101
|
Johnston RJ, Desplan C. Stochastic neuronal cell fate choices. Curr Opin Neurobiol 2008; 18:20-7. [PMID: 18511260 PMCID: PMC2478740 DOI: 10.1016/j.conb.2008.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 04/17/2008] [Accepted: 04/25/2008] [Indexed: 01/18/2023]
Abstract
Though many neuronal cell fate decisions result in reproducible outcomes, stochastic choices often lead to spatial randomization of cell subtypes. This is often the case in sensory systems where expression of a specific sensory receptor gene is selected randomly from a set of possible outcomes. Here, we describe recent findings elucidating the mechanisms controlling color photoreceptor subtypes in flies and olfactory receptor subtypes in worms and mice. Although well-known biological concepts such as lateral signaling and promoter selection play roles in these cases, fundamental questions concerning these choice mechanisms remain.
Collapse
Affiliation(s)
- Robert J Johnston
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
| | | |
Collapse
|
102
|
Imai T, Sakano H. Odorant receptor gene choice and axonal projection in the mouse olfactory system. Results Probl Cell Differ 2008; 47:57-75. [PMID: 19083127 DOI: 10.1007/400_2008_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the mouse olfactory system, each olfactory sensory neuron (OSN) expresses a single type of odorant receptor (OR) out of approximately 1,000 in a monoallelic manner. Furthermore, OSNs expressing the same OR converge their axons to a specific set of glomeruli on the olfactory bulb. These two basic principles are fundamental to the peripheral olfactory system, and are regulated by the expressed OR protein itself. Singular OR gene choice is ensured by the combination of stochastic enhancer-promoter interaction and negative-feedback regulation by OR proteins. In the axonal projection, OR-derived cyclic AMP signals and neuronal activity determine the expression levels of axon guidance/sorting molecules, and thereby direct glomerular positioning and axon sorting.
Collapse
Affiliation(s)
- T Imai
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | | |
Collapse
|
103
|
Deletion of the core-H region in mice abolishes the expression of three proximal odorant receptor genes in cis. Proc Natl Acad Sci U S A 2007; 104:20067-72. [PMID: 18077433 DOI: 10.1073/pnas.0706544105] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have previously reported that a 2.1-kb homology (H) sequence, conserved between mouse and human, regulates the odorant receptor (OR) gene MOR28 in transgenic mice. Here, we narrowed down the essential sequences of the H to a core of 124 bp by using a transient expression system in zebrafish embryos. Transgenic experiments in mice demonstrated that the core-H sequence is sufficient to endow expression of the MOR28 minigene. Deletion and mutation analyses of the core-H region revealed two homeodomain sequences to be essential for the H enhancer activity. Targeted deletion of the core-H abolished expression of three proximal OR genes, MOR28, MOR10, and MOR83, in cis, indicating the presence of another locus control region/enhancer in the downstream region, that regulates four distal OR genes in the same MOR28 cluster. In the heterozygous mice, the H(-) phenotype of the mutant allele was not rescued by the wild-type H(+) allele in trans.
Collapse
|
104
|
Ikeda K, Ookawara S, Sato S, Ando ZI, Kageyama R, Kawakami K. Six1 is essential for early neurogenesis in the development of olfactory epithelium. Dev Biol 2007; 311:53-68. [PMID: 17880938 DOI: 10.1016/j.ydbio.2007.08.020] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 07/22/2007] [Accepted: 08/06/2007] [Indexed: 12/01/2022]
Abstract
The olfactory epithelium (OE) is derived from the olfactory placode (OP) during mouse development. At embryonic day (E) 10.0-E10.5, "early neurogenesis" occurs in the OE, which includes production of pioneer neurons that emigrate out of the OE and other early-differentiated neurons. Around E12.5, the OE becomes organized into mature pseudostratified epithelium and shows "established neurogenesis," in which olfactory receptor neurons (ORNs) are differentiated from basal progenitors. Little is known about the molecular pathway of early neurogenesis. The homeodomain protein Six1 is expressed in all OP cells and neurogenic precursors in the OE. Here we show that early neurogenesis is severely disturbed despite the unaltered expression of Mash1 at E10.5 in the Six1-deficient mice (Six1-/-). Expression levels of neurogenin1 (Ngn1) and NeuroD are reduced and those of Hes1 and Hes5 are augmented in the OE of Six1-/- at E10.5. Pioneer neurons and cellular aggregates, which are derived from the OP/OE and situated in the mesenchyme between the OE and forebrain, are completely absent in Six1-/-. Moreover, ORN axons and the gonadotropin-releasing hormone-positive neurons fail to extend and migrate to the forebrain, respectively. Our study indicates that Six1 plays critical roles in early neurogenesis by regulating Ngn1, NeuroD, Hes1, and Hes5.
Collapse
Affiliation(s)
- Keiko Ikeda
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | | | | | | | | | | |
Collapse
|
105
|
Franssen EHP, de Bree FM, Verhaagen J. Olfactory ensheathing glia: Their contribution to primary olfactory nervous system regeneration and their regenerative potential following transplantation into the injured spinal cord. ACTA ACUST UNITED AC 2007; 56:236-58. [PMID: 17884174 DOI: 10.1016/j.brainresrev.2007.07.013] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 07/25/2007] [Accepted: 07/30/2007] [Indexed: 11/26/2022]
Abstract
Olfactory ensheathing glia (OEG) are a specialized type of glia that guide primary olfactory axons from the neuroepithelium in the nasal cavity to the brain. The primary olfactory system is able to regenerate after a lesion and OEG contribute to this process by providing a growth-supportive environment for newly formed axons. In the spinal cord, axons are not able to restore connections after an injury. The effects of OEG transplants on the regeneration of the injured spinal cord have been studied for over a decade. To date, of all the studies using only OEG as a transplant, 41 showed positive effects, while 13 studies showed limited or no effects. There are several contradictory reports on the migratory and axon growth-supporting properties of transplanted OEG. Hence, the regenerative potential of OEG has become the subject of intense discussion. In this review, we first provide an overview of the molecular and cellular characteristics of OEG in their natural environment, the primary olfactory nervous system. Second, their potential to stimulate regeneration in the injured spinal cord is discussed. OEG influence scar formation by their ability to interact with astrocytes, they are able to remyelinate axons and promote angiogenesis. The ability of OEG to interact with scar tissue cells is an important difference with Schwann cells and may be a unique characteristic of OEG. Because of these effects after transplantation and because of their role in primary olfactory system regeneration, the OEG can be considered as a source of neuroregeneration-promoting molecules. To identify these molecules, more insight into the molecular biology of OEG is required. We believe that genome-wide gene expression studies of OEG in their native environment, in culture and after transplantation will ultimately reveal unique combinations of molecules involved in the regeneration-promoting potential of OEG.
Collapse
Affiliation(s)
- Elske H P Franssen
- Netherlands Insitute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | | | | |
Collapse
|
106
|
Rodriguez I. Odorant and pheromone receptor gene regulation in vertebrates. Curr Opin Genet Dev 2007; 17:465-70. [PMID: 17709237 DOI: 10.1016/j.gde.2007.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 07/09/2007] [Indexed: 11/22/2022]
Abstract
The largest mammalian gene family codes for odorant receptors and is exclusively devoted to the perception of the outside world. Its expression is very peculiar, since olfactory sensory neurons are only allowed to express a single of its numerous members, from a single parental allele. How this is achieved is unknown, but recent work points to multiple regulatory mechanisms, possibly shared by pheromone receptor genes, acting at (a) a general level, via the expression of the chemoreceptor itself and (b) a more restricted level, defined by activator elements.
Collapse
Affiliation(s)
- Ivan Rodriguez
- Department of Zoology and Animal Biology, and NCCR Frontiers in Genetics, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
107
|
Fuss SH, Omura M, Mombaerts P. Local and cis effects of the H element on expression of odorant receptor genes in mouse. Cell 2007; 130:373-84. [PMID: 17662950 DOI: 10.1016/j.cell.2007.06.023] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Revised: 03/08/2007] [Accepted: 06/13/2007] [Indexed: 12/18/2022]
Abstract
From the approximately 1,200 odorant receptor (OR) genes in the mouse genome, an olfactory sensory neuron is thought to express only one gene. The mechanisms of OR gene choice are not understood. A 2.1 kilobase region (the H element) adjacent to a cluster of seven OR genes has been proposed as a trans- and pan-enhancer for OR gene expression. Here, we deleted the H element by gene targeting in mice. The deletion abolishes expression of a family of three OR genes proximal to H, and H operates in cis on these genes. Deletion of H has a graded effect on expression of a distal group of four OR genes, commensurate with genomic distance. There is no demonstrable effect on expression of OR genes located outside the cluster. Our findings are not consistent with the hypothesis of H as an essential trans-acting enhancer for genome-wide regulation of OR gene expression.
Collapse
Affiliation(s)
- Stefan H Fuss
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
108
|
Sammeta N, Yu TT, Bose SC, McClintock TS. Mouse olfactory sensory neurons express 10,000 genes. J Comp Neurol 2007; 502:1138-56. [PMID: 17444493 DOI: 10.1002/cne.21365] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Olfactory epithelial cells from olfactory marker protein-green fluorescent protein (OMP-GFP) mice were separated by fluorescence-activated cell sorting into a GFP+ sample enriched in mature olfactory sensory neurons (OSNs) and a GFP- sample enriched in all other cells. GeneChip expression profiling of these samples provided a predictive measure of expression in OSNs. Validation tests comparing the ratio of GFP+/GFP- signal intensity against expression patterns from in situ hybridization for 189 mRNAs proved statistically significant and provided probabilities of expression in OSNs scaled according to the signal intensity ratios. These probabilities predict that, among 11,596 mRNAs detected in the GFP+ sample, more than 10,000 are expressed in OSNs. Transcripts and overrepresented categories of mRNAs detected in the GFP+ sample agreed with known properties of OSNs and predict additional properties. For example, ciliogenesis and spermatogenesis were overrepresented, consistent with similarities between OSN cilia and sperm flagella. Chromatin assembly mRNAs were expressed throughout the OSN cell lineage, consistent with the hypothesis that chromatin remodeling plays a role in OSN differentiation. We detected numerous signaling proteins and receptors, such as 30 nonchemosensory G-protein-coupled receptors, including the presynaptic glutamate receptor mGlur4 and the Wnt receptor Fzd3. The largest group of mRNAs, however, was the hundreds of transcriptional regulators that presumably determine the OSN phenotype. The absence of OMP protein in OMP-GFP mice had no detectable effect on mRNA abundance. Within limits prescribed by the nature of microarray data and the in situ hybridization validation, these data should be useful in directing further experiments on OSN function.
Collapse
Affiliation(s)
- Neeraja Sammeta
- Department of Physiology, Cellular and Molecular Neuroscience of Sensory Systems Training Program, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | | | | | | |
Collapse
|
109
|
Saha B, Hari P, Huilgol D, Tole S. Dual role for LIM-homeodomain gene Lhx2 in the formation of the lateral olfactory tract. J Neurosci 2007; 27:2290-7. [PMID: 17329426 PMCID: PMC2092498 DOI: 10.1523/jneurosci.5571-06.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2006] [Accepted: 01/10/2007] [Indexed: 11/21/2022] Open
Abstract
The development of the olfactory system in vertebrates is a multistep process, in which several regulatory molecules are required at different stages. The development of the olfactory sensory epithelium and its projection to the olfactory bulb are both known to require the LIM-homeodomain transcription factor Lhx2. We examined whether Lhx2 plays a role in the development of the OB itself, as well as its projection to the olfactory cortex. Although there is no morphological OB protuberance in the Lhx2 mutant, mitral cells are normally specified and cluster in a displaced olfactory bulb-like structure (OBLS). The OBLS is not able to pioneer the lateral olfactory tract (LOT) projection in vivo or when provided control (host) telencephalic territory in an in vitro assay. Strikingly, the mutant OBLS is capable of projecting along the LOT if provided with an existing normal LOT in the host explant. This is the first report of a role for a transcription factor expressed in the OB that selectively affects the axon guidance but not the specification of mitral cells. Furthermore, the Lhx2 mutant lateral telencephalon does not support growth of an LOT projection from control OB explants. The defect correlates with the disruption of a cellular mechanism that is thought to be critical for LOT pathfinding: a specialized cell population, the "lot cells," is mislocalized in the Lhx2 mutant. In addition, the expression of Sema6A is aberrantly upregulated. Together, these findings reveal a dual role for Lhx2, in the OB as well as in the lateral telencephalon, for establishing the LOT projection.
Collapse
Affiliation(s)
- Bhaskar Saha
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400 005, India
| | - Padmanabhan Hari
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400 005, India
| | - Dhananjay Huilgol
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400 005, India
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400 005, India
| |
Collapse
|
110
|
Hirota J, Omura M, Mombaerts P. Differential impact of Lhx2 deficiency on expression of class I and class II odorant receptor genes in mouse. Mol Cell Neurosci 2007; 34:679-88. [PMID: 17350283 DOI: 10.1016/j.mcn.2007.01.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Accepted: 01/18/2007] [Indexed: 10/23/2022] Open
Abstract
Odorant receptor (OR) genes can be classified into two types: fish-like class I OR genes and mammalian-specific class II OR genes. We have previously shown that Lhx2, a LIM-homeodomain protein, binds to the homeodomain site in the promoter region of mouse M71, a class II OR, and that a knockout mutation in Lhx2 precludes expression of all tested class II OR genes including M71. Here, we report that most class I OR genes, which are expressed in a dorsal region of the olfactory epithelium, are still expressed in Lhx2-deficient embryos. There are two exceptions: two class I OR genes, which are normally expressed in a more ventral region, are no longer expressed in Lhx2 mutant mice. Lhx2 is transcribed in olfactory sensory neurons irrespective of expression of class I or class II OR genes. Thus, a deficiency of Lhx2 has a differential impact on class I and class II OR gene expression.
Collapse
Affiliation(s)
- Junji Hirota
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA; Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | | | | |
Collapse
|
111
|
Michaloski JS, Galante PAF, Malnic B. Identification of potential regulatory motifs in odorant receptor genes by analysis of promoter sequences. Genome Res 2006; 16:1091-8. [PMID: 16902085 PMCID: PMC1557771 DOI: 10.1101/gr.5185406] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mouse odorant receptors (ORs) are encoded by >1000 genes dispersed throughout the genome. Each olfactory neuron expresses one single OR gene, while the rest of the genes remain silent. The mechanisms underlying OR gene expression are poorly understood. Here, we investigated if OR genes share common cis-regulatory sequences in their promoter regions. We carried out a comprehensive analysis in which the upstream regions of a large number of OR genes were compared. First, using RLM-RACE, we generated cDNAs containing the complete 5'-untranslated regions (5'-UTRs) for a total number of 198 mouse OR genes. Then, we aligned these cDNA sequences to the mouse genome so that the 5' structure and transcription start sites (TSSs) of the OR genes could be precisely determined. Sequences upstream of the TSSs were retrieved and browsed for common elements. We found DNA sequence motifs that are overrepresented in the promoter regions of the OR genes. Most motifs resemble O/E-like sites and are preferentially localized within 200 bp upstream of the TSSs. Finally, we show that these motifs specifically interact with proteins extracted from nuclei prepared from the olfactory epithelium, but not from brain or liver. Our results show that the OR genes share common promoter elements. The present strategy should provide information on the role played by cis-regulatory sequences in OR gene regulation.
Collapse
Affiliation(s)
- Jussara S Michaloski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C.P. 26077 CEP 05513-970, São Paulo, Brazil
| | | | | |
Collapse
|
112
|
Nicolay DJ, Doucette JR, Nazarali AJ. Transcriptional regulation of neurogenesis in the olfactory epithelium. Cell Mol Neurobiol 2006; 26:803-21. [PMID: 16708285 PMCID: PMC11520629 DOI: 10.1007/s10571-006-9058-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2005] [Accepted: 03/14/2006] [Indexed: 11/30/2022]
Abstract
1. The olfactory epithelium (OE) is a simple structure that gives rise to olfactory sensory neurons (OSNs) throughout life. 2. Numerous transcription factors (TFs) are expressed in regions of the OE which contain progenitor cells and OSNs. The function of some of these TFs in OSN development has been elucidated with the aide of transgenic knockout mice. 3. We review here the current state of knowledge on the role of TFs in OE neurogenesis and relate the expression of these TFs, where possible, to the well-documented phenotype of the cells as they progress through the OSN lineage from progenitor cells to mature neurons.
Collapse
Affiliation(s)
- Danette J. Nicolay
- Laboratory of Molecular Biology, College of Pharmacy and Nutrition, University of Saskatchewan, 116 Thorvaldson Building, 110 Science Place, Saskatoon, Saskatchewan Canada S7N 5C9
| | - J. Ronald Doucette
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan Canada
- Cameco MS Neuroscience Research Center, City Hospital, Saskatoon, Saskatchewan Canada
| | - Adil J. Nazarali
- Laboratory of Molecular Biology, College of Pharmacy and Nutrition, University of Saskatchewan, 116 Thorvaldson Building, 110 Science Place, Saskatoon, Saskatchewan Canada S7N 5C9
- Cameco MS Neuroscience Research Center, City Hospital, Saskatoon, Saskatchewan Canada
| |
Collapse
|
113
|
Abstract
During embryogenesis, stem cells are set aside to fuel the postnatal hair cycle and repair the epidermis after injury. To define how hair follicle stem cells are specified and maintained in an undifferentiated state, we developed a strategy to isolate and transcriptionally profile embryonic hair progenitors in mice. We identified Lhx2 as a transcription factor positioned downstream of signals necessary to specify hair follicle stem cells, but upstream from signals required to drive activated stem cells to terminally differentiate. Using gain- and loss-of-function studies, we uncovered a role for Lhx2 in maintaining the growth and undifferentiated properties of hair follicle progenitors.
Collapse
Affiliation(s)
- Horace Rhee
- Howard Hughes Medical Institute, Rockefeller University, 1230 York Avenue, New York, NY 10021
| | | | | |
Collapse
|
114
|
Viczian AS, Bang AG, Harris WA, Zuber ME. Expression of Xenopus laevis Lhx2 during eye development and evidence for divergent expression among vertebrates. Dev Dyn 2006; 235:1133-41. [PMID: 16470628 DOI: 10.1002/dvdy.20708] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Members of the LIM homeodomain (LIM-HD) family of proteins are double zinc-finger containing transcription factors with important functions in pattern formation and cell lineage determination. The LIM-HD family member Lhx2 is required for normal eye, liver, and central nervous system formation. Lhx2(-/-) mice lack eyes, and experiments in Xenopus predict that Lhx2 forms a regulatory network with other eye field transcription factors to specify the eye field during eye formation. Here, we describe the structure and developmental expression pattern of the Xenopus laevis homologue, XLhx2. We show that XLhx2 shares significant amino acid sequence identity with other vertebrate Lhx2 proteins and Drosophila apterous (ap). The expression patterns of XLhx2 in the early neural plate and during eye development are consistent with a role in eye field specification and retinal differentiation. Despite highly similar expression patterns in the mouse and Xenopus central nervous system, divergent expression patterns were also observed. Phylogenetic analysis confirmed the identity of the isolated cDNA as a Xenopus ortholog of Lhx2. Therefore, in spite of structural similarities, the mouse and Xenopus Lhx2 expression patterns differ, suggesting potential functional differences in these species.
Collapse
Affiliation(s)
- Andrea S Viczian
- Departments of Ophthalmology and Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|
115
|
Hirayama T, Yagi T. The role and expression of the protocadherin-alpha clusters in the CNS. Curr Opin Neurobiol 2006; 16:336-42. [PMID: 16697637 DOI: 10.1016/j.conb.2006.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 05/03/2006] [Indexed: 10/24/2022]
Abstract
The clustered protocadherins comprise the largest subfamily of the cadherin superfamily and are predominantly expressed in the nervous system. The family of clustered protocadherins (clustered Pcdh family) is substructured into three distinct gene arrays in mammals: Pcdh-alpha, Pcdh-beta, and Pcdh-gamma. These are regulated by multiple promoters and cis-alternative splicing without DNA recombination. Pcdh-alpha proteins interact with beta1-integrin to promote cell adhesion. They also form oligomers with Pcdh-gamma proteins at the same membrane sites. During neuronal maturation, Pcdh-alpha expression is dramatically downregulated by myelination. The clustered Pcdh family has multiple variable exons that differ somewhat in number and sequence across vertebrate species. At the single-cell level, Pcdh-alpha mRNAs are regulated monoallelically, resulting in the combinatorial expression of distinct variable exons from each allele. These findings support the idea that diversified Pcdh molecules contribute to neural circuit development and provide individual cells with their specific identity.
Collapse
Affiliation(s)
- Teruyoshi Hirayama
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | |
Collapse
|
116
|
Richter K, Wirta V, Dahl L, Bruce S, Lundeberg J, Carlsson L, Williams C. Global gene expression analyses of hematopoietic stem cell-like cell lines with inducible Lhx2 expression. BMC Genomics 2006; 7:75. [PMID: 16600034 PMCID: PMC1459142 DOI: 10.1186/1471-2164-7-75] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 04/06/2006] [Indexed: 12/13/2022] Open
Abstract
Background Expression of the LIM-homeobox gene Lhx2 in murine hematopoietic cells allows for the generation of hematopoietic stem cell (HSC)-like cell lines. To address the molecular basis of Lhx2 function, we generated HSC-like cell lines where Lhx2 expression is regulated by a tet-on system and hence dependent on the presence of doxycyclin (dox). These cell lines efficiently down-regulate Lhx2 expression upon dox withdrawal leading to a rapid differentiation into various myeloid cell types. Results Global gene expression of these cell lines cultured in dox was compared to different time points after dox withdrawal using microarray technology. We identified 267 differentially expressed genes. The majority of the genes overlapping with HSC-specific databases were those down-regulated after turning off Lhx2 expression and a majority of the genes overlapping with those defined as late progenitor-specific genes were the up-regulated genes, suggesting that these cell lines represent a relevant model system for normal HSCs also at the level of global gene expression. Moreover, in situ hybridisations of several genes down-regulated after dox withdrawal showed overlapping expression patterns with Lhx2 in various tissues during embryonic development. Conclusion Global gene expression analysis of HSC-like cell lines with inducible Lhx2 expression has identified genes putatively linked to self-renewal / differentiation of HSCs, and function of Lhx2 in organ development and stem / progenitor cells of non-hematopoietic origin.
Collapse
Affiliation(s)
- Karin Richter
- Umeå Center for Molecular Medicin, Umeå Universitet, 90187 Umeå, Sweden
| | - Valtteri Wirta
- School of Biotechnology, KTH, Royal Institute of Technology, AlbaNova University Center, 10691 Stockholm, Sweden
| | - Lina Dahl
- Umeå Center for Molecular Medicin, Umeå Universitet, 90187 Umeå, Sweden
| | - Sara Bruce
- School of Biotechnology, KTH, Royal Institute of Technology, AlbaNova University Center, 10691 Stockholm, Sweden
- Department of Biosciences at Novum, Karolinska Institutet, 14157 Huddinge, Sweden
| | - Joakim Lundeberg
- School of Biotechnology, KTH, Royal Institute of Technology, AlbaNova University Center, 10691 Stockholm, Sweden
| | - Leif Carlsson
- Umeå Center for Molecular Medicin, Umeå Universitet, 90187 Umeå, Sweden
| | - Cecilia Williams
- School of Biotechnology, KTH, Royal Institute of Technology, AlbaNova University Center, 10691 Stockholm, Sweden
- Department of Biosciences at Novum, Karolinska Institutet, 14157 Huddinge, Sweden
| |
Collapse
|
117
|
Hoppe R, Breer H, Strotmann J. Promoter motifs of olfactory receptor genes expressed in distinct topographic patterns. Genomics 2006; 87:711-23. [PMID: 16600568 DOI: 10.1016/j.ygeno.2006.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2005] [Revised: 11/07/2005] [Accepted: 02/09/2006] [Indexed: 11/25/2022]
Abstract
Novel olfactory receptor-encoding genes that are expressed in olfactory sensory neurons arranged in a clustered pattern in the nasal epithelium, typical of the mOR262 (approved gene symbol Olfr) family, were identified. The genes share sequence motifs upstream of their transcription start sites that are highly related to those previously identified as characteristic of the mOR262 genes, suggesting that these regulatory elements may contribute to governing their unique expression pattern. Promoter analyses of genes encoding class I receptors that are expressed in the dorsal region of the epithelium revealed a different, but again common set of sequence motifs. A prominent feature of the class I gene promoters are multiple O/E-like binding sites, and O/E-type transcription factors that bind to the putative promoter region of class I OR genes were in fact identified. The findings support the concept that common elements in the promoter region of these OR genes may determine their congenic expression pattern in the epithelium.
Collapse
Affiliation(s)
- Reiner Hoppe
- Institute of Physiology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
| | | | | |
Collapse
|
118
|
Abstract
The human and mouse genomes each contain at least 12 genes encoding LIM homeodomain (LIM-HD) transcription factors. These gene regulatory proteins feature two LIM domains in their amino termini and a characteristic DNA binding homeodomain. Studies of mouse models and human patients have established that the LIM-HD factors are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs such as the pituitary gland and the pancreas. In this article, we review the roles of the LIM-HD proteins in mammalian development and their involvement in human diseases.
Collapse
Affiliation(s)
- Chad S Hunter
- Department of Biology and The Indiana University Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202-5132, USA
| | | |
Collapse
|
119
|
Ishii T, Omura M, Mombaerts P. Protocols for two- and three-color fluorescent RNA in situ hybridization of the main and accessory olfactory epithelia in mouse. ACTA ACUST UNITED AC 2005; 33:657-69. [PMID: 16217621 DOI: 10.1007/s11068-005-3334-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 02/16/2005] [Accepted: 02/28/2005] [Indexed: 10/25/2022]
Abstract
The main and accessory olfactory epithelia of the mouse are composed of many cell populations. Each sensory neuron is thought to express one allele of one of the approximately 1000 odorant or approximately 300 vomeronasal receptor genes. Sensory neurons die and are replaced by new neurons that differentiate from precursor cells throughout the lifetime of the individual. Neuronal replacement is asynchronous, resulting in the co-existence of cells at various stages of differentiation. Receptor gene diversity and ongoing neuronal differentiation produce complex mosaics of gene expression within these epithelia. Accurate description of gene expression patterns will facilitate the understanding of mechanisms of gene choice and differentiation. Here we report a detailed protocol for two- and three-color fluorescent RNA in situ hybridization (ISH) and its combination with immunohistochemistry, or detection of bromodeoxyuridine (BrdU)-incorporated DNA after labeling. The protocol is applied to cryosections of the main and accessory olfactory epithelia in mouse.
Collapse
|
120
|
Kim K, Colosimo ME, Yeung H, Sengupta P. The UNC-3 Olf/EBF protein represses alternate neuronal programs to specify chemosensory neuron identity. Dev Biol 2005; 286:136-48. [PMID: 16143323 DOI: 10.1016/j.ydbio.2005.07.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 07/14/2005] [Accepted: 07/15/2005] [Indexed: 11/30/2022]
Abstract
Neuronal identities are specified by the combinatorial functions of activators and repressors of gene expression. Members of the well-conserved Olf/EBF (O/E) transcription factor family have been shown to play important roles in neuronal and non-neuronal development and differentiation. O/E proteins are highly expressed in the olfactory epithelium, and O/E binding sites have been identified upstream of olfactory genes. However, the roles of O/E proteins in sensory neuron development are unclear. Here we show that the O/E protein UNC-3 is required for subtype specification of the ASI chemosensory neurons in Caenorhabditis elegans. UNC-3 promotes an ASI identity by directly repressing the expression of alternate neuronal programs and by activating expression of ASI-specific genes including the daf-7 TGF-beta gene. Our results indicate that UNC-3 is a critical component of the transcription factor code that integrates cell-intrinsic developmental programs with external signals to specify sensory neuronal identity and suggest models for O/E protein functions in other systems.
Collapse
Affiliation(s)
- Kyuhyung Kim
- Department of Biology and Volen Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | | | | | | |
Collapse
|
121
|
Shetty RS, Bose SC, Nickell MD, McIntyre JC, Hardin DH, Harris AM, McClintock TS. Transcriptional changes during neuronal death and replacement in the olfactory epithelium. Mol Cell Neurosci 2005; 30:90-107. [PMID: 16027002 DOI: 10.1016/j.mcn.2005.06.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 06/10/2005] [Accepted: 06/13/2005] [Indexed: 11/30/2022] Open
Abstract
The olfactory epithelium has the unusual ability to replace its neurons. We forced replacement of mouse olfactory sensory neurons by bulbectomy. Microarray, bioinformatics, and in situ hybridization techniques detected a rapid shift in favor of pro-apoptotic proteins, a progressive immune response by macrophages and dendritic cells, and identified or predicted 439 mRNAs enriched in olfactory sensory neurons, including gene silencing factors and sperm flagellar proteins. Transcripts encoding cell cycle regulators, axonogenesis proteins, and transcription factors and signaling proteins that promote proliferation and differentiation were increased at 5--7 days after bulbectomy and were expressed by basal progenitor cells or immature neurons. The transcription factors included Nhlh 1, Hes 6, Lmyc 1, c-Myc, Mxd 4, Id 1, Nmyc 1, Cited 2, c-Myb, Mybl 1, Tead 2, Dp 1, Gata 2, Lmo 1, and Sox1 1. The data reveal significant similarities with embryonic neurogenesis and make several mechanistic predictions, including the roles of the transcription factors in the olfactory sensory neuron lineage.
Collapse
Affiliation(s)
- Ranjit S Shetty
- Department of Physiology, Cellular and Molecular Neuroscience of Sensory Systems Training Program, University of Kentucky, 800 Rose Street, Lexington, KY 40536-0298, USA
| | | | | | | | | | | | | |
Collapse
|
122
|
Rothman A, Feinstein P, Hirota J, Mombaerts P. The promoter of the mouse odorant receptor gene M71. Mol Cell Neurosci 2005; 28:535-46. [PMID: 15737743 DOI: 10.1016/j.mcn.2004.11.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 11/10/2004] [Accepted: 11/11/2004] [Indexed: 11/22/2022] Open
Abstract
From a repertoire of approximately 2000 odorant receptor (OR) alleles in the mouse genome, a mature olfactory sensory neuron (OSN) is thought to choose only one functional allele of one OR gene for expression. OSNs that express a given OR gene are scattered throughout an epithelial region that is gene specific. The DNA sequences that enable OR gene choice and specify the epithelial pattern are not known. Within the upstream regions of several mouse, rat, and human OR genes, we have previously recognized putative homeodomain and O/E-like binding sites in proximity to each other. Here, we define a minimal promoter region for expression of the mouse OR gene M71 with small transgenes. This region contains a homeodomain and an O/E-like binding site. Combined mutations in both sites abolish transgene expression. When identical mutations are introduced at the endogenous M71 locus by gene targeting, the number of M71-expressing OSNs is reduced by a factor of three and the epithelial pattern is ventralized. The stronger impact observed with the mutant transgenes compared to the targeted mutations may reflect a multiplicity of regulatory sites within the OR gene cluster. We propose that these homeodomain and O/E sites regulate the probability of M71 gene choice differentially across the olfactory epithelium.
Collapse
Affiliation(s)
- Andrea Rothman
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
123
|
Abstract
The odorant receptors (ORs) make up the largest gene family in mammals. Each olfactory sensory neuron chooses just one OR from the more than 1000 possibilities encoded in the genome and transcribes it from just one allele. This process generates great neuronal diversity and forms the basis for the development and logic of the olfactory circuit between the nose and the brain. The mechanism behind this monoallelic regulation has been the subject of intense speculation and increasing experimental investigation, yet remains enigmatic. Recent genetic experiments have brought the outlines of the process into sharper relief, identifying a feedback mechanism in which the first odorant receptor expressed, generates a signal that stabilizes its choice, thus maintaining singular selection. In the absence of this signal, the olfactory neuron re-enters the selection process and switches to choose an alternate OR. Irreversible genetic changes in the nuclei of olfactory neurons do not accompany OR selection, which must therefore be initiated by an epigenetic process that may involve a stochastic mechanism.
Collapse
Affiliation(s)
- Benjamin M Shykind
- Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
124
|
Abstract
Similar to the expression of antigen receptor genes in lymphocytes, the mammalian odorant receptor (OR) genes are expressed in a mutually exclusive and monoallelic manner in olfactory sensory neurons (OSNs). DNA rearrangement has long been regarded as a possible mechanism for the allelic exclusion of the OR genes. However, mice cloned from mature OSN nuclei expressed the full repertoire of ORs, and the possibility of irreversible gene translocation was excluded as a mechanism to activate a single OR gene in each OSN. How is allelic exclusion achieved in the olfactory system? Recent transgenic experiments indicated an inhibitory role of the OR protein in preventing further activation of other OR genes. Stochastic activation of an OR gene and negative-feedback regulation by the OR gene product might ensure the maintenance of the one neuron-one receptor rule in the mammalian olfactory system.
Collapse
Affiliation(s)
- Shou Serizawa
- PRESTO program of Japan Science and Technology Agency, Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | | | | |
Collapse
|
125
|
Abstract
Exclusive gene expression, where only one member of a gene or gene cassette family is selected for expression, plays an important role in the establishment of cell identity in several biological systems. Here, we compare four such systems: mating-type switching in fission and budding yeast, where cells choose between expressing one of the two different mating-type cassettes, and immunoglobulin and odorant receptor gene expression in mammals, where the number of gene choices is substantially higher. The underlying mechanisms that establish this selective expression pattern in each system differ in almost every detail. In all four systems, once a successful gene activation event has taken place, a feedback mechanism affects the fate of the cell. In the mammalian systems, feedback is mediated by the expressed cell surface receptor to ensure monoallelic gene expression, whereas in the yeasts, the expressed gene cassette at the mating-type locus affects donor choice during the subsequent switching event.
Collapse
|
126
|
Kolterud A, Alenius M, Carlsson L, Bohm S. The Lim homeobox gene Lhx2 is required for olfactory sensory neuron identity. Development 2004; 131:5319-26. [PMID: 15456728 DOI: 10.1242/dev.01416] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Progenitor cells in the mouse olfactory epithelium generate over a thousand subpopulations of neurons, each expressing a unique odorant receptor (OR) gene. This event is under the control of spatial cues, since neurons in different epithelial regions are restricted to express region-specific subsets of OR genes. We show that progenitors and neurons express the LIM-homeobox gene Lhx2 and that neurons in Lhx2-null mutant embryos do not diversify into subpopulations expressing different OR genes and other region-restricted genes such as Nqo1 and Ncam2. Lhx2-/- embryos have, however, a normal distribution of Mash1-positive and neurogenin 1-positive neuronal progenitors that leave the cell cycle, acquire pan-neuronal traits and form axon bundles. Increased cell death in combination with increased expression of the early differentiation marker Neurod1, as well as reduced expression of late differentiation markers (Galphaolf and Omp), suggests that neuronal differentiation in the absence of Lhx2 is primarily inhibited at, or immediate prior to, onset of OR expression. Aberrant regional expression of early and late differentiation markers, taken together with unaltered region-restricted expression of the Msx1 homeobox gene in the progenitor cell layer of Lhx2-/- embryos, shows that Lhx2 function is not required for all aspects of regional specification of progenitors and neurons. Thus, these results indicate that a cell-autonomous function of Lhx2 is required for differentiation of progenitors into a heterogeneous population of individually and regionally specified mature olfactory sensory neurons.
Collapse
Affiliation(s)
- Asa Kolterud
- Department of Molecular Biology, Umeå University, Umeå, SE901 87, Sweden
| | | | | | | |
Collapse
|