101
|
Li Z, Zhang C, Qiu B, Niu Y, Leng L, Cai S, Tian Y, Zhang TJ, Qiu G, Wu N, Wu Z, Wang Y. Comparative proteomics analysis for identifying the lipid metabolism related pathways in patients with Klippel-Feil syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:255. [PMID: 33708882 PMCID: PMC7940892 DOI: 10.21037/atm-20-5155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Klippel-Feil syndrome (KFS) represents the rare and complex deformity characterized by congenital defects in the formation or segmentation of the cervical vertebrae. There is a wide gap in understanding the detailed mechanisms of KFS because of its rarity, heterogeneity, small pedigrees, and the broad spectrum of anomalies. Methods We recruited eight patients of Chinese Han ethnicity with KFS, five patients with congenital scoliosis (CS) who presented with congenital fusion of the thoracic or lumbar spine and without known syndrome or cervical deformity, and seven healthy controls. Proteomic analysis by data-independent acquisition (DIA) was performed to identify the differential proteome among the three matched groups and the data were analyzed by bioinformatics tools including Gene Ontology (GO) categories and Ingenuity Pathway Analysis (IPA) database, to explore differentially abundant proteins (DAPs) and canonical pathways involved in the pathogenesis of KFS. Results A total of 49 DAPs were detected between KFS patients and the controls, and moreover, 192 DAPs were identified between patients with KFS and patients with CS. Fifteen DAPs that were common in both comparisons were considered as candidate biomarkers for KFS, including membrane primary amine oxidase, noelin, galectin-3-binding protein, cadherin-5, glyceraldehyde-3-phosphate dehydrogenase, peroxiredoxin-1, CD109 antigen, and eight immunoglobulins. Furthermore, the same significant canonical pathways of LXR/RXR activation and FXR/RXR activation were observed in both comparisons. Seven of DAPs were apolipoproteins related to these pathways that are involved in lipid metabolism. Conclusions This study provides the first proteomic profile for understanding the pathogenesis and identifying predictive biomarkers of KFS. We detected 15 DAPs that were common in both comparisons as candidate predictive biomarkers of KFS. The lipid metabolism-related canonical pathways of LXR/RXR and FXR/RXR activation together with seven differentially abundant apolipoproteins may play significant roles in the etiology of KFS and provide possible pathogenesis correlation between KFS and CS.
Collapse
Affiliation(s)
- Ziquan Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Cong Zhang
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - Bintao Qiu
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuchen Niu
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Leng
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Siyi Cai
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Ye Tian
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Yipeng Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
102
|
Nóbrega A, Maia-Fernandes AC, Andrade RP. Altered Cogs of the Clock: Insights into the Embryonic Etiology of Spondylocostal Dysostosis. J Dev Biol 2021; 9:5. [PMID: 33572886 PMCID: PMC7930992 DOI: 10.3390/jdb9010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 01/23/2023] Open
Abstract
Spondylocostal dysostosis (SCDO) is a rare heritable congenital condition, characterized by multiple severe malformations of the vertebrae and ribs. Great advances were made in the last decades at the clinical level, by identifying the genetic mutations underlying the different forms of the disease. These were matched by extraordinary findings in the Developmental Biology field, which elucidated the cellular and molecular mechanisms involved in embryo body segmentation into the precursors of the axial skeleton. Of particular relevance was the discovery of the somitogenesis molecular clock that controls the progression of somite boundary formation over time. An overview of these concepts is presented, including the evidence obtained from animal models on the embryonic origins of the mutant-dependent disease. Evidence of an environmental contribution to the severity of the disease is discussed. Finally, a brief reference is made to emerging in vitro models of human somitogenesis which are being employed to model the molecular and cellular events occurring in SCDO. These represent great promise for understanding this and other human diseases and for the development of more efficient therapeutic approaches.
Collapse
Affiliation(s)
- Ana Nóbrega
- CBMR, Centre for Biomedical Research, Universidade do Algarve, 8005-139 Faro, Portugal; (A.N.); (A.C.M.-F.)
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ana C. Maia-Fernandes
- CBMR, Centre for Biomedical Research, Universidade do Algarve, 8005-139 Faro, Portugal; (A.N.); (A.C.M.-F.)
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Raquel P. Andrade
- CBMR, Centre for Biomedical Research, Universidade do Algarve, 8005-139 Faro, Portugal; (A.N.); (A.C.M.-F.)
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, 1400-038 Lisbon, Portugal
| |
Collapse
|
103
|
Yoon JG, Hahn HM, Choi S, Kim SJ, Aum S, Yu JW, Park EK, Shim KW, Lee MG, Kim YO. Molecular Diagnosis of Craniosynostosis Using Targeted Next-Generation Sequencing. Neurosurgery 2020; 87:294-302. [PMID: 31754721 DOI: 10.1093/neuros/nyz470] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 08/18/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Genetic factors play an important role in the pathogenesis of craniosynostosis (CRS). However, the molecular diagnosis of CRS in clinical practice is limited because of its heterogeneous etiology. OBJECTIVE To investigate the genomic landscape of CRS in a Korean cohort and also to establish a practical diagnostic workflow by applying targeted panel sequencing. METHODS We designed a customized panel covering 34 CRS-related genes using in-solution hybrid capture method. We enrolled 110 unrelated Korean patients with CRS, including 40 syndromic and 70 nonsyndromic cases. A diagnostic pipeline was established by combining in-depth clinical reviews and multiple bioinformatics tools for analyzing single-nucleotide variants (SNV)s and copy number variants (CNV)s. RESULTS The diagnostic yield of the targeted panel was 30.0% (33/110). Twenty-five patients (22.7%) had causal genetic variations resulting from SNVs or indels in 9 target genes (TWIST1, FGFR3, TCF12, ERF, FGFR2, ALPL, EFNB1, FBN1, and SKI, in order of frequency). CNV analysis identified 8 (7.3%) additional patients with chromosomal abnormalities involving 1p32.3p31.3, 7p21.1, 10q26, 15q21.3, 16p11.2, and 17p13.3 regions; these cases mostly presented with syndromic clinical features. CONCLUSION The present study shows the wide genomic landscape of CRS, revealing various genetic factors for CRS pathogenesis. In addition, the results demonstrate that an efficient diagnostic workup using target panel sequencing provides great clinical utility in the molecular diagnosis of CRS.
Collapse
Affiliation(s)
- Jihoon G Yoon
- Department of Pharmacology, Research Center for Human Genetics, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Hyung Min Hahn
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Sungkyoung Choi
- Department of Pharmacology, Research Center for Human Genetics, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Soo Jung Kim
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Sowon Aum
- Department of Pharmacology, Research Center for Human Genetics, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Jung Woo Yu
- Department of Pharmacology, Research Center for Human Genetics, College of Medicine, Yonsei University, Seoul, Republic of Korea.,Department of Pediatric Neurosurgery, Craniofacial Reforming and Reconstruction Clinic, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Eun Kyung Park
- Department of Pediatric Neurosurgery, Craniofacial Reforming and Reconstruction Clinic, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Kyu Won Shim
- Department of Pediatric Neurosurgery, Craniofacial Reforming and Reconstruction Clinic, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Min Goo Lee
- Department of Pharmacology, Research Center for Human Genetics, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Yong Oock Kim
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, College of Medicine, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
104
|
Understanding the clinical manifestations of 16p11.2 deletion syndrome: a series of developmental case reports in children. Psychiatr Genet 2020; 30:136-140. [PMID: 32732550 PMCID: PMC7497286 DOI: 10.1097/ypg.0000000000000259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Copy number variants (CNVs) are genetic rearrangements, such as deletions and duplications, which result in a deviation from the normal number of copies of a given gene segment. CNVs are implicated in many neuropsychiatric disorders. Deletions of the human chromosomal region 16p11.2 are one of the most common genetic linkages to autism spectrum disorders (ASD). However, ASD is not the only presenting feature, and many patients with 16p11.2 deletions present with a variable clinical spectrum. METHODS To better understand the nature and presentation of the syndrome throughout development, we present three different, unrelated clinical cases of children with 16p11.2 deletion and provide a detailed description of their clinical manifestations. RESULTS Cognitive and motor impairments were characteristic of all three patients with 16p11.2 deletion, despite the differences in the extent and clinical presentation of impairment. Two patients had a clinical diagnosis of ASD and one showed several ASD traits. In addition, two patients also had severe speech and language impairments, which is in line with previous reports on 16p11.2 phenotypes. Although epilepsy and obesity have been frequently associated with 16p11.2 deletion, only one patient had a diagnosis of epilepsy and none of the three cases were obese. CONCLUSION This variation in clinical phenotype renders correct clinical interpretation and diagnosis challenging. Therefore, it is critical to elucidate the variable clinical phenotypes of rare CNVs, including 16p11.2 deletions, to help guide clinical monitoring and counselling of patients and families.
Collapse
|
105
|
Groopman EE, Povysil G, Goldstein DB, Gharavi AG. Rare genetic causes of complex kidney and urological diseases. Nat Rev Nephrol 2020; 16:641-656. [PMID: 32807983 PMCID: PMC7772719 DOI: 10.1038/s41581-020-0325-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2020] [Indexed: 02/08/2023]
Abstract
Although often considered a single-entity, chronic kidney disease (CKD) comprises many pathophysiologically distinct disorders that result in persistently abnormal kidney structure and/or function, and encompass both monogenic and polygenic aetiologies. Rare inherited forms of CKD frequently span diverse phenotypes, reflecting genetic phenomena including pleiotropy, incomplete penetrance and variable expressivity. Use of chromosomal microarray and massively parallel sequencing technologies has revealed that genomic disorders and monogenic aetiologies contribute meaningfully to seemingly complex forms of CKD across different clinically defined subgroups and are characterized by high genetic and phenotypic heterogeneity. Investigations of prevalent genomic disorders in CKD have integrated genetic, bioinformatic and functional studies to pinpoint the genetic drivers underlying their renal and extra-renal manifestations, revealing both monogenic and polygenic mechanisms. Similarly, massively parallel sequencing-based analyses have identified gene- and allele-level variation that contribute to the clinically diverse phenotypes observed for many monogenic forms of nephropathy. Genome-wide sequencing studies suggest that dual genetic diagnoses are found in at least 5% of patients in whom a genetic cause of disease is identified, highlighting the fact that complex phenotypes can also arise from multilocus variation. A multifaceted approach that incorporates genetic and phenotypic data from large, diverse cohorts will help to elucidate the complex relationships between genotype and phenotype for different forms of CKD, supporting personalized medicine for individuals with kidney disease.
Collapse
Affiliation(s)
- Emily E Groopman
- Division of Nephrology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Gundula Povysil
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Ali G Gharavi
- Division of Nephrology, Columbia University College of Physicians and Surgeons, New York, NY, USA.
- Institute for Genomic Medicine, Columbia University, New York, NY, USA.
- Center for Precision Medicine and Genomics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
106
|
Oh S, Song H, Freeman WM, Shin S, Janknecht R. Cooperation between ETS transcription factor ETV1 and histone demethylase JMJD1A in colorectal cancer. Int J Oncol 2020; 57:1319-1332. [PMID: 33174020 PMCID: PMC7646594 DOI: 10.3892/ijo.2020.5133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
ETS variant 1 (ETV1) is an oncogenic transcription factor. However, its role in colorectal cancer has remained understudied. The present study demonstrated that ETV1 downregulation led to reduced HCT116 colorectal cancer cell growth and clonogenic activity. Furthermore, the ETV1 mRNA levels were enhanced in colorectal tumors and were associated with disease severity. In addition, ETV1 directly bound to Jumonji C domain-containing (JMJD) 1A, a histone demethylase known to promote colon cancer. ETV1 and JMJD1A, but not a catalytically inactive mutant thereof, cooperated in inducing the matrix metalloproteinase (MMP)1 gene promoter that was similar to the cooperation between ETV1 and another histone demethylase, JMJD2A. RNA-sequencing revealed multiple potential ETV1 target genes in HCT116 cells, including the FOXQ1 and TBX6 transcription factor genes. Moreover, JMJD1A co-regulated FOXQ1 and other ETV1 target genes, but not TBX6, whereas JMJD2A downregulation had no impact on FOXQ1 as well as TBX6 transcription. Accordingly, the FOXQ1 gene promoter was stimulated by ETV1 and JMJD1A in a cooperative manner, and both ETV1 and JMJD1A bound to the FOXQ1 promoter. Notably, the overexpression of FOXQ1 partially reversed the growth inhibitory effects of ETV1 ablation on HCT116 cells, whereas TBX6 impaired HCT116 cell growth and may thereby dampen the oncogenic activity of ETV1. The latter also revealed for the first time, to the best of our knowledge, a potential tumor suppressive function of TBX6. Taken together, the present study uncovered a ETV1/JMJD1A-FOXQ1 axis that may drive colorectal tumorigenesis.
Collapse
Affiliation(s)
- Sangphil Oh
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hoogeun Song
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | - Sook Shin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
107
|
Lupski JR, Liu P, Stankiewicz P, Carvalho CMB, Posey JE. Clinical genomics and contextualizing genome variation in the diagnostic laboratory. Expert Rev Mol Diagn 2020; 20:995-1002. [PMID: 32954863 DOI: 10.1080/14737159.2020.1826312] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The human genome contains the instructions for the development and biological homeostasis of the human organism and the genetic transmission of traits. Genome variation in human populations is the basis of evolution; individual or personal genomes vary tremendously, making each of us truly unique. AREAS COVERED Assaying this individual variation using genomic technologies has many applications in clinical medicine, from elucidating the biology of disease to designing strategies to ameliorate perturbations from homeostasis. Detecting pathogenic rare variation in a genome may provide a molecular diagnosis that can be informative for patient management and family healthcare. EXPERT OPINION Despite the increasing clinical use of unbiased genomic testing, including chromosome microarray analysis (CMA) with array comparative genomic hybridization (aCGH) or SNP arrays, clinical exome sequencing (cES), and whole-genome sequencing (WGS), to survey genome-wide for molecular aberrations, clinical acumen paired with an understanding of the limitations of each testing type will be needed to achieve molecular diagnoses. Potential opportunities for improving case solved rates, functionally annotating the majority of genes in the human genome, and further understanding genetic contributions to disease will empower clinical genomics and the precision medicine initiative.
Collapse
Affiliation(s)
- James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine , Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine , Houston, TX, USA.,Human Genome Sequencing Center, Baylor College of Medicine , Houston, TX, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine , Houston, TX, USA.,Baylor Genetics, Baylor College of Medicine , Houston, TX, USA
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine , Houston, TX, USA
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine , Houston, TX, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine , Houston, TX, USA
| |
Collapse
|
108
|
Liu Y, Gu X, Liu H, Li Z, Wang Z, Zhu Z, Gao W, Wang J. New Insight of Circular RNAs in Human Musculoskeletal Diseases. DNA Cell Biol 2020; 39:1938-1947. [PMID: 32991198 DOI: 10.1089/dna.2020.5873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Circular RNAs (circRNAs), a novel group of noncoding RNAs, are present in most eukaryotic cells. Different from messenger RNAs, circRNAs have a covalently closed single-stranded stable structure and often act in cell type and tissue-specific manners, indicating that they can be used as biomarkers. With the advance of high-throughput RNA sequencing technology and bioinformatics, a large number of circRNAs have been identified in association with musculoskeletal diseases, but the functions of most circRNAs have not been clarified. circRNAs regulate biological processes by adsorbing microRNA as "sponges," binding to proteins, acting as transcriptional regulators, and participating in translation of proteins. In this study, we discuss the latest understanding of biogenesis and gene regulatory mechanisms of circRNAs with special emphasis on new targets for musculoskeletal disease diagnosis and clinical treatment.
Collapse
Affiliation(s)
- Yuzhe Liu
- Department of Orthopaedics of the Second Hospital, Jilin University, Changchun, China.,The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Jilin University, Changchun, China
| | - Xinming Gu
- Department of Oral Implantology of School and Hospital of Stomatology, and Jilin University, Changchun, China
| | - He Liu
- Department of Orthopaedics of the Second Hospital, Jilin University, Changchun, China.,The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Jilin University, Changchun, China
| | - Zhaoyan Li
- Department of Orthopaedics of the Second Hospital, Jilin University, Changchun, China.,The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Jilin University, Changchun, China.,Research Centre of the Second Hospital, Jilin University, Changchun, China
| | - Zhonghan Wang
- Department of Orthopaedics of the Second Hospital, Jilin University, Changchun, China.,The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Jilin University, Changchun, China
| | - Zhengqing Zhu
- Department of Orthopaedics of the Second Hospital, Jilin University, Changchun, China
| | - Weinan Gao
- Department of Orthopaedics of the Second Hospital, Jilin University, Changchun, China.,The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Jilin University, Changchun, China
| | - Jincheng Wang
- Department of Orthopaedics of the Second Hospital, Jilin University, Changchun, China.,The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Jilin University, Changchun, China
| |
Collapse
|
109
|
Lleras-Forero L, Newham E, Teufel S, Kawakami K, Hartmann C, Hammond CL, Knight RD, Schulte-Merker S. Muscle defects due to perturbed somite segmentation contribute to late adult scoliosis. Aging (Albany NY) 2020; 12:18603-18621. [PMID: 32979261 PMCID: PMC7585121 DOI: 10.18632/aging.103856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/14/2020] [Indexed: 01/24/2023]
Abstract
Scoliosis is an abnormal bending of the body axis. Truncated vertebrae or a debilitated ability to control the musculature in the back can cause this condition, but in most cases the causative reason for scoliosis is unknown (idiopathic). Using mutants for somite clock genes with mild defects in the vertebral column, we here show that early defects in somitogenesis are not overcome during development and have long lasting and profound consequences for muscle fiber organization, structure and whole muscle volume. These mutants present only mild alterations in the vertebral column, and muscle shortcomings are uncoupled from skeletal defects. None of the mutants presents an overt musculoskeletal phenotype at larval or early adult stages, presumably due to compensatory growth mechanisms. Scoliosis becomes only apparent during aging. We conclude that adult degenerative scoliosis is due to disturbed crosstalk between vertebrae and muscles during early development, resulting in subsequent adult muscle weakness and bending of the body axis.
Collapse
Affiliation(s)
- Laura Lleras-Forero
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU, Münster, Germany,Hubrecht Institute-KNAW and University Medical Center Utrecht, CT, Utrecht, The Netherlands
| | - Elis Newham
- The School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Stefan Teufel
- Institut für Muskuloskelettale Medizin (IMM), Abteilung Knochen- und Skelettforschung, Universitätsklinikum Münster, Germany
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Christine Hartmann
- Institut für Muskuloskelettale Medizin (IMM), Abteilung Knochen- und Skelettforschung, Universitätsklinikum Münster, Germany
| | - Chrissy L. Hammond
- The School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Robert D. Knight
- Centre for Craniofacial and Regenerative Biology, King´s College London, London, UK
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU, Münster, Germany,Hubrecht Institute-KNAW and University Medical Center Utrecht, CT, Utrecht, The Netherlands
| |
Collapse
|
110
|
Dou D. Applications and grants of National Natural Scientific Foundation of China's General Program in abnormalities and diseases of locomotor system: a ten-year review. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1024. [PMID: 32953824 PMCID: PMC7475454 DOI: 10.21037/atm-20-3176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Translational medicine is a branch of medical research that attempts to establish a more direct link between basic research and clinical practice. The improvement of clinical management cannot be separated from the progress and breakthrough made in basic biomedical research. As one of the main funding agencies for basic research in China, National Natural Scientific Foundation of China (NSFC) plays an active role in promotion of the development of basic medical research and translational medicine. General Program mainly supports scientists to carry out basic research on bottom-up based topics within the funding scope of NSFC to conduct innovative research and promote a balanced, coordinated and sustained development of all disciplines. Musculoskeletal injury and disease is a major threat to human health worldwide and has become the major cause of disability in China. In this review, we aim to further promote the clinical transformation by summarizing the trends and hotspots of basic research in this field based on the analysis of the data of General Program in abnormalities and diseases of locomotor system over the last decade, including analyses of the number of applications received and projects funded, the distribution of the keywords in applications and grants, distribution of applications and grants of General Program in the secondary application code of H06 and in the host institution.
Collapse
Affiliation(s)
- Dou Dou
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China
| |
Collapse
|
111
|
Chen Z, Yan Z, Yu C, Liu J, Zhang Y, Zhao S, Lin J, Zhang Y, Wang L, Lin M, Huang Y, Li X, Niu Y, Wang S, Wu Z, Qiu G, Zhang TJ, Wu N. Cost-effectiveness analysis of using the TBX6-associated congenital scoliosis risk score (TACScore) in genetic diagnosis of congenital scoliosis. Orphanet J Rare Dis 2020; 15:250. [PMID: 32933559 PMCID: PMC7493351 DOI: 10.1186/s13023-020-01537-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/07/2020] [Indexed: 11/25/2022] Open
Abstract
Background We previously reported a novel clinically distinguishable subtype of congenital scoliosis (CS), namely, TBX6-associated congenital scoliosis (TACS). We further developed the TBX6-associated CS risk score (TACScore), a multivariate phenotype-based model to predict TACS according to the patient’s clinical manifestations. In this study, we aimed to evaluate whether using the TACScore as a screening method prior to performing whole-exome sequencing (WES) is more cost-effective than using WES as the first-line genetic test for CS. Methods We retrospectively collected the molecular data of 416 CS patients in the Deciphering disorders Involving Scoliosis and COmorbidities (DISCO) study. A decision tree was constructed to estimate the cost and the diagnostic time required for the two alternative strategies (TACScore versus WES). Bootstrapping simulations and sensitivity analyses were performed to examine the distributions and robustness of the estimates. The economic evaluation considered both the health care payer and the personal budget perspectives. Results From the health care payer perspective, the strategy of using the TACScore as the primary screening method resulted in an average cost of $1074.2 (95%CI: $1044.8 to $1103.5) and an average diagnostic duration of 38.7d (95%CI: 37.8d to 39.6d) to obtain a molecular diagnosis for each patient. In contrast, the corresponding values were $1169.6 (95%CI: $1166.9 to $1172.2) and 41.4d (95%CI: 41.1d to 41.7d) taking WES as the first-line test (P < 0.001). From the personal budget perspective, patients who were predicted to be positive by the TACScore received a result with an average cost of $715.1 (95%CI: $594.5 to $835.7) and an average diagnostic duration of 30.4d (95%CI: 26.3d to 34.6d). Comparatively, the strategy of WES as the first-line test was estimated to have significantly longer diagnostic time with an average of 44.0d (95%CI: 43.2d to 44.9d), and more expensive with an average of $1193.4 (95%CI: $1185.5 to $1201.3) (P < 0.001). In 100% of the bootstrapping simulations, the TACScore strategy was significantly less costly and more time-saving than WES. The sensitivity analyses revealed that the TACScore strategy remained cost-effective even when the cost per WES decreased to $8.8. Conclusions This retrospective study provides clinicians with economic evidence to integrate the TACScore into clinical practice. The TACScore can be considered a cost-effective tool when it serves as a screening test prior to performing WES.
Collapse
Affiliation(s)
- Zefu Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Graduate School of Peking Union Medical College, Beijing, 100005, China
| | - Zihui Yan
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Graduate School of Peking Union Medical College, Beijing, 100005, China
| | - Chenxi Yu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Graduate School of Peking Union Medical College, Beijing, 100005, China
| | - Jiaqi Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Department of Breast Surgical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanbin Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Graduate School of Peking Union Medical College, Beijing, 100005, China
| | - Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
| | - Jiachen Lin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Graduate School of Peking Union Medical College, Beijing, 100005, China
| | - Yuanqiang Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Graduate School of Peking Union Medical College, Beijing, 100005, China
| | - Lianlei Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Graduate School of Peking Union Medical College, Beijing, 100005, China
| | - Mao Lin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Graduate School of Peking Union Medical College, Beijing, 100005, China
| | - Yingzhao Huang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shengru Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | | | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China. .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China. .,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
112
|
Xie H, Liu F, Zhang Y, Chen Q, Shangguan S, Gao Z, Wu N, Wang J, Cui X, Wang L, Chen X. Neurodevelopmental trajectory and modifiers of 16p11.2 microdeletion: A follow-up study of four Chinese children carriers. Mol Genet Genomic Med 2020; 8:e1485. [PMID: 32870608 PMCID: PMC7667312 DOI: 10.1002/mgg3.1485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/20/2020] [Accepted: 08/05/2020] [Indexed: 01/06/2023] Open
Abstract
Background Neurodevelopmental disorders (NDDs) are a group of disorders with high genetic and phenotypic heterogeneities. The 16p11.2 microdeletion has been implicated as an important genetic risk factor for NDDs. Methods Multiple genetic tests were used to detect the 16p11.2 microdeletion from 918 Chinese children with NDDs. Targeted sequencing of genes in the 16p11.2 interval was performed in all carriers of the 16p11.2 microdeletion, and whole‐genome expression profiling analysis was performed for the patient carriers and normal carriers in their intra‐family. Results Three patients carrying the 16p11.2 microdeletion were screened out, indicating a frequency of 0.33% for the 16p11.2 microdeletion in this cohort. We reviewed the neurodevelopmental trajectories of the 16p11.2 microdeletion carriers from childhood to puberty and confirmed that this microdeletion was associated with abnormal neurodevelopment, with varied neurodevelopmental phenotypes. A differential PRRT2 genotype (rs10204, T>C) was identified between patients and normal carriers of the 16p11.2 microdeletion. Moreover, the determination of differential whole‐genome expression profiling demonstrated the destruction of the top‐ranked network in neurogenesis and accounted for observation of abnormal neurodevelopmental phenotypes in the 16p11.2 microdeletion carriers. Conclusions We have provided the frequency of the 16p11.2 microdeletion in a Chinese pediatric NDD cohort with a variable NDD phenotype from childhood to puberty, which is useful for Chinese geneticists/pediatricians to conduct the 16p11.2 microdeletion testing in children with NDDs.
Collapse
Affiliation(s)
- Hua Xie
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Fang Liu
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China.,Graduate School of Peking, Union Medical College, Beijing, China
| | - Yu Zhang
- Department of Laboratory Center, Capital Institute of Pediatrics, Beijing, China
| | - Qian Chen
- Department of Neurology, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Shaofang Shangguan
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Zhijie Gao
- Department of Neurology, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Key laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, China
| | - Jian Wang
- Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaodai Cui
- Department of Laboratory Center, Capital Institute of Pediatrics, Beijing, China
| | - Lin Wang
- Department of Preventive Health Care, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Xiaoli Chen
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China.,Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
113
|
Yang Y, Zhao S, Zhang Y, Wang S, Shao J, Liu B, Li Y, Yan Z, Niu Y, Li X, Wang L, Ye Y, Weng X, Wu Z, Zhang J, Wu N. Mutational burden and potential oligogenic model of TBX6-mediated genes in congenital scoliosis. Mol Genet Genomic Med 2020; 8:e1453. [PMID: 32815649 PMCID: PMC7549550 DOI: 10.1002/mgg3.1453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/26/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Congenital scoliosis (CS) is a spinal deformity due to vertebral malformations. Although insufficiency of TBX6 dosage contributes to a substantial proportion of CS, the molecular etiology for the majority of CS remains largely unknown. TBX6-mediated genes involved in the process of somitogenesis represent promising candidates. METHODS Individuals affected with CS and without a positive genetic finding were referred to this study. Proband-only exome sequencing (ES) were performed on the recruited individuals, followed by analysis of TBX6-mediated candidate genes, namely MEOX1, MEOX2, MESP2, MYOD1, MYF5, RIPPLY1, and RIPPLY2. RESULTS A total of 584 patients with CS of unknown molecular etiology were recruited. After ES analysis, protein-truncating variants in RIPPLY1 and MYF5 were identified from two individuals, respectively. In addition, we identified five deleterious missense variants (MYOD1, n = 4; RIPPLY2, n = 1) in TBX6-mediated genes. We observed a significant mutational burden of MYOD1 in CS (p = 0.032) compared with the in-house controls (n = 1854). Moreover, a potential oligogenic disease-causing mode was proposed based on the observed mutational co-existence of MYOD1/MEOX1 and MYOD1/RIPPLY1. CONCLUSION Our study characterized the mutational spectrum of TBX6-mediated genes, prioritized core candidate genes/variants, and provided insight into a potential oligogenic disease-causing mode in CS.
Collapse
Affiliation(s)
- Yang Yang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Yuanqiang Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Shengru Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Jiashen Shao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Bowen Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Yaqi Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Zihui Yan
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lianlei Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Yongyu Ye
- Department of Orthopedic Surgery, First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Xisheng Weng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, China
| | | | - Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, China
| |
Collapse
|
114
|
Wu N, Wang L, Hu J, Zhao S, Liu B, Li Y, Du H, Zhang Y, Li X, Yan Z, Wang S, Wang Y, Zhang J, Wu Z, Disco Deciphering Disorders Involving Scoliosis Comorbidities Study Group, Qiu G. A Recurrent Rare SOX9 Variant (M469V) is Associated with Congenital Vertebral Malformations. Curr Gene Ther 2020; 19:242-247. [PMID: 31549955 DOI: 10.2174/1566523219666190924120307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The genetic variations contributed to a substantial proportion of congenital vertebral malformations (CVM). SOX9 gene, a member of the SOX gene family, has been implicated in CVM. To study the SOX9 mutation in CVM patients is of great significance to explain the pathogenesis of scoliosis (the clinical manifestation of CVM) and to explore the pathogenesis of SOX9-related skeletal deformities. METHODS A total of 50 singleton patients with CVM were included in this study. Exome Sequencing (ES) was performed on all the patients. The recurrent candidate variant of SOX9 gene was validated by Sanger sequencing. Luciferase assay was performed to investigate the functional changes of this variant. RESULTS A recurrent rare heterozygous missense variant in SOX9 gene (NM_000346.3: c.1405A>G, p.M469V) which had not been reported previously was identified in three CVM patients who had the clinical findings of congenital scoliosis without deformities in other systems. This variant was absent from our in-house database and it was predicted to be deleterious (CADD = 24.5). The luciferase assay demonstrated that transactivation capacity of the mutated SOX9 protein was significantly lower than that of the wild-type for the two luciferase reporters (p = 0.0202, p = 0.0082, respectively). CONCLUSION This SOX9 mutation (p.M469V) may contribute to CVM without other systematic deformity, which provides important implications and better understanding of phenotypic variability in SOX9-related skeletal deformities.
Collapse
Affiliation(s)
- Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Lianlei Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Jianhua Hu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Bowen Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Yaqi Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Huakang Du
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Yuanqiang Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxin Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zihui Yan
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Shengru Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Yipeng Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | | | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
115
|
van der Lee R, Correard S, Wasserman WW. Deregulated Regulators: Disease-Causing cis Variants in Transcription Factor Genes. Trends Genet 2020; 36:523-539. [DOI: 10.1016/j.tig.2020.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
|
116
|
Klar J, Engstrand-Lilja H, Maqbool K, Mattisson J, Feuk L, Dahl N. Whole genome sequencing of familial isolated oesophagus atresia uncover shared structural variants. BMC Med Genomics 2020; 13:85. [PMID: 32586322 PMCID: PMC7318369 DOI: 10.1186/s12920-020-00737-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
Abstract
Background Oesophageal atresia (OA) is a life-threatening developmental defect characterized by a lost continuity between the upper and lower oesophagus. The most common form is a distal connection between the trachea and the oesophagus, i.e. a tracheoesophageal fistula (TEF). The condition may be part of a syndrome or occurs as an isolated feature. The recurrence risk in affected families is increased compared to the population-based incidence suggesting contributing genetic factors. Methods To gain insight into gene variants and genes associated with isolated OA we conducted whole genome sequencing on samples from three families with recurrent cases affected by congenital and isolated TEF. Results We identified a combination of single nucleotide variants (SNVs), splice site variants (SSV) and structural variants (SV) annotated to altogether 100 coding genes in the six affected individuals. Conclusion This study highlights rare SVs among candidate gene variants in our individuals with OA and provides a gene framework for further investigations of genetic factors behind this malformation.
Collapse
Affiliation(s)
- Joakim Klar
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala, Sweden. .,Department of Women's and Children's Health, Section of Pediatric Surgery, Uppsala University, SE-75185, Uppsala, Sweden.
| | - Helene Engstrand-Lilja
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala, Sweden.,Department of Women's and Children's Health, Section of Pediatric Surgery, Uppsala University, SE-75185, Uppsala, Sweden
| | - Khurram Maqbool
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala, Sweden.,Department of Women's and Children's Health, Section of Pediatric Surgery, Uppsala University, SE-75185, Uppsala, Sweden
| | - Jonas Mattisson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala, Sweden.,Department of Women's and Children's Health, Section of Pediatric Surgery, Uppsala University, SE-75185, Uppsala, Sweden
| | - Lars Feuk
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala, Sweden.,Department of Women's and Children's Health, Section of Pediatric Surgery, Uppsala University, SE-75185, Uppsala, Sweden
| | - Niklas Dahl
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala, Sweden.,Department of Women's and Children's Health, Section of Pediatric Surgery, Uppsala University, SE-75185, Uppsala, Sweden
| |
Collapse
|
117
|
Peskin B, Henke K, Cumplido N, Treaster S, Harris MP, Bagnat M, Arratia G. Notochordal Signals Establish Phylogenetic Identity of the Teleost Spine. Curr Biol 2020; 30:2805-2814.e3. [PMID: 32559448 DOI: 10.1016/j.cub.2020.05.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 11/30/2022]
Abstract
The spine is a defining feature of the vertebrate body plan. However, broad differences in vertebral structures and morphogenetic strategies occur across vertebrate groups, clouding the homology between their developmental programs. Analysis of a zebrafish mutant, spondo, whose spine is dysmorphic, prompted us to reconstruct paleontological evidence, highlighting specific transitions during teleost spine evolution. Interestingly, the spondo mutant recapitulates characteristics present in basal fishes, not found in extant teleosts. Further analysis of the mutation implicated the teleost-specific notochord protein, Calymmin, as a key regulator of spine patterning in zebrafish. The mutation in cmn results in loss of notochord sheath segmentation, altering osteoblast migration to the developing spine, and increasing sensitivity to somitogenesis defects associated with congenital scoliosis in amniotes. These data suggest that signals from the notochord define the evolutionary identity of the spine and demonstrate how simple shifts in development can revert traits canalized for about 250 million years.
Collapse
Affiliation(s)
- Brianna Peskin
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Katrin Henke
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Orthopedic Research, Boston Children's Hospital, Boston, MA 02215, USA
| | - Nicolás Cumplido
- FONDAP Center for Genome Regulation, Faculty of Sciences, University of Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Stephen Treaster
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Orthopedic Research, Boston Children's Hospital, Boston, MA 02215, USA
| | - Matthew P Harris
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Orthopedic Research, Boston Children's Hospital, Boston, MA 02215, USA.
| | - Michel Bagnat
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Gloria Arratia
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
118
|
Ren X, Yang N, Wu N, Xu X, Chen W, Zhang L, Li Y, Du RQ, Dong S, Zhao S, Chen S, Jiang LP, Wang L, Zhang J, Wu Z, Jin L, Qiu G, Lupski JR, Shi J, Zhang F, Liu P. Increased TBX6 gene dosages induce congenital cervical vertebral malformations in humans and mice. J Med Genet 2020; 57:371-379. [PMID: 31888956 PMCID: PMC9179029 DOI: 10.1136/jmedgenet-2019-106333] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Congenital vertebral malformations (CVMs) manifest with abnormal vertebral morphology. Genetic factors have been implicated in CVM pathogenesis, but the underlying pathogenic mechanisms remain unclear in most subjects. We previously reported that the human 16p11.2 BP4-BP5 deletion and its associated TBX6 dosage reduction caused CVMs. We aim to investigate the reciprocal 16p11.2 BP4-BP5 duplication and its potential genetic contributions to CVMs. METHODS AND RESULTS Patients who were found to carry the 16p11.2 BP4-BP5 duplication by chromosomal microarray analysis were retrospectively analysed for their vertebral phenotypes. The spinal assessments in seven duplication carriers showed that four (57%) presented characteristics of CVMs, supporting the contention that increased TBX6 dosage could induce CVMs. For further in vivo functional investigation in a model organism, we conducted genome editing of the upstream regulatory region of mouse Tbx6 using CRISPR-Cas9 and obtained three mouse mutant alleles (Tbx6up1 to Tbx6up3 ) with elevated expression levels of Tbx6. Luciferase reporter assays showed that the Tbx6up3 allele presented with the 160% expression level of that observed in the reference (+) allele. Therefore, the homozygous Tbx6up3/up3 mice could functionally mimic the TBX6 dosage of heterozygous carriers of 16p11.2 BP4-BP5 duplication (approximately 150%, ie, 3/2 gene dosage of the normal level). Remarkably, 60% of the Tbx6up3/up3 mice manifested with CVMs. Consistent with our observations in humans, the CVMs induced by increased Tbx6 dosage in mice mainly affected the cervical vertebrae. CONCLUSION Our findings in humans and mice consistently support that an increased TBX6 dosage contributes to the risk of developing cervical CVMs.
Collapse
Affiliation(s)
- Xiaojun Ren
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Nan Yang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ximing Xu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Weisheng Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yingping Li
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
| | - Ren-Qian Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Shuangshuang Dong
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shuxia Chen
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
| | - Li-Ping Jiang
- State key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Lianlei Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Li Jin
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| | - Jiangang Shi
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Baylor Genetics, Houston, Texas, USA
| |
Collapse
|
119
|
Wu Y, Zhang H, Tang M, Guo C, Deng A, Li J, Wang Y, Xiao L, Yang G. High methylation of lysine acetyltransferase 6B is associated with the Cobb angle in patients with congenital scoliosis. J Transl Med 2020; 18:210. [PMID: 32448279 PMCID: PMC7245753 DOI: 10.1186/s12967-020-02367-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 05/07/2020] [Indexed: 12/26/2022] Open
Abstract
Background The etiology of congenital scoliosis (CS) is complex and uncertain. Abnormal DNA methylation affects the growth and development of spinal development. In this study, we investigated the role of DNA methylation in CS. Methods The target region DNA methylation level in the peripheral blood of patients with CS was analyzed. Through in-depth analysis, genes closely related to the growth and development of the vertebra were identified. EdU staining was performed to verify the role of differentially expressed genes in chondrocyte proliferation. Results The hypermethylated KAT6B gene was observed in patients with CS, and was positively correlated with the Cobb angle. KAT6B was primarily expressed on chondrocytes. The promoter of KAT6B in CS patients was hypermethylated, and its expression was significantly reduced. Further mechanistic studies revealed that EZH2 mediated trimethylation of lysine 27 on histone H3 of the KAT6B promoter. Overexpression of KAT6B in CS-derived primary chondrocytes can significantly promote chondrocyte proliferation, which may be related to activation of the RUNX2/Wnt/β-catenin signaling pathway. Conclusion Epigenetic modification of KAT6B may be a cause of CS. If similar epigenetic modification abnormalities can be detected through maternal liquid biopsy screening, they may provide useful biomarkers for early screening and diagnosis of CS.
Collapse
Affiliation(s)
- Yuantao Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China
| | - Hongqi Zhang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China.
| | - Mingxing Tang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China.
| | - Chaofeng Guo
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China
| | - Ang Deng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China
| | - Jiong Li
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China
| | - Yunjia Wang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China
| | - Lige Xiao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China
| | - Guanteng Yang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China
| |
Collapse
|
120
|
Human and mouse studies establish TBX6 in Mendelian CAKUT and as a potential driver of kidney defects associated with the 16p11.2 microdeletion syndrome. Kidney Int 2020; 98:1020-1030. [PMID: 32450157 DOI: 10.1016/j.kint.2020.04.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 03/03/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUTs) are the most common cause of chronic kidney disease in children. Human 16p11.2 deletions have been associated with CAKUT, but the responsible molecular mechanism remains to be illuminated. To explore this, we investigated 102 carriers of 16p11.2 deletion from multi-center cohorts, among which we retrospectively ascertained kidney morphologic and functional data from 37 individuals (12 Chinese and 25 Caucasian/Hispanic). Significantly higher CAKUT rates were observed in 16p11.2 deletion carriers (about 25% in Chinese and 16% in Caucasian/Hispanic) than those found in the non-clinically ascertained general populations (about 1/1000 found at autopsy). Furthermore, we identified seven additional individuals with heterozygous loss-of-function variants in TBX6, a gene that maps to the 16p11.2 region. Four of these seven cases showed obvious CAKUT. To further investigate the role of TBX6 in kidney development, we engineered mice with mutated Tbx6 alleles. The Tbx6 heterozygous null (i.e., loss-of-function) mutant (Tbx6+/‒) resulted in 13% solitary kidneys. Remarkably, this incidence increased to 29% in a compound heterozygous model (Tbx6mh/‒) that reduced Tbx6 gene dosage to below haploinsufficiency, by combining the null allele with a novel mild hypomorphic allele (mh). Renal hypoplasia was also frequently observed in these Tbx6-mutated mouse models. Thus, our findings in patients and mice establish TBX6 as a novel gene involved in CAKUT and its gene dosage insufficiency as a potential driver for kidney defects observed in the 16p11.2 microdeletion syndrome.
Collapse
|
121
|
Lin J, Chen L, Dou D. Progress of orthopaedic research in China over the last decade. J Orthop Translat 2020; 24:131-137. [PMID: 32913711 PMCID: PMC7452214 DOI: 10.1016/j.jot.2020.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Objective To summarize the representative scientific achievements in the past decade, and discuss the future challenges and directions for orthopaedic research in China. Methods In this review, we used the data provided by National Natural Science Foundation of China (NSFC) for analysis. Results Over the last decade, NSFC has initiated various research programs with a total funding of over 1149 million RMB to support orthopaedic exploration. Under the strong support of NSFC, great progresses have been made in basic research, talent training, platform construction and the clinical translation in the field of orthopaedics in China. Conclusion In general, since the establishment of the Department of Health Sciences of NSFC 10 years ago, both the amount of funding and the scale of researchers in the field of orthopaedic research have increased substantially. Despite of several shortcomings in orthopaedic research, with continuous support from NSFC both in funding and in policy, we believe that the orthopaedic research in China will surely make steady and significant progress. The translational potential of this article This article summarizes the representative scientific achievements in the past decade and puts forward the future challenges and directions for orthopaedic research in China.
Collapse
Affiliation(s)
- Jun Lin
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Dou Dou
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China
| |
Collapse
|
122
|
Liu G, Shen J, Chen C, Jiao Y, Li Z, Tan H, Lin Y, Rong T. Genome-Wide Analysis of circular RNAs and validation of hsa_circ_0006719 as a potential novel diagnostic biomarker in congenital scoliosis patients. J Cell Mol Med 2020; 24:7015-7022. [PMID: 32394619 PMCID: PMC7299707 DOI: 10.1111/jcmm.15370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/31/2020] [Accepted: 04/22/2020] [Indexed: 01/01/2023] Open
Abstract
Congenital scoliosis (CS) is a form of spinal curvature resulting from anomalous development of vertebrae. Recent studies demonstrated that circRNAs could serve as potential biomarkers of disease diagnosis. Genome‐wide circRNAs expression in seven CS patients and three healthy controls was initially detected. Bioinformatics analysis was conducted to explore the potential pathological pathway of CS. Quantitative PCR (qPCR) was performed to validate the selected circRNAs in the replication cohort with 32 CS patients and 30 healthy controls. Logistic regression controlling for gender was conducted to compare the expression difference. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic value. Twenty‐two differentially expressed circRNAs were filtered from genome‐wide circRNA sequencing. Seven circRNAs were validated by qPCR. Only hsa_circ_0006719 was confirmed to have a higher expression level in the CS group than the healthy control group (P = 0.036). Receiver operating characteristic curve also suggested that hsa_circ_0006719 had significant diagnostic value for CS (AUC = 0.739, P = 0.001). We described the first study of circRNAs in CS and validated hsa_circ_0006719 as a potential novel diagnostic biomarker of CS.
Collapse
Affiliation(s)
- Gang Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianxiong Shen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Chong Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Department of Spine Surgery, Orthopedics Center of Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yang Jiao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zheng Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Haining Tan
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Youxi Lin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Tianhua Rong
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
123
|
Zhao S, Zhang Y, Chen W, Li W, Wang S, Wang L, Zhao Y, Lin M, Ye Y, Lin J, Zheng Y, Liu J, Zhao H, Yan Z, Yang Y, Huang Y, Lin G, Chen Z, Zhang Z, Liu S, Jin L, Wang Z, Chen J, Niu Y, Li X, Wu Y, Wang Y, Du R, Gao N, Zhao H, Yang Y, Liu Y, Tian Y, Li W, Zhao Y, Liu J, Yu B, Zhang N, Yu K, Yang X, Li S, Xu Y, Hu J, Liu Z, Shen J, Zhang S, Su J, Khanshour AM, Kidane YH, Ramo B, Rios JJ, Liu P, Sutton VR, Posey JE, Wu Z, Qiu G, Wise CA, Zhang F, Lupski JR, Zhang J, Wu N. Diagnostic yield and clinical impact of exome sequencing in early-onset scoliosis (EOS). J Med Genet 2020; 58:41-47. [PMID: 32381727 DOI: 10.1136/jmedgenet-2019-106823] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/17/2020] [Accepted: 03/13/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Early-onset scoliosis (EOS), defined by an onset age of scoliosis less than 10 years, conveys significant health risk to affected children. Identification of the molecular aetiology underlying patients with EOS could provide valuable information for both clinical management and prenatal screening. METHODS In this study, we consecutively recruited a cohort of 447 Chinese patients with operative EOS. We performed exome sequencing (ES) screening on these individuals and their available family members (totaling 670 subjects). Another cohort of 13 patients with idiopathic early-onset scoliosis (IEOS) from the USA who underwent ES was also recruited. RESULTS After ES data processing and variant interpretation, we detected molecular diagnostic variants in 92 out of 447 (20.6%) Chinese patients with EOS, including 8 patients with molecular confirmation of their clinical diagnosis and 84 patients with molecular diagnoses of previously unrecognised diseases underlying scoliosis. One out of 13 patients with IEOS from the US cohort was molecularly diagnosed. The age at presentation, the number of organ systems involved and the Cobb angle were the three top features predictive of a molecular diagnosis. CONCLUSION ES enabled the molecular diagnosis/classification of patients with EOS. Specific clinical features/feature pairs are able to indicate the likelihood of gaining a molecular diagnosis through ES.
Collapse
Affiliation(s)
- Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Yuanqiang Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Graduate School, Peking Union Medical College, Beijing, China
| | - Weisheng Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Graduate School, Peking Union Medical College, Beijing, China.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Weiyu Li
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Shanghai, China
| | - Shengru Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Lianlei Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Graduate School, Peking Union Medical College, Beijing, China
| | - Yanxue Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Mao Lin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Graduate School, Peking Union Medical College, Beijing, China
| | - Yongyu Ye
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Orthopedic Surgery, First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Jiachen Lin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Graduate School, Peking Union Medical College, Beijing, China
| | - Yu Zheng
- School of Finance, Southwestern University of Finance and Economics, Chengdu, Sichuan, China
| | - Jiaqi Liu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Breast Surgical Oncology, National Cancer Center/Cancer Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hengqiang Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Graduate School, Peking Union Medical College, Beijing, China.,School of Ophthalmology & Optometry and Eye Hospital, School of BiomedicalEngineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zihui Yan
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Graduate School, Peking Union Medical College, Beijing, China
| | - Yongxin Yang
- Machine Intelligence Group, University of Edinburgh, Edinburgh, UK
| | - Yingzhao Huang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Guanfeng Lin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zefu Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Zhen Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Sen Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Lichao Jin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Zhaoyang Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Jingdan Chen
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center, Peking Union Medical College Hospital, Peking UnionMedical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center, Peking Union Medical College Hospital, Peking UnionMedical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Yipeng Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Renqian Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Na Gao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Yang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ye Tian
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Wenli Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Yu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Na Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Keyi Yu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Yang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shugang Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Xu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jianhua Hu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhe Liu
- Laboratory of Clinical Genetics, Peking Union Medical College Hospital, Peking UnionMedical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jianxiong Shen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Shuyang Zhang
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Cardiology, Peking Union Medical College Hospital, Peking UnionMedical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jianzhong Su
- School of Ophthalmology & Optometry and Eye Hospital, School of BiomedicalEngineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Anas M Khanshour
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, Texas, USA
| | - Yared H Kidane
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, Texas, USA
| | - Brandon Ramo
- Department of Orthopaedic Surgery, Scottish Rite for Children, Dallas, Texas, USA
| | - Jonathan J Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, Texas, USA.,McDermott Center for Human Growth and Development, Department of Pediatrics and Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Baylor Genetics, Houston, Texas, USA
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Baylor Genetics, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China.,Medical Research Center, Peking Union Medical College Hospital, Peking UnionMedical College and Chinese Academy of Medical Sciences, Beijing, China
| | | | - Carol A Wise
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, Texas, USA.,McDermott Center for Human Growth and Development, Department of Pediatrics and Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Shanghai, China
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA.,Departments of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | | |
Collapse
|
124
|
Gonzaga-Jauregui C, Yesil G, Nistala H, Gezdirici A, Bayram Y, Nannuru KC, Pehlivan D, Yuan B, Jimenez J, Sahin Y, Paine IS, Akdemir ZC, Rajamani S, Staples J, Dronzek J, Howell K, Fatih JM, Smaldone S, Schlesinger AE, Ramírez N, Cornier AS, Kelly MA, Haber R, Chim SM, Nieman K, Wu N, Walls J, Poueymirou W, Siao CJ, Sutton VR, Williams MS, Posey JE, Gibbs RA, Carlo S, Tegay DH, Economides AN, Lupski JR. Functional biology of the Steel syndrome founder allele and evidence for clan genomics derivation of COL27A1 pathogenic alleles worldwide. Eur J Hum Genet 2020; 28:1243-1264. [PMID: 32376988 PMCID: PMC7608441 DOI: 10.1038/s41431-020-0632-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 01/20/2023] Open
Abstract
Previously we reported the identification of a homozygous COL27A1 (c.2089G>C; p.Gly697Arg) missense variant and proposed it as a founder allele in Puerto Rico segregating with Steel syndrome (STLS, MIM #615155); a rare osteochondrodysplasia characterized by short stature, congenital bilateral hip dysplasia, carpal coalitions, and scoliosis. We now report segregation of this variant in five probands from the initial clinical report defining the syndrome and an additional family of Puerto Rican descent with multiple affected adult individuals. We modeled the orthologous variant in murine Col27a1 and found it recapitulates some of the major Steel syndrome associated skeletal features including reduced body length, scoliosis, and a more rounded skull shape. Characterization of the in vivo murine model shows abnormal collagen deposition in the extracellular matrix and disorganization of the proliferative zone of the growth plate. We report additional COL27A1 pathogenic variant alleles identified in unrelated consanguineous Turkish kindreds suggesting Clan Genomics and identity-by-descent homozygosity contributing to disease in this population. The hypothesis that carrier states for this autosomal recessive osteochondrodysplasia may contribute to common complex traits is further explored in a large clinical population cohort. Our findings augment our understanding of COL27A1 biology and its role in skeletal development; and expand the functional allelic architecture in this gene underlying both rare and common disease phenotypes.
Collapse
Affiliation(s)
| | - Gozde Yesil
- Istanbul Faculty of Medicine Department of Medical Genetics, Istanbul University, 34093, Istanbul, Turkey
| | - Harikiran Nistala
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | - Alper Gezdirici
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, 34303, Istanbul, Turkey
| | - Yavuz Bayram
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Pediatrics, Division of Pediatric Neurology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Yavuz Sahin
- Medical Genetics, Genoks Genetics Center, 06570, Ankara, Turkey
| | - Ingrid S Paine
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Jeffrey Staples
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | - John Dronzek
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | - Kristen Howell
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Alan E Schlesinger
- Texas Children's Hospital, Houston, TX, 77030, USA.,Department of Radiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Alberto S Cornier
- Genetics Section, San Jorge Children's Hospital, San Juan, PR, 00912, USA.,Ponce Health Sciences University, Ponce, PR, 00716, USA.,Department of Pediatrics, Universidad Central del Caribe School of Medicine, Bayamon, PR, 00960, USA
| | | | - Robert Haber
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | - Shek Man Chim
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | - Kristy Nieman
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | - Nan Wu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Orthopedic Surgery, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, and Medical Research Center of Orthopedics, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 100730, Beijing, China
| | | | | | | | - Chia-Jen Siao
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Texas Children's Hospital, Houston, TX, 77030, USA
| | | | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Simon Carlo
- Mayagüez Medical Center, Mayagüez, PR, 00681, USA.,Ponce Health Sciences University, Ponce, PR, 00716, USA
| | - David H Tegay
- Department of Pediatrics, Division of Medical Genetics, Cohen Children's Medical Center of Northwell Health, New Hyde Park, NY, 11040, USA
| | - Aris N Economides
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA.,Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Texas Children's Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
125
|
Al Dhaheri N, Wu N, Zhao S, Wu Z, Blank RD, Zhang J, Raggio C, Halanski M, Shen J, Noonan K, Qiu G, Nemeth B, Sund S, Dunwoodie SL, Chapman G, Glurich I, Steiner RD, Wohler E, Martin R, Sobreira NL, Giampietro PF. KIAA1217: A novel candidate gene associated with isolated and syndromic vertebral malformations. Am J Med Genet A 2020; 182:1664-1672. [PMID: 32369272 DOI: 10.1002/ajmg.a.61607] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 04/05/2020] [Accepted: 04/05/2020] [Indexed: 12/30/2022]
Abstract
Vertebral malformations (VMs) are caused by alterations in somitogenesis and may occur in association with other congenital anomalies. The genetic etiology of most VMs remains unknown and their identification may facilitate the development of novel therapeutic and prevention strategies. Exome sequencing was performed on both the discovery cohort of nine unrelated probands from the USA with VMs and the replication cohort from China (Deciphering Disorders Involving Scoliosis & COmorbidities study). The discovery cohort was analyzed using the PhenoDB analysis tool. Heterozygous and homozygous, rare and functional variants were selected and evaluated for their ClinVar, HGMD, OMIM, GWAS, mouse model phenotypes, and other annotations to identify the best candidates. Genes with candidate variants in three or more probands were selected. The replication cohort was analyzed by another in-house developed pipeline. We identified rare heterozygous variants in KIAA1217 in four out of nine probands in the discovery cohort and in five out of 35 probands in the replication cohort. Collectively, we identified 11 KIAA1217 rare variants in 10 probands, three of which have not been described in gnomAD and one of which is a nonsense variant. We propose that genetic variations of KIAA1217 may contribute to the etiology of VMs.
Collapse
Affiliation(s)
- Noura Al Dhaheri
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pediatrics, College of Medicine and Health Sciences, UAE University, Al-Ain, UAE
| | - Nan Wu
- Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Sen Zhao
- Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | | | - Jianguo Zhang
- Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Cathy Raggio
- Hospital for Special Surgery, New York, New York, USA
| | | | - Jianxiong Shen
- Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ken Noonan
- University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Guixing Qiu
- Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Blaise Nemeth
- University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sarah Sund
- University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sally L Dunwoodie
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.,University of New South Wales, Sydney, New South Wales, Australia
| | - Gavin Chapman
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.,University of New South Wales, Sydney, New South Wales, Australia
| | - Ingrid Glurich
- Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Robert D Steiner
- University of Wisconsin-Madison, Madison, Wisconsin, USA.,Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Elizabeth Wohler
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Renan Martin
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nara Lygia Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
126
|
Karolak JA, Gambin T, Honey EM, Slavik T, Popek E, Stankiewicz P. A de novo 2.2 Mb recurrent 17q23.1q23.2 deletion unmasks novel putative regulatory non-coding SNVs associated with lethal lung hypoplasia and pulmonary hypertension: a case report. BMC Med Genomics 2020; 13:34. [PMID: 32143628 PMCID: PMC7060516 DOI: 10.1186/s12920-020-0701-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Application of whole genome sequencing (WGS) enables identification of non-coding variants that play a phenotype-modifying role and are undetectable by exome sequencing. Recently, non-coding regulatory single nucleotide variants (SNVs) have been reported in patients with lethal lung developmental disorders (LLDDs) or congenital scoliosis with recurrent copy-number variant (CNV) deletions at 17q23.1q23.2 or 16p11.2, respectively. CASE PRESENTATION Here, we report a deceased newborn with pulmonary hypertension and pulmonary interstitial emphysema with features suggestive of pulmonary hypoplasia, resulting in respiratory failure and neonatal death soon after birth. Using the array comparative genomic hybridization and WGS, two heterozygous recurrent CNV deletions: ~ 2.2 Mb on 17q23.1q23.2, involving TBX4, and ~ 600 kb on 16p11.2, involving TBX6, that both arose de novo on maternal chromosomes were identified. In the predicted lung-specific enhancer upstream to TBX4, we have detected seven novel putative regulatory non-coding SNVs that were absent in 13 control individuals with the overlapping deletions but without any structural lung anomalies. CONCLUSIONS Our findings further support a recently reported model of complex compound inheritance of LLDD in which both non-coding and coding heterozygous TBX4 variants contribute to the lung phenotype. In addition, this is the first report of a patient with combined de novo heterozygous recurrent 17q23.1q23.2 and 16p11.2 CNV deletions.
Collapse
Affiliation(s)
- Justyna A Karolak
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-781, Poznan, Poland
| | - Tomasz Gambin
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Institute of Computer Science, Warsaw University of Technology, 00-665, Warsaw, Poland
| | - Engela M Honey
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Science, University of Pretoria, Pretoria, South Africa
| | - Tomas Slavik
- Ampath Pathology Laboratories, and Department of Anatomical Pathology, University of Pretoria, Pretoria, South Africa
| | - Edwina Popek
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Paweł Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
127
|
Tao L, Zhou S, Tao Z, Wen K, Da W, Meng Y, Zhu Y. The publication trends and hot spots of scoliosis research from 2009 to 2018: a 10-year bibliometric analysis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:365. [PMID: 32355809 PMCID: PMC7186647 DOI: 10.21037/atm.2020.02.67] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background This study aims to quantitatively and qualitatively investigate the trends in scoliosis research and evaluate research hotspots using bibliometric analysis. Methods All relevant publications on scoliosis from the period from 2009 to 2018 were extracted from the Web of Science and PubMed databases. Publication trends were analyzed using an Online analysis platform of literature metrology, Bibliographic Item Co-occurrence Matrix Builder (BICOMB), and CiteSpace software. Hotspots were analyzed and visualized using the gCLUTO software package. Results A total of 7,445 scoliosis research publications dated between 2009 and 2018 were found. The spine was the most popular journal in this field during this period. The United States maintained a top position in global scoliosis research throughout the 10 years and has had a pivotal influence, followed by China and Canada. Among all institutions, the University of California, San Francisco, was a leader in research collaboration. At the same time, Professors Yong Qiu and Lawrence G. Lenke made great achievements in scoliosis research. We analyzed the major Medical Subject Headings (MeSH) terms/MeSH subheadings and identified eight hotspots in scoliosis research. Conclusions We summarized the publication information of scoliosis-related literature in the 10 years from 2009 to 2018, including country and institution of origin, authors, and publication journal. We analyzed former research hotspots in the field of scoliosis and predicted future areas of interest. The development of various new orthopedic plants, artificial intelligence diagnosis, and genetic research will be future hotspots in scoliosis research.
Collapse
Affiliation(s)
- Lin Tao
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang 110001, China
| | - Siming Zhou
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhengbo Tao
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang 110001, China
| | - Kaicheng Wen
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang 110001, China
| | - Wacili Da
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yan Meng
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yue Zhu
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
128
|
Chen S, Jain M, Jhangiani S, Akdemir ZC, Campeau PM, Klein RF, Nielson C, Dai H, Muzny DM, Boerwinkle E, Gibbs RA, Orwoll ES, Lupski JR, Posey JE, Lee B. Genetic Burden Contributing to Extremely Low or High Bone Mineral Density in a Senior Male Population From the Osteoporotic Fractures in Men Study (MrOS). JBMR Plus 2020; 4:e10335. [PMID: 32161841 PMCID: PMC7059823 DOI: 10.1002/jbm4.10335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/29/2022] Open
Abstract
Worldwide, one in five men aged over 50 years will experience osteoporosis or a clinical bone fracture, with a greater fracture-related mortality rate than women. However, the genetic etiology of osteoporosis in men is still poorly understood. We aimed to identify the genetic variants and candidate genes associated with extremely low or high BMD for a better understanding of the biology underlying low bone density that may point to potential therapeutic targets for increasing bone mass. Subjects from the Osteoporotic Fractures in Men Study (MrOS) cohort were evaluated by age and BMI-adjusted total hip BMD. Those with BMD values 3 SDs away from the mean were selected and the remaining individuals whose adjusted BMD ranked at the highest or lowest 100 were included. Men with the lowest adjusted BMD (N = 98) and highest adjusted BMD (N = 110) were chosen for exome sequencing. Controls (N = 82) were men of Northern and Western European descent from the US Utah population of the 1000 Genomes Project. Fisher's exact test was performed to compare low- or high-BMD subjects with controls for single-gene associations. Additionally, sets of candidate genes causative of heritable disorders of connective tissue, including osteogenesis imperfecta (OI) and Ehlers-Danlos syndrome (EDS), were grouped for multigene and mutation burden analyses. No single-gene associations with rare variants were found for either the low BMD group (33 genes) or high BMD group (18 genes). In the group of OI genes, we detected a significant threefold increased accumulation of rare variants in low-BMD subjects compared with controls (p = 0.009). Additionally, genes associated with EDS had a twofold increased frequency in low-BMD subjects compared with controls (p = 0.03). These findings reveal a rare variant burden in OI and EDS disease genes at low BMD, which suggests a potential gene-panel approach to screen for multivariant associations in larger cohorts. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Shan Chen
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Mahim Jain
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
- Osteogenesis Imperfecta Clinic, Kennedy Krieger InstituteBaltimoreMDUSA
| | - Shalini Jhangiani
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
- Human Genome Sequencing CenterBaylor College of MedicineHoustonTXUSA
| | - Zeynep C Akdemir
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | | | - Robert F Klein
- School of MedicineOregon Health & Science UniversityPortlandORUSA
| | - Carrie Nielson
- School of MedicineOregon Health & Science UniversityPortlandORUSA
| | - Hongzheng Dai
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Donna M Muzny
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
- Human Genome Sequencing CenterBaylor College of MedicineHoustonTXUSA
| | - Eric Boerwinkle
- Human Genome Sequencing CenterBaylor College of MedicineHoustonTXUSA
- Human Genetics Center and Department of EpidemiologyUTHealth School of Public HealthHoustonTXUSA
| | - Richard A Gibbs
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
- Human Genome Sequencing CenterBaylor College of MedicineHoustonTXUSA
| | - Eric S Orwoll
- School of MedicineOregon Health & Science UniversityPortlandORUSA
| | - James R Lupski
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
- Human Genome Sequencing CenterBaylor College of MedicineHoustonTXUSA
- Department of PediatricsBaylor College of Medicine and Texas Children's HospitalHoustonTXUSA
| | - Jennifer E Posey
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Brendan Lee
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
129
|
Lloyd KCK, Adams DJ, Baynam G, Beaudet AL, Bosch F, Boycott KM, Braun RE, Caulfield M, Cohn R, Dickinson ME, Dobbie MS, Flenniken AM, Flicek P, Galande S, Gao X, Grobler A, Heaney JD, Herault Y, de Angelis MH, Lupski JR, Lyonnet S, Mallon AM, Mammano F, MacRae CA, McInnes R, McKerlie C, Meehan TF, Murray SA, Nutter LMJ, Obata Y, Parkinson H, Pepper MS, Sedlacek R, Seong JK, Shiroishi T, Smedley D, Tocchini-Valentini G, Valle D, Wang CKL, Wells S, White J, Wurst W, Xu Y, Brown SDM. The Deep Genome Project. Genome Biol 2020; 21:18. [PMID: 32008577 PMCID: PMC6996159 DOI: 10.1186/s13059-020-1931-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- K. C. Kent Lloyd
- Department of Surgery, School of Medicine, and Mouse Biology Program, University of California, Davis, CA 95618 USA
| | - David J. Adams
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA UK
| | - Gareth Baynam
- Western Australian Register of Developmental Anomalies and Genetic Services of Western Australia, Department of Health, Government of Western Australia, Perth, Australia
- Division of Paediatrics and Telethon Kids Institute, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
- Faculty of Science and Engineering, School of Spatial Sciences, Curtin University, Perth, Australia
| | - Arthur L. Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma Barcelona, Barcelona, Spain
| | - Kym M. Boycott
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1 Canada
| | | | - Mark Caulfield
- Genomics England, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Ronald Cohn
- The Hospital for Sick Children, Toronto, ON M5G 1X8 Canada
| | - Mary E. Dickinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Departments of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Michael S. Dobbie
- Phenomics Australia, The Australian National University, 131 Garran Road, Acton, ACT 2601 Australia
| | - Ann M. Flenniken
- The Centre for Phenogenomics, Lunenfeld-Tanenbaum Research Institute, Toronto, ON M5T 3H7 Canada
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Sanjeev Galande
- National Facility for Gene Function in Health and Disease, Department of Biology, Indian Institute of Science, Education and Research (IISER) Pune, Pune, Maharashtra 411008 India
| | - Xiang Gao
- SKL of Pharmaceutical Biotechnology and Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, 210061 China
| | - Anne Grobler
- DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom, 2520 South Africa
| | - Jason D. Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique, Biologie Moléculaire et Cellulaire, Institut Clinique de la Souris, IGBMC, PHENOMIN-ICS, 67404 Illkirch, France
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising-Weihenstephan, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Stanislas Lyonnet
- Institut Imagine, UMR-1163 INSERM et Université de Paris, Hôpital Universitaire Necker-Enfants Malades, 24, Boulevard du Montparnasse, 75015 Paris, France
| | - Ann-Marie Mallon
- Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD UK
| | - Fabio Mammano
- Monterotondo Mouse Clinic, Italian National Research Council (CNR), Institute of Biochemistry and Cell Biology (IBBC), Monterotondo Scalo, I-00015 Rome, Italy
| | - Calum A. MacRae
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Roderick McInnes
- Lady Davis Research Institute, Jewish General Hospital, McGill University, 3999 Côte Ste- Catherine Road, Montreal, Quebec H3T 1E2 Canada
| | - Colin McKerlie
- The Hospital for Sick Children, Toronto, ON M5G 1X8 Canada
- The Centre for Phenogenomics, The Hospital for Sick Children, Toronto, ON M5T 3H7 Canada
| | - Terrence F. Meehan
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | | | - Lauryl M. J. Nutter
- The Centre for Phenogenomics, The Hospital for Sick Children, Toronto, ON M5T 3H7 Canada
| | - Yuichi Obata
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074 Japan
| | - Helen Parkinson
- National Facility for Gene Function in Health and Disease, Department of Biology, Indian Institute of Science, Education and Research (IISER) Pune, Pune, Maharashtra 411008 India
| | - Michael S. Pepper
- Institute for Cellular and Molecular Medicine, Department Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - Je Kyung Seong
- Korea Mouse Phenotyping Consortium (KMPC) and BK21 Program for Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul, 08826 South Korea
| | | | - Damian Smedley
- Clinical Pharmacology, William Harvey Research Institute, School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ UK
| | - Glauco Tocchini-Valentini
- Monterotondo Mouse Clinic, Italian National Research Council (CNR), Institute of Biochemistry and Cell Biology (IBBC), Monterotondo Scalo, I-00015 Rome, Italy
| | - David Valle
- McKusick-Nathans Department of Genetic Medicine, The Johns Hopkins University School of Medicine, 519 BRB, 733 N Broadway, Baltimore, MD 21205 USA
| | - Chi-Kuang Leo Wang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Sara Wells
- Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD UK
| | | | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- Chair of Developmental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising-Weihenstephan, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig Maximillian’s Universitat Munchen, 81377 Munich, Germany
| | - Ying Xu
- Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical College of Soochow University, Suzhou, 215123 Jiangsu China
| | - Steve D. M. Brown
- Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD UK
| |
Collapse
|
130
|
Dstyk mutation leads to congenital scoliosis-like vertebral malformations in zebrafish via dysregulated mTORC1/TFEB pathway. Nat Commun 2020; 11:479. [PMID: 31980602 PMCID: PMC6981171 DOI: 10.1038/s41467-019-14169-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
Congenital scoliosis (CS) is a complex genetic disorder characterized by vertebral malformations. The precise etiology of CS is not fully defined. Here, we identify that mutation in dual serine/threonine and tyrosine protein kinase (dstyk) lead to CS-like vertebral malformations in zebrafish. We demonstrate that the scoliosis in dstyk mutants is related to the wavy and malformed notochord sheath formation and abnormal axial skeleton segmentation due to dysregulated biogenesis of notochord vacuoles and notochord function. Further studies show that DSTYK is located in late endosomal/lysosomal compartments and is involved in the lysosome biogenesis in mammalian cells. Dstyk knockdown inhibits notochord vacuole and lysosome biogenesis through mTORC1-dependent repression of TFEB nuclear translocation. Inhibition of mTORC1 activity can rescue the defect in notochord vacuole biogenesis and scoliosis in dstyk mutants. Together, our findings reveal a key role of DSTYK in notochord vacuole biogenesis, notochord morphogenesis and spine development through mTORC1/TFEB pathway. Congenital scoliosis is a complex genetic disorder characterized by vertebral malformation. Here, the authors demonstrate that loss of dstyk leads to scoliosis in zebrafish due to dysregulated biogenesis of notochord vacuoles and that DSTYK is required for lysosome biogenesis through mTORC1 regulation.
Collapse
|
131
|
Dong Z, Zhao X, Li Q, Yang Z, Xi Y, Alexeev A, Shen H, Wang O, Ruan J, Ren H, Wei H, Qi X, Li J, Zhu X, Zhang Y, Dai P, Kong X, Kirkconnell K, Alferov O, Giles S, Yamtich J, Kermani BG, Dong C, Liu P, Mi Z, Zhang W, Xu X, Drmanac R, Choy KW, Jiang Y. Development of coupling controlled polymerizations by adapter-ligation in mate-pair sequencing for detection of various genomic variants in one single assay. DNA Res 2020; 26:313-325. [PMID: 31173071 PMCID: PMC6704401 DOI: 10.1093/dnares/dsz011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/07/2019] [Indexed: 12/17/2022] Open
Abstract
The diversity of disease presentations warrants one single assay for detection and delineation of various genomic disorders. Herein, we describe a gel-free and biotin-capture-free mate-pair method through coupling Controlled Polymerizations by Adapter-Ligation (CP-AL). We first demonstrated the feasibility and ease-of-use in monitoring DNA nick translation and primer extension by limiting the nucleotide input. By coupling these two controlled polymerizations by a reported non-conventional adapter-ligation reaction 3′ branch ligation, we evidenced that CP-AL significantly increased DNA circularization efficiency (by 4-fold) and was applicable for different sequencing methods but at a faction of current cost. Its advantages were further demonstrated by fully elimination of small-insert-contaminated (by 39.3-fold) with a ∼50% increment of physical coverage, and producing uniform genome/exome coverage and the lowest chimeric rate. It achieved single-nucleotide variants detection with sensitivity and specificity up to 97.3 and 99.7%, respectively, compared with data from small-insert libraries. In addition, this method can provide a comprehensive delineation of structural rearrangements, evidenced by a potential diagnosis in a patient with oligo-atheno-terato-spermia. Moreover, it enables accurate mutation identification by integration of genomic variants from different aberration types. Overall, it provides a potential single-integrated solution for detecting various genomic variants, facilitating a genetic diagnosis in human diseases.
Collapse
Affiliation(s)
- Zirui Dong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xia Zhao
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- MGI, BGI-Shenzhen, Shenzhen, China
| | - Qiaoling Li
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- MGI, BGI-Shenzhen, Shenzhen, China
| | - Zhenjun Yang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yang Xi
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- MGI, BGI-Shenzhen, Shenzhen, China
| | | | - Hanjie Shen
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- MGI, BGI-Shenzhen, Shenzhen, China
| | - Ou Wang
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Jie Ruan
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Han Ren
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | | | - Xiaojuan Qi
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Jiguang Li
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- MGI, BGI-Shenzhen, Shenzhen, China
| | - Xiaofan Zhu
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | | | - Peng Dai
- Genetics and Prenatal Diagnosis Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangdong Kong
- Genetics and Prenatal Diagnosis Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | | | | | | | - Chao Dong
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Pengjuan Liu
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- MGI, BGI-Shenzhen, Shenzhen, China
| | - Zilan Mi
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Wenwei Zhang
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- Guangdong High-Throughput Sequencing Research Center, Shenzhen, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Radoje Drmanac
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- MGI, BGI-Shenzhen, Shenzhen, China
- Complete Genomics Inc., San Jose, CA, USA
- To whom correspondence should be addressed. Tel. +1 4086482560 3079. Fax. +1 4086482549. (Y.J.); Tel. +852 35053099. Fax. +852 26360008. (K.W.C.); Tel. +1 4088389539. Fax. +1 4086482549. (R.D.)
| | - Kwong Wai Choy
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- The Chinese University of Hong Kong—Baylor College of Medicine Joint Center for Medical Genetics, Hong Kong, China
- To whom correspondence should be addressed. Tel. +1 4086482560 3079. Fax. +1 4086482549. (Y.J.); Tel. +852 35053099. Fax. +852 26360008. (K.W.C.); Tel. +1 4088389539. Fax. +1 4086482549. (R.D.)
| | - Yuan Jiang
- Complete Genomics Inc., San Jose, CA, USA
- To whom correspondence should be addressed. Tel. +1 4086482560 3079. Fax. +1 4086482549. (Y.J.); Tel. +852 35053099. Fax. +852 26360008. (K.W.C.); Tel. +1 4088389539. Fax. +1 4086482549. (R.D.)
| |
Collapse
|
132
|
Park J, Kwon SO, Kim SH, Kim SJ, Koh EJ, Won S, Kim WJ, Hwang SY. Methylation quantitative trait loci analysis in Korean exposome study. Mol Cell Toxicol 2020. [DOI: 10.1007/s13273-019-00068-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
133
|
Skuplik I, Cobb J. Animal Models for Understanding Human Skeletal Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:157-188. [DOI: 10.1007/978-981-15-2389-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
134
|
Lin M, Liu Z, Liu G, Zhao S, Li C, Chen W, Coban Akdemir Z, Lin J, Song X, Wang S, Xu Q, Zhao Y, Wang L, Zhang Y, Yan Z, Liu S, Liu J, Chen Y, Zuo Y, Yang X, Sun T, Yang X, Niu Y, Li X, You W, Qiu B, Ding C, Liu P, Zhang S, Carvalho CMB, Posey JE, Qiu G, Lupski JR, Wu Z, Zhang J, Wu N. Genetic and molecular mechanism for distinct clinical phenotypes conveyed by allelic truncating mutations implicated in FBN1. Mol Genet Genomic Med 2020; 8:e1023. [PMID: 31774634 PMCID: PMC6978264 DOI: 10.1002/mgg3.1023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/21/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The molecular and genetic mechanisms by which different single nucleotide variant alleles in specific genes, or at the same genetic locus, cause distinct disease phenotypes often remain unclear. Allelic truncating mutations of FBN1 could cause either classical Marfan syndrome (MFS) or a more complicated phenotype associated with Marfanoid-progeroid-lipodystrophy syndrome (MPLS). METHODS We investigated a small cohort, encompassing two classical MFS and one MPLS subjects from China, whose clinical presentation included scoliosis potentially requiring surgical intervention. Targeted next generation sequencing was performed on all the participants. We analyzed the molecular diagnosis, clinical features, and the potential molecular mechanism involved in the MPLS subject in our cohort. RESULTS We report a novel de novo FBN1 mutation for the first Chinese subject with MPLS, a more complicated fibrillinopathy, and two subjects with more classical MFS. We further predict that the MPLS truncating mutation, and others previously reported, is prone to escape the nonsense-mediated decay (NMD), while MFS mutations are predicted to be subjected to NMD. Also, the MPLS mutation occurs within the glucogenic hormone asprosin domain of FBN1. In vitro experiments showed that the single MPLS mutation p.Glu2759Cysfs*9 appears to perturb proper FBN1 protein aggregation as compared with the classical MFS mutation p.Tyr2596Thrfs*86. Both mutations appear to upregulate SMAD2 phosphorylation in vitro. CONCLUSION We provide direct evidence that a dominant-negative interaction of FBN1 potentially explains the complex MPLS phenotypes through genetic and functional analysis. Our study expands the mutation spectrum of FBN1 and highlights the potential molecular mechanism for MPLS.
Collapse
|
135
|
Lemire GT, Beauregard-Lacroix É, Campeau PM, Parent S, Roy-Beaudry M, Soglio DD, Grignon A, Rypens F, Wavrant S, Laberge AM, Delrue MA. Retrospective analysis of fetal vertebral defects: Associated anomalies, etiologies, and outcome. Am J Med Genet A 2019; 182:664-672. [PMID: 31880412 DOI: 10.1002/ajmg.a.61468] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/13/2019] [Accepted: 12/16/2019] [Indexed: 01/04/2023]
Abstract
Our objectives were to describe fetal cases of vertebral defects (VD), assess the diagnostic yield of fetal chromosomal analysis for VD and determine which investigations should be performed when evaluating fetal VD. We performed a retrospective chart review for fetuses with VD seen between 2006 and 2015. Cases were identified from CHU Sainte-Justine's prenatal clinic visits, postmortem fetal skeletal surveys, and medical records. Cases with neural tube defects were excluded. Sixty-six fetuses with VD were identified at a mean gestational age of 20 weeks. Forty-seven (71.2%) had associated antenatal anomalies, most commonly genitourinary, skeletal/limb, and cardiac anomalies. Thirteen mothers (19.7%) had pregestational diabetes (95% CI [10.1%-29.3%]). Fifty-three cases had chromosomal analysis. Three had abnormal results (5.6%): trisomy 13, trisomy 22, and 9q33.1q34.11 deletion. Thirty-four (51.5%) pregnancies were terminated, one led to intrauterine fetal demise and 31 (46.9%) continued to term. Of 27 children who survived the neonatal period, 21 had congenital scoliosis and 3 had spondylocostal dysostosis. Seven had developmental delay. In conclusion, prenatal evaluation of fetuses with VD should include detailed morphological assessment (including fetal echocardiogram), maternal diabetes screening, and chromosomal microarray if non-isolated. Our findings provide guidance about management and counseling after a diagnosis of fetal VD.
Collapse
Affiliation(s)
- Gabrielle T Lemire
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| | - Éliane Beauregard-Lacroix
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| | - Philippe M Campeau
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| | - Stefan Parent
- Department of Surgery, CHU Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| | - Marjolaine Roy-Beaudry
- Department of Surgery, CHU Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| | - Dorothée Dal Soglio
- Department of Pathology, CHU Sainte-Justine, Université de Montréal, Montréal, Québec, Canada.,Integrated Prenatal Diagnosis Center, CHU Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| | - Andrée Grignon
- Integrated Prenatal Diagnosis Center, CHU Sainte-Justine, Université de Montréal, Montréal, Québec, Canada.,Department of Medical Imaging, CHU Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| | - Françoise Rypens
- Integrated Prenatal Diagnosis Center, CHU Sainte-Justine, Université de Montréal, Montréal, Québec, Canada.,Department of Medical Imaging, CHU Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| | - Sandrine Wavrant
- Integrated Prenatal Diagnosis Center, CHU Sainte-Justine, Université de Montréal, Montréal, Québec, Canada.,Maternal-Fetal Medicine, CHU Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| | - Anne-Marie Laberge
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montréal, Québec, Canada.,Integrated Prenatal Diagnosis Center, CHU Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| | - Marie-Ange Delrue
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montréal, Québec, Canada.,Integrated Prenatal Diagnosis Center, CHU Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
136
|
Link N, Chung H, Jolly A, Withers M, Tepe B, Arenkiel BR, Shah PS, Krogan NJ, Aydin H, Geckinli BB, Tos T, Isikay S, Tuysuz B, Mochida GH, Thomas AX, Clark RD, Mirzaa GM, Lupski JR, Bellen HJ. Mutations in ANKLE2, a ZIKA Virus Target, Disrupt an Asymmetric Cell Division Pathway in Drosophila Neuroblasts to Cause Microcephaly. Dev Cell 2019; 51:713-729.e6. [PMID: 31735666 PMCID: PMC6917859 DOI: 10.1016/j.devcel.2019.10.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/19/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022]
Abstract
The apical Par complex, which contains atypical protein kinase C (aPKC), Bazooka (Par-3), and Par-6, is required for establishing polarity during asymmetric division of neuroblasts in Drosophila, and its activity depends on L(2)gl. We show that loss of Ankle2, a protein associated with microcephaly in humans and known to interact with Zika protein NS4A, reduces brain volume in flies and impacts the function of the Par complex. Reducing Ankle2 levels disrupts endoplasmic reticulum (ER) and nuclear envelope morphology, releasing the kinase Ballchen-VRK1 into the cytosol. These defects are associated with reduced phosphorylation of aPKC, disruption of Par-complex localization, and spindle alignment defects. Importantly, removal of one copy of ballchen or l(2)gl suppresses Ankle2 mutant phenotypes and restores viability and brain size. Human mutational studies implicate the above-mentioned genes in microcephaly and motor neuron disease. We suggest that NS4A, ANKLE2, VRK1, and LLGL1 define a pathway impinging on asymmetric determinants of neural stem cell division.
Collapse
Affiliation(s)
- Nichole Link
- Howard Hughes Medical Institute, BCM, Houston, TX 77030, USA; Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hyunglok Chung
- Howard Hughes Medical Institute, BCM, Houston, TX 77030, USA; Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Angad Jolly
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; MD/PhD Medical Scientist Training Program and MHG Graduate program, BCM, Houston, TX 77030, USA
| | - Marjorie Withers
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Burak Tepe
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, BCM, Houston, TX 77030, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, BCM, Houston, TX 77030, USA
| | - Priya S Shah
- Department of Chemical Engineering and Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hatip Aydin
- Center of Genetics Diagnosis, Zeynep Kamil Maternity and Children's Training and Research Hospital, Istanbul, Turkey
| | - Bilgen B Geckinli
- Department of Medical Genetics, Marmara University School of Medicine, Istanbul, Turkey
| | - Tulay Tos
- Department of Medical Genetics, Dr. Sami Ulus Research and Training Hospital of Women's and Children's Health and Diseases, Ankara, Turkey
| | - Sedat Isikay
- Department of Physiotherapy and Rehabilitation, Hasan Kalyoncu University, School of Health Sciences, Gaziantep, Turkey
| | - Beyhan Tuysuz
- Department of Pediatrics, Istanbul University-Cerrahpasa, Medical Faculty, Istanbul, Turkey
| | - Ganesh H Mochida
- Division of Genetics and Genomics, Department of Pediatrics and Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Pediatric Neurology Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ajay X Thomas
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, BCM, Houston, TX 77030, USA; Section of Child Neurology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Robin D Clark
- Division of Medical Genetics, Department of Pediatrics, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Ghayda M Mirzaa
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Department of Pediatrics, BCM, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hugo J Bellen
- Howard Hughes Medical Institute, BCM, Houston, TX 77030, USA; Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; MD/PhD Medical Scientist Training Program and MHG Graduate program, BCM, Houston, TX 77030, USA; Program in Developmental Biology, BCM, Houston, TX 77030, USA.
| |
Collapse
|
137
|
Identification of novel FBN1 variations implicated in congenital scoliosis. J Hum Genet 2019; 65:221-230. [PMID: 31827250 PMCID: PMC6983459 DOI: 10.1038/s10038-019-0698-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/23/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022]
Abstract
Congenital scoliosis (CS) is a form of scoliosis caused by congenital vertebral malformations. Genetic predisposition has been demonstrated in CS. We previously reported that TBX6 loss-of-function causes CS in a compound heterozygous model; however, this model can explain only 10% of CS. Many monogenic and polygenic CS genes remain to be elucidated. In this study, we analyzed exome sequencing (ES) data of 615 Chinese CS from the Deciphering Disorders Involving Scoliosis and COmorbidities (DISCO) project. Cosegregation studies for 103 familial CS identified a novel heterozygous nonsense variant, c.2649G>A (p.Trp883Ter) in FBN1. The association between FBN1 and CS was then analyzed by extracting FBN1 variants from ES data of 574 sporadic CS and 828 controls; 30 novel variants were identified and prioritized for further analyses. A mutational burden test showed that the deleterious FBN1 variants were significantly enriched in CS subjects (OR = 3.9, P = 0.03 by Fisher’s exact test). One missense variant, c.2613A>C (p.Leu871Phe) was recurrent in two unrelated CS subjects, and in vitro functional experiments for the variant suggest that FBN1 may contribute to CS by upregulating the transforming growth factor beta (TGF-β) signaling. Our study expanded the phenotypic spectrum of FBN1, and provided nove insights into the genetic etiology of CS.
Collapse
|
138
|
Allanson J, Smith A, Forzano F, Lin AE, Raas-Rothschild A, Howley HE, Boycott KM. Nablus syndrome: Easy to diagnose yet difficult to solve. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 178:447-457. [PMID: 30580486 DOI: 10.1002/ajmg.c.31660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022]
Abstract
Nablus syndrome was first described by the late Ahmad Teebi in 2000, and 13 individuals have been reported to date. Nablus syndrome can be clinically diagnosed based on striking facial features, including tight glistening skin with reduced facial expression, blepharophimosis, telecanthus, bulky nasal tip, abnormal external ear architecture, upswept frontal hairline, and sparse eyebrows. However, the precise genetic etiology for this rare condition remains elusive. Comparative microarray analyses of individuals with Nablus syndrome (including two mother-son pairs) reveal an overlapping 8q22.1 microdeletion, with a minimal critical region of 1.84 Mb (94.43-96.27 Mb). Whereas this deletion is present in all affected individuals, 13 individuals without Nablus syndrome (including two mother-child pairs) also have the 8q22.1 microdeletion that partially or fully overlaps the minimal critical region. Thus, the 8q22.1 microdeletion is necessary but not sufficient to cause the clinical features characteristic of Nablus syndrome. We discuss possible explanations for Nablus syndrome, including one-locus, two-locus, epigenetic, and environmental mechanisms. We performed exome sequencing for five individuals with Nablus syndrome. Although we failed to identify any deleterious rare coding variants in the critical region that were shared between individuals, we did identify one common SNP in an intronic region that was shared. Clearly, unraveling the genetic mechanism(s) of Nablus syndrome will require additional investigation, including genomic and RNA sequencing of a larger cohort of affected individuals. If successful, it will provide important insights into fundamental concepts such as variable expressivity, incomplete penetrance, and complex disease relevant to both Mendelian and non-Mendelian disorders.
Collapse
Affiliation(s)
| | - Amanda Smith
- Department of Genetics, CHEO, Ottawa, Ontario, Canada.,Department of Pathology and Laboratory Medicine University of Ottawa, Ottawa, Ontario, Canada
| | - Francesca Forzano
- Department of Clinical Genetics, Guy's Hospital, Guy's & St Thomas' NHS Foundation Trust London, London, United Kingdom.,Division of Medical Genetics, Galliera Hospital, Genoa, Italy
| | - Angela E Lin
- Genetics Unit, MassGeneral Hospital for Children, Boston, Massachusetts
| | - Annick Raas-Rothschild
- Institute of Rare Disease, Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Heather E Howley
- CHEO Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kym M Boycott
- Department of Genetics, CHEO, Ottawa, Ontario, Canada.,CHEO Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
139
|
Hansen AW, Murugan M, Li H, Khayat MM, Wang L, Rosenfeld J, Andrews BK, Jhangiani SN, Coban Akdemir ZH, Sedlazeck FJ, Ashley-Koch AE, Liu P, Muzny DM, Davis EE, Katsanis N, Sabo A, Posey JE, Yang Y, Wangler MF, Eng CM, Sutton VR, Lupski JR, Boerwinkle E, Gibbs RA. A Genocentric Approach to Discovery of Mendelian Disorders. Am J Hum Genet 2019; 105:974-986. [PMID: 31668702 PMCID: PMC6849092 DOI: 10.1016/j.ajhg.2019.09.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022] Open
Abstract
The advent of inexpensive, clinical exome sequencing (ES) has led to the accumulation of genetic data from thousands of samples from individuals affected with a wide range of diseases, but for whom the underlying genetic and molecular etiology of their clinical phenotype remains unknown. In many cases, detailed phenotypes are unavailable or poorly recorded and there is little family history to guide study. To accelerate discovery, we integrated ES data from 18,696 individuals referred for suspected Mendelian disease, together with relatives, in an Apache Hadoop data lake (Hadoop Architecture Lake of Exomes [HARLEE]) and implemented a genocentric analysis that rapidly identified 154 genes harboring variants suspected to cause Mendelian disorders. The approach did not rely on case-specific phenotypic classifications but was driven by optimization of gene- and variant-level filter parameters utilizing historical Mendelian disease-gene association discovery data. Variants in 19 of the 154 candidate genes were subsequently reported as causative of a Mendelian trait and additional data support the association of all other candidate genes with disease endpoints.
Collapse
Affiliation(s)
- Adam W Hansen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mullai Murugan
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - He Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael M Khayat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liwen Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - B Kim Andrews
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zeynep H Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Allison E Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna M Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Erica E Davis
- Pediatric Genetic and translational Medicine Center (P-GeM), Stanley Manne Children's Research Institute, Chicago, IL 60611, USA; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nicholas Katsanis
- Pediatric Genetic and translational Medicine Center (P-GeM), Stanley Manne Children's Research Institute, Chicago, IL 60611, USA; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Aniko Sabo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christine M Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; School of Public Health, UTHealth, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
140
|
Szafranski P, Liu Q, Karolak JA, Song X, de Leeuw N, Faas B, Gerychova R, Janku P, Jezova M, Valaskova I, Gibbs KA, Surrey LF, Poisson V, Bérubé D, Oligny LL, Michaud JL, Popek E, Stankiewicz P. Association of rare non-coding SNVs in the lung-specific FOXF1 enhancer with a mitigation of the lethal ACDMPV phenotype. Hum Genet 2019; 138:1301-1311. [PMID: 31686214 DOI: 10.1007/s00439-019-02073-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 10/12/2019] [Indexed: 12/20/2022]
Abstract
Haploinsufficiency of FOXF1 causes alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV), a lethal neonatal lung developmental disorder. We describe two similar heterozygous CNV deletions involving the FOXF1 enhancer and re-analyze FOXF1 missense mutation, all associated with an unexpectedly mitigated disease phenotype. In one case, the deletion of the maternal allele of the FOXF1 enhancer caused pulmonary hypertension and histopathologically diagnosed MPV without the typical ACD features. In the second case, the deletion of the paternal enhancer resulted in ACDMPV rather than the expected neonatal lethality. In both cases, FOXF1 expression in lung tissue was higher than usually seen or expected in patients with similar deletions, suggesting an increased activity of the remaining allele of the enhancer. Sequencing of these alleles revealed two rare SNVs, rs150502618-A and rs79301423-T, mapping to the partially overlapping binding sites for TFAP2s and CTCF in the core region of the enhancer. Moreover, in a family with three histopathologically-diagnosed ACDMPV siblings whose missense FOXF1 mutation was inherited from the healthy non-mosaic carrier mother, we have identified a rare SNV rs28571077-A within 2-kb of the above-mentioned non-coding SNVs in the FOXF1 enhancer in the mother, that was absent in the affected newborns and 13 unrelated ACDMPV patients with CNV deletions of this genomic region. Based on the low population frequencies of these three variants, their absence in ACDMPV patients, the results of reporter assay, RNAi and EMSA experiments, and in silico predictions, we propose that the described SNVs might have acted on FOXF1 enhancer as hypermorphs.
Collapse
Affiliation(s)
- Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Qian Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Justyna A Karolak
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Nicole de Leeuw
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Brigitte Faas
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Romana Gerychova
- Department of Obstetrics and Gynecology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Petr Janku
- Department of Obstetrics and Gynecology, Masaryk University and University Hospital Brno, Brno, Czech Republic.,Department of Nursing and Midwifery, Masaryk University, Brno, Czech Republic
| | - Marta Jezova
- Department of Pathology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Iveta Valaskova
- Department of Medical Genetics, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | | | - Lea F Surrey
- Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Philadelphia, PA, USA
| | - Virginie Poisson
- CHU Sainte-Justine, Montreal, Québec, Canada.,Department of Pediatrics, Université de Montréal, Montreal, Québec, Canada
| | - Denis Bérubé
- CHU Sainte-Justine, Montreal, Québec, Canada.,Department of Pediatrics, Université de Montréal, Montreal, Québec, Canada
| | - Luc L Oligny
- CHU Sainte-Justine, Montreal, Québec, Canada.,Department of Pathology, Université de Montréal, Montreal, Québec, Canada
| | - Jacques L Michaud
- CHU Sainte-Justine, Montreal, Québec, Canada.,Department of Pediatrics, Université de Montréal, Montreal, Québec, Canada
| | - Edwina Popek
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
141
|
Joint utilization of genetic analysis and semi-cloning technology reveals a digenic etiology of Müllerian anomalies. Cell Res 2019; 30:91-94. [PMID: 31628433 DOI: 10.1038/s41422-019-0243-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022] Open
|
142
|
Chu C, Li L, Lu D, Duan AH, Luo LJ, Li S, Yin C. Whole-Exome Sequencing Identified a TBX6 Loss of Function Mutation in a Patient with Distal Vaginal Atresia. J Pediatr Adolesc Gynecol 2019; 32:550-554. [PMID: 31233831 DOI: 10.1016/j.jpag.2019.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 01/13/2023]
Abstract
STUDY OBJECTIVE The purpose of this study was to determine if there are any genetic changes with whole-exome sequencing associated with distal vaginal atresia. DESIGN This was a retrospective genetics study of 5 patients who presented with distal vaginal atresia who were recruited between 2017 and 2018. Whole-exome sequencing was performed in each subject with distal vaginal atresia. Sanger sequencing was used to confirm the potential causative genetic mutation. SETTING Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China. PARTICIPANTS AND MAIN OUTCOME MEASURES The main outcome measure was the rare mutations potentially associated with distal vaginal atresia in 5 patients. RESULTS A truncating mutation c.266delC (p.P89Rfs*5) in the T-box transcription factor 6 (TBX6) gene, which is highly expressed in the human vagina, was identified in 1 patient using whole-exome sequencing. The deletion of the 16p11.2 region containing the TBX6 locus has also been reported previously to have the clinical feature of Müllerian agenesis. This mutation was paternally inherited by the patient. This truncating mutation was absent from all of the databases we checked, suggesting that the variant is rare and pathogenic. CONCLUSION We showed, to our knowledge, for the first time, that the mutation in TBX6 might be associated with human distal vaginal atresia.
Collapse
Affiliation(s)
- Chunfang Chu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, China
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, China
| | - Dan Lu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, China
| | - Ai-Hong Duan
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, China
| | - Li-Jing Luo
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, China
| | - Shenghui Li
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, China.
| | - Chenghong Yin
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, China.
| |
Collapse
|
143
|
Chinn IK, Chan AY, Chen K, Chou J, Dorsey MJ, Hajjar J, Jongco AM, Keller MD, Kobrynski LJ, Kumanovics A, Lawrence MG, Leiding JW, Lugar PL, Orange JS, Patel K, Platt CD, Puck JM, Raje N, Romberg N, Slack MA, Sullivan KE, Tarrant TK, Torgerson TR, Walter JE. Diagnostic interpretation of genetic studies in patients with primary immunodeficiency diseases: A working group report of the Primary Immunodeficiency Diseases Committee of the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol 2019; 145:46-69. [PMID: 31568798 DOI: 10.1016/j.jaci.2019.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/02/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022]
Abstract
Genetic testing has become an integral component of the diagnostic evaluation of patients with suspected primary immunodeficiency diseases. Results of genetic testing can have a profound effect on clinical management decisions. Therefore clinical providers must demonstrate proficiency in interpreting genetic data. Because of the need for increased knowledge regarding this practice, the American Academy of Allergy, Asthma & Immunology Primary Immunodeficiency Diseases Committee established a work group that reviewed and summarized information concerning appropriate methods, tools, and resources for evaluating variants identified by genetic testing. Strengths and limitations of tests frequently ordered by clinicians were examined. Summary statements and tables were then developed to guide the interpretation process. Finally, the need for research and collaboration was emphasized. Greater understanding of these important concepts will improve the diagnosis and management of patients with suspected primary immunodeficiency diseases.
Collapse
Affiliation(s)
- Ivan K Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Section of Immunology, Allergy, and Rheumatology, Texas Children's Hospital, Houston, Tex.
| | - Alice Y Chan
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California at San Francisco, San Francisco, Calif
| | - Karin Chen
- Division of Allergy and Immunology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Janet Chou
- Department of Pediatrics, Harvard Medical School, Boston, Mass; Division of Allergy and Immunology, Boston Children's Hospital, Boston, Mass
| | - Morna J Dorsey
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California at San Francisco, San Francisco, Calif
| | - Joud Hajjar
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Section of Immunology, Allergy, and Rheumatology, Texas Children's Hospital, Houston, Tex
| | - Artemio M Jongco
- Departments of Medicine and Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY; Center for Health Innovations and Outcomes Research, Feinstein Institute for Medical Research, Great Neck, NY; Division of Allergy & Immunology, Cohen Children's Medical Center of New York, Great Neck, NY
| | - Michael D Keller
- Department of Allergy and Immunology, Children's National Hospital, Washington, DC
| | - Lisa J Kobrynski
- Department of Pediatrics, Division of Allergy and Immunology, Emory University School of Medicine, Atlanta, Ga
| | - Attila Kumanovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Monica G Lawrence
- Department of Medicine, Division of Asthma, Allergy and Immunology, University of Virginia Health System, Charlottesville, Va
| | - Jennifer W Leiding
- Departments of Pediatrics and Medicine, University of South Florida, St Petersburg, Fla; Division of Pediatric Allergy/Immunology, Johns Hopkins-All Children's Hospital, St Petersburg, Fla; Cancer and Blood Disorders Institute, Johns Hopkins-All Children's Hospital, St Petersburg, Fla
| | - Patricia L Lugar
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC
| | - Jordan S Orange
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY; New York Presbyterian Morgan Stanley Children's Hospital, New York, NY
| | - Kiran Patel
- Department of Pediatrics, Division of Allergy and Immunology, Emory University School of Medicine, Atlanta, Ga
| | - Craig D Platt
- Department of Pediatrics, Harvard Medical School, Boston, Mass; Division of Allergy and Immunology, Boston Children's Hospital, Boston, Mass
| | - Jennifer M Puck
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California at San Francisco, San Francisco, Calif
| | - Nikita Raje
- Department of Pediatrics, University of Missouri-Kansas City, Kansas City, Mo; Division of Allergy/Asthma/Immunology, Children's Mercy Hospital, Kansas City, Mo
| | - Neil Romberg
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa; Division of Allergy/Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Maria A Slack
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, University of Rochester Medical Center, Rochester, NY; Department of Pediatrics, Division of Pediatric Allergy and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Kathleen E Sullivan
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa; Division of Allergy/Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Teresa K Tarrant
- Department of Medicine, Division of Rheumatology and Immunology, Duke University Medical Center, Durham, NC
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Wash; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Jolan E Walter
- Departments of Pediatrics and Medicine, University of South Florida, St Petersburg, Fla; Division of Pediatric Allergy/Immunology, Johns Hopkins-All Children's Hospital, St Petersburg, Fla; Division of Pediatric Allergy Immunology, Massachusetts General Hospital, Boston, Mass
| |
Collapse
|
144
|
Chen W, Lin J, Wang L, Li X, Zhao S, Liu J, Akdemir ZC, Zhao Y, Du R, Ye Y, Song X, Zhang Y, Yan Z, Yang X, Lin M, Shen J, Wang S, Gao N, Yang Y, Liu Y, Li W, Liu J, Zhang N, Yang X, Xu Y, Zhang J, Delgado MR, Posey JE, Qiu G, Rios JJ, Liu P, Wise CA, Zhang F, Wu Z, Lupski JR, Wu N. TBX6 missense variants expand the mutational spectrum in a non-Mendelian inheritance disease. Hum Mutat 2019; 41:182-195. [PMID: 31471994 DOI: 10.1002/humu.23907] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 12/30/2022]
Abstract
Congenital scoliosis (CS) is a birth defect with variable clinical and anatomical manifestations due to spinal malformation. The genetic etiology underlying about 10% of CS cases in the Chinese population is compound inheritance by which the gene dosage is reduced below that of haploinsufficiency. In this genetic model, the trait manifests as a result of the combined effect of a rare variant and common pathogenic variant allele at a locus. From exome sequencing (ES) data of 523 patients in Asia and two patients in Texas, we identified six TBX6 gene-disruptive variants from 11 unrelated CS patients via ES and in vitro functional testing. The in trans mild hypomorphic allele was identified in 10 of the 11 subjects; as anticipated these 10 shared a similar spinal deformity of hemivertebrae. The remaining case has a homozygous variant in TBX6 (c.418C>T) and presents a more severe spinal deformity phenotype. We found decreased transcriptional activity and abnormal cellular localization as the molecular mechanisms for TBX6 missense loss-of-function alleles. Expanding the mutational spectrum of TBX6 pathogenic alleles enabled an increased molecular diagnostic detection rate, provided further evidence for the gene dosage-dependent genetic model underlying CS, and refined clinical classification.
Collapse
Affiliation(s)
- Weisheng Chen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Jiachen Lin
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Lianlei Wang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Sen Zhao
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Jiaqi Liu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Breast Surgical Oncology, National Cancer Center/Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zeynep C Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Yanxue Zhao
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Renqian Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Yongyu Ye
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Orthopaedic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Yuanqiang Zhang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Zihui Yan
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Xinzhuang Yang
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Mao Lin
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Jianxiong Shen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Shengru Wang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Na Gao
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Yang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Liu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Wenli Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Liu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Na Zhang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Yang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Xu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jianguo Zhang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Mauricio R Delgado
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas.,Neurology Department, Texas Scottish Rite Hospital, Dallas, Texas
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Guixing Qiu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Jonathan J Rios
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, Texas.,McDermott Center for Human Growth and Development, Department of Pediatrics and Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Baylor Genetics Laboratory, Houston, Texas
| | - Carol A Wise
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, Texas.,McDermott Center for Human Growth and Development, Department of Pediatrics and Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Nan Wu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
145
|
Germline 16p11.2 Microdeletion Predisposes to Neuroblastoma. Am J Hum Genet 2019; 105:658-668. [PMID: 31474320 DOI: 10.1016/j.ajhg.2019.07.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/29/2019] [Indexed: 12/27/2022] Open
Abstract
Neuroblastoma is a cancer of the developing sympathetic nervous system. It is diagnosed in 600-700 children per year in the United States and accounts for 12% of pediatric cancer deaths. Despite recent advances in our understanding of this malignancy's complex genetic architecture, the contribution of rare germline variants remains undefined. Here, we conducted a genome-wide analysis of large (>500 kb), rare (<1%) germline copy number variants (CNVs) in two independent, multi-ethnic cohorts totaling 5,585 children with neuroblastoma and 23,505 cancer-free control children. We identified a 550-kb deletion on chromosome 16p11.2 significantly enriched in neuroblastoma cases (0.39% of cases and 0.03% of controls; p = 3.34 × 10-9). Notably, this CNV corresponds to a known microdeletion syndrome that affects approximately one in 3,000 children and confers risk for diverse developmental phenotypes including autism spectrum disorder and other neurodevelopmental disorders. The CNV had a substantial impact on neuroblastoma risk, with an odds ratio of 13.9 (95% confidence interval = 5.8-33.4). The association remained significant when we restricted our analysis to individuals of European ancestry in order to mitigate potential confounding by population stratification (0.42% of cases and 0.03% of controls; p = 4.10 × 10-8). We used whole-genome sequencing (WGS) to validate the deletion in paired germline and tumor DNA from 12 cases. Finally, WGS of four parent-child trios revealed that the deletion primarily arose de novo without maternal or paternal bias. This finding expands the clinical phenotypes associated with 16p11.2 microdeletion syndrome to include cancer, and it suggests that disruption of the 16p11.2 region may dysregulate neurodevelopmental pathways that influence both neurological phenotypes and neuroblastoma.
Collapse
|
146
|
Bamshad MJ, Nickerson DA, Chong JX. Mendelian Gene Discovery: Fast and Furious with No End in Sight. Am J Hum Genet 2019; 105:448-455. [PMID: 31491408 DOI: 10.1016/j.ajhg.2019.07.011] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022] Open
Abstract
Gene discovery for Mendelian conditions (MCs) offers a direct path to understanding genome function. Approaches based on next-generation sequencing applied at scale have dramatically accelerated gene discovery and transformed genetic medicine. Finding the genetic basis of ∼6,000-13,000 MCs yet to be delineated will require both technical and computational innovation, but will rely to a larger extent on meaningful data sharing.
Collapse
|
147
|
Choy KW, Wang H, Shi M, Chen J, Yang Z, Zhang R, Yan H, Wang Y, Chen S, Chau MHK, Cao Y, Chan OYM, Kwok YK, Zhu Y, Chen M, Leung TY, Dong Z. Prenatal Diagnosis of Fetuses With Increased Nuchal Translucency by Genome Sequencing Analysis. Front Genet 2019; 10:761. [PMID: 31475041 PMCID: PMC6706460 DOI: 10.3389/fgene.2019.00761] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/17/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Increased nuchal translucency (NT) is an important biomarker associated with increased risk of fetal structural anomalies. It is known to be contributed by a wide range of genetic etiologies from single-nucleotide variants to those affecting millions of base pairs. Currently, prenatal diagnosis is routinely performed by karyotyping and chromosomal microarray analysis (CMA); however, both of them have limited resolution. The diversity of the genetic etiologies warrants an integrated assay such as genome sequencing (GS) for comprehensive detection of genomic variants. Herein, we aim to evaluate the feasibility of applying GS in prenatal diagnosis for the fetuses with increased NT. Methods: We retrospectively applied GS (> 30-fold) for fetuses with increased NT (≥3.5 mm) who underwent routine prenatal diagnosis. Detection of single-nucleotide variants, copy number variants, and structural rearrangements was performed simultaneously, and the results were integrated for interpretation in accordance with the guidelines of the American College of Medical Genetics and Genomics. Pathogenic or likely pathogenic (P/LP) variants were selected for validation and parental confirmation, when available. Results: Overall, 50 fetuses were enrolled, including 34 cases with isolated increased NT and 16 cases with other fetal structural malformations. Routine CMA and karyotyping reported eight P/LP CNVs, yielding a diagnostic rate of 16.0% (8/50). In comparison, GS provided a twofold increase in diagnostic yield (32.0%, 16/50), including one mosaic turner syndrome, eight cases with microdeletions/microduplications, and seven cases with P/LP point mutations. Moreover, GS identified two cryptic insertions and two inversions. Follow-up study further demonstrated the potential pathogenicity of an apparently balanced insertion that disrupted an OMIM autosomal dominant disease-causing gene at the insertion site. Conclusions: Our study demonstrates that applying GS in fetuses with increased NT can comprehensively detect and delineate the various genomic variants that are causative to the diseases. Importantly, prenatal diagnosis by GS doubled the diagnostic yield compared with routine protocols. Given a comparable turnaround time and less DNA required, our study provides strong evidence to facilitate GS in prenatal diagnosis, particularly in fetuses with increased NT.
Collapse
Affiliation(s)
- Kwong Wai Choy
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,The Chinese University of Hong Kong-Baylor College of Medicine Joint Center for Medical Genetics, Hong Kong, China
| | - Huilin Wang
- Department of Central Laboratory, Bao'an Maternity and Child Healthcare Hospital Affiliated to Jinan University School of Medicine, Key Laboratory of Birth Defects Research, Birth Defects Prevention Research and Transformation Team, Shenzhen, China
| | - Mengmeng Shi
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jingsi Chen
- Department of Obstetrics and Gynecology, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenjun Yang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Rui Zhang
- Department of Central Laboratory, Bao'an Maternity and Child Healthcare Hospital Affiliated to Jinan University School of Medicine, Key Laboratory of Birth Defects Research, Birth Defects Prevention Research and Transformation Team, Shenzhen, China
| | - Huanchen Yan
- Department of Obstetrics and Gynecology, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanfang Wang
- Department of Central Laboratory, Bao'an Maternity and Child Healthcare Hospital Affiliated to Jinan University School of Medicine, Key Laboratory of Birth Defects Research, Birth Defects Prevention Research and Transformation Team, Shenzhen, China
| | - Shaoyun Chen
- Department of Central Laboratory, Bao'an Maternity and Child Healthcare Hospital Affiliated to Jinan University School of Medicine, Key Laboratory of Birth Defects Research, Birth Defects Prevention Research and Transformation Team, Shenzhen, China
| | - Matthew Hoi Kin Chau
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Cao
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Olivia Y M Chan
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yvonne K Kwok
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuanfang Zhu
- Department of Central Laboratory, Bao'an Maternity and Child Healthcare Hospital Affiliated to Jinan University School of Medicine, Key Laboratory of Birth Defects Research, Birth Defects Prevention Research and Transformation Team, Shenzhen, China
| | - Min Chen
- Department of Obstetrics and Gynecology, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tak Yeung Leung
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,The Chinese University of Hong Kong-Baylor College of Medicine Joint Center for Medical Genetics, Hong Kong, China
| | - Zirui Dong
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
148
|
Genome-wide association study identifies 14 previously unreported susceptibility loci for adolescent idiopathic scoliosis in Japanese. Nat Commun 2019; 10:3685. [PMID: 31417091 PMCID: PMC6695451 DOI: 10.1038/s41467-019-11596-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is the most common pediatric spinal deformity. Several AIS susceptibility loci have been identified; however, they could explain only a small proportion of AIS heritability. To identify additional AIS susceptibility loci, we conduct a meta-analysis of the three genome-wide association studies consisting of 79,211 Japanese individuals. We identify 20 loci significantly associated with AIS, including 14 previously not reported loci. These loci explain 4.6% of the phenotypic variance of AIS. We find 21 cis-expression quantitative trait loci-associated genes in seven of the fourteen loci. By a female meta-analysis, we identify additional three significant loci. We also find significant genetic correlations of AIS with body mass index and uric acid. The cell-type specificity analyses show the significant heritability enrichment for AIS in multiple cell-type groups, suggesting the heterogeneity of etiology and pathogenesis of AIS. Our findings provide insights into etiology and pathogenesis of AIS. Adolescent idiopathic scoliosis (AIS) is a common pediatric disease leading to spinal deformities. Here, the authors report GWAS followed by genome-wide meta-analysis in up to 79,211 Japanese individuals, identifying 20 genetic loci for AIS, 14 of which were previously unreported, and perform in vitro validation for rs1978060.
Collapse
|
149
|
Liang J, Zhang H, Guo Y, Yang K, Ni C, Yu H, Kong X, Li M, Lu Z, Yao Z. Coinheritance of generalized pustular psoriasis and familial Behçet‐like autoinflammatory syndrome with variants in
IL
36
RN
and
TNFAIP
3
in the heterozygous state. J Dermatol 2019; 46:907-910. [DOI: 10.1111/1346-8138.15034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/08/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Jianying Liang
- Department of Dermatology Xinhua HospitalSchool of MedicineShanghai Jiaotong University ShanghaiChina
| | - Hui Zhang
- Department of Dermatology Xinhua HospitalSchool of MedicineShanghai Jiaotong University ShanghaiChina
| | - Yifeng Guo
- Department of Dermatology Xinhua HospitalSchool of MedicineShanghai Jiaotong University ShanghaiChina
| | - Kaihua Yang
- Digestive Department of Pediatrics Shanghai Children's Medical Center School of Medicine Shanghai Jiaotong University ShanghaiChina
| | - Cheng Ni
- Department of Dermatology Xinhua HospitalSchool of MedicineShanghai Jiaotong University ShanghaiChina
| | - Hong Yu
- Department of Dermatology Xinhua HospitalSchool of MedicineShanghai Jiaotong University ShanghaiChina
| | | | - Ming Li
- Department of Dermatology Xinhua HospitalSchool of MedicineShanghai Jiaotong University ShanghaiChina
| | - Zhiyong Lu
- Department of Dermatology Xinhua HospitalSchool of MedicineShanghai Jiaotong University ShanghaiChina
| | - Zhirong Yao
- Department of Dermatology Xinhua HospitalSchool of MedicineShanghai Jiaotong University ShanghaiChina
| |
Collapse
|
150
|
Abstract
The practice of genomic medicine stands to revolutionize our approach to medical care, and to realize this goal will require discovery of the relationship between rare variation at each of the ~ 20,000 protein-coding genes and their consequent impact on individual health and expression of Mendelian disease. The step-wise evolution of broad-based, genome-wide cytogenetic and molecular genomic testing approaches (karyotyping, chromosomal microarray [CMA], exome sequencing [ES]) has driven much of the rare disease discovery to this point, with genome sequencing representing the newest member of this team. Each step has brought increased sensitivity to interrogate individual genomic variation in an unbiased method that does not require clinical prediction of the locus or loci involved. Notably, each step has also brought unique limitations in variant detection, for example, the low sensitivity of ES for detection of triploidy, and of CMA for detection of copy neutral structural variants. The utility of genome sequencing (GS) as a clinical molecular diagnostic test, and the increased sensitivity afforded by addition of long-read sequencing or other -omics technologies such as RNAseq or metabolomics, are not yet fully explored, though recent work supports improved sensitivity of variant detection, at least in a subset of cases. The utility of GS will also rely upon further elucidation of the complexities of genetic and allelic heterogeneity, multilocus rare variation, and the impact of rare and common variation at a locus, as well as advances in functional annotation of identified variants. Much discovery remains to be done before the potential utility of GS is fully appreciated.
Collapse
Affiliation(s)
- Jennifer E Posey
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, T603, Houston, TX, 77030, USA.
| |
Collapse
|