101
|
Toress-Collado AX, Nazarian R, Jazirehi AR. Rescue of cell cycle progression in BRAF V600E inhibitor-resistant human melanoma by a chromatin modifier. Tumour Biol 2017; 39:1010428317721620. [PMID: 28936920 DOI: 10.1177/1010428317721620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The BRAFV600E-specific inhibitor vemurafenib blocks mitogen-activated protein kinase pathway and induces cell cycle arrest at G0/G1 phase leading to apoptosis of melanomas. To gain an understanding of the dynamics of cell cycle regulation during vemurafenib therapy, we analyzed several vemurafenib-resistant human melanoma sublines derived from BRAFV600E harboring vemurafenib-sensitive parental lines. Vemurafenib provoked G0/G1 phase arrest in parental but not in vemurafenib-resistant sublines. We hypothesized that refractoriness of vemurafenib-resistant sublines to vemurafenib-mediated cell cycle inhibition can be partially rescued by the chromatin modifier suberoylanilide hydroxamic acid. Suberoylanilide hydroxamic acid promoted G2/M arrest at expense of S phase irrespective of vemurafenib sensitivity. In parental lines, combination of suberoylanilide hydroxamic acid and vemurafenib induced both G0/G1 arrest and apoptosis, whereas in vemurafenib-resistant sublines combination induced G0/G1 as well as G2/M arrest resulting in dramatic cytostasis. Vemurafenib-resistant sublines exhibited extracellular signal-regulated protein kinases 1 and 2 but not AKT and hyperphosphorylation. Gene expression profiling revealed mitogen-activated protein kinase hyperactivation and deregulations of cyclins and cyclin-dependent kinases in vemurafenib-resistant sublines, all of which were reversed by suberoylanilide hydroxamic acid; changes that may explain the cytostatic effects of suberoylanilide hydroxamic acid. These results suggest that unresponsiveness of vemurafenib-resistant sublines to the biological effects of vemurafenib may be amenable by suberoylanilide hydroxamic acid. These in vitro results, while require further investigation, may provide rational biological basis for combination therapy in the management of vemurafenib-resistant melanoma.
Collapse
Affiliation(s)
- Antoni X Toress-Collado
- 1 Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ramin Nazarian
- 2 Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,3 Jonsson Comprehensive Cancer Center (JCCC), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ali R Jazirehi
- 1 Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, Los Angeles, CA, USA.,3 Jonsson Comprehensive Cancer Center (JCCC), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
102
|
Nguyen AH, Elliott IA, Wu N, Matsumura C, Vogelauer M, Attar N, Dann A, Ghukasyan R, Toste PA, Patel SG, Williams JL, Li L, Dawson DW, Radu C, Kurdistani SK, Donahue TR. Histone deacetylase inhibitors provoke a tumor supportive phenotype in pancreatic cancer associated fibroblasts. Oncotarget 2017; 8:19074-19088. [PMID: 27894105 PMCID: PMC5386671 DOI: 10.18632/oncotarget.13572] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
Although histone deacetylase inhibitors (HDACi) are a promising class of anti-cancer drugs, thus far, they have been unsuccessful in early phase clinical trials for pancreatic ductal adenocarcinoma (PDAC). One potential reason for their poor efficacy is the tumor stroma, where cancer-associated fibroblasts (CAFs) are a prominent cell type and a source of resistance to cancer therapies. Here, we demonstrate that stromal fibroblasts contribute to the poor efficacy of HDACi's in PDAC. HDACi-treated fibroblasts show increased biological aggressiveness and are characterized by increased secretion of pro-inflammatory tumor-supportive cytokines and chemokines. We find that HDAC2 binds to the enhancer and promoter regions of pro-inflammatory genes specifically in CAFs and in silico analysis identified AP-1 to be the most frequently associated transcription factor bound in these regions. Pharmacologic inhibition of pathways upstream of AP-1 suppresses the HDACi-induced inflammatory gene expression and tumor-supportive responses in fibroblasts. Our findings demonstrate that the combination of HDACi's with chemical inhibitors of the AP-1 signaling pathway attenuate the inflammatory phenotype of fibroblasts and may improve the efficacy of HDACi in PDAC and, potentially, in other solid tumors rich in stroma.
Collapse
Affiliation(s)
- Andrew H Nguyen
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Irmina A Elliott
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Nanping Wu
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Cynthia Matsumura
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Maria Vogelauer
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Narsis Attar
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Amanda Dann
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Razmik Ghukasyan
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Paul A Toste
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Sanjeet G Patel
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jennifer L Williams
- Department of Surgery, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Luyi Li
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - David W Dawson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Caius Radu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Siavash K Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Timothy R Donahue
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
103
|
Hay JF, Lappin K, Liberante F, Kettyle LM, Matchett KB, Thompson A, Mills KI. Integrated analysis of the molecular action of Vorinostat identifies epi-sensitised targets for combination therapy. Oncotarget 2017; 8:67891-67903. [PMID: 28978082 PMCID: PMC5620222 DOI: 10.18632/oncotarget.18910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 05/31/2017] [Indexed: 11/25/2022] Open
Abstract
Several histone deacetylase inhibitors including Vorinostat have received FDA approval for the treatment of haematological malignancies. However, data from these trials indicate that Vorinostat has limited efficacy as a monotherapy, prompting the need for rational design of combination therapies. A number of epi-sensitised pathways, including sonic hedgehog (SHH), were identified in AML cells by integration of global patterns of histone H3 lysine 9 (H3K9) acetylation with transcriptomic analysis following Vorinostat-treatment. Direct targeting of the SHH pathway with SANT-1, following Vorinostat induced epi-sensitisation, resulted in synergistic cell death of AML cells. In addition, xenograft studies demonstrated that combination therapy induced a marked reduction in leukemic burden compared to control or single agents. Together, the data supports epi-sensitisation as a potential component of the strategy for the rational development of combination therapies in AML.
Collapse
Affiliation(s)
- Jodie F Hay
- Blood Cancer Research Group, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK.,Molecular Oncology Laboratory, MRC - University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Katrina Lappin
- Blood Cancer Research Group, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Fabio Liberante
- Blood Cancer Research Group, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK.,Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Laura M Kettyle
- Blood Cancer Research Group, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK.,Haematopoietic Stem Cell Biology, MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | - Kyle B Matchett
- Blood Cancer Research Group, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Alexander Thompson
- Blood Cancer Research Group, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK.,Division of Cancer and Stem Cells, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Ken I Mills
- Blood Cancer Research Group, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| |
Collapse
|
104
|
Oki Y, Kelly KR, Flinn I, Patel MR, Gharavi R, Ma A, Parker J, Hafeez A, Tuck D, Younes A. CUDC-907 in relapsed/refractory diffuse large B-cell lymphoma, including patients with MYC-alterations: results from an expanded phase I trial. Haematologica 2017; 102:1923-1930. [PMID: 28860342 PMCID: PMC5664396 DOI: 10.3324/haematol.2017.172882] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/29/2017] [Indexed: 12/02/2022] Open
Abstract
CUDC-907 is a first-in-class, oral small molecule inhibitor of both HDAC (class I and II) and PI3K (class Iα, β, and δ) enzymes, with demonstrated anti-tumor activity in multiple pre-clinical models, including MYC-driven ones. In this report, we present the safety and preliminary activity results of CUDC-907, with and without rituximab, in patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL), with a particular focus on those with MYC-altered disease. Thirty-seven DLBCL patients were enrolled, 14 with confirmed MYC-altered disease. Twenty-five patients received monotherapy treatment, and 12 received the combination of CUDC-907 with rituximab. CUDC-907 monotherapy and combination demonstrated similar safety profiles consisting primarily of Grade 1/2 hematologic and gastrointestinal events. The most frequently reported Grade ≥3 treatment-related events were thrombocytopenia, neutropenia, diarrhea, fatigue, and anemia. Eleven responses (5 complete responses and 6 partial responses) were reported, for a response rate of 37% (11 out of 30) in evaluable patients [30% (11 out of 37) including all patients]. The objective response rate in evaluable MYC-altered DLBCL patients was 64% (7 out of 11; 4 complete responses and 3 partial responses), while it was 29% (2 out of 7) in MYC unaltered, and 17% (2 out of 12) in those with unknown MYC status. Median duration of response was 11.2 months overall; 13.6 months in MYC-altered patients, 6.0 months in MYC unaltered, and 7.8 months in those with MYC status unknown. The tolerable safety profile and encouraging evidence of durable anti-tumor activity, particularly in MYC-altered patients, support the continued development of CUDC-907 in these populations of high unmet need. (clinicaltrials.gov identifier: 01742988).
Collapse
Affiliation(s)
- Yasuhiro Oki
- Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kevin R Kelly
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, University of Southern California, Los Angeles, CA, USA
| | - Ian Flinn
- Sarah Cannon Research Institute, Nashville, TN, USA
| | - Manish R Patel
- Sarah Cannon Research Institute, Nashville, TN, USA.,Florida Cancer Specialists, Sarasota, FL, USA
| | | | - Anna Ma
- Curis Inc., Lexington, MA, USA
| | | | | | | | - Anas Younes
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
105
|
Hou MF, Luo CW, Chang TM, Hung WC, Chen TY, Tsai YL, Chai CY, Pan MR. The NuRD complex-mediated p21 suppression facilitates chemoresistance in BRCA-proficient breast cancer. Exp Cell Res 2017; 359:458-465. [PMID: 28842166 DOI: 10.1016/j.yexcr.2017.08.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 12/21/2022]
Abstract
The Mi-2/nucleosome remodeling and deacetylase (NuRD) complex play a role in silencing gene expression. CHD4, the core component of the NuRD complex, which cooperates with histone deacetylase in reducing tumor suppressor genes (TSGs). To dissect the mechanisms underlying cancer promotion, we clarify the role of CHD4 in cyclin-dependent kinase inhibitor protein p21. Here, our data indicates that CHD4 deficiency impairs the recruitments of HDAC1 to the p21 promoter. ~ 300bp proximal promoter region is responsible for CHD4-HDAC1 axis-mediated p21 transcriptional activity. For identifying the role of anti-cancer drug response, knockdown of p21 overcomes cisplatin and poly-(ADP-ribose) polymerase (PARP) inhibitor-mediated growth suppression in CHD4-depleted cells. Consistent with in vitro data, tissue of patients and bioinformatics approach also showed positive correlation between CHD4 and p21. Overall, our findings not only identify that CHD4 deficiency preferentially impairs cell survival via increasing the level of p21, but also establishes targeting CHD4 as a potential therapeutic implication in BRCA-proficient breast cancer treatment.
Collapse
Affiliation(s)
- Ming-Feng Hou
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 804, Taiwan; Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Surgery, Kaohsiung Municipal Hsiao Kang Hospital, Kaohsiung, Taiwan
| | - Chi-Wen Luo
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Tsung-Ming Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Tzu-Yi Chen
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 804, Taiwan
| | - Ya-Li Tsai
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 804, Taiwan; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
106
|
Yu W, Lu W, Chen G, Cheng F, Su H, Chen Y, Liu M, Pang X. Inhibition of histone deacetylases sensitizes EGF receptor-TK inhibitor-resistant non-small-cell lung cancer cells to erlotinib in vitro and in vivo. Br J Pharmacol 2017; 174:3608-3622. [PMID: 28749535 DOI: 10.1111/bph.13961] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 07/16/2017] [Accepted: 07/21/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Intrinsic and/or acquired resistance of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) commonly occurs in patients with non-small-cell lung cancer (NSCLC). Here, we developed a combined therapy of histone deacetylase inhibition by a novel HDAC inhibitor, YF454A, with erlotinib to overcome EGFR-TKI resistance in NSCLC. EXPERIMENTAL APPROACH The sensitization of the effects of erlotinib by YF454A was examined in a panel of EGFR-TKI-resistant NSCLC cell lines in vitro and two different erlotinib-resistant NSCLC xenograft mouse models in vivo. Western blotting and Affymetrix GeneChip expression analysis were further performed to determine the underlying mechanisms for the effects of the combination of erlotinib and YF454A. KEY RESULTS YF454A and erlotinib showed a strong synergy in the suppression of cell growth by blocking the cell cycle and triggering cell apoptosis in EGFR-TKI-resistant NSCLC cells. The combined treatment led to a significant decrease in tumour growth and tumour weight compared with single agents alone. Mechanistically, this combination therapy dramatically down-regulated the expression of several crucial EGFR-TKI resistance-related receptor tyrosine kinases, such as Her2, c-Met, IGF1R and AXL, at both the transcriptional and protein levels and consequently blocked the activation of downstream molecules Akt and ERK. Transcriptomic profiling analysis further revealed that YF454A and erlotinib synergistically suppressed the cell cycle pathway and decreased the transcription of cell-cycle related genes, such as MSH6 and MCM7. CONCLUSION AND IMPLICATIONS Our preclinical study of YF454A provides a rationale for combining erlotinib with a histone deacetylase inhibitor to treat NSCLC with EGFR-TKI resistance.
Collapse
Affiliation(s)
- Weiwei Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Guoliang Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Feixiong Cheng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.,Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hui Su
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,Institute of Biosciences and Technology, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, TX, USA
| | - Xiufeng Pang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
107
|
Tanaka N, Patel AA, Tang L, Silver NL, Lindemann A, Takahashi H, Jaksik R, Rao X, Kalu NN, Chen TC, Wang J, Frederick MJ, Johnson F, Gleber-Netto FO, Fu S, Kimmel M, Wang J, Hittelman WN, Pickering CR, Myers JN, Osman AA. Replication Stress Leading to Apoptosis within the S-phase Contributes to Synergism between Vorinostat and AZD1775 in HNSCC Harboring High-Risk TP53 Mutation. Clin Cancer Res 2017; 23:6541-6554. [PMID: 28790110 DOI: 10.1158/1078-0432.ccr-17-0947] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/19/2017] [Accepted: 08/04/2017] [Indexed: 02/06/2023]
Abstract
Purpose: The cure rate for patients with advanced head and neck squamous cell carcinoma (HNSCC) remains poor due to resistance to standard therapy primarily consisting of chemoradiation. As mutation of TP53 in HNSCC occurs in 60% to 80% of non-HPV-associated cases and is in turn associated with resistance to these treatments, more effective therapies are needed. In this study, we evaluated the efficacy of a regimen combining vorinostat and AZD1775 in HNSCC cells with a variety of p53 mutations.Experimental Design: Clonogenic survival assays and an orthotopic mouse model of oral cancer were used to examine the in vitro and in vivo sensitivity of high-risk mutant p53 HNSCC cell lines to vorinostat in combination with AZD1775. Cell cycle, replication stress, homologous recombination (HR), live cell imaging, RNA sequencing, and apoptosis analyses were performed to dissect molecular mechanisms.Results: We found that vorinostat synergizes with AZD1775 in vitro to inhibit growth of HNSCC cells harboring high-risk mutp53. These drugs interact synergistically to induce DNA damage, replication stress associated with impaired Rad51-mediated HR through activation of CDK1, and inhibition of Chk1 phosphorylation, culminating in an early apoptotic cell death during the S-phase of the cell cycle. The combination of vorinostat and AZD1775 inhibits tumor growth and angiogenesis in vivo in an orthotopic mouse model of oral cancer and prolongs animal survival.Conclusions: Vorinostat synergizes with AZD1775 in HNSCC cells with mutant p53 in vitro and in vivo A strategy combining HDAC and WEE1 inhibition deserves further clinical investigation in patients with advanced HNSCC. Clin Cancer Res; 23(21); 6541-54. ©2017 AACR.
Collapse
Affiliation(s)
- Noriaki Tanaka
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ameeta A Patel
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lin Tang
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Natalie L Silver
- Department of Otolaryngology, Division of Head and Neck Oncologic Surgery, University of Florida College of Medicine, Gainesville, Florida
| | - Antje Lindemann
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hideaki Takahashi
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roman Jaksik
- Department of Statistics, Rice University, Houston, Texas
| | - Xiayu Rao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nene N Kalu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tseng-Cheng Chen
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jiping Wang
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mitchell J Frederick
- Department of Otolaryngology/Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
| | - Faye Johnson
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Frederico O Gleber-Netto
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marek Kimmel
- Department of Statistics, Rice University, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Walter N Hittelman
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer, Houston, Texas
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Abdullah A Osman
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
108
|
Song KH, Choi CH, Lee HJ, Oh SJ, Woo SR, Hong SO, Noh KH, Cho H, Chung EJ, Kim JH, Chung JY, Hewitt SM, Baek S, Lee KM, Yee C, Son M, Mao CP, Wu TC, Kim TW. HDAC1 Upregulation by NANOG Promotes Multidrug Resistance and a Stem-like Phenotype in Immune Edited Tumor Cells. Cancer Res 2017; 77:5039-5053. [PMID: 28716899 DOI: 10.1158/0008-5472.can-17-0072] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/18/2017] [Accepted: 07/06/2017] [Indexed: 12/20/2022]
Abstract
Cancer immunoediting drives the adaptation of tumor cells to host immune surveillance. Immunoediting driven by antigen (Ag)-specific T cells enriches NANOG expression in tumor cells, resulting in a stem-like phenotype and immune resistance. Here, we identify HDAC1 as a key mediator of the NANOG-associated phenotype. NANOG upregulated HDAC1 through promoter occupancy, thereby decreasing histone H3 acetylation on K14 and K27. NANOG-dependent, HDAC1-driven epigenetic silencing of cell-cycle inhibitors CDKN2D and CDKN1B induced stem-like features. Silencing of TRIM17 and NOXA induced immune and drug resistance in tumor cells by increasing antiapoptotic MCL1. Importantly, HDAC inhibition synergized with Ag-specific adoptive T-cell therapy to control immune refractory cancers. Our results reveal that NANOG influences the epigenetic state of tumor cells via HDAC1, and they encourage a rational application of epigenetic modulators and immunotherapy in treatment of NANOG+ refractory cancer types. Cancer Res; 77(18); 5039-53. ©2017 AACR.
Collapse
Affiliation(s)
- Kwon-Ho Song
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Chel Hun Choi
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.,Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyo-Jung Lee
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Se Jin Oh
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Seon Rang Woo
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Translational Research Institute for Incurable Diseases, Korea University College of Medicine, Seoul, Republic of Korea
| | - Soon-Oh Hong
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Kyung Hee Noh
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hanbyoul Cho
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Joo Chung
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Joon-Yong Chung
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Stephen M Hewitt
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seungki Baek
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Kyung-Mi Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Cassian Yee
- Department of Melanoma Medical Oncology and Immunology, UT MDAnderson Cancer Center, Houston, Texas.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Minjoo Son
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Chih-Ping Mao
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - T C Wu
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Tae Woo Kim
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea. .,Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea.,Translational Research Institute for Incurable Diseases, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
109
|
Halaburková A, Jendželovský R, Kovaľ J, Herceg Z, Fedoročko P, Ghantous A. Histone deacetylase inhibitors potentiate photodynamic therapy in colon cancer cells marked by chromatin-mediated epigenetic regulation of CDKN1A. Clin Epigenetics 2017; 9:62. [PMID: 28603560 PMCID: PMC5465463 DOI: 10.1186/s13148-017-0359-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/24/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Hypericin-mediated photodynamic therapy (HY-PDT) has recently captured increased attention as an alternative minimally invasive anticancer treatment, although cancer cells may acquire resistance. Therefore, combination treatments may be necessary to enhance HY-PDT efficacy. Histone deacetylase inhibitors (HDACis) are often used in combination treatments due to their non-genotoxic properties and epigenetic potential to sensitize cells to external stimuli. Therefore, this study attempts for the first time to investigate the therapeutic effects of HDACis in combination with visible light-mediated PDT against cancer. Specifically, the colorectal cancer cell model was used due to its known resistance to HY-PDT. RESULTS Two chemical groups of HDACis were tested in combination with HY-PDT: the hydroxamic acids Saha and Trichostatin A, and the short-chain fatty acids valproic acid and sodium phenylbutyrate (NaPB), as inhibitors of all-class versus nuclear HDACs, respectively. The selected HDACis manifest a favorable clinical toxicity profile and showed similar potencies and mechanisms in intragroup comparisons but different biological effects in intergroup analyses. HDACi combination with HY-PDT significantly attenuated cancer cell resistance to treatment and caused the two HDACi groups to become similarly potent. However, the short-chain fatty acids, in combination with HY-PDT, showed increased selectivity towards inhibition of HDACs versus other key epigenetic enzymes, and NaPB induced the strongest expression of the otherwise silenced tumor suppressor CDKN1A, a hallmark gene for HDACi-mediated chromatin modulation. Epigenetic regulation of CDKN1A by NaPB was associated with histone acetylation at enhancer and promoter elements rather than histone or DNA methylation at those or other regulatory regions of this gene. Moreover, NaPB, compared to the other HDACis, caused milder effects on global histone acetylation, suggesting a more specific effect on CDKN1A chromatin architecture relative to global chromatin structure. The mechanism of NaPB + HY-PDT was P53-dependent and likely driven by the HY-PDT rather than the NaPB constituent. CONCLUSIONS Our results show that HDACis potentiate the antitumor efficacy of HY-PDT in colorectal cancer cells, overcoming their resistance to this drug and epigenetically reactivating the expression of CDKN1A. Besides their therapeutic potential, hypericin and these HDACis are non-genotoxic constituents of dietary agents, hence, represent interesting targets for investigating mechanisms of dietary-based cancer prevention.
Collapse
Affiliation(s)
- Andrea Halaburková
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Košice, Slovakia
| | - Rastislav Jendželovský
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Košice, Slovakia
| | - Ján Kovaľ
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Košice, Slovakia
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008 Lyon, France
| | - Peter Fedoročko
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Košice, Slovakia
| | - Akram Ghantous
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008 Lyon, France
| |
Collapse
|
110
|
Nebbioso A, Carafa V, Conte M, Tambaro FP, Abbondanza C, Martens J, Nees M, Benedetti R, Pallavicini I, Minucci S, Garcia-Manero G, Iovino F, Lania G, Ingenito C, Belsito Petrizzi V, Stunnenberg HG, Altucci L. c-Myc Modulation and Acetylation Is a Key HDAC Inhibitor Target in Cancer. Clin Cancer Res 2017; 23:2542-2555. [PMID: 27358484 DOI: 10.1158/1078-0432.ccr-15-2388] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 05/03/2016] [Accepted: 06/09/2016] [Indexed: 11/16/2022]
Abstract
Purpose: Histone deacetylase inhibitors (HDACi) are promising anticancer drugs. Although some HDACi have entered the clinic, the mechanism(s) underlying their tumor selectivity are poorly understood.Experimental Design and Results: Using gene expression analysis, we define a core set of six genes commonly regulated in acute myeloid leukemia (AML) blasts and cell lines. MYC, the most prominently modulated, is preferentially altered in leukemia. Upon HDACi treatment, c-Myc is acetylated at lysine 323 and its expression decreases, leading to TRAIL activation and apoptosis. c-Myc binds to the TRAIL promoter on the proximal GC box through SP1 or MIZ1, impairing TRAIL activation. HDACi exposure triggers TRAIL expression, altering c-Myc-TRAIL binding. These events do not occur in normal cells. Excitingly, this inverse correlation between TRAIL and c-Myc is supported by HDACi treatment ex vivo of AML blasts and primary human breast cancer cells. The predictive value of c-Myc to HDACi responsiveness is confirmed in vivo in AML patients undergoing HDACi-based clinical trials.Conclusions: Collectively, our findings identify a key role for c-Myc in TRAIL deregulation and as a biomarker of the anticancer action of HDACi in AML. The potential improved patient stratification could pave the way toward personalized therapies. Clin Cancer Res; 23(10); 2542-55. ©2016 AACR.
Collapse
Affiliation(s)
- Angela Nebbioso
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli Studi della Campania 'L. Vanvitelli', Naples, Italy.
- Department of Molecular Biology, Faculties of Science and Medicine, Radboud University, Nijmegen Center for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Vincenzo Carafa
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli Studi della Campania 'L. Vanvitelli', Naples, Italy
| | | | - Francesco Paolo Tambaro
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli Studi della Campania 'L. Vanvitelli', Naples, Italy
- Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Ciro Abbondanza
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli Studi della Campania 'L. Vanvitelli', Naples, Italy
| | - Joost Martens
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli Studi della Campania 'L. Vanvitelli', Naples, Italy
- Department of Molecular Biology, Faculties of Science and Medicine, Radboud University, Nijmegen Center for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Matthias Nees
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Rosaria Benedetti
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli Studi della Campania 'L. Vanvitelli', Naples, Italy
| | - Isabella Pallavicini
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | | | - Francesco Iovino
- Dipartimento Scienze Anestesiologiche, Chirurgiche e dell'Emergenza, Università degli Studi della Campania 'L. Vanvitelli', Naples, Italy
| | - Gabriella Lania
- Institute of Genetics and Biophysics (IGB) 'Adriano Buzzati Traverso', Naples, Italy
| | | | | | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculties of Science and Medicine, Radboud University, Nijmegen Center for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Lucia Altucci
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli Studi della Campania 'L. Vanvitelli', Naples, Italy.
- Institute of Genetics and Biophysics (IGB) 'Adriano Buzzati Traverso', Naples, Italy
| |
Collapse
|
111
|
Bo J, Wang X, Li J, Wang W, Zhang J. Consecutive stimulation of HBsAg promotes the viability of the human B lymphoblastoid cell line IM-9 through regulating the SIRT1-NF-κB pathway. Oncol Lett 2017; 14:433-440. [PMID: 28693188 PMCID: PMC5494909 DOI: 10.3892/ol.2017.6114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/07/2017] [Indexed: 12/30/2022] Open
Abstract
Patients with chronic HBV infection have been reported to suffer a significantly increased risk of NHL, but the underlying mechanisms remain to be clearly explained. The aim of the present study was to clarify the relationship between chronic HBV infection and NHL development. Fluorescence-activated cell sorting, Annexin V/7-aminoactinomycin D staining and MTS assay were used to analyze the rate of apoptosis and cell viability. In addition, western blotting was used to detect protein expression. The effects of the activator of SIRT1, SRT1720, and the inhibitor of SIRT1, nicotinamide, were also analyzed. The expression levels cytokines and chemokines were determined by multiplex assay. Hepatitis B surface antigen (HBsAg) was demonstrated to increase the viability of the human peripheral B lymphoblastoid cell line, IM-9, in a dose- and time-dependent manner. HBsAg also decreased histone H3 acetylation and p21 expression at the molecular level. HBsAg upregulated the expression of anti-apoptotic B-cell lymphoma-extra-large and B-cell lymphoma 2 proteins, and inactivated the intrinsic apoptosis pathway by reducing BCL2 associated X, apoptosis regulator expression and increasing the expression of sirtuin 1 (SIRT1) and nuclear factor-κB (NF-κB). HBsAg also altered the levels of certain chemokines and cytokines, including interleukin (IL)-4, -10 and -12, C-X-C motif chemokine 10 and C-C motif chemokine ligand 5. Inhibition of SIRT1 suppressed the effects induced by HBsAg. The anti-apoptotic effect of HBsAg in IM-9 cell lines occurred via the promotion of cell viability, inhibition of apoptosis, regulation of chemokines and cytokines, acetylation of histone H3 and alteration of SIRT1 and NF-κB expression. In conclusion, chronic stimulation with HBsAg promoted the viability of the human B lymphoblastoid cell line, IM-9, through regulation of the SIRT1-NF-κB pathway. This may be an underlying mechanism of HBV-associated NHL.
Collapse
Affiliation(s)
- Jian Bo
- Department of Hematology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Xiaojuan Wang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jie Li
- Department of Pathology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Wenqing Wang
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jinqian Zhang
- Department of Laboratory Medicine, The Second People's Hospital of Guangdong, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
112
|
5-Fluorouracil targets histone acetyltransferases p300/CBP in the treatment of colorectal cancer. Cancer Lett 2017; 400:183-193. [PMID: 28465257 DOI: 10.1016/j.canlet.2017.04.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/17/2017] [Accepted: 04/21/2017] [Indexed: 12/14/2022]
Abstract
Although 5-fluorouracil (5-FU) is known to interfere with the synthesis of ribonucleic acid and deoxyribonucleic acid, the mechanism underlying its therapeutic efficacy in colorectal cancer (CRC) has not been fully elucidated. We aimed to investigate the influence of 5-FU on histone acetylation, a well-established anti-cancer target, to reveal novel pharmacological effects of 5-FU and their significance for CRC therapy. Results demonstrated that 5-FU induces global histone de-acetylation in multiple CRC cell lines. We identified that 5-FU reduces the binding ability of histone acetyltransferases p300 and CBP to chromatin, and induces their degradation through lysosome. Further work revealed that the degradation of p300/CBP induced by 5-FU was dependent on chaperone-mediated autophagy, mediated by heat-shock cognate protein 70 kDa (hsc70) and lysosomal-associated membrane protein 2A (LAMP2A). Moreover, the degradation of p300/CBP is relevant to cellular resistance to 5-FU, since blocking the degradation enhances 5-FU's cytotoxicity in CRC cells. From clinical data, we demonstrated that low expression of p300/CBP in CRC tissue was closely associated with poor clinical response to 5-FU based-chemotherapy, based on the analysis of 262 colorectal samples from the patients receiving 5-FU treatment: compared to cases with high expression of p300/CBP, those with low expression had lower long-term disease-free survival rate and increased early-progression. These results elucidate a novel pharmacological effect of 5-FU involving global histone de-acetylation by promoting the degradation of p300/CBP, and highlights p300 and CBP as promising predictors of chemo-sensitivity to 5-FU treatment.
Collapse
|
113
|
Sun JY, Wang JD, Wang X, Liu HC, Zhang MM, Liu YC, Zhang CH, Su Y, Shen YY, Guo YW, Shen AJ, Geng MY. Marine-derived chromopeptide A, a novel class I HDAC inhibitor, suppresses human prostate cancer cell proliferation and migration. Acta Pharmacol Sin 2017; 38:551-560. [PMID: 28112184 DOI: 10.1038/aps.2016.139] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022]
Abstract
Histone deacetylases (HDACs), especially HDAC1, 2, 3 and 4, are abundantly expressed and over-activated in prostate cancer that is correlated with the poor prognosis. Thus, inhibition of HDAC activity has emerged as a potential alternative option for prostate cancer therapy. Chromopeptide A is a depsipeptide isolated from the marine sediment-derived bacterium Chromobacterium sp. HS-13-94; it has a chemical structure highly similar to FK228, a class I HDAC inhibitor that is approved by FDA for treating T-cell lymphoma. In this study, we determined whether chromopeptide A, like FK228, acted as a class I HDAC inhibitor, and whether chromopeptide A could inhibit the growth and migration of human prostate cancer in vitro and in vivo. HDAC enzyme selectivity and kinetic analysis revealed that chromopeptide A selectively inhibited the enzymatic activities of HDAC1, 2, 3 and 8 in a substrate non-competitive manner with comparable IC50 values for each HDAC member as FK228 in vitro. Importantly, chromopeptide A dose-dependently suppressed the proliferation of human prostate cancer cell lines PC3, DU145 and LNCaP with IC50 values of 2.43±0.02, 2.08±0.16, and 1.75±0.06 nmol/L, respectively, accompanied by dose-dependent inhibition of HDAC enzymatic activity in PC3 and DU145 cells. Chromopeptide A (0.2-50 nmol/L) caused G2/M phase arrest and induced apoptosis in the prostate cancer cell lines. Moreover, chromopeptide A dose-dependently inhibited the migration of PC3 cells. In mice bearing PC3 prostate cancer xenografts, intravenous injection of chromopeptide A (1.6, 3.2 mg/kg, once a week for 18 d) significantly suppressed the tumor growth, which was associated with increased expression levels of Ac-H3 and p21 in tumor tissues. Our results identify chromopeptide A as a novel class I HDAC inhibitor and provide therapeutic strategies that may be implemented in prostate cancer.
Collapse
|
114
|
Mondello P, Derenzini E, Asgari Z, Philip J, Brea EJ, Seshan V, Hendrickson RC, de Stanchina E, Scheinberg DA, Younes A. Dual inhibition of histone deacetylases and phosphoinositide 3-kinase enhances therapeutic activity against B cell lymphoma. Oncotarget 2017; 8:14017-14028. [PMID: 28147336 PMCID: PMC5355158 DOI: 10.18632/oncotarget.14876] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/02/2017] [Indexed: 01/07/2023] Open
Abstract
Phosphoinositide 3-kinase (PI3K) and Myc are known to cooperate in promoting the survival and growth of a variety of B-cell lymphomas. While currently there are no small molecule inhibitors of Myc protein, histone deacetylase (HDAC) inhibitors have been shown to reduce levels of Myc protein by suppressing its transcription. We assessed the efficacy of CUDC-907, a new rationally designed dual inhibitor of PI3K and HDACs, in a panel of lymphoma cell lines. CUDC-907 treatment resulted in a dose- and time-dependent growth inhibition and cell death of DLBCL cell lines, irrespective of the cell of origin. CUDC-907 treatment down-regulated the phosphorylation of PI3K downstream targets, including AKT, PRAS40, S6, and 4EBP1, increased histone 3 acetylation, and decreased Myc protein levels. SILAC-based quantitative mass spectrometry demonstrated that CUDC-907 treatment decreased the protein levels of several components of the B cell receptor (BCR) and Toll like receptor (TLR) pathways, including BTK, SYK, and MyD88 proteins. These cellular changes were associated with an inhibition of NF-kB activation. CUDC-907 demonstrated in vivo efficacy with no significant toxicity in a human DLBCL xenograft mouse model. Collectively, these data provide a mechanistic rationale for evaluating CUDC-907 for the treatment of patients with Myc and PI3K-dependent lymphomas.
Collapse
Affiliation(s)
- Patrizia Mondello
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Enrico Derenzini
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zahra Asgari
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John Philip
- Proteomics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elliott J. Brea
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Venkatraman Seshan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anas Younes
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
115
|
Damiani E, Puebla-Osorio N, Lege BM, Liu J, Neelapu SS, Ullrich SE. Platelet activating factor-induced expression of p21 is correlated with histone acetylation. Sci Rep 2017; 7:41959. [PMID: 28157211 PMCID: PMC5291204 DOI: 10.1038/srep41959] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/30/2016] [Indexed: 02/07/2023] Open
Abstract
Ultraviolet (UV)-irradiated keratinocytes secrete the lipid mediator of inflammation, platelet-activating factor (PAF). PAF plays an essential role in UV-induced immune suppression and skin cancer induction. Dermal mast cell migration from the skin to the draining lymph nodes plays a prominent role in activating systemic immune suppression. UV-induced PAF activates mast cell migration by up-regulating mast cell CXCR4 surface expression. Recent findings indicate that PAF up-regulates CXCR4 expression via histone acetylation. UV-induced PAF also activates cell cycle arrest and disrupts DNA repair, in part by increasing p21 expression. Do epigenetic alterations play a role in p21 up-regulation? Here we show that PAF increases Acetyl-CREB-binding protein (CBP/p300) histone acetyltransferase expression in a time and dose-dependent fashion. Partial deletion of the HAT domain in the CBP gene, blocked these effects. Chromatin immunoprecipitation assays indicated that PAF-treatment activated the acetylation of the p21 promoter. PAF-treatment had no effect on other acetylating enzymes (GCN5L2, PCAF) indicating it is not a global activator of histone acetylation. This study provides further evidence that PAF activates epigenetic mechanisms to affect important cellular processes, and we suggest this bioactive lipid can serve as a link between the environment and the epigenome.
Collapse
Affiliation(s)
- Elisabetta Damiani
- Dipartimento di Scienze della Vita e dell'Ambiente, Universita' Politecnica delle Marche, Ancona, Italy
| | - Nahum Puebla-Osorio
- Department of Lymphoma and Myeloma, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Bree M Lege
- Department of Lymphoma and Myeloma, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Jingwei Liu
- Department of Lymphoma and Myeloma, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephen E Ullrich
- Department of Immunology and The Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,The University of Texas Graduate School for Biomedical Sciences at Houston, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
116
|
Lindsay C, Seikaly H, Biron VL. Epigenetics of oropharyngeal squamous cell carcinoma: opportunities for novel chemotherapeutic targets. J Otolaryngol Head Neck Surg 2017; 46:9. [PMID: 28143553 PMCID: PMC5282807 DOI: 10.1186/s40463-017-0185-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/20/2017] [Indexed: 12/29/2022] Open
Abstract
Epigenetic modifications are heritable changes in gene expression that do not directly alter DNA sequence. These modifications include DNA methylation, histone post-translational modifications, small and non-coding RNAs. Alterations in epigenetic profiles cause deregulation of fundamental gene expression pathways associated with carcinogenesis. The role of epigenetics in oropharyngeal squamous cell carcinoma (OPSCC) has recently been recognized, with implications for novel biomarkers, molecular diagnostics and chemotherapeutics. In this review, important epigenetic pathways in human papillomavirus (HPV) positive and negative OPSCC are summarized, as well as the potential clinical utility of this knowledge.This material has never been published and is not currently under evaluation in any other peer-reviewed publication.
Collapse
Affiliation(s)
- Cameron Lindsay
- Faculty of Medicine and Dentistry, Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Alberta, 1E4.34 WMC, 8440 112 Street, Edmonton, AB, T6G 2B7, Canada
| | - Hadi Seikaly
- Faculty of Medicine and Dentistry, Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Alberta, 1E4.34 WMC, 8440 112 Street, Edmonton, AB, T6G 2B7, Canada
| | - Vincent L Biron
- Faculty of Medicine and Dentistry, Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Alberta, 1E4.34 WMC, 8440 112 Street, Edmonton, AB, T6G 2B7, Canada.
| |
Collapse
|
117
|
Park KC, Kim SM, Jeon JY, Kim BW, Kim HK, Chang HJ, Lee YS, Kim SY, Choi SH, Park CS, Chang HS. Synergistic Activity of N-hydroxy-7-(2-naphthylthio) Heptanomide and Sorafenib Against Cancer Stem Cells, Anaplastic Thyroid Cancer. Neoplasia 2017; 19:145-153. [PMID: 28142087 PMCID: PMC5279904 DOI: 10.1016/j.neo.2016.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/03/2016] [Accepted: 12/06/2016] [Indexed: 01/19/2023] Open
Abstract
Anaplastic thyroid carcinoma (ATC) although rare is the most deadly form of thyroid cancer. The fatality rate for ATC is high-pitched, the survival rate at 1 year after diagnosis is <20%. Control of ATC is severely hard and widespread with unpredictability. We Previous proved that histone gene reviser and epigenetic changes role significant parts in papillary and anaplastic thyroid cancer tumorigenesis. Herein, the goal of this study was to investigate the anti-tumor activities of a HDAC inhibitor, HNHA alone and in combination with sorafenib in ATC cells in vitro and in vivo and to explore its effects on apoptotic cell death pathways. Three ATC cell lines were exposed to sorafenib in the presence or absence of HNHA, and cell viability was determined by MTT assay. Effects of combined treatment on cell cycle and intracellular signaling pathways were assessed by flow cytometry and western blot analysis. The ATC cell lines xenograft model was used to examine the anti-tumor activity in vivo. Our data showed that HNHA and sorafenib synergistically decreased cell viability in ATC cells, and also significantly increased apoptotic cell death in these cells, as proved by the cleavage of caspase-3 and DNA fragmentation. HNHA and sorafenib combination was reduced anti-apoptotic factor in ATC. Thus, combination therapy with HNHA and sorafenib significantly decreased vessel density, and most significantly reduced tumor volume and increased survival in ATC xenografts. These results propose that HNHA in combination with sorafenib has significant anti-cancer activity in preclinical models, potentially suggesting a new clinical approach for patients of advanced thyroid cancer type.
Collapse
Affiliation(s)
- Ki Cheong Park
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Seok-Mo Kim
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Jeong Yong Jeon
- Department of Nuclear Medicine, Yonsei College of Medicine, Seoul 120-752, Republic of Korea
| | - Bup-Woo Kim
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Hyeung Kyoo Kim
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Ho Jin Chang
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Yong Sang Lee
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Soo Young Kim
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Seung Hoon Choi
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Cheong Soo Park
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Hang-Seok Chang
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea.
| |
Collapse
|
118
|
Regulation of genes related to immune signaling and detoxification in Apis mellifera by an inhibitor of histone deacetylation. Sci Rep 2017; 7:41255. [PMID: 28112264 PMCID: PMC5253729 DOI: 10.1038/srep41255] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 12/19/2016] [Indexed: 12/16/2022] Open
Abstract
The western honeybee (Apis mellifera) is essential for the global economy due to its important role in ecosystems and agriculture as a pollinator of numerous flowering plants and crops. Pesticide abuse has greatly impacted honeybees and caused tremendous loss of honeybee colonies worldwide. The reasons for colony loss remain unclear, but involvement of pesticides and pathogen-pesticide interactions has been hypothesized. Histone deacetylase inhibitors (HDACis) inhibit the activity of histone acetylase, which causes the hyperacetylation of histone cores and influences gene expression. In this study, sodium butyrate, an HDACi, was used as a dietary supplement for honeybees; after treatment, gene expression profiles were analyzed using quantitative PCR. The results showed that sodium butyrate up-regulated genes involved in anti-pathogen and detoxification pathways. The bioassay results showed that honeybees treated with sodium butyrate were more tolerant to imidacloprid. Additionally, sodium butyrate strengthened the immune response of honeybees to invasions of Nosema ceranae and viral infections. We also performed a bioassay in which honeybees were exposed to pesticides and pathogens. Our results provide additional data regarding the mechanism by which honeybees react to stress and the potential application of HDACis in beekeeping.
Collapse
|
119
|
Hutt DM, Roth DM, Marchal C, Bouchecareilh M. Using Histone Deacetylase Inhibitors to Analyze the Relevance of HDACs for Translation. Methods Mol Biol 2017; 1510:77-91. [PMID: 27761814 DOI: 10.1007/978-1-4939-6527-4_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Gene expression is regulated in part through the reversible acetylation of histones, by the action of histone acetyltransferases (HAT) and histone deacetylases (HDAC). HAT activity results in the addition of acetyl groups on the lysine residues of histone tails leading to decondensation of the chromatin, and increased gene transcription in general, whereas HDACs remove these acetyl groups, thus leading to an overall suppression of gene transcription. Recent evidence has elucidated that histones are not the only components of the proteome that are targeted by HATs and HDACs. A large number of nonhistone proteins undergo posttranslational acetylation. They include proteins involved in mRNA stability, protein localization and degradation, as well as protein-protein and protein-DNA interactions. In recent years, numerous studies have discovered increased HDAC expression and/or activity in numerous disease states, including cancer, where the upregulation of HDAC family members leads to dysregulation of genes and proteins involved in cell proliferation, cell cycle regulation, and apoptosis. These observations have pushed HDAC inhibitors (HDACi) to the forefront of therapeutic development of oncological conditions. HDACi, such as Vorinostat (Suberoylanilide hydroxamic acid (SAHA)), affect cancer cells in part by suppressing the translation of key proteins linked to tumorigenesis, such as cyclin D1 and hypoxia inducible factor 1 alpha (HIF-1α). Herein we describe methodologies to analyze the impact of the HDACi Vorinostat on HIF-1α translational regulation and downstream effectors.
Collapse
MESH Headings
- Acetylation
- Blotting, Western/methods
- Cell Line, Tumor
- Chromatin/chemistry
- Chromatin/drug effects
- Chromatin/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Cyclin D1/genetics
- Cyclin D1/metabolism
- Deferoxamine/pharmacology
- Eukaryotic Initiation Factor-3/antagonists & inhibitors
- Eukaryotic Initiation Factor-3/genetics
- Eukaryotic Initiation Factor-3/metabolism
- Gene Expression Regulation, Neoplastic
- Glycine/analogs & derivatives
- Glycine/pharmacology
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Histone Acetyltransferases/genetics
- Histone Acetyltransferases/metabolism
- Histone Deacetylase Inhibitors/pharmacology
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Histones/genetics
- Histones/metabolism
- Humans
- Hydroxamic Acids/pharmacology
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Leupeptins/pharmacology
- Protein Biosynthesis/drug effects
- Protein Processing, Post-Translational
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Vorinostat
Collapse
Affiliation(s)
- Darren M Hutt
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Daniela Martino Roth
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Christelle Marchal
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, Bordeaux, 33077, France
| | - Marion Bouchecareilh
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, Bordeaux, 33077, France.
| |
Collapse
|
120
|
Plant-derived flavone Apigenin: The small-molecule with promising activity against therapeutically resistant prostate cancer. Biomed Pharmacother 2017; 85:47-56. [DOI: 10.1016/j.biopha.2016.11.130] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/26/2016] [Accepted: 11/27/2016] [Indexed: 02/08/2023] Open
|
121
|
Sun K, Atoyan R, Borek MA, Dellarocca S, Samson MES, Ma AW, Xu GX, Patterson T, Tuck DP, Viner JL, Fattaey A, Wang J. Dual HDAC and PI3K Inhibitor CUDC-907 Downregulates MYC and Suppresses Growth of MYC-dependent Cancers. Mol Cancer Ther 2016; 16:285-299. [PMID: 27980108 DOI: 10.1158/1535-7163.mct-16-0390] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/26/2016] [Accepted: 11/12/2016] [Indexed: 11/16/2022]
Abstract
Upregulation of MYC is a common driver event in human cancers, and some tumors depend on MYC to maintain transcriptional programs that promote cell growth and proliferation. Preclinical studies have suggested that individually targeting upstream regulators of MYC, such as histone deacetylases (HDAC) and phosphoinositide 3-kinases (PI3K), can reduce MYC protein levels and suppress the growth of MYC-driven cancers. Synergy between HDAC and PI3K inhibition in inducing cancer cell death has also been reported, but the involvement of MYC regulation is unclear. In this study, we demonstrated that HDAC and PI3K inhibition synergistically downregulates MYC protein levels and induces apoptosis in "double-hit" (DH) diffuse large B-cell lymphoma (DLBCL) cells. Furthermore, CUDC-907, a small-molecule dual-acting inhibitor of both class I and II HDACs and class I PI3Ks, effectively suppresses the growth and survival of MYC-altered or MYC-dependent cancer cells, such as DH DLBCL and BRD-NUT fusion-positive NUT midline carcinoma (NMC) cells, and MYC protein downregulation is an early event induced by CUDC-907 treatment. Consistently, the antitumor activity of CUDC-907 against multiple MYC-driven cancer types was also demonstrated in animal models, including DLBCL and NMC xenograft models, Myc transgenic tumor syngeneic models, and MYC-amplified solid tumor patient-derived xenograft (PDX) models. Our findings suggest that dual function HDAC and PI3K inhibitor CUDC-907 is an effective agent targeting MYC and thus may be developed as potential therapy for MYC-dependent cancers. Mol Cancer Ther; 16(2); 285-99. ©2016 AACR.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna W Ma
- Curis, Inc., Lexington, Massachusetts
| | | | | | | | | | | | - Jing Wang
- Curis, Inc., Lexington, Massachusetts.
| |
Collapse
|
122
|
Kang HB, Lee HR, Jee DJ, Shin SH, Nah SS, Yoon SY, Kim JW. PRDM1, a Tumor-Suppressor Gene, is Induced by Genkwadaphnin in Human Colon Cancer SW620 Cells. J Cell Biochem 2016; 117:172-9. [PMID: 26096175 DOI: 10.1002/jcb.25262] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/16/2015] [Indexed: 12/30/2022]
Abstract
Genkwadaphnin (GD-1) is isolated from the flower buds of Daphne genkwa Siebold et Zuccarini (Thymelaeaceae), and it has been used as a traditional Korean and Chinese medicine. In this study, the authors observe that GD-1 inhibits the growth of the colon cancer cell line, SW620, through the up-regulation of p21 expression in a PRDM1-dependent manner. After treatment with GD-1, the transcriptional repressor PRDM1 is prominently induced in SW620 cells. Furthermore, GD-1 induce the phosphorylation of PKD1 and MEK and subsequently provide PRDM1 enhancement, resulting in the suppression of c-Myc expression and the up-regulation of p21. PKD1 knockdown using siRNA abrogates PRDM1 expression by GD-1 and subsequently disrupts the regulation of c-Myc and p21 expression. Treating SW620 cells with GD-1 inhibits cell-cycle progression and is characterized by the down-regulation of c-Myc followed by the up-regulation of p21 expression. The up-regulation of p21 by GD-1 induces the growth arrest of the SW620 colon cancer cell line. Based on these data, the authors propose that GD-1 has tumor-suppressor activity that may contribute to the anti-tumor effects of PRDM1 in colon cancer.
Collapse
Affiliation(s)
- Ho-Bum Kang
- Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ha-Reum Lee
- Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Da Jung Jee
- Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Su-Hyun Shin
- Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Soonchunhyang Medical Science Research Institute, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Seong-Su Nah
- Head of Rheumatology, Department of Internal Medicine, Soonchunhyang University Choenan hospital College of Medicine, Choenan, 330-721, Republic of Korea
| | - Sun Young Yoon
- ENZYCHEM Lifesciences, 103-6, KAIST-ICC F741, Munjidong, Daejeon, 305-732, Republic of Korea
| | - Jae Wha Kim
- Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
123
|
Saenglee S, Jogloy S, Patanothai A, Leid M, Senawong T. Cytotoxic effects of peanut phenolics possessing histone deacetylase inhibitory activity in breast and cervical cancer cell lines. Pharmacol Rep 2016; 68:1102-1110. [DOI: 10.1016/j.pharep.2016.06.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/22/2016] [Accepted: 06/27/2016] [Indexed: 12/28/2022]
|
124
|
Huang Y, Wu R, Su ZY, Guo Y, Zheng X, Yang CS, Kong AN. A naturally occurring mixture of tocotrienols inhibits the growth of human prostate tumor, associated with epigenetic modifications of cyclin-dependent kinase inhibitors p21 and p27. J Nutr Biochem 2016; 40:155-163. [PMID: 27889685 DOI: 10.1016/j.jnutbio.2016.10.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/19/2016] [Accepted: 10/30/2016] [Indexed: 11/25/2022]
Abstract
Tocotrienols, members of the vitamin E family, have three unsaturated bonds in their side chains. Recently, it has been suggested that the biological effects of tocotrienols may differ from that of tocopherols. Several in vitro studies have shown that tocotrienols have stronger anticancer effects than tocopherols. VCaP cell line used in this study is from a vertebral bone metastasis from a patient with prostate cancer. Eight-week-old male NCr(-/-) nude mice were subcutaneously injected with VCaP-luc cells in matrigel and then administered a tocotrienol mixture for 8 weeks. The tocotrienol mixture inhibited the growth of human prostate tumor xenografts in a dose-dependent manner. The concentrations of tocotrienols and their metabolites were significantly increased in treatment groups. Tocotrienols inhibited prostate tumor growth by suppressing cell proliferation, which was associated with the induction of the cyclin-dependent kinase (CDK) inhibitors p21 and p27. In addition, tocotrienol treatment was associated with elevated H3K9 acetylation levels at proximal promoter regions of p21 and p27 and with decreased expression of histone deacetylases. Tocotrienols inhibited human prostate tumor growth, associated with up-regulation of the CDK inhibitors p21 and p27. Elevated expression of p21 and p27 could be partly due to the suppressed expression of HDACs.
Collapse
Affiliation(s)
- Ying Huang
- Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Renyi Wu
- Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Zheng-Yuan Su
- Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Bioscience Technology, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan (R.O.C.)
| | - Yue Guo
- Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Xi Zheng
- Department of Chemical Biology, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Chung S Yang
- Department of Chemical Biology, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
125
|
Imai Y, Maru Y, Tanaka J. Action mechanisms of histone deacetylase inhibitors in the treatment of hematological malignancies. Cancer Sci 2016; 107:1543-1549. [PMID: 27554046 PMCID: PMC5132279 DOI: 10.1111/cas.13062] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/12/2016] [Accepted: 08/12/2016] [Indexed: 12/31/2022] Open
Abstract
Histone deacetylases (HDACs) critically regulate gene expression by determining the acetylation status of histones. Studies have increasingly focused on the activities of HDACs, especially involving non-histone proteins, and their various biological effects. Aberrant HDAC expression observed in several kinds of human tumors makes HDACs potential targets for cancer treatment. Several preclinical studies have suggested that HDAC inhibitors show some efficacy in the treatment of acute myelogenous leukemia with AML1-ETO, which mediates transcriptional repression through its interaction with a complex including HDAC1. Recurrent mutations in epigenetic regulators are found in T-cell lymphomas (TCLs), and HDAC inhibitors and hypomethylating agents were shown to act cooperatively in the treatment of TCLs. Preclinical modeling has suggested that persistent activation of the signal transducer and activator of transcription signaling pathway could serve as a useful biomarker of resistance to HDAC inhibitor in patients with cutaneous TCL. Panobinostat, a pan-HDAC inhibitor, in combination with bortezomib and dexamethasone, has achieved longer progression-free survival in patients with relapsed/refractory multiple myeloma (MM) than the placebo in combination with bortezomib and dexamethasone. Panobinostat inhibited MM cell growth by degrading protein phosphatase 3 catalytic subunit α (PPP3CA), a catalytic subunit of calcineurin. This degradation was suggested to be mediated by the blockade of the chaperone function of heat shock protein 90 due to HDAC6 inhibition. Aberrant PPP3CA expression in advanced MM indicated a possible correlation between high PPP3CA expression and the pathogenesis of MM. Furthermore, PPP3CA was suggested as a common target of panobinostat and bortezomib.
Collapse
Affiliation(s)
- Yoichi Imai
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoshiro Maru
- Department of Pharmacology, Tokyo Women's Medical University, Tokyo, Japan
| | - Junji Tanaka
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
126
|
Huang R, Langdon SP, Tse M, Mullen P, Um IH, Faratian D, Harrison DJ. The role of HDAC2 in chromatin remodelling and response to chemotherapy in ovarian cancer. Oncotarget 2016; 7:4695-711. [PMID: 26683361 PMCID: PMC4826236 DOI: 10.18632/oncotarget.6618] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/26/2015] [Indexed: 12/29/2022] Open
Abstract
Chromatin undergoes structural changes in response to extracellular and environmental signals. We observed changes in nuclear morphology in cancer tissue biopsied after chemotherapy and hypothesised that these DNA damage-induced changes are mediated by histone deacetylases (HDACs). Nuclear morphological changes in cell lines (PE01 and PE04 models) and a xenograft model (OV1002) were measured in response to platinum chemotherapy by image analysis of nuclear texture. HDAC2 expression increased in PEO1 cells treated with cisplatin at 24h, which was accompanied by increased expression of heterochromatin protein 1 (HP1). HDAC2 and HP1 expression were also increased after carboplatin treatment in the OV1002 carboplatin-sensitive xenograft model but not in the insensitive HOX424 model. Expression of DNA damage response pathways (pBRCA1, γH2AX, pATM, pATR) showed time-dependent changes after cisplatin treatment. HDAC2 knockdown by siRNA reduced HP1 expression, induced DNA double strand breaks (DSB) measured by γH2AX, and interfered with the activation of DNA damage response induced by cisplatin. Furthermore, HDAC2 depletion affected γH2AX foci formation, cell cycle distribution, and apoptosis triggered by cisplatin, and was additive to the inhibitory effect of cisplatin in cell lines. By inhibiting expression of HDAC2, reversible alterations in chromatin patterns during cisplatin treatment were observed. These results demonstrate quantifiable alterations in nuclear morphology after chemotherapy, and implicate HDAC2 in higher order chromatin changes and cellular DNA damage responses in ovarian cancer cells in vitro and in vivo.
Collapse
Affiliation(s)
- Rui Huang
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Simon P Langdon
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Matthew Tse
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Peter Mullen
- School of Medicine, University of St Andrews, St Andrews, Fife KY16 9TF, UK
| | - In Hwa Um
- School of Medicine, University of St Andrews, St Andrews, Fife KY16 9TF, UK
| | - Dana Faratian
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - David J Harrison
- School of Medicine, University of St Andrews, St Andrews, Fife KY16 9TF, UK
| |
Collapse
|
127
|
HDAC1 and HDAC2 integrate the expression of p53 mutants in pancreatic cancer. Oncogene 2016; 36:1804-1815. [PMID: 27721407 DOI: 10.1038/onc.2016.344] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/05/2016] [Accepted: 08/15/2016] [Indexed: 12/25/2022]
Abstract
Mutation of p53 is a frequent genetic lesion in pancreatic cancer being an unmet clinical challenge. Mutants of p53 have lost the tumour-suppressive functions of wild type p53. In addition, p53 mutants exert tumour-promoting functions, qualifying them as important therapeutic targets. Here, we show that the class I histone deacetylases HDAC1 and HDAC2 contribute to maintain the expression of p53 mutants in human and genetically defined murine pancreatic cancer cells. Our data reveal that the inhibition of these HDACs with small molecule HDAC inhibitors (HDACi), as well as the specific genetic elimination of HDAC1 and HDAC2, reduce the expression of mutant p53 mRNA and protein levels. We further show that HDAC1, HDAC2 and MYC directly bind to the TP53 gene and that MYC recruitment drops upon HDAC inhibitor treatment. Therefore, our results illustrate a previously unrecognized class I HDAC-dependent control of the TP53 gene and provide evidence for a contribution of MYC. A combined approach targeting HDAC1/HDAC2 and MYC may present a novel and molecularly defined strategy to target mutant p53 in pancreatic cancer.
Collapse
|
128
|
Igaz N, Kovács D, Rázga Z, Kónya Z, Boros IM, Kiricsi M. Modulating chromatin structure and DNA accessibility by deacetylase inhibition enhances the anti-cancer activity of silver nanoparticles. Colloids Surf B Biointerfaces 2016; 146:670-677. [PMID: 27434153 DOI: 10.1016/j.colsurfb.2016.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/02/2016] [Accepted: 07/03/2016] [Indexed: 12/31/2022]
Abstract
Histone deacetylase (HDAC) inhibitors are considered as novel therapeutic agents inducing cell cycle arrest and apoptotic cell death in various cancer cells. Inhibition of deacetylase activity results in a relaxed chromatin structure thereby rendering the genetic material more vulnerable to DNA targeting agents that could be exploited by combinational cancer therapy. The unique potential of silver nanoparticles (AgNPs) in tumor therapy relies on the generation of reactive radicals which trigger oxidative stress, DNA damage and apoptosis in cancer cells. The revolutionary application of AgNPs as chemotherapeutical drugs seems very promising, nevertheless the exact molecular mechanisms of AgNP action in combination with other anti-cancer agents have yet to be elucidated in details before clinical administrations. As a step towards this we investigated the combinational effect of HDAC inhibition and AgNP administration in HeLa cervical cancer cells. We identified synergistic inhibition of cancer cell growth and migration upon combinational treatments. Here we report that the HDAC inhibitor Trichostatin A enhances the DNA targeting capacity and apoptosis inducing efficacy of AgNPs most probably due to its effect on chromatin condensation. These results point to the potential benefits of combinational application of HDAC inhibitors and AgNPs in novel cancer medication protocols.
Collapse
Affiliation(s)
- Nóra Igaz
- Department of Biochemistry and Molecular Biology, University of Szeged, Középfasor 52, H-6726, Szeged, Hungary
| | - Dávid Kovács
- Department of Biochemistry and Molecular Biology, University of Szeged, Középfasor 52, H-6726, Szeged, Hungary
| | - Zsolt Rázga
- Department of Pathology, University of Szeged, Állomás utca 2, H-6720, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720, Szeged, Hungary; MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich Béla tér 1, H-6720, Szeged, Hungary
| | - Imre M Boros
- Department of Biochemistry and Molecular Biology, University of Szeged, Középfasor 52, H-6726, Szeged, Hungary; Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, University of Szeged, Középfasor 52, H-6726, Szeged, Hungary.
| |
Collapse
|
129
|
Gong F, Chiu LY, Miller KM. Acetylation Reader Proteins: Linking Acetylation Signaling to Genome Maintenance and Cancer. PLoS Genet 2016; 12:e1006272. [PMID: 27631103 PMCID: PMC5025232 DOI: 10.1371/journal.pgen.1006272] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chromatin-based DNA damage response (DDR) pathways are fundamental for preventing genome and epigenome instability, which are prevalent in cancer. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) catalyze the addition and removal of acetyl groups on lysine residues, a post-translational modification important for the DDR. Acetylation can alter chromatin structure as well as function by providing binding signals for reader proteins containing acetyl-lysine recognition domains, including the bromodomain (BRD). Acetylation dynamics occur upon DNA damage in part to regulate chromatin and BRD protein interactions that mediate key DDR activities. In cancer, DDR and acetylation pathways are often mutated or abnormally expressed. DNA damaging agents and drugs targeting epigenetic regulators, including HATs, HDACs, and BRD proteins, are used or are being developed to treat cancer. Here, we discuss how histone acetylation pathways, with a focus on acetylation reader proteins, promote genome stability and the DDR. We analyze how acetylation signaling impacts the DDR in the context of cancer and its treatments. Understanding the relationship between epigenetic regulators, the DDR, and chromatin is integral for obtaining a mechanistic understanding of genome and epigenome maintenance pathways, information that can be leveraged for targeting acetylation signaling, and/or the DDR to treat diseases, including cancer.
Collapse
Affiliation(s)
- Fade Gong
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Li-Ya Chiu
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Kyle M. Miller
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
130
|
Rosati R, Chen B, Patki M, McFall T, Ou S, Heath E, Ratnam M, Qin Z. Hybrid Enzalutamide Derivatives with Histone Deacetylase Inhibitor Activity Decrease Heat Shock Protein 90 and Androgen Receptor Levels and Inhibit Viability in Enzalutamide-Resistant C4-2 Prostate Cancer Cells. Mol Pharmacol 2016; 90:225-37. [PMID: 27382012 PMCID: PMC4998664 DOI: 10.1124/mol.116.103416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/30/2016] [Indexed: 11/22/2022] Open
Abstract
Histone deacetylase inhibitors (HDACIs) can disrupt the viability of prostate cancer (PCa) cells through modulation of the cytosolic androgen receptor (AR) chaperone protein heat shock protein 90 (HSP90). However, toxicities associated with their pleiotropic effects could contribute to the ineffectiveness of HDACIs in PCa treatment. We designed hybrid molecules containing partial chemical scaffolds of enzalutamide and suberoylanilide hydroxamic acid (SAHA), with weakened intrinsic pan-HDACI activities, to target HSP90 and AR in enzalutamide-resistant PCa cells. The potency of the new molecules, compounds 2-75 [4-(3-(4-cyano-3-(trifluoromethyl)phenyl)-5,5-dimethyl-4-oxo-2-thioxoimidazolidin-1-yl)-2-fluoro-N-(7-(hydroxyamino)-7-oxoheptyl)benzamide] and 1005 [(E)-3-(4-(3-(4-cyano-3-(trifluoromethyl)phenyl)-5,5-dimethyl-4-oxo-2-thioxoimidazolidin-1-yl)-2-fluorophenyl)-N-hydroxyacrylamide], as inhibitors of nuclear and cytosolic histone deacetylases was substantially lower than that of SAHA in cell-free and in situ assays. Compounds 2-75 and 1005 antagonized gene activation by androgen without inducing chromatin association of AR. Enzalutamide had no effect on the levels of AR or HSP90, whereas the hybrid compounds induced degradation of both AR and HSP90, similar to (compound 1005) or more potently than (compound 2-75) SAHA. Similar to SAHA, compounds 2-75 and 1005 decreased the level of HSP90 and induced acetylation in a predicted approximately 55 kDa HSP90 fragment. Compared with SAHA, compound 2-75 induced greater hyperacetylation of the HDAC6 substrate α-tubulin. In contrast with SAHA, neither hybrid molecule caused substantial hyperacetylation of histones H3 and H4. Compounds 2-75 and 1005 induced p21 and caused loss of viability in the enzalutamide-resistant C4-2 cells, with efficacies that were comparable to or better than SAHA. The results suggest the potential of the new compounds as prototype antitumor drugs that would downregulate HSP90 and AR in enzalutamide-resistant PCa cells with weakened effects on nuclear HDACI targets.
Collapse
Affiliation(s)
- Rayna Rosati
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology (R.R., M.P., T.M., E.H., M.R.) and Pharmaceutical Sciences (B.C., S.O., Z.Q.), Wayne State University, Detroit, Michigan
| | - Bailing Chen
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology (R.R., M.P., T.M., E.H., M.R.) and Pharmaceutical Sciences (B.C., S.O., Z.Q.), Wayne State University, Detroit, Michigan
| | - Mugdha Patki
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology (R.R., M.P., T.M., E.H., M.R.) and Pharmaceutical Sciences (B.C., S.O., Z.Q.), Wayne State University, Detroit, Michigan
| | - Thomas McFall
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology (R.R., M.P., T.M., E.H., M.R.) and Pharmaceutical Sciences (B.C., S.O., Z.Q.), Wayne State University, Detroit, Michigan
| | - Siyu Ou
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology (R.R., M.P., T.M., E.H., M.R.) and Pharmaceutical Sciences (B.C., S.O., Z.Q.), Wayne State University, Detroit, Michigan
| | - Elisabeth Heath
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology (R.R., M.P., T.M., E.H., M.R.) and Pharmaceutical Sciences (B.C., S.O., Z.Q.), Wayne State University, Detroit, Michigan
| | - Manohar Ratnam
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology (R.R., M.P., T.M., E.H., M.R.) and Pharmaceutical Sciences (B.C., S.O., Z.Q.), Wayne State University, Detroit, Michigan
| | - Zhihui Qin
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology (R.R., M.P., T.M., E.H., M.R.) and Pharmaceutical Sciences (B.C., S.O., Z.Q.), Wayne State University, Detroit, Michigan
| |
Collapse
|
131
|
Zhu G, Tao T, Zhang D, Liu X, Qiu H, Han L, Xu Z, Xiao Y, Cheng C, Shen A. O-GlcNAcylation of histone deacetylases 1 in hepatocellular carcinoma promotes cancer progression. Glycobiology 2016; 26:820-833. [PMID: 27060025 DOI: 10.1093/glycob/cww025] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 02/22/2016] [Indexed: 01/04/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor originating in the liver. Previous studies have indicated that O-GlcNAc transferase (OGT) and histone deacetylase-1 (HDAC1) play important roles in the pathogenesis of HCC. In the present study, we investigated the physical link between OGT and HDAC1. The O-GlcNAcylation of HDAC1 is overexpressed in HCC. We found that HDAC1 has two major sites of O-GlcNAcylation in its histone deacetylase domain. HDAC1 O-GlcNAcylation increases the activated phosphorylation of HDAC1, which enhances its enzyme activity. HDAC1 O-GlcNAc mutants promote the p21 transcription regulation through affecting the acetylation levels of histones from chromosome, and then influence the proliferation of HCC cells. We also found that mutants of O-GlcNAcylation site of HDAC1 affect invasion and migration of HepG2 cells. E-cadherin level is highly up-regulated in HDAC1 O-GlcNAc mutant-treated liver cancer cells, which inhibit the occurrence and development of HCC. Our findings suggest that OGT promotes the O-GlcNAc modification of HDAC1in the development of HCC. Therefore, inhibiting O-GlcNAcylation of HDAC1 may repress the progression of HCC.
Collapse
Affiliation(s)
- Guizhou Zhu
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
| | - Tao Tao
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
| | - Dongmei Zhang
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
| | - Xiaojuan Liu
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
| | - Huiyuan Qiu
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
| | - LiJian Han
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
| | - Zhiwei Xu
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
| | - Ying Xiao
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
| | - Chun Cheng
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
| | - Aiguo Shen
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
- Department of Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
| |
Collapse
|
132
|
Abstract
Enhancer elements function as the logic gates of the genetic regulatory circuitry. One of their most important functions is the integration of extracellular signals with intracellular cell fate information to generate cell type-specific transcriptional responses. Mutations occurring in cancer often misregulate enhancers that normally control the signal-dependent expression of growth-related genes. This misregulation can result from trans-acting mechanisms, such as activation of the transcription factors or epigenetic regulators that control enhancer activity, or can be caused in cis by direct mutations that alter the activity of the enhancer or its target gene specificity. These processes can generate tumour type-specific super-enhancers and establish a 'locked' gene regulatory state that drives the uncontrolled proliferation of cancer cells. Here, we review the role of enhancers in cancer, and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Inderpreet Sur
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, and Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Jussi Taipale
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, and Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Genome-Scale Biology Program, University of Helsinki, Biomedicum, PO Box 63, Helsinki 00014, Finland
| |
Collapse
|
133
|
Phase 2 study of panobinostat with or without rituximab in relapsed diffuse large B-cell lymphoma. Blood 2016; 128:185-94. [PMID: 27166360 DOI: 10.1182/blood-2016-02-699520] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/22/2016] [Indexed: 12/16/2022] Open
Abstract
The majority of diffuse large B-cell lymphoma (DLBCL) tumors contain mutations in histone-modifying enzymes (HMEs), indicating a potential therapeutic benefit of histone deacetylase inhibitors (HDIs), and preclinical data suggest that HDIs augment the effect of rituximab. In this randomized phase 2 study, we evaluated the response rate and toxicity of panobinostat, a pan-HDI administered 30 mg orally 3 times weekly, with or without rituximab, in 40 patients with relapsed or refractory de novo (n = 27) or transformed (n = 13) DLBCL. Candidate genes and whole exomes were sequenced in relapse tumor biopsies to search for molecular correlates, and these data were used to quantify circulating tumor DNA (ctDNA) in serial plasma samples. Eleven of 40 patients (28%) responded to panobinostat (95% confidence interval [CI] 14.6-43.9) and rituximab did not increase responses. The median duration of response was 14.5 months (95% CI 9.4 to "not reached"). At time of data censoring, 6 of 11 patients had not progressed. Of the genes tested for mutations, only those in MEF2B were significantly associated with response. We detected ctDNA in at least 1 plasma sample from 96% of tested patients. A significant increase in ctDNA at day 15 relative to baseline was strongly associated with lack of response (sensitivity 71.4%, specificity 100%). We conclude that panobinostat induces very durable responses in some patients with relapsed DLBCL, and early responses can be predicted by mutations in MEF2B or a significant change in ctDNA level at 15 days after treatment initiation. This clinical trial was registered at www.ClinicalTrials.gov (#NCT01238692).
Collapse
|
134
|
Ganai SA. Histone deacetylase inhibitor sulforaphane: The phytochemical with vibrant activity against prostate cancer. Biomed Pharmacother 2016; 81:250-257. [PMID: 27261601 DOI: 10.1016/j.biopha.2016.04.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 04/10/2016] [Accepted: 04/10/2016] [Indexed: 12/28/2022] Open
Abstract
Epigenetic modifications are closely involved in the patho-physiology of prostate cancer. Histone deacetylases (HDACs), the transcriptional corepressors have strong crosstalk with prostate cancer progression as they influence various genes related to tumour suppression. HDACs play a marked role in myriad of human cancers and as such are emerging as striking molecular targets for anticancer drugs and therapy. Histone deacetylase inhibitors (HDACi), the small-molecules interfering HDACs are emerging as promising chemotherapeutic agents. These inhibitors have shown multiple effects including cell growth arrest, differentiation and apoptosis in prostate cancer. The limited efficacy of HDACi as single agents in anticancer therapy has been strongly improved via novel therapeutic strategies like doublet therapy (combined therapy). More than 20HDACi have already entered into the journey of clinical trials and four have been approved by FDA against diverse cancers. This review deals with plant derived HDACi sulphoraphane (SFN; 1-isothiocyanato-4-(methylsulfinyl)-butane) and its potential role in prostate cancer therapy along with the underlying molecular mechanism being involved. The article further highlights the therapeutic strategy that can be utilized for sensitizing conventional therapy resistant cases and for acquiring the maximum therapeutic benefit from this promising inhibitor in the upcoming future.
Collapse
Affiliation(s)
- Shabir Ahmad Ganai
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006 Jammu & Kashmir, India.
| |
Collapse
|
135
|
Hammond SA, Nelson CJ, Helbing CC. Environmental influences on the epigenomes of herpetofauna and fish. Biochem Cell Biol 2016; 94:95-100. [DOI: 10.1139/bcb-2015-0111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Herpetofauna (amphibians and reptiles) and fish represent important sentinel and indicator species for environmental and ecosystem health. It is widely accepted that the epigenome plays an important role in gene expression regulation. Environmental stimuli, including temperature and pollutants, influence gene activity, and there is growing evidence demonstrating that an important mechanism is through modulation of the epigenome. This has been primarily studied in human and mammalian models; relatively little is known about the impact of environmental conditions or pollutants on herpetofauna or fish epigenomes and the regulatory consequences of these changes on gene expression. Herein we review recent studies that have begun to address this deficiency, which have mainly focused on limited specific epigenetic marks and individual genes or large-scale global changes in DNA methylation, owing to the comparative ease of measurement. Greater understanding of the epigenetic influences of these environmental factors will depend on increased availability of relevant species-specific genomic sequence information to facilitate chromatin immunoprecipitation and DNA methylation experiments.
Collapse
Affiliation(s)
- S. Austin Hammond
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC V8W 2Y2, Canada
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC V8W 2Y2, Canada
| | - Christopher J. Nelson
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC V8W 2Y2, Canada
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC V8W 2Y2, Canada
| | - Caren C. Helbing
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC V8W 2Y2, Canada
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
136
|
Foley C, Mitsiades N. Moving Beyond the Androgen Receptor (AR): Targeting AR-Interacting Proteins to Treat Prostate Cancer. HORMONES & CANCER 2016; 7:84-103. [PMID: 26728473 PMCID: PMC5380740 DOI: 10.1007/s12672-015-0239-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/23/2015] [Indexed: 02/07/2023]
Abstract
Medical or surgical castration serves as the backbone of systemic therapy for advanced and metastatic prostate cancer, taking advantage of the importance of androgen signaling in this disease. Unfortunately, resistance to castration emerges almost universally. Despite the development and approval of new and more potent androgen synthesis inhibitors and androgen receptor (AR) antagonists, prostate cancers continue to develop resistance to these therapeutics, while often maintaining their dependence on the AR signaling axis. This highlights the need for innovative therapeutic approaches that aim to continue disrupting AR downstream signaling but are orthogonal to directly targeting the AR itself. In this review, we discuss the preclinical research that has been done, as well as clinical trials for prostate cancer, on inhibiting several important families of AR-interacting proteins, including chaperones (such as heat shock protein 90 (HSP90) and FKBP52), pioneer factors (including forkhead box protein A1 (FOXA1) and GATA-2), and AR transcriptional coregulators such as the p160 steroid receptor coactivators (SRCs) SRC-1, SRC-2, SRC-3, as well as lysine deacetylases (KDACs) and lysine acetyltransferases (KATs). Researching the effect of-and developing new therapeutic agents that target-the AR signaling axis is critical to advancing our understanding of prostate cancer biology, to continue to improve treatments for prostate cancer and for overcoming castration resistance.
Collapse
Affiliation(s)
- Christopher Foley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Suite R407, MS: BCM187, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Suite R407, MS: BCM187, Houston, TX, 77030, USA
| | - Nicholas Mitsiades
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Suite R407, MS: BCM187, Houston, TX, 77030, USA.
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Suite R407, MS: BCM187, Houston, TX, 77030, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
137
|
Morak-Młodawska B, Pluta K, Latocha M, Suwińska K, Jeleń M, Kuśmierz D. 3,6-Diazaphenothiazines as potential lead molecules - synthesis, characterization and anticancer activity. J Enzyme Inhib Med Chem 2016; 31:1512-9. [PMID: 26950280 DOI: 10.3109/14756366.2016.1151014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
3,6-Diazaphenothiazines were obtained in cyclization of 3-amino-3'-nitro-2,4'-dipyridinyl sulfide and the reaction of sodium 3-amino-2-pyridinethiolate with 4-chloro-3-nitropyridine followed by alkylation and heteroarylation. The thiazine ring formation ran via the Smiles rearrangement. The structure elucidation was based on 2D NMR and X-ray analysis of N-methylated product. 3,6-Diazaphenothiazines were investigated for antitumor activity using glioblastoma SNB-19, melanoma C-32 and breast cancer MCF-7 cells. 10H-3,6-diazaphenothiazine was 10 times more active (IC50 < 0.72 μg/mL) than cisplatin. Two diazaphenothiazines with the 2-pyrimidinyl and dimethylaminopropyl substituents were selectively active against MCF-7 and C-32 cells. The expressions of H3 (proliferation marker), TP53, CDKN1A (cell cycle regulators), BAX and BCL-2 (proapoptopic and antiapoptopic genes) were detected by RT-QPCR method. The expression analysis suggests the cell cycle arrest and the mitochondrial apoptosis pathway activation in MCF-7 and SNB-19 cells.
Collapse
Affiliation(s)
- Beata Morak-Młodawska
- a Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine , The Medical University of Silesia , Sosnowiec , Poland
| | - Krystian Pluta
- a Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine , The Medical University of Silesia , Sosnowiec , Poland
| | - Małgorzata Latocha
- b Department of Cell Biology, School of Pharmacy with the Division of Laboratory Medicine , The Medical University of Silesia , Sosnowiec , Poland , and
| | - Kinga Suwińska
- c Faculty of Mathematics and Natural Sciences , Cardinal Stefan Wyszyński University , Warszawa , Poland
| | - Małgorzata Jeleń
- a Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine , The Medical University of Silesia , Sosnowiec , Poland
| | - Dariusz Kuśmierz
- b Department of Cell Biology, School of Pharmacy with the Division of Laboratory Medicine , The Medical University of Silesia , Sosnowiec , Poland , and
| |
Collapse
|
138
|
Transcriptome Analysis of Cultured Limbal Epithelial Cells on an Intact Amniotic Membrane following Hypothermic Storage in Optisol-GS. J Funct Biomater 2016; 7:jfb7010004. [PMID: 26901233 PMCID: PMC4810063 DOI: 10.3390/jfb7010004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/22/2016] [Accepted: 02/04/2016] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to investigate the molecular mechanisms underlying activation of cell death pathways using genome-wide transcriptional analysis in human limbal epithelial cell (HLEC) cultures following conventional hypothermic storage in Optisol-GS. Three-week HLEC cultures were stored in Optisol-GS for 2, 4, and 7 days at 4 °C. Partek Genomics Suite software v.6.15.0422, (Partec Inc., St. Louis, MO, USA) was used to identify genes that showed significantly different (P < 0.05) levels of expression following hypothermic storage compared to non-stored cell sheets. There were few changes in gene expression after 2 days of storage, but several genes were differently regulated following 4 and 7 days of storage. The histone-coding genes HIST1H3A and HIST4H4 were among the most upregulated genes following 4 and 7 days of hypothermic storage. Bioinformatic analysis suggested that these two genes are involved in a functional network highly associated with cell death, necrosis, and transcription of RNA. HDAC1, encoding histone deacetylase 1, was the most downregulated gene after 7 days of storage. Together with other downregulated genes, it is suggested that HDAC1 is involved in a regulating network significantly associated with cellular function and maintenance, differentiation of cells, and DNA repair. Our data suggest that the upregulated expression of histone-coding genes together with downregulated genes affecting cell differentiation and DNA repair may be responsible for increased cell death following hypothermic storage of cultured HLEC. In summary, our results demonstrated that a higher number of genes changed with increasing storage time. Moreover, in general, larger differences in absolute gene expression values were observed with increasing storage time. Further understanding of these molecular mechanisms is important for optimization of storage technology for limbal epithelial sheets.
Collapse
|
139
|
Wilcox RA. Cutaneous T-cell lymphoma: 2016 update on diagnosis, risk-stratification, and management. Am J Hematol 2016; 91:151-65. [PMID: 26607183 PMCID: PMC4715621 DOI: 10.1002/ajh.24233] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022]
Abstract
DISEASE OVERVIEW Cutaneous T-cell lymphomas are a heterogenous group of T-cell lymphoproliferative disorders involving the skin, the majority of which may be classified as Mycosis Fungoides (MF) or Sézary Syndrome (SS). DIAGNOSIS The diagnosis of MF or SS requires the integration of clinical and histopathologic data. RISK-ADAPTED THERAPY TNMB (tumor, node, metastasis, blood) staging remains the most important prognostic factor in MF/SS and forms the basis for a "risk-adapted," multidisciplinary approach to treatment. For patients with disease limited to the skin, expectant management or skin-directed therapies is preferred, as both disease-specific and overall survival for these patients is favorable. In contrast, patients with advanced-stage disease with significant nodal, visceral, or blood involvement are generally approached with biologic-response modifiers or histone deacetylase inhibitors before escalating therapy to include systemic, single-agent chemotherapy. In highly-selected patients, allogeneic stem-cell transplantation may be considered, as this may be curative in some patients.
Collapse
Affiliation(s)
- Ryan A. Wilcox
- Division of Hematology/Oncology, University of Michigan Cancer Center, 1500 E. Medical Center Drive, Room 4310 CC, Ann Arbor, MI 48109-5948
| |
Collapse
|
140
|
Zahnow C, Topper M, Stone M, Murray-Stewart T, Li H, Baylin S, Casero R. Inhibitors of DNA Methylation, Histone Deacetylation, and Histone Demethylation: A Perfect Combination for Cancer Therapy. Adv Cancer Res 2016; 130:55-111. [PMID: 27037751 DOI: 10.1016/bs.acr.2016.01.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epigenetic silencing and inappropriate activation of gene expression are frequent events during the initiation and progression of cancer. These events involve a complex interplay between the hypermethylation of CpG dinucleotides within gene promoter and enhancer regions, the recruitment of transcriptional corepressors and the deacetylation and/or methylation of histone tails. These epigenetic regulators act in concert to block transcription or interfere with the maintenance of chromatin boundary regions. However, DNA/histone methylation and histone acetylation states are reversible, enzyme-mediated processes and as such, have emerged as promising targets for cancer therapy. This review will focus on the potential benefits and synergistic/additive effects of combining DNA-demethylating agents and histone deacetylase inhibitors or lysine-specific demethylase inhibitors together in epigenetic therapy for solid tumors and will highlight what is known regarding the mechanisms of action that contribute to the antitumor response.
Collapse
|
141
|
Negative effect of cyclin D1 overexpression on recurrence-free survival in stage II-IIIA lung adenocarcinoma and its expression modulation by vorinostat in vitro. BMC Cancer 2015; 15:982. [PMID: 26681199 PMCID: PMC4683946 DOI: 10.1186/s12885-015-2001-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 12/11/2015] [Indexed: 01/03/2023] Open
Abstract
Background This study was aimed at identifying prognostic biomarkers for stage II-IIIA non-small cell lung cancer (NSCLC) according to histology and at investigating the effect of vorinostat on the expression of these biomarkers. Methods Expression levels of cyclin D1, cyclin A2, cyclin E, and p16 proteins that are involved in the G1-to-S phase progression of cell cycle were analyzed using immunohistochemistry in formalin-fixed paraffin-embedded tissues from 372 samples of stage II-IIIA NSCLC. The effect of vorinostat on the expression of these proteins, impacts on cell cycle, and histone modification was explored in lung cancer cells. Results Abnormal expression of cyclin A2, cyclin D1, cyclin E, and p16 was found in 66, 47, 34, and 51 % of 372 cases, respectively. Amongst the four proteins, only cyclin D1 overexpression was significantly associated with poor recurrence-free survival (adjusted hazard ratio = 1.87; 95 % confidence interval = 1.12 – 2.69, P = 0.02) in adenocarcinoma but not in squamous cell carcinoma (P = 0.44). Vorinostat inhibited cell cycle progression to the S-phase and induced down-regulation of cyclin D1 in vitro. The down-regulation of cyclin D1 by vorinostat was comparable to a siRNA-mediated knockdown of cyclin D1 in A549 cells, but vorinostat in the presence of benzo[a]pyrene showed a differential effect in different lung cancer cell lines. Cyclin D1 down-regulation by vorinostat was associated with the accumulation of dimethyl-H3K9 at the promoter of the gene. Conclusions The present study suggests that cyclin D1 may be an independent prognostic factor for recurrence-free survival in stage II-IIIA adenocarcinoma of lung and its expression may be modulated by vorinostat. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-2001-7) contains supplementary material, which is available to authorized users.
Collapse
|
142
|
Cao QF, Qian SB, Wang N, Zhang L, Wang WM, Shen HB. TRPM2 mediates histone deacetylase inhibition-induced apoptosis in bladder cancer cells. Cancer Biother Radiopharm 2015; 30:87-93. [PMID: 25760728 DOI: 10.1089/cbr.2014.1697] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Inhibition of histone deacetylase (HDAC) activity results in growth arrest and apoptosis in multiple types of cancer cells. It has been well established that p21 is responsible for HDAC inhibitor (HDACi)-induced growth inhibition, while the mechanism underlying HDACi-elicited apoptosis in bladder cancer cells remains largely unknown. METHODS In this study, the apoptotic response to HDACi (trichostatin A and sodium butyrate) with different concentrations was determined by flow cytometry analysis and real-time polymerase chain reaction was conducted to examine the TRPM2 (Transient receptor potential cation channel, subfamily M, member 2) expression change on HDACi treatment. TRPM2 knockdown and overexpression were performed to investigate the role of TRPM2 in HDACi-induced apoptosis. The mechanism of HDACi-elicited upregulation of TRPM2 was studied by chromatin-immunoprecipitation. RESULTS HDACi efficiently induced cell apoptosis and TRPM2 upregulation in a time- and dose-dependent manner in T24 bladder cancer cells. Functional analysis revealed that TRPM2 overexpression promotes apoptosis of T24 cells. Conversely, TRPM2 depletion remarkably antagonized HDACi-induced apoptosis. Furthermore, HDAC inhibition-elicited TRPM2 upregulation is caused by the increase of acetylated H3K9 (H3K9Ac) enrichment in TRPM2 promoter. CONCLUSIONS These data suggest that the HDACi-elicited upregulation of TRPM2 expression is required for HDACi-induced apoptosis in bladder cancer cells and that HDACi activated the enrichment of H3K9Ac-represented permissive chromatin in TRPM2 promoter.
Collapse
Affiliation(s)
- Qi-feng Cao
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | | | | | | | | | | |
Collapse
|
143
|
Roostaee A, Guezguez A, Beauséjour M, Simoneau A, Vachon PH, Levy E, Beaulieu J. Histone deacetylase inhibition impairs normal intestinal cell proliferation and promotes specific gene expression. J Cell Biochem 2015; 116:2695-2708. [PMID: 26129821 PMCID: PMC5014201 DOI: 10.1002/jcb.25274] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 06/25/2015] [Indexed: 12/19/2022]
Abstract
Mechanisms that maintain proliferation and delay cell differentiation in the intestinal crypt are not yet fully understood. We have previously shown the implication of histone methylation in the regulation of enterocytic differentiation. In this study, we investigated the role of histone deacetylation as an important epigenetic mechanism that controls proliferation and differentiation of intestinal cells using the histone deacetylase inhibitor suberanilohydroxamic acid (SAHA) on the proliferation and differentiation of human and mouse intestinal cells. Treatment of newly confluent Caco-2/15 cells with SAHA resulted in growth arrest, increased histone acetylation and up-regulation of the expression of intestine-specific genes such as those encoding sucrase-isomaltase, villin and the ion exchanger SLC26A3. Although SAHA has been recently used in clinical trials for cancer treatment, its effect on normal intestinal cells has not been documented. Analyses of small and large intestines of mice treated with SAHA revealed a repression of crypt cell proliferation and a higher expression of sucrase-isomaltase in both segments compared to control mice. Expression of SLC26A3 was also significantly up-regulated in the colons of mice after SAHA administration. Finally, SAHA was also found to strongly inhibit normal human intestinal crypt cell proliferation in vitro. These results demonstrate the important implication of epigenetic mechanisms such as histone acetylation/deacetylation in the regulation of normal intestinal cell fate and proliferation.
Collapse
Affiliation(s)
- Alireza Roostaee
- Laboratory of Intestinal PhysiopathologyUniversité de SherbrookeSherbrookeQuébecCanadaJ1H 5N4
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuébecCanadaJ1H 5N4
| | - Amel Guezguez
- Laboratory of Intestinal PhysiopathologyUniversité de SherbrookeSherbrookeQuébecCanadaJ1H 5N4
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuébecCanadaJ1H 5N4
| | - Marco Beauséjour
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuébecCanadaJ1H 5N4
| | - Aline Simoneau
- Laboratory of Intestinal PhysiopathologyUniversité de SherbrookeSherbrookeQuébecCanadaJ1H 5N4
| | - Pierre H. Vachon
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuébecCanadaJ1H 5N4
| | - Emile Levy
- Department of NutritionUniversité de Montréal, and Research CenterSainte‐Justine UHCMontréalQuébecCanadaH3T 1C5
| | - Jean‐François Beaulieu
- Laboratory of Intestinal PhysiopathologyUniversité de SherbrookeSherbrookeQuébecCanadaJ1H 5N4
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuébecCanadaJ1H 5N4
| |
Collapse
|
144
|
Atwell LL, Zhang Z, Mori M, Farris P, Vetto JT, Naik AM, Oh KY, Thuillier P, Ho E, Shannon J. Sulforaphane Bioavailability and Chemopreventive Activity in Women Scheduled for Breast Biopsy. Cancer Prev Res (Phila) 2015; 8:1184-1191. [PMID: 26511489 DOI: 10.1158/1940-6207.capr-15-0119] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 10/13/2015] [Indexed: 12/21/2022]
Abstract
Epidemiologic studies suggest a protective effect of cruciferous vegetables on breast cancer. Sulforaphane (SFN), an active food component derived from crucifers, has been shown to be effective in breast cancer chemoprevention. This study evaluated the chemopreventive effect of SFN on selective biomarkers from blood and breast tissues. In a 2- to 8-week double-blinded, randomized controlled trial, 54 women with abnormal mammograms and scheduled for breast biopsy were randomized to consume a placebo or a glucoraphanin (GFN) supplement providing SFN (n = 27). Plasma and urinary SFN metabolites, peripheral blood mononuclear cell (PBMC) histone deacetylase (HDAC) activity, and tissue biomarkers (H3K18ac, H3K9ac, HDAC3, HDAC6, Ki-67, p21) were measured before and after the intervention in benign, ductal carcinoma in situ, or invasive ductal carcinoma breast tissues. Within the supplement group, Ki-67 (P = 0.003) and HDAC3 (P = 0.044) levels significantly decreased in benign tissue. Pre-to-postintervention changes in these biomarkers were not significantly different between treatment groups after multiple comparison adjustment. GFN supplementation was associated with a significant decrease in PBMC HDAC activity (P = 0.04). No significant associations were observed between SFN and examined tissue biomarkers when comparing treatment groups. This study provides evidence that GFN supplementation for a few weeks is safe but may not be sufficient for producing changes in breast tissue tumor biomarkers. Future studies employing larger sample sizes should evaluate alternative dosing and duration regimens to inform dietary SFN strategies in breast cancer chemoprevention.
Collapse
Affiliation(s)
- Lauren L Atwell
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331.,Department of Nutrition and Food Science, California State University, Chico, 400 West 1 Avenue, Chico, CA 95929
| | - Zhenzhen Zhang
- School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Motomi Mori
- School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239.,Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Paige Farris
- School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - John T Vetto
- Division of Surgical Oncology, Oregon Health & Science University, 3303 SW Bond Ave, Portland, OR 97239
| | - Arpana M Naik
- Division of Surgical Oncology, Oregon Health & Science University, 3303 SW Bond Ave, Portland, OR 97239
| | - Karen Y Oh
- Department of Radiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Philippe Thuillier
- School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239.,Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239.,Department of Dermatology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331.,Moore Family Center for Whole Grain Foods, Nutrition and Preventive Health, Oregon State University, 212 Milam Hall, Corvallis, OR 97331
| | - Jackilen Shannon
- School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| |
Collapse
|
145
|
Ngo H, Tortorella SM, Ververis K, Karagiannis TC. The Warburg effect: molecular aspects and therapeutic possibilities. Mol Biol Rep 2015; 42:825-34. [PMID: 25253100 DOI: 10.1007/s11033-014-3764-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It has been about nine decades since the proposal of Otto Warburg on the metabolism of cancer cells. Unlike normal cells which undergo glycolysis and oxidative phosphorylation in the presence of oxygen, proliferating and cancer cells exhibit an increased uptake of glucose and increased rate of glycolysis and predominantly undergo lactic acid fermentation. Whether this phenomenon is the consequence of genetic dysregulation in cancer or is the cause of cancer still remains unknown. However, there is certainly a strong link between the genetic factors, epigenetic modulation, cancer immunosurveillance and the Warburg effect, which will be discussed in this review. Dichloroacetate and 3-bromopyruvate are among the substances that have been studied as potential cancer therapies. With our expanding knowledge of cellular metabolism, therapies targeting the Warburg effect appear very promising. This review discusses different aspects of these emerging therapies.
Collapse
Affiliation(s)
- Hanh Ngo
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, 75 Commercial Road, Melbourne, VIC, Australia
| | | | | | | |
Collapse
|
146
|
Khan S, Shukla S, Sinha S, Meeran SM. Centchroman altered the expressions of tumor-related genes through active chromatin modifications in mammary cancer. Mol Carcinog 2015; 55:1747-1760. [DOI: 10.1002/mc.22424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 09/03/2015] [Accepted: 10/02/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Sajid Khan
- Division of Endocrinology; Laboratory of Cancer Epigenetics; CSIR-Central Drug Research Institute; Lucknow India
| | - Samriddhi Shukla
- Division of Endocrinology; Laboratory of Cancer Epigenetics; CSIR-Central Drug Research Institute; Lucknow India
| | - Sonam Sinha
- Division of Endocrinology; Laboratory of Cancer Epigenetics; CSIR-Central Drug Research Institute; Lucknow India
| | - Syed Musthapa Meeran
- Division of Endocrinology; Laboratory of Cancer Epigenetics; CSIR-Central Drug Research Institute; Lucknow India
| |
Collapse
|
147
|
Ahmadzadeh A, Khodadi E, Shahjahani M, Bertacchini J, Vosoughi T, Saki N. The Role of HDACs as Leukemia Therapy Targets using HDI. Int J Hematol Oncol Stem Cell Res 2015; 9:203-14. [PMID: 26865932 PMCID: PMC4748691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/22/2015] [Indexed: 12/02/2022] Open
Abstract
Histone deacetylases (HDACs) are the enzymes causing deacetylation of histone and non-histone substrates. Histone deacetylase inhibitors (HDIs) are a family of drugs eliminating the effect of HDACs in malignant cells via inhibition of HDACs. Due to extensive effects upon gene expression through interference with fusion genes and transcription factors, HDACs cause proliferation and migration of malignant cells, inhibiting apoptosis in these cells via tumor suppressor genes. Over expression evaluation of HDACs in leukemias may be a new approach for diagnosis of leukemia, which can present new targets for leukemia therapy. HDIs inhibit HDACs, increase acetylation in histones, cause up- or down regulation in some genes and result in differentiation, cell cycle arrest and apoptosis induction in malignant cells via cytotoxic effects. Progress in identification of new HDIs capable of tracking several targets in the cell can result in novel achievements in treatment and increase survival in patients. In this review, we examine the role of HDACs as therapeutic targets in various types of leukemia as well as the role of HDIs in inhibition of HDACs for treatment of these malignancies.
Collapse
Affiliation(s)
- Ahmad Ahmadzadeh
- Health research institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elahe Khodadi
- Health research institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Shahjahani
- Health research institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jessika Bertacchini
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Tina Vosoughi
- Health research institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Health research institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
148
|
Gallagher SJ, Tiffen JC, Hersey P. Histone Modifications, Modifiers and Readers in Melanoma Resistance to Targeted and Immune Therapy. Cancers (Basel) 2015; 7:1959-82. [PMID: 26426052 PMCID: PMC4695870 DOI: 10.3390/cancers7040870] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 02/06/2023] Open
Abstract
The treatment of melanoma has been revolutionized by new therapies targeting MAPK signaling or the immune system. Unfortunately these therapies are hindered by either primary resistance or the development of acquired resistance. Resistance mechanisms involving somatic mutations in genes associated with resistance have been identified in some cases of melanoma, however, the cause of resistance remains largely unexplained in other cases. The importance of epigenetic factors targeting histones and histone modifiers in driving the behavior of melanoma is only starting to be unraveled and provides significant opportunity to combat the problems of therapy resistance. There is also an increasing ability to target these epigenetic changes with new drugs that inhibit these modifications to either prevent or overcome resistance to both MAPK inhibitors and immunotherapy. This review focuses on changes in histones, histone reader proteins and histone positioning, which can mediate resistance to new therapeutics and that can be targeted for future therapies.
Collapse
Affiliation(s)
- Stuart J Gallagher
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown 2050, Australia.
- Melanoma Institute Australia, Crow's Nest 2065, Sydney, Australia.
| | - Jessamy C Tiffen
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown 2050, Australia.
- Melanoma Institute Australia, Crow's Nest 2065, Sydney, Australia.
| | - Peter Hersey
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown 2050, Australia.
- Melanoma Institute Australia, Crow's Nest 2065, Sydney, Australia.
| |
Collapse
|
149
|
Jin L, Datta PK. Oncogenic STRAP functions as a novel negative regulator of E-cadherin and p21(Cip1) by modulating the transcription factor Sp1. Cell Cycle 2015; 13:3909-20. [PMID: 25483064 DOI: 10.4161/15384101.2014.973310] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have previously reported the identification of a novel WD-domain protein, STRAP that plays a role in maintenance of mesenchymal morphology by regulating E-cadherin and that enhances tumorigenicity partly by downregulating CDK inhibitor p21(Cip1). However, the functional mechanism of regulation of E-cadherin and p21(Cip1) by STRAP is unknown. Here, we have employed STRAP knock out and knockdown cell models (mouse embryonic fibroblast, human cancer cell lines) to show how STRAP downregulates E-cadherin and p21(Cip1) by abrogating the binding of Sp1 to its consensus binding sites. Moreover, ChIP assays suggest that STRAP recruits HDAC1 to Sp1 binding sites in p21(Cip1) promoter. Interestingly, loss of STRAP can stabilize Sp1 by repressing its ubiquitination in G1 phase, resulting in an enhanced expression of p21(Cip1) by >4.5-fold and cell cycle arrest. Using Bioinformatics and Microarray analyses, we have observed that 87% mouse genes downregulated by STRAP have conserved Sp1 binding sites. In NSCLC, the expression levels of STRAP inversely correlated with that of Sp1 (60%). These results suggest a novel mechanism of regulation of E-cadherin and p21(Cip1) by STRAP by modulating Sp1-dependent transcription, and higher expression of STRAP in lung cancer may contribute to downregulation of E-cadherin and p21(Cip1) and to tumor progression.
Collapse
Key Words
- CDK2, cyclin-dependent kinase 2
- CDK4, cyclin-dependent kinase 4
- HDAC1, histone deacetylase 1
- HDAC2, histone deacetylase 2
- HDAC3, histone deacetylase 3
- HNF4, hepatocyte nuclear factor 4
- MEF, mouse embryonic fibroblast
- NF-YA, nuclear transcription factor Y subunit alpha
- PARP, poly (ADP-ribose) polymerase
- RNase, A ribonuclease A
- RhoA, Ras homolog gene family, member A
- STRAP
- STRAP, serine threonine kinase receptor-associated protein
- SWI/SNF, SWItch/Sucrose nonfermentable
- Sp/KLF, specificity protein/Krüppel-like factor
- Sp1
- Sp1, specificity protein 1
- TSA, trichostatin A
- TSS, transcription start site
- TβR I, II, TGF-β receptor I, II
- cell cycle
- p300/CBP, p300/ CREB-binding protein
- transcription factor
- ubiquitination
Collapse
Affiliation(s)
- Lin Jin
- a Division of Hematology and Oncology; Department of Medicine; UAB Comprehensive Cancer Center; University of Alabama at Birmingham ; Birmingham , AL USA
| | | |
Collapse
|
150
|
Hui KF, Cheung AKL, Choi CK, Yeung PL, Middeldorp JM, Lung ML, Tsao SW, Chiang AKS. Inhibition of class I histone deacetylases by romidepsin potently induces Epstein-Barr virus lytic cycle and mediates enhanced cell death with ganciclovir. Int J Cancer 2015. [PMID: 26205347 DOI: 10.1002/ijc.29698] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pan-histone deacetylase (HDAC) inhibitors, which inhibit 11 HDAC isoforms, are widely used to induce Epstein-Barr virus (EBV) lytic cycle in EBV-associated cancers in vitro and in clinical trials. Here, we hypothesized that inhibition of one or several specific HDAC isoforms by selective HDAC inhibitors could potently induce EBV lytic cycle in EBV-associated malignancies such as nasopharyngeal carcinoma (NPC) and gastric carcinoma (GC). We found that inhibition of class I HDACs, particularly HDAC-1, -2 and -3, was sufficient to induce EBV lytic cycle in NPC and GC cells in vitro and in vivo. Among a panel of selective HDAC inhibitors, the FDA-approved HDAC inhibitor romidepsin was found to be the most potent lytic inducer, which could activate EBV lytic cycle at ∼0.5 to 5 nM (versus ∼800 nM achievable concentration in patients' plasma) in more than 75% of cells. Upregulation of p21(WAF1) , which is negatively regulated by class I HDACs, was observed before the induction of EBV lytic cycle. The upregulation of p21(WAF1) and induction of lytic cycle were abrogated by a specific inhibitor of PKC-δ but not the inhibitors of PI3K, MEK, p38 MAPK, JNK or ATM pathways. Interestingly, inhibition of HDAC-1, -2 and -3 by romidepsin or shRNA knockdown could confer susceptibility of EBV-positive epithelial cells to the treatment with ganciclovir (GCV). In conclusion, we demonstrated that inhibition of class I HDACs by romidepsin could potently induce EBV lytic cycle and mediate enhanced cell death with GCV, suggesting potential application of romidepsin for the treatment of EBV-associated cancers.
Collapse
Affiliation(s)
- Kwai Fung Hui
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Arthur Kwok Leung Cheung
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Chung King Choi
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Po Ling Yeung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Jaap M Middeldorp
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Maria Li Lung
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China.,Center for Nasopharyngeal Carcinoma Research, The University of Hong Kong, Hong Kong SAR, China
| | - Sai Wah Tsao
- Center for Nasopharyngeal Carcinoma Research, The University of Hong Kong, Hong Kong SAR, China.,Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Alan Kwok Shing Chiang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China.,Center for Nasopharyngeal Carcinoma Research, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|