demonstrated that there is increased transient expression of IL-1beta mRNA and, by using IL-1beta protein ELISA assay, that there are increased IL-1beta protein levels in the contused rat spinal cord, initially localized to the impact region of the spinal cord (segment T8). Using an ELISA cell death assay, we showed that there is apoptosis in the spinal cord 72 h after injury, a finding that was confirmed by measuring caspase-3 activity, which also significantly increased at the site of injury 72 h after trauma. Treatment of the contused spinal cord at the site of injury with the IL-1 receptor antagonist (rmIL-lra, 750 ng/mL) for 72 h using an osmotic minipump completely abolished the increases in contusion-induced apoptosis and caspase-3 activity.
Collapse
Affiliation(s)
- O Nesic
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77555-0652, USA.
| | | | | | | | | | | |
Collapse
|
106
|
Pringle AK, Niyadurupola N, Johns P, Anthony DC, Iannotti F. Interleukin-1beta exacerbates hypoxia-induced neuronal damage, but attenuates toxicity produced by simulated ischaemia and excitotoxicity in rat organotypic hippocampal slice cultures. Neurosci Lett 2001; 305:29-32. [PMID: 11356300 DOI: 10.1016/s0304-3940(01)01795-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using organotypic hippocampal slice cultures we have investigated the actions of Interleukin-1 (IL-1) in a number of injury paradigms. Low concentrations of IL-1 potentiated hypoxia-induced neurodegeneration whilst high concentrations had no effect. In contrast, higher concentrations of IL-1 were strongly neuroprotective in models of combined oxygen/glucose deprivation and N-methyl-D-aspartate toxicity, but no potentiation was observed at low IL-1 concentrations. Both protective and toxic effects of IL-1 were fully antagonized by IL-1 receptor antagonist. These data demonstrate that the effects of IL-1 on neuronal injury are complex, and may be directly related to the injury paradigm studied.
Collapse
Affiliation(s)
- A K Pringle
- Centre for Neuroscience, University of Southampton, Boldrewood Building, Bassett Crescent East, SO16 7PX, Southampton, UK. akp @soton.ac.uk
| | | | | | | | | |
Collapse
|
107
|
Abstract
The cytokine interleukin-1 (IL-1) has been strongly implicated in the pathogenesis of ischemic brain damage. Evidence to date suggests that the major form of IL-1 contributing to ischemic injury is IL-1beta rather than IL-1alpha, but this has not been tested directly. The objective of the present study was to compare the effects of transient cerebral ischemia [30 min middle cerebral artery occlusion (MCAO)] on neuronal injury in wild-type (WT) mice and in IL-1alpha, IL-1beta, or both IL-1alpha and IL-1beta knock-out (KO) mice. Mice lacking both forms of IL-1 exhibited dramatically reduced ischemic infarct volumes compared with wild type (total volume, 70%; cortex, 87% reduction). Ischemic damage compared with WT mice was not significantly altered in mice lacking either IL-1alpha or IL-1beta alone. IL-1beta mRNA, but not IL-1alpha or the IL-1 type 1 receptor, was strongly induced by MCAO in WT and IL-1alpha KO mice. Administration (intracerebroventricularly) of recombinant IL-1 receptor antagonist significantly reduced infarct volume in WT (-32%) and IL-1alpha KO (-48%) mice, but had no effect on injury in IL-1beta or IL-1alpha/beta KO mice. These data confirm that IL-1 plays a major role in ischemic brain injury. They also show that chronic deletion of IL-1alpha or IL-1beta fails to influence brain damage, probably because of compensatory changes in the IL-1 system in IL-1alpha KO mice and changes in IL-1-independent mediators of neuronal death in IL-1beta KO mice.
Collapse
|
108
|
Kido N, Inatani M, Honjo M, Yoneda S, Hara H, Miyawaki N, Honda Y, Tanihara H. Dual effects of interleukin-1beta on N-methyl-D-aspartate-induced retinal neuronal death in rat eyes. Brain Res 2001; 910:153-62. [PMID: 11489265 DOI: 10.1016/s0006-8993(01)02706-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this study we determine if interleukin-1beta (IL-1beta) modulates N-methyl-D-aspartate (NMDA)-induced retinal damage. Sprague-Dawley rats were anesthetized with inhalation of halothane, after which a single injection of 5 microl of IL-1beta (0.1 to 10 ng/eye) (and/or IL-1 receptor antagonist (IL-1ra)) for experimental eyes was administered. Two days later (or simultaneously), NMDA (20 nmol) was injected into the vitreous space. One week later, each eye was enucleated and transverse sections were subjected to morphometric analysis. Enzyme-linked immunosorbent assay (ELISA) was conducted for the determination of IL-1beta levels in retina. Immunohistochemical and immunoblot studies were also performed. In eyes that received an intravitreal injection of IL-1beta (0.1 to 10 ng/eye), significant thinning of the inner plexiform layer (IPL) was observed (P<0.05). Immunohistochemical and ELISA studies demonstrated upregulated expression of IL-1beta in retinas that had undergone NMDA injection. Treatment with 10 ng of IL-1ra induced a protective effect against NMDA-induced retinal damage. Pretreatment with IL-1beta induced a significant protective effect on NMDA-induced retinal damage. Our studies suggest that IL-1beta induces neuronal cell death directly, as shown by the protective effects of IL-1ra, but has a protective effect on NMDA-induced retinal damage indirectly after an incubation time of at least 2 days.
Collapse
Affiliation(s)
- N Kido
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Abstract
It is often proposed that quinolinic acid (QUIN) contributes to the pathophysiology of neuroinflammation because this kynurenine pathway metabolite is a selective agonist of N-methyl-D-aspartate (NMDA) receptors, and both its brain tissue and cerebrospinal fluid concentrations increase markedly with inflammation. However, whether or not the extracellular levels of QUIN reached during neuroinflammation are high enough to promote excitotoxicity, remains unclear because QUIN is a weak NMDA receptor agonist. We have addressed this issue by evaluating the extracellular concentrations of QUIN that must be reached to initiate potentially excitotoxic changes in the cerebral cortex of rats, under normal conditions, and when superimposed on another insult. We have also examined the increase in extracellular lactate associated with the perfusion of increasing concentrations of QUIN through a microdialysis probe. The extracellular EC50 for induction of local depolarisation was 228 microM with QUIN alone; that is, about 30 times the levels of QUIN measured previously in immune activated brain. Furthermore, at least 20 microM extracellular QUIN needed to be reached to reduce K+ induced spreading depression, an unexpected effect since spreading depression is inhibited by NMDA receptor antagonists. Our data suggest that, although synthesis of QUIN from activated microglia and invading macrophages can increase its extracellular concentration 10-100-fold, the levels that are reached in these conditions remain far below the concentrations of QUIN that are necessary for excessive NMDA receptor activation. However, the possibility that QUIN accumulation may be a deleterious feature of neuroinflammation cannot be ruled out at this stage.
Collapse
Affiliation(s)
- T P Obrenovitch
- School of Pharmacy, University of Bradford, Bradford BD7 1DP, U.K.
| |
Collapse
|
110
|
Abstract
Experimental and clinical damage to the brain leads to rapid upregulation of an array of cytokines predominantly by glia. These cytokines may exert neurotoxic or neuroprotective actions. This paper will focus on the pro-inflammatory cytokine interleukin-1 (IL-1), which participates in diverse forms of brain damage including ischemia, brain trauma, and excitotoxic injury. Administration of low doses of IL-1 markedly exacerbates these forms of brain damage, whereas blocking IL-1 release or actions reduces neuronal death. IL-1 receptor antagonist (IL-1ra) is also upregulated by brain damage (mainly by neurons) and acts as an endogenous inhibitor of neurodegeneration, presumably by blocking IL-1 actions on its receptor. We have studied the actions of both IL-1 and IL-1ra in experimental models of ischemic and neurotoxic injury in rats, and have found site-specific effects within the striatum. On the basis of this and further work, we propose that IL-1 can exacerbate cell death in these conditions by modifying polysynaptic anterograde pathways leading from the striatum to the cortex. The precise nature of these pathways remains undetermined, as do the underlying mechanisms by which IL-1 can exert its effects, but appear to involve induction of IL-1 in specific brain regions and activation of cortical glutamatergic pathways.
Collapse
Affiliation(s)
- S M Allan
- School of Biological Sciences, 1.124 Stopford Building, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom.
| |
Collapse
|
111
|
Dommergues MA, Patkai J, Renauld JC, Evrard P, Gressens P. Proinflammatory cytokines and interleukin-9 exacerbate excitotoxic lesions of the newborn murine neopallium. Ann Neurol 2001. [DOI: 10.1002/1531-8249(200001)47:1<54::aid-ana10>3.0.co;2-y] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
112
|
Vitkovic L, Konsman JP, Bockaert J, Dantzer R, Homburger V, Jacque C. Cytokine signals propagate through the brain. Mol Psychiatry 2000; 5:604-15. [PMID: 11126391 DOI: 10.1038/sj.mp.4000813] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interleukin-1 (IL-1) and tumor necrosis factor alpha (TNFalpha) are proinflammatory cytokines that are constitutively expressed in healthy, adult brain where they mediate normal neural functions such as sleep. They are neuromodulators expressed by and acting on neurons and glia. IL-1 and TNFalpha expression is upregulated in several important diseases/disorders. Upregulation of IL-1 and/or TNFalpha expression, elicited centrally or systemically, propagates through brain parenchyma following specific spatio-temporal patterns. We propose that cytokine signals propagate along neuronal projections and extracellular diffusion pathways by molecular cascades that need to be further elucidated. This elucidation is a prerequisite for better understanding of reciprocal interactions between nervous, endocrine and immune systems.
Collapse
Affiliation(s)
- L Vitkovic
- CNRS-INSERM Centre de Pharmacologie-Endocrinologie, Montpellier, France.
| | | | | | | | | | | |
Collapse
|
113
|
Molina-Holgado F, Toulmond S, Rothwell NJ. Involvement of interleukin-1 in glial responses to lipopolysaccharide: endogenous versus exogenous interleukin-1 actions. J Neuroimmunol 2000; 111:1-9. [PMID: 11063815 DOI: 10.1016/s0165-5728(00)00344-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Interleukin-1beta (IL-1beta) participates in neuroinflammation and neurodegeneration. Its mechanisms of action are not fully understood, but appear to involve complex interactions between neurons and glia. The objective of this study was to determine the involvement of endogenous IL-1beta in inflammatory responses to LPS in cultured mouse glial cells, and compare this to the effects of exogenous IL-1beta. Activation of primary mixed glial cultures by incubation with LPS (1 microgram/ml, 24 h), caused marked (approximately ten-fold) increases in release of NO, twenty-fold increases in PGE(2) and ninety-fold increases of IL-6 release. Incubation with human recombinant IL-1beta (100 ng/ml) also stimulated NO and IL-6 release to a similar extent to LPS, but IL-1beta (1 or 100 ng/ml) caused only modest increases (approximately seven-fold) in PGE(2) release. Co-incubation with IL-1ra inhibited the effects of LPS on NO release (-65%) and IL-6 production (-30%), but failed to reduce PGE(2) release. These results indicate that exogenous IL-1beta induces release of NO, PGE(2) and IL-6 in mixed glial cultures, and that endogenous IL-1beta mediates inflammatory actions of LPS on NO and to a lesser extent IL-6, but not on PGE(2) release in mixed glial cultures. Indeed endogenous IL-1beta appears to inhibit LPS-induced PGE(2) release.
Collapse
Affiliation(s)
- F Molina-Holgado
- School of Biological Sciences 1.124 Stopford Building, The University of Manchester, Oxford Road, M13 9PT, Manchester, UK
| | | | | |
Collapse
|
114
|
Craighead MW, Boutin H, Middlehurst KM, Allan SM, Brooks N, Kimber I, Rothwell NJ. Influence of corticotrophin releasing factor on neuronal cell death in vitro and in vivo. Brain Res 2000; 881:139-43. [PMID: 11036151 DOI: 10.1016/s0006-8993(00)02759-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Several studies have demonstrated that antagonists of the corticotrophin releasing factor (CRF) receptor markedly inhibit experimentally induced excitotoxic, ischaemic and traumatic brain injury in the rat, and that CRF expression is elevated in response to experimentally induced stroke or traumatic brain injury. CRF is also induced by the pro-inflammatory cytokine interleukin 1 (IL-1), which participates in various forms of neurodegeneration. The aim of this study was to test the hypothesis that CRF is toxic directly in vivo or in vitro. In primary cultures of rat cortical neurons, exposure to CRF (10 pM-100 nM) for 24 h failed to cause cell death directly, or to modify the neurotoxic effects of N-methyl-D-aspartate (NMDA). Similarly, infusion of CRF (0.3-5 microg) into specific brain regions of the rat did not induce cell death and did not significantly alter the neuronal damage produced by infusion of excitatory amino acids. These data demonstrate that CRF is not directly neurotoxic, and suggest that either CRF mediates neuronal damage by indirect actions (e.g. on the vasculature) and/or that CRF is not the endogenous ligand which contributes to neurodegeneration through activation of CRF receptors.
Collapse
Affiliation(s)
- M W Craighead
- School of Biological Sciences, 1.124 Stopford Building, University of Manchester, Oxford Road, M13 9PT, Manchester, UK.
| | | | | | | | | | | | | |
Collapse
|
115
|
Vezzani A, Moneta D, Conti M, Richichi C, Ravizza T, De Luigi A, De Simoni MG, Sperk G, Andell-Jonsson S, Lundkvist J, Iverfeldt K, Bartfai T. Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice. Proc Natl Acad Sci U S A 2000; 97:11534-9. [PMID: 11016948 PMCID: PMC17235 DOI: 10.1073/pnas.190206797] [Citation(s) in RCA: 346] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
IL-1beta and its endogenous receptor antagonist (IL-1Ra) are rapidly induced by seizures in the rodent hippocampus. Exogenously applied IL-1beta prolongs seizures in an IL-1R type I-mediated manner. This effect depends on N-methyl-d-aspartate receptor activation. We report here that intrahippocampal application of recombinant IL-1Ra or its selective endogenous overexpression in astrocytes under the control of glial acidic fibrillary protein promoter potently inhibits motor and electroencephalographic seizures induced by bicuculline methiodide in mice. Accordingly, transgenic mice show a reduced seizure-related c-fos mRNA expression in various forebrain areas compared with their wild-type littermates. Recombinant IL-1Ra was ineffective in mice deficient in IL-1R type I, having per se a delayed onset to generalized convulsions. These results demonstrate that IL-1Ra mediates potent anticonvulsant effects acting on IL-1R type I and suggest that the balance between brain IL-1beta and IL-1Ra represents a crucial mechanism to control seizure generalization.
Collapse
Affiliation(s)
- A Vezzani
- Laboratories of Experimental Neurology and Inflammation and Central Nervous System Diseases, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, via Eritrea 62, 20157 Milano, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Allan SM, Rothwell NJ. Cortical death caused by striatal administration of AMPA and interleukin-1 is mediated by activation of cortical NMDA receptors. J Cereb Blood Flow Metab 2000; 20:1409-13. [PMID: 11043903 DOI: 10.1097/00004647-200010000-00002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Striatal coadministration of interleukin-1beta (IL-1beta) with alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (S-AMPA) in rats results in widespread cortical cell death not caused by either treatment alone. This cortical damage was unaffected by cortical infusion of the AMPA-receptor antagonist NBQX. Cortical infusion of an NMDA-receptor antagonist D-AP5 significantly inhibited (57%; P < 0.05) cortical death, but had no effect on the local striatal death. Thus, cortical neuronal death induced by striatal S-AMPA and human recombinant interleukin-1beta (hrIL-1beta) is mediated by activation of NMDA receptors in the cortex. The authors propose that IL-1beta actions on AMPA-receptor mediated cell death may involve the activation of polysynaptic pathways from the striatum to the cortex.
Collapse
Affiliation(s)
- S M Allan
- School of Biological Sciences, University of Manchester, UK
| | | |
Collapse
|
117
|
Peltola J, Palmio J, Korhonen L, Suhonen J, Miettinen A, Hurme M, Lindholm D, Keränen T. Interleukin-6 and interleukin-1 receptor antagonist in cerebrospinal fluid from patients with recent tonic-clonic seizures. Epilepsy Res 2000; 41:205-11. [PMID: 10962211 DOI: 10.1016/s0920-1211(00)00140-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We have previously reported increased concentrations of interleukin (1L)-6 in CSF from patients with tonic-clonic seizures, where increased cytokine production most likely is a consequence of neuronal epileptic activity associated with seizures. The biological effects of IL-6 are mediated by other cytokines, which are studied here in addition to IL-6. The purpose of this study was to analyze levels of soluble cytokines from plasma and CSF from patients with newly developed tonic-clonic seizures. The concentrations of IL-6, IL-1 receptor antagonist (IL-1RA), IL-1beta, tumor necrosis factor (TNFalpha) and nerve growth factor (NGF) were measured from plasma and CSF from 22 patients with newly developed tonic-clonic seizures within 24 h from the seizure and 18 controls. The mean concentrations of IL-6 were significantly increased in CSF (P<0.001) and plasma (P<0.01) after tonic-clonic seizures, there was some indication of increased concentrations of IL-1RA and no significant change in NGF, IL-1beta or TNFalpha. Our study shows that cytokine network is activated in patients after recent tonic-clonic seizures. We provide evidence of intrathecal production of IL-6 associated with electrical seizure activity.
Collapse
Affiliation(s)
- J Peltola
- Department of Neurology, Tampere University Hospital, PO Box 2000, FIN-33101, Tampere, Finland
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Herx LM, Rivest S, Yong VW. Central nervous system-initiated inflammation and neurotrophism in trauma: IL-1 beta is required for the production of ciliary neurotrophic factor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:2232-9. [PMID: 10925311 DOI: 10.4049/jimmunol.165.4.2232] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Injury to the CNS results in the production and accumulation of inflammatory cytokines within this tissue. The origin and role of inflammation within the CNS remains controversial. In this paper we demonstrate that an acute trauma to the mouse brain results in the rapid elevation of IL-1beta. This increase is detectable by 15 min after injury and significantly precedes the influx of leukocytes that occurs hours after. To confirm that IL-1beta up-regulation is initiated by cells within the CNS, in situ hybridization for cytokine transcript was combined with cell type immunohistochemistry. The results reveal parenchymal microglia to be the sole source of IL-1beta at 3 h postinjury. A role for CNS-initiated inflammation was addressed by examining the expression of the neurotrophic factor, ciliary neurotrophic factor (CNTF). Analysis of their temporal relationship suggests the up-regulation of CNTF by IL-1beta, which was confirmed through three lines of evidence. First, the application of IL-1 receptor antagonist into the lesion site attenuated the up-regulation of CNTF. Second, the examination of corticectomized animals genetically deficient for IL-1beta found no CNTF up-regulation. Third, the lack of CNTF elevation in IL-1beta null mice was rescued through exogenous application of IL-1beta into the lesion site. These findings provide the first evidence of the requirement for IL-1beta in the production of CNTF following CNS trauma, and suggest that inflammation can have a beneficial impact on the regenerative capacity of the CNS.
Collapse
Affiliation(s)
- L M Herx
- Departments of Clinical Neurosciences and Oncology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
119
|
De Simoni MG, Perego C, Ravizza T, Moneta D, Conti M, Marchesi F, De Luigi A, Garattini S, Vezzani A. Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur J Neurosci 2000; 12:2623-33. [PMID: 10947836 DOI: 10.1046/j.1460-9568.2000.00140.x] [Citation(s) in RCA: 408] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Limbic status epilepticus was induced in rats by unilateral 60-min electrical stimulation of the CA3 region of the ventral hippocampus. As assessed by RT-PCR followed by Southern blot analysis, transcripts of interleukin-1beta, interleukin-6, interleukin-1 receptor antagonist and inducible nitric oxide synthase were significantly increased 2 h after status epilepticus in the stimulated hippocampus. Induction was maximal at 6 h for interleukin-1beta (445%), interleukin-6 (405%) and tumour necrosis factor-alpha (264%) and at 24 h for interleukin-1 receptor antagonist (494%) and inducible nitric oxide synthase (432%). In rats with spontaneous seizures (60 days after status epilepticus), interleukin-1beta mRNA was still higher than controls (241%). Immunocytochemical staining of interleukin-1beta, interleukin-6 and tumour necrosis factor-alpha was enhanced in glia with a time-course similar to that of the respective transcripts. Sixty days after status epilepticus, interleukin-1beta immunoreactivity was increased exclusively in neurons in one third of the animals. Multiple intracerebroventricular injections of interleukin-1 receptor antagonist (0.5 microg/3 microL) significantly decreased the severity of behavioural convulsions during electrical stimulation and selectively reduced tumour necrosis factor-alpha content in the hippocampus measured 18 h after status epilepticus. Thus, the induction of spontaneously recurring seizures in rats involves the activation of inflammatory cytokines and related pro- and anti-inflammatory genes in the hippocampus. These changes may play an active role in hyperexcitability of the epileptic tissue.
Collapse
Affiliation(s)
- M G De Simoni
- Laboratory of Inflammation and Nervous System Diseases and Laboratory of Experimental Neurology, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Allan SM, Parker LC, Collins B, Davies R, Luheshi GN, Rothwell NJ. Cortical cell death induced by IL-1 is mediated via actions in the hypothalamus of the rat. Proc Natl Acad Sci U S A 2000; 97:5580-5. [PMID: 10779559 PMCID: PMC25871 DOI: 10.1073/pnas.090464197] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The cytokine IL-1 mediates diverse forms of neurodegeneration, but its mechanism of action is unknown. We have demonstrated previously that exogenous and endogenous IL-1 acts specifically in the rat striatum to dramatically enhance ischemic and excitotoxic brain damage and cause extensive cortical injury. Here we tested the hypothesis that this distant effect of IL-1 is mediated through polysynaptic striatal outputs to the cortex via the hypothalamus. We show that IL-1beta injected into the rat striatum with the excitotoxin alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (S-AMPA) caused increased expression of IL-1beta (mRNA and protein) mainly in the cortex where maximum injury occurs. Marked increases in IL-1beta mRNA and protein were also observed in the hypothalamus. S-AMPA, injected alone into the striatum, caused only localized damage, but administration of IL-1beta into either the striatum or the lateral hypothalamus immediately after striatal S-AMPA resulted in widespread cell loss throughout the ipsilateral cortex. Finally we showed that the cortical cell death produced by striatal coinjection of S-AMPA and IL-1beta was significantly reduced by administration of the IL-1 receptor antagonist into the lateral hypothalamus. These data suggest that IL-1beta can act in the hypothalamus to modify cell viability in the cortex. We conclude that IL-1-dependent pathways project from the striatum to the cortex via the hypothalamus and lead to cortical injury, and that these may contribute to a number of human neurological conditions including stroke and head trauma.
Collapse
Affiliation(s)
- S M Allan
- School of Biological Sciences, 1.124 Stopford Building, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | | | | | | | | | | |
Collapse
|
121
|
Venters HD, Dantzer R, Kelley KW. A new concept in neurodegeneration: TNFalpha is a silencer of survival signals. Trends Neurosci 2000; 23:175-80. [PMID: 10717677 DOI: 10.1016/s0166-2236(99)01533-7] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The p55 receptor for the pro-inflammatory cytokine tumor necrosis factor alpha (TNFalpha) is best characterized by its ability to induce signals that trigger cell death. However, this is not the only way in which this TNF receptor kills neurons. A new view of neurodegeneration has recently emerged in which a TNF receptor induces death through the 'silencing of survival signals' (SOSS), such as phosphatidylinositol 3' kinase (PI3 kinase), that are activated by the insulin-like growth factor 1 receptor. This mechanism of intracellular crosstalk is the most pathophysiologically relevant action of TNFalpha in the brain and is applicable to a broad number of receptors that are localized on the same cell. Treatment of the more-devastating and costly neurodegenerative diseases of our time might be best promoted by increasing the efficacy of neuronal survival factors using new approaches aimed at inhibiting the SOSS.
Collapse
Affiliation(s)
- H D Venters
- Laboratory of Immunophysiology, Dept of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
122
|
Loddick SA, Rothwell NJ. Mechanisms of tumor necrosis factor alpha action on neurodegeneration: interaction with insulin-like growth factor-1. Proc Natl Acad Sci U S A 1999; 96:9449-51. [PMID: 10449710 PMCID: PMC33706 DOI: 10.1073/pnas.96.17.9449] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- S A Loddick
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | |
Collapse
|
123
|
Cartmell T, Luheshi GN, Rothwell NJ. Brain sites of action of endogenous interleukin-1 in the febrile response to localized inflammation in the rat. J Physiol 1999; 518 ( Pt 2):585-94. [PMID: 10381603 PMCID: PMC2269440 DOI: 10.1111/j.1469-7793.1999.0585p.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/1998] [Accepted: 04/12/1999] [Indexed: 11/28/2022] Open
Abstract
1. Interleukin (IL)-1 is a potent endogenous pyrogen which causes fever when injected into a number of brain sites. However, the brain sites at which endogenous IL-1 acts to influence body temperature remain equivocal. The aim of this study was to determine the effect of local administration of the interleukin-1 receptor antagonist (IL-1ra) into specific sites in the hypothalamus, and other brain regions known to contain receptors for IL-1, on the febrile response of rats to peripheral injection of lipopolysaccharide (LPS) into a subcutaneous air pouch (intrapouch, i.p.o.) that does not lead to LPS appearance in the circulation. 2. Injection of LPS (100 microgram kg-1, i.p.o.) induced a rise in body temperature which commenced 1.5 h after injection and was maximal at 3 h (38.9 +/- 0.2 C, compared with 37.0 +/- 0.1 C at 0 h, n = 6, P < 0.001). Intracerebroventricular (i.c.v.) IL-1ra (500 microgram in 5 microliter) significantly attenuated LPS fever (IL-1ra, 37.7 +/- 0.2 C; saline, 38.9 +/- 0.2 C; n = 6, P < 0.001). Unilateral microinjection of IL-1ra (50 microgram in 0.5 microliter at 0 + 1 h) into the anterior hypothalamus (AH), paraventricular hypothalamic nucleus (PVH), peri-subfornical organ, subfornical organ (SFO) or hippocampus (dentate gyrus and CA3 region) also significantly reduced the fever induced by LPS. 3. The same dose of IL-1ra had no effect on fever when administered into the ventromedial hypothalamus (VMH), organum vasculosum lamina terminalis (OVLT), CA1 field of the hippocampus, striatum or cortex. 4. These data indicate that the action of endogenous IL-1 in the brain during fever is site specific, acting at the AH, PVH, SFO and hippocampus, but not the VMH, OVLT and striatum or cortex.
Collapse
Affiliation(s)
- T Cartmell
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | |
Collapse
|
124
|
Interleukin-1beta immunoreactivity and microglia are enhanced in the rat hippocampus by focal kainate application: functional evidence for enhancement of electrographic seizures. J Neurosci 1999. [PMID: 10366638 DOI: 10.1523/jneurosci.19-12-05054.1999] [Citation(s) in RCA: 438] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Using immunocytochemistry and ELISA, we investigated the production of interleukin (IL)-1beta in the rat hippocampus after focal application of kainic acid inducing electroencephalographic (EEG) seizures and CA3 neuronal cell loss. Next, we studied whether EEG seizures per se induced IL-1beta and microglia changes in the hippocampus using bicuculline as a nonexcitotoxic convulsant agent. Finally, to address the functional role of this cytokine, we measured the effect of human recombinant (hr)IL-1beta on seizure activity as one marker of the response to kainate. Three and 24 hr after unilateral intrahippocampal application of 0.19 nmol of kainate, IL-1beta immunoreactivity was enhanced in glia in the injected and the contralateral hippocampi. At 24 hr, IL-1beta concentration increased by 16-fold (p < 0.01) in the injected hippocampus. Reactive microglia was enhanced with a pattern similar to IL-1beta immunoreactivity. Intrahippocampal application of 0.77 nmol of bicuculline methiodide, which induces EEG seizures but not cell loss, enhanced IL-1beta immunoreactivity and microglia, although to a less extent and for a shorter time compared with kainate. One nanogram of (hr)IL-1beta intrahippocampally injected 10 min before kainate enhanced by 226% the time spent in seizures (p < 0.01). This effect was blocked by coinjection of 1 microgram (hr)IL-1beta receptor antagonist or 0.1 ng of 3-((+)-2-carboxypiperazin-4-yl)-propyl-1-phosphonate, selective antagonists of IL-1beta and NMDA receptors, respectively. Thus, convulsant and/or excitotoxic stimuli increase the production of IL-1beta in microglia-like cells in the hippocampus. In addition, exogenous application of IL-1beta prolongs kainate-induced hippocampal EEG seizures by enhancing glutamatergic neurotransmission.
Collapse
|
125
|
Grundy RI, Rothwell NJ, Allan SM. Dissociation between the effects of interleukin-1 on excitotoxic brain damage and body temperature in the rat. Brain Res 1999; 830:32-7. [PMID: 10350557 DOI: 10.1016/s0006-8993(99)01377-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The cytokine interleukin-1beta (IL-1beta) mediates and exacerbates excitotoxic brain damage in the rat striatum. Co-injection of the selective glutamate receptor agonist alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (S-AMPA) with human recombinant IL-1beta (hrIL-1beta) in the striatum of rats results in both local (striatal) damage and extensive, distant neuronal death in the cortex. The objective of the present study was to investigate the mechanisms underlying IL-1beta actions on excitotoxic damage, and to determine whether this effect of IL-1beta, a potent pyrogen, is due to modification of body temperature. Striatal infusion of S-AMPA (7.5 nmol) in anaesthetised rats produced localised striatal damage. Intrastriatal co-infusion of hrIL-1beta (10 ng) with S-AMPA caused similar striatal damage, but also produced extensive cortical damage, together with a modest increase in body temperature (0.9 degrees C) compared to rats infused with S-AMPA alone. Infusion of S-AMPA into the striatum, together with intracerebroventricular (i.c.v.) injection of hrIL-1beta, produced a similar rise in temperature to striatal co-infusion of S-AMPA and hrIL-1beta, but resulted in only local (striatal) neuronal damage, that was similar to that caused by striatal infusion of S-AMPA alone. These data suggest that the effects of IL-1beta on AMPA-receptor mediated neuronal damage in the striatum can be dissociated from its pyrogenic effects on body temperature.
Collapse
Affiliation(s)
- R I Grundy
- School of Biological Sciences, 1.124 Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
126
|
Pearson VL, Rothwell NJ, Toulmond S. Excitotoxic brain damage in the rat induces interleukin-1? protein in microglia and astrocytes: Correlation with the progression of cell death. Glia 1999. [DOI: 10.1002/(sici)1098-1136(19990215)25:4<311::aid-glia1>3.0.co;2-e] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
127
|
Abstract
Given at the Meeting of the Physiological Society held at the University of Southampton on 10 September 1998
Collapse
Affiliation(s)
- N J Rothwell
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
128
|
Bolton SJ, Perry VH. Differential blood-brain barrier breakdown and leucocyte recruitment following excitotoxic lesions in juvenile and adult rats. Exp Neurol 1998; 154:231-40. [PMID: 9875284 DOI: 10.1006/exnr.1998.6927] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Acute neuronal degeneration can be induced by intracerebral injections of the glutamate receptor agonists kainic acid (KA) and NMDA (N-methyl-D-aspartate). It is accompanied by an inflammatory response that has not yet been fully investigated. We have previously demonstrated that the juvenile rat brain is more susceptible to an inflammatory challenge when compared to adult rat brain. This study set out to investigate whether this also applied to the inflammatory response associated with acute neuronal degeneration. NMDA and kainic acid were injected into the rat striatum and lesion size, leucocyte recruitment, and blood-brain barrier (BBB) breakdown were assessed after 4, 8, 12, 24, 72, and 168 h. Both NMDA and KA induced lesions of similar volume at either age and apoptotic and necrotic nuclei could be detected. NMDA induced cellular loss by 4 h, whereas KA-injected rats did not show signs of neuronal loss until 8-12 h. The inflammatory response was characterized by an infiltration of neutrophils followed by macrophages. Juvenile rats showed a greater susceptibility to leucocyte recruitment compared to adult rats. BBB breakdown in response to NMDA injection occurred in the absence of cellular recruitment at 4 h in juveniles and was significantly greater in juvenile compared to adult rats at 8 h. BBB breakdown was minimal in KA-injected animals while at 7 days an influx of serum IgG coincided with a loss of astrocytic GFAP staining within the lesion.
Collapse
Affiliation(s)
- S J Bolton
- Department of Pharmacology, University of Oxford, United Kingdom
| | | |
Collapse
|