101
|
Hu Z, Taylor DW, Edwards RJ, Taylor KA. Coupling between myosin head conformation and the thick filament backbone structure. J Struct Biol 2017; 200:334-342. [PMID: 28964844 DOI: 10.1016/j.jsb.2017.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/01/2017] [Accepted: 09/26/2017] [Indexed: 12/19/2022]
Abstract
The recent high-resolution structure of the thick filament from Lethocerus asynchronous flight muscle shows aspects of thick filament structure never before revealed that may shed some light on how striated muscles function. The phenomenon of stretch activation underlies the function of asynchronous flight muscle. It is most highly developed in flight muscle, but is also observed in other striated muscles such as cardiac muscle. Although stretch activation is likely to be complex, involving more than a single structural aspect of striated muscle, the thick filament itself, would be a prime site for regulatory function because it must bear all of the tension produced by both its associated myosin motors and any externally applied force. Here we show the first structural evidence that the arrangement of myosin heads within the interacting heads motif is coupled to the structure of the thick filament backbone. We find that a change in helical angle of 0.16° disorders the blocked head preferentially within the Lethocerus interacting heads motif. This observation suggests a mechanism for how tension affects the dynamics of the myosin heads leading to a detailed hypothesis for stretch activation and shortening deactivation, in which the blocked head preferentially binds the thin filament followed by the free head when force production occurs.
Collapse
Affiliation(s)
- Zhongjun Hu
- Florida State University, Institute of Molecular Biophysics, Tallahassee, FL 32306-4380, USA
| | - Dianne W Taylor
- Florida State University, Institute of Molecular Biophysics, Tallahassee, FL 32306-4380, USA
| | - Robert J Edwards
- Duke University Medical Center, Department of Cell Biology, Durham, NC 27607, UK
| | - Kenneth A Taylor
- Florida State University, Institute of Molecular Biophysics, Tallahassee, FL 32306-4380, USA.
| |
Collapse
|
102
|
Alamo L, Pinto A, Sulbarán G, Mavárez J, Padrón R. Lessons from a tarantula: new insights into myosin interacting-heads motif evolution and its implications on disease. Biophys Rev 2017; 10:1465-1477. [PMID: 28871552 DOI: 10.1007/s12551-017-0292-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/27/2017] [Indexed: 12/18/2022] Open
Abstract
Tarantula's leg muscle thick filament is the ideal model for the study of the structure and function of skeletal muscle thick filaments. Its analysis has given rise to a series of structural and functional studies, leading, among other things, to the discovery of the myosin interacting-heads motif (IHM). Further electron microscopy (EM) studies have shown the presence of IHM in frozen-hydrated and negatively stained thick filaments of striated, cardiac, and smooth muscle of bilaterians, most showing the IHM parallel to the filament axis. EM studies on negatively stained heavy meromyosin of different species have shown the presence of IHM on sponges, animals that lack muscle, extending the presence of IHM to metazoans. The IHM evolved about 800 MY ago in the ancestor of Metazoa, and independently with functional differences in the lineage leading to the slime mold Dictyostelium discoideum (Mycetozoa). This motif conveys important functional advantages, such as Ca2+ regulation and ATP energy-saving mechanisms. Recent interest has focused on human IHM structure in order to understand the structural basis underlying various conditions and situations of scientific and medical interest: the hypertrophic and dilated cardiomyopathies, overfeeding control, aging and hormone deprival muscle weakness, drug design for schistosomiasis control, and conditioning exercise physiology for the training of power athletes.
Collapse
Affiliation(s)
- Lorenzo Alamo
- Centro de Biología Estructural "Humberto Fernández-Morán", Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo. 20632, Caracas, 1020A, Venezuela
| | - Antonio Pinto
- Centro de Biología Estructural "Humberto Fernández-Morán", Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo. 20632, Caracas, 1020A, Venezuela
| | - Guidenn Sulbarán
- Centro de Biología Estructural "Humberto Fernández-Morán", Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo. 20632, Caracas, 1020A, Venezuela.,Institut de Biologie Structurale (IBS), CEA-CNRS Université Grenoble Alpes, Grenoble, France
| | - Jesús Mavárez
- Laboratoire d'Ecologie Alpine, UMR 5553 CNRS-Université Grenoble Alpes, 2233 Rue de la Piscine, 38041, Grenoble, France
| | - Raúl Padrón
- Centro de Biología Estructural "Humberto Fernández-Morán", Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo. 20632, Caracas, 1020A, Venezuela.
| |
Collapse
|
103
|
Trivedi DV, Adhikari AS, Sarkar SS, Ruppel KM, Spudich JA. Hypertrophic cardiomyopathy and the myosin mesa: viewing an old disease in a new light. Biophys Rev 2017; 10:27-48. [PMID: 28717924 PMCID: PMC5803174 DOI: 10.1007/s12551-017-0274-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/12/2017] [Indexed: 12/15/2022] Open
Abstract
The sarcomere is an exquisitely designed apparatus that is capable of generating force, which in the case of the heart results in the pumping of blood throughout the body. At the molecular level, an ATP-dependent interaction of myosin with actin drives the contraction and force generation of the sarcomere. Over the past six decades, work on muscle has yielded tremendous insights into the workings of the sarcomeric system. We now stand on the cusp where the acquired knowledge of how the sarcomere contracts and how that contraction is regulated can be extended to an understanding of the molecular mechanisms of sarcomeric diseases, such as hypertrophic cardiomyopathy (HCM). In this review we present a picture that combines current knowledge of the myosin mesa, the sequestered state of myosin heads on the thick filament, known as the interacting-heads motif (IHM), their possible interaction with myosin binding protein C (MyBP-C) and how these interactions can be abrogated leading to hyper-contractility, a key clinical manifestation of HCM. We discuss the structural and functional basis of the IHM state of the myosin heads and identify HCM-causing mutations that can directly impact the equilibrium between the 'on state' of the myosin heads (the open state) and the IHM 'off state'. We also hypothesize a role of MyBP-C in helping to maintain myosin heads in the IHM state on the thick filament, allowing release in a graded manner upon adrenergic stimulation. By viewing clinical hyper-contractility as the result of the destabilization of the IHM state, our aim is to view an old disease in a new light.
Collapse
Affiliation(s)
- Darshan V Trivedi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Arjun S Adhikari
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Saswata S Sarkar
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA. .,Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
104
|
Fee L, Lin W, Qiu F, Edwards RJ. Myosin II sequences for Lethocerus indicus. J Muscle Res Cell Motil 2017; 38:193-200. [PMID: 28707142 PMCID: PMC5660136 DOI: 10.1007/s10974-017-9476-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/10/2017] [Indexed: 11/14/2022]
Abstract
We present the genomic and expressed myosin II sequences from the giant waterbug, Lethocerus indicus. The intron rich gene appears relatively ancient and contains six regions of mutually exclusive exons that are alternatively spliced. Alternatively spliced regions may be involved in the asymmetric myosin dimer structure known as the interacting heads motif, as well as stabilizing the interacting heads motif within the thick filament. A lack of negative charge in the myosin S2 domain may explain why Lethocerus thick filaments display a perpendicular interacting heads motif, rather than one folded back to contact S2, as is seen in other thick filament types such as those from tarantula.
Collapse
Affiliation(s)
- Lanette Fee
- Department of Cell Biology, Duke University, Box 3011, Durham, NC, 27705, USA
| | - Weili Lin
- Shanghai Center for Bioinformation Technology, 1278 Keyuan Rd. Fl. 2, Shanghai, 201203, China
| | - Feng Qiu
- Shanghai Center for Bioinformation Technology, 1278 Keyuan Rd. Fl. 2, Shanghai, 201203, China
| | - Robert J Edwards
- Department of Cell Biology, Duke University, Box 3011, Durham, NC, 27705, USA.
| |
Collapse
|
105
|
MYBPC3 mutations are associated with a reduced super-relaxed state in patients with hypertrophic cardiomyopathy. PLoS One 2017; 12:e0180064. [PMID: 28658286 PMCID: PMC5489194 DOI: 10.1371/journal.pone.0180064] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 06/08/2017] [Indexed: 11/23/2022] Open
Abstract
The “super-relaxed state” (SRX) of myosin represents a ‘reserve’ of motors in the heart. Myosin heads in the SRX are bound to the thick filament and have a very low ATPase rate. Changes in the SRX are likely to modulate cardiac contractility. We previously demonstrated that the SRX is significantly reduced in mouse cardiomyocytes lacking cardiac myosin binding protein–C (cMyBP-C). Here, we report the effect of mutations in the cMyBP-C gene (MYBPC3) using samples from human patients with hypertrophic cardiomyopathy (HCM). Left ventricular (LV) samples from 11 HCM patients were obtained following myectomy surgery to relieve LV outflow tract obstruction. HCM samples were genotyped as either MYBPC3 mutation positive (MYBPC3mut) or negative (HCMsmn) and were compared to eight non-failing donor hearts. Compared to donors, only MYBPC3mut samples display a significantly diminished SRX, characterised by a decrease in both the number of myosin heads in the SRX and the lifetime of ATP turnover. These changes were not observed in HCMsmn samples. There was a positive correlation (p < 0.01) between the expression of cMyBP-C and the proportion of myosin heads in the SRX state, suggesting cMyBP-C modulates and maintains the SRX. Phosphorylation of the myosin regulatory light chain in MYBPC3mut samples was significantly decreased compared to the other groups, suggesting a potential mechanism to compensate for the diminished SRX. We conclude that by altering both contractility and sarcomeric energy requirements, a reduced SRX may be an important disease mechanism in patients with MYBPC3 mutations.
Collapse
|
106
|
Abstract
The Frank-Starling Law dictates that the heart is able to match ejection to the dynamic changes occurring during cardiac filling, hence efficiently regulating isovolumetric contraction and shortening. In the last four decades, efforts have been made to identify a common fundamental basis for the Frank-Starling heart that can explain the direct relationship between muscle lengthening and its increased sensitization to Ca2+. The term 'myofilament length-dependent activation' describes the length-dependent properties of the myofilaments, but what is(are) the underlying molecular mechanism(s) is a matter of ongoing debate. Length-dependent activation increases formation of thick-filament strongly-bound cross-bridges on actin and imposes structural-mechanical alterations on the thin-filament with greater than normal bound Ca2+. Stretch-induced effects, rather than changes in filament spacing, appear to be primarily involved in the regulation of length-dependent activation. Here, evidence is provided to support the notion that stretch-mediated effects induced by titin govern alterations of thick-filament force-producing cross-bridges and thin-filament Ca2+-cooperative responses.
Collapse
|
107
|
Alamo L, Ware JS, Pinto A, Gillilan RE, Seidman JG, Seidman CE, Padrón R. Effects of myosin variants on interacting-heads motif explain distinct hypertrophic and dilated cardiomyopathy phenotypes. eLife 2017; 6:e24634. [PMID: 28606303 PMCID: PMC5469618 DOI: 10.7554/elife.24634] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 05/05/2017] [Indexed: 12/12/2022] Open
Abstract
Cardiac β-myosin variants cause hypertrophic (HCM) or dilated (DCM) cardiomyopathy by disrupting sarcomere contraction and relaxation. The locations of variants on isolated myosin head structures predict contractility effects but not the prominent relaxation and energetic deficits that characterize HCM. During relaxation, pairs of myosins form interacting-heads motif (IHM) structures that with other sarcomere proteins establish an energy-saving, super-relaxed (SRX) state. Using a human β-cardiac myosin IHM quasi-atomic model, we defined interactions sites between adjacent myosin heads and associated protein partners, and then analyzed rare variants from 6112 HCM and 1315 DCM patients and 33,370 ExAC controls. HCM variants, 72% that changed electrostatic charges, disproportionately altered IHM interaction residues (expected 23%; HCM 54%, p=2.6×10-19; DCM 26%, p=0.66; controls 20%, p=0.23). HCM variant locations predict impaired IHM formation and stability, and attenuation of the SRX state - accounting for altered contractility, reduced diastolic relaxation, and increased energy consumption, that fully characterizes HCM pathogenesis.
Collapse
Affiliation(s)
- Lorenzo Alamo
- Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - James S Ware
- National Heart and Lung Institute and MRC London Institute for Medical Sciences, Imperial College London, London, United Kingdom
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London, United Kingdom
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Antonio Pinto
- Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Richard E Gillilan
- Macromolecular Diffraction Facility, Cornell High Energy Synchrotron Source, Ithaca, United States
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, United States
- Cardiovascular Division, Brigham and Women’s Hospital and Howard Hughes Medical Institute, Boston, United States
| | - Raúl Padrón
- Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| |
Collapse
|
108
|
The myosin mesa and the basis of hypercontractility caused by hypertrophic cardiomyopathy mutations. Nat Struct Mol Biol 2017; 24:525-533. [PMID: 28481356 DOI: 10.1038/nsmb.3408] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/05/2017] [Indexed: 12/12/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is primarily caused by mutations in β-cardiac myosin and myosin-binding protein-C (MyBP-C). Changes in the contractile parameters of myosin measured so far do not explain the clinical hypercontractility caused by such mutations. We propose that hypercontractility is due to an increase in the number of myosin heads (S1) that are accessible for force production. In support of this hypothesis, we demonstrate myosin tail (S2)-dependent functional regulation of actin-activated human β-cardiac myosin ATPase. In addition, we show that both S2 and MyBP-C bind to S1 and that phosphorylation of either S1 or MyBP-C weakens these interactions. Importantly, the S1-S2 interaction is also weakened by four myosin HCM-causing mutations but not by two other mutations. To explain these experimental results, we propose a working structural model involving multiple interactions, including those with myosin's own S2 and MyBP-C, that hold myosin in a sequestered state.
Collapse
|
109
|
Abstract
The mammalian heart pumps blood through the vessels, maintaining the dynamic equilibrium in a circulatory system driven by two pumps in series. This vital function is based on the fine-tuning of cardiac performance by the Frank-Starling mechanism that relates the pressure exerted by the contracting ventricle (end systolic pressure) to its volume (end systolic volume). At the level of the sarcomere, the structural unit of the cardiac myocytes, the Frank-Starling mechanism consists of the increase in active force with the increase of sarcomere length (length-dependent activation). We combine sarcomere mechanics and micrometer-nanometer-scale X-ray diffraction from synchrotron light in intact ventricular trabeculae from the rat to measure the axial movement of the myosin motors during the diastole-systole cycle under sarcomere length control. We find that the number of myosin motors leaving the off, ATP hydrolysis-unavailable state characteristic of the diastole is adjusted to the sarcomere length-dependent systolic force. This mechanosensing-based regulation of the thick filament makes the energetic cost of the systole rapidly tuned to the mechanical task, revealing a prime aspect of the Frank-Starling mechanism. The regulation is putatively impaired by cardiomyopathy-causing mutations that affect the intramolecular and intermolecular interactions controlling the off state of the motors.
Collapse
|
110
|
Kensler RW, Craig R, Moss RL. Phosphorylation of cardiac myosin binding protein C releases myosin heads from the surface of cardiac thick filaments. Proc Natl Acad Sci U S A 2017; 114:E1355-E1364. [PMID: 28167762 PMCID: PMC5338423 DOI: 10.1073/pnas.1614020114] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cardiac myosin binding protein C (cMyBP-C) has a key regulatory role in cardiac contraction, but the mechanism by which changes in phosphorylation of cMyBP-C accelerate cross-bridge kinetics remains unknown. In this study, we isolated thick filaments from the hearts of mice in which the three serine residues (Ser273, Ser282, and Ser302) that are phosphorylated by protein kinase A in the m-domain of cMyBP-C were replaced by either alanine or aspartic acid, mimicking the fully nonphosphorylated and the fully phosphorylated state of cMyBP-C, respectively. We found that thick filaments from the cMyBP-C phospho-deficient hearts had highly ordered cross-bridge arrays, whereas the filaments from the cMyBP-C phospho-mimetic hearts showed a strong tendency toward disorder. Our results support the hypothesis that dephosphorylation of cMyBP-C promotes or stabilizes the relaxed/superrelaxed quasi-helical ordering of the myosin heads on the filament surface, whereas phosphorylation weakens this stabilization and binding of the heads to the backbone. Such structural changes would modulate the probability of myosin binding to actin and could help explain the acceleration of cross-bridge interactions with actin when cMyBP-C is phosphorylated because of, for example, activation of β1-adrenergic receptors in myocardium.
Collapse
Affiliation(s)
- Robert W Kensler
- Department of Anatomy and Neurobiology, University of Puerto Rico Medical School, San Juan, PR 00936;
| | - Roger Craig
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Richard L Moss
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705
| |
Collapse
|
111
|
Kawana M, Sarkar SS, Sutton S, Ruppel KM, Spudich JA. Biophysical properties of human β-cardiac myosin with converter mutations that cause hypertrophic cardiomyopathy. SCIENCE ADVANCES 2017; 3:e1601959. [PMID: 28246639 PMCID: PMC5302870 DOI: 10.1126/sciadv.1601959] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/09/2017] [Indexed: 05/20/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) affects 1 in 500 individuals and is an important cause of arrhythmias and heart failure. Clinically, HCM is characterized as causing hypercontractility, and therapies are aimed toward controlling the hyperactive physiology. Mutations in the β-cardiac myosin comprise ~40% of genetic mutations associated with HCM, and the converter domain of myosin is a hotspot for HCM-causing mutations; however, the underlying primary effects of these mutations on myosin's biomechanical function remain elusive. We hypothesize that these mutations affect the biomechanical properties of myosin, such as increasing its intrinsic force and/or its duty ratio and therefore the ensemble force of the sarcomere. Using recombinant human β-cardiac myosin, we characterize the molecular effects of three severe HCM-causing converter domain mutations: R719W, R723G, and G741R. Contrary to our hypothesis, the intrinsic forces of R719W and R723G mutant myosins are decreased compared to wild type and unchanged for G741R. Actin and regulated thin filament gliding velocities are ~15% faster for R719W and R723G myosins, whereas there is no change in velocity for G741R. Adenosine triphosphatase activities and the load-dependent velocity change profiles of all three mutant proteins are very similar to those of wild type. These results indicate that the net biomechanical properties of human β-cardiac myosin carrying these converter domain mutations are very similar to those of wild type or are even slightly hypocontractile, leading us to consider an alternative mechanism for the clinically observed hypercontractility. Future work includes how these mutations affect protein interactions within the sarcomere that increase the availability of myosin heads participating in force production.
Collapse
Affiliation(s)
- Masataka Kawana
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Saswata S. Sarkar
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shirley Sutton
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kathleen M. Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA 94305, USA
- Corresponding author. (J.A.S.); (K.M.R.)
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Corresponding author. (J.A.S.); (K.M.R.)
| |
Collapse
|
112
|
Tang W, Blair CA, Walton SD, Málnási-Csizmadia A, Campbell KS, Yengo CM. Modulating Beta-Cardiac Myosin Function at the Molecular and Tissue Levels. Front Physiol 2017; 7:659. [PMID: 28119616 PMCID: PMC5220080 DOI: 10.3389/fphys.2016.00659] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/15/2016] [Indexed: 01/10/2023] Open
Abstract
Inherited cardiomyopathies are a common form of heart disease that are caused by mutations in sarcomeric proteins with beta cardiac myosin (MYH7) being one of the most frequently affected genes. Since the discovery of the first cardiomyopathy associated mutation in beta-cardiac myosin, a major goal has been to correlate the in vitro myosin motor properties with the contractile performance of cardiac muscle. There has been substantial progress in developing assays to measure the force and velocity properties of purified cardiac muscle myosin but it is still challenging to correlate results from molecular and tissue-level experiments. Mutations that cause hypertrophic cardiomyopathy are more common than mutations that lead to dilated cardiomyopathy and are also often associated with increased isometric force and hyper-contractility. Therefore, the development of drugs designed to decrease isometric force by reducing the duty ratio (the proportion of time myosin spends bound to actin during its ATPase cycle) has been proposed for the treatment of hypertrophic cardiomyopathy. Para-Nitroblebbistatin is a small molecule drug proposed to decrease the duty ratio of class II myosins. We examined the impact of this drug on human beta cardiac myosin using purified myosin motor assays and studies of permeabilized muscle fiber mechanics. We find that with purified human beta-cardiac myosin para-Nitroblebbistatin slows actin-activated ATPase and in vitro motility without altering the ADP release rate constant. In permeabilized human myocardium, para-Nitroblebbistatin reduces isometric force, power, and calcium sensitivity while not changing shortening velocity or the rate of force development (ktr). Therefore, designing a drug that reduces the myosin duty ratio by inhibiting strong attachment to actin while not changing detachment can cause a reduction in force without changing shortening velocity or relaxation.
Collapse
Affiliation(s)
- Wanjian Tang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine Hershey, PA, USA
| | - Cheavar A Blair
- Department of Physiology, University of Kentucky Lexington, KY, USA
| | - Shane D Walton
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine Hershey, PA, USA
| | | | - Kenneth S Campbell
- Department of Physiology, University of KentuckyLexington, KY, USA; Division of Cardiovascular Medicine, University of KentuckyLexington, KY, USA
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine Hershey, PA, USA
| |
Collapse
|
113
|
Abstract
Electron microscopy and X-ray diffraction have together played a key role in our understanding of the molecular structure and mechanism of contraction of muscle. This review highlights the role of electron microscopy, from early insights into thick and thin filament structure by negative staining, to studies of single myosin molecule structure, and finally to recent high-resolution structures by cryo-electron microscopy. Muscle filaments are designed for movement. Their labile structures thus present challenges to obtaining near-atomic detail, which are also discussed.
Collapse
|
114
|
Abstract
In the last decade, improvements in electron microscopy and image processing have permitted significantly higher resolutions to be achieved (sometimes <1 nm) when studying isolated actin and myosin filaments. In the case of actin filaments the changing structure when troponin binds calcium ions can be followed using electron microscopy and single particle analysis to reveal what happens on each of the seven non-equivalent pseudo-repeats of the tropomyosin α-helical coiled-coil. In the case of the known family of myosin filaments not only are the myosin head arrangements under relaxing conditions being defined, but the latest analysis, also using single particle methods, is starting to reveal the way that the α-helical coiled-coil myosin rods are packed to give the filament backbones.
Collapse
Affiliation(s)
- John M Squire
- Muscle Contraction Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.
| | - Danielle M Paul
- Muscle Contraction Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Edward P Morris
- Division of Structural Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| |
Collapse
|
115
|
Abstract
In this review we discuss the history and the current state of ideas related to the mechanism of size regulation of the thick (myosin) and thin (actin) filaments in vertebrate striated muscles. Various hypotheses have been considered during of more than half century of research, recently mostly involving titin and nebulin acting as templates or 'molecular rulers', terminating exact assembly. These two giant, single-polypeptide, filamentous proteins are bound in situ along the thick and thin filaments, respectively, with an almost perfect match in the respective lengths and structural periodicities. However, evidence still questions the possibility that the proteins function as templates, or scaffolds, on which the thin and thick filaments could be assembled. In addition, the progress in muscle research during the last decades highlighted a number of other factors that could potentially be involved in the mechanism of length regulation: molecular chaperones that may guide folding and assembly of actin and myosin; capping proteins that can influence the rates of assembly-disassembly of the myofilaments; Ca2+ transients that can activate or deactivate protein interactions, etc. The entire mechanism of sarcomere assembly appears complex and highly dynamic. This mechanism is also capable of producing filaments of about the correct size without titin and nebulin. What then is the role of these proteins? Evidence points to titin and nebulin stabilizing structures of the respective filaments. This stabilizing effect, based on linear proteins of a fixed size, implies that titin and nebulin are indeed molecular rulers of the filaments. Although the proteins may not function as templates in the assembly of the filaments, they measure and stabilize exactly the same size of the functionally important for the muscles segments in each of the respective filaments.
Collapse
|
116
|
Fusi L, Percario V, Brunello E, Caremani M, Bianco P, Powers JD, Reconditi M, Lombardi V, Piazzesi G. Minimum number of myosin motors accounting for shortening velocity under zero load in skeletal muscle. J Physiol 2016; 595:1127-1142. [PMID: 27763660 DOI: 10.1113/jp273299] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/09/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Myosin filament mechanosensing determines the efficiency of the contraction by adapting the number of switched ON motors to the load. Accordingly, the unloaded shortening velocity (V0 ) is already set at the end of latency relaxation (LR), ∼10 ms after the start of stimulation, when the myosin filament is still in the OFF state. Here the number of actin-attached motors per half-myosin filament (n) during V0 shortening imposed either at the end of LR or at the plateau of the isometric contraction is estimated from the relation between half-sarcomere compliance and force during the force redevelopment after shortening. The value of n decreases progressively with shortening and, during V0 shortening starting at the end of LR, is 1-4. Reduction of n is accounted for by a constant duty ratio of 0.05 and a parallel switching OFF of motors, explaining the very low rate of ATP utilization found during unloaded shortening. ABSTRACT The maximum velocity at which a skeletal muscle can shorten (i.e. the velocity of sliding between the myosin filament and the actin filament under zero load, V0 ) is already set at the end of the latency relaxation (LR) preceding isometric force generation, ∼10 ms after the start of electrical stimulation in frog muscle fibres at 4°C. At this time, Ca2+ -induced activation of the actin filament is maximal, while the myosin filament is in the OFF state characterized by most of the myosin motors lying on helical tracks on the filament surface, making them unavailable for actin binding and ATP hydrolysis. Here, the number of actin-attached motors per half-thick filament during V0 shortening (n) is estimated by imposing, on tetanized single fibres from Rana esculenta (at 4°C and sarcomere length 2.15 μm), small 4 kHz oscillations and determining the relation between half-sarcomere (hs) compliance and force during the force development following V0 shortening. When V0 shortening is superimposed on the maximum isometric force T0 , n decreases progressively with the increase of shortening (range 30-80 nm per hs) and, when V0 shortening is imposed at the end of LR, n can be as low as 1-4. Reduction of n is accounted for by a constant duty ratio of the myosin motor of ∼0.05 and a parallel switching OFF of the thick filament, providing an explanation for the very low rate of ATP utilization during extended V0 shortening.
Collapse
|
117
|
Chang AN, Kamm KE, Stull JT. Role of myosin light chain phosphatase in cardiac physiology and pathophysiology. J Mol Cell Cardiol 2016; 101:35-43. [PMID: 27742556 DOI: 10.1016/j.yjmcc.2016.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 11/18/2022]
Abstract
Maintenance of contractile performance of the heart is achieved in part by the constitutive 40% phosphorylation of myosin regulatory light chain (RLC) in sarcomeres. The importance of this extent of RLC phosphorylation for optimal cardiac performance becomes apparent when various mouse models and resultant phenotypes are compared. The absence or attenuation of RLC phosphorylation results in poor performance leading to heart failure, whereas increased RLC phosphorylation is associated with cardiac protection from stresses. Although information is limited, RLC phosphorylation appears compromised in human heart failure which is consistent with data from mouse studies. The extent of cardiac RLC phosphorylation is determined by the balanced activities of cardiac myosin light chain kinases and phosphatases, the regulatory mechanisms of which are now emerging. This review thusly focuses on kinases that may participate in phosphorylating RLC to make the substrate for cardiac myosin light chain phosphatases, in addition to providing perspectives on the family of myosin light chain phosphatases and involved signaling mechanisms. Because biochemical and physiological information about cardiac myosin light chain phosphatase is sparse, such studies represent an emerging area of investigation in health and disease.
Collapse
Affiliation(s)
- Audrey N Chang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Kristine E Kamm
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - James T Stull
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
118
|
Hu Z, Taylor DW, Reedy MK, Edwards RJ, Taylor KA. Structure of myosin filaments from relaxed Lethocerus flight muscle by cryo-EM at 6 Å resolution. SCIENCE ADVANCES 2016; 2:e1600058. [PMID: 27704041 PMCID: PMC5045269 DOI: 10.1126/sciadv.1600058] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/23/2016] [Indexed: 05/09/2023]
Abstract
We describe a cryo-electron microscopy three-dimensional image reconstruction of relaxed myosin II-containing thick filaments from the flight muscle of the giant water bug Lethocerus indicus. The relaxed thick filament structure is a key element of muscle physiology because it facilitates the reextension process following contraction. Conversely, the myosin heads must disrupt their relaxed arrangement to drive contraction. Previous models predicted that Lethocerus myosin was unique in having an intermolecular head-head interaction, as opposed to the intramolecular head-head interaction observed in all other species. In contrast to the predicted model, we find an intramolecular head-head interaction, which is similar to that of other thick filaments but oriented in a distinctly different way. The arrangement of myosin's long α-helical coiled-coil rod domain has been hypothesized as either curved layers or helical subfilaments. Our reconstruction is the first report having sufficient resolution to track the rod α helices in their native environment at resolutions ~5.5 Å, and it shows that the layer arrangement is correct for Lethocerus. Threading separate paths through the forest of myosin coiled coils are four nonmyosin peptides. We suggest that the unusual position of the heads and the rod arrangement separated by nonmyosin peptides are adaptations for mechanical signal transduction whereby applied tension disrupts the myosin heads as a component of stretch activation.
Collapse
Affiliation(s)
- Zhongjun Hu
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306–4380, USA
| | - Dianne W. Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306–4380, USA
| | - Michael K. Reedy
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27607, USA
| | - Robert J. Edwards
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27607, USA
| | - Kenneth A. Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306–4380, USA
- Corresponding author.
| |
Collapse
|
119
|
Nogara L, Naber N, Pate E, Canton M, Reggiani C, Cooke R. Spectroscopic Studies of the Super Relaxed State of Skeletal Muscle. PLoS One 2016; 11:e0160100. [PMID: 27479128 PMCID: PMC4968846 DOI: 10.1371/journal.pone.0160100] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/13/2016] [Indexed: 11/18/2022] Open
Abstract
In the super-relaxed state of myosin, ATPase activity is strongly inhibited by binding of the myosin heads to the core of the thick filament in a structure known as the interacting-heads motif. In the disordered relaxed state myosin heads are not bound to the core of the thick filament and have an ATPase rate that is 10 fold greater. In the interacting-heads motif the two regulatory light chains appear to bind to each other. We have made single cysteine mutants of the regulatory light chain, placed both paramagnetic and fluorescent probes on them, and exchanged them into skinned skeletal muscle fibers. Many of the labeled light chains tended to disrupt the stability of the super-relaxed state, and showed spectral changes in the transition from the disordered relaxed state to the super-relaxed state. These data support the putative interface between the two regulatory light chains identified by cryo electron microscopy and show that both the divalent cation bound to the regulatory light chain and the N-terminus of the regulatory light chain play a role in the stability of the super-relaxed state. One probe showed a shift to shorter wavelengths in the super-relaxed state such that a ratio of intensities at 440nm to that at 520nm provided a measure of the population of the super-relaxed state amenable for high throughput screens for finding potential pharmaceuticals. The results provide a proof of concept that small molecules that bind to this region can destabilize the super-relaxed state and provide a method to search for small molecules that do so leading to a potentially effective treatment for Type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Leonardo Nogara
- Dipartimento di Scienze Biomediche, University of Padua, Padua Italy
- * E-mail:
| | - Nariman Naber
- Department of Biochemistry/Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Edward Pate
- Voiland School of Bioengineering, Washington State University, Pullman, Washington, United States of America
| | - Marcella Canton
- Dipartimento di Scienze Biomediche, University of Padua, Padua Italy
| | - Carlo Reggiani
- Dipartimento di Scienze Biomediche, University of Padua, Padua Italy
| | - Roger Cooke
- Department of Biochemistry/Biophysics, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
120
|
Woodhead JL, Craig R. Through Thick and Thin--Interfilament Communication in Muscle. Biophys J 2016; 109:665-7. [PMID: 26287618 DOI: 10.1016/j.bpj.2015.07.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/16/2015] [Indexed: 11/15/2022] Open
Affiliation(s)
- John L Woodhead
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Roger Craig
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
121
|
Fusi L, Huang Z, Irving M. The Conformation of Myosin Heads in Relaxed Skeletal Muscle: Implications for Myosin-Based Regulation. Biophys J 2016; 109:783-92. [PMID: 26287630 PMCID: PMC4547144 DOI: 10.1016/j.bpj.2015.06.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 06/04/2015] [Accepted: 06/17/2015] [Indexed: 11/05/2022] Open
Abstract
In isolated thick filaments from many types of muscle, the two head domains of each myosin molecule are folded back against the filament backbone in a conformation called the interacting heads motif (IHM) in which actin interaction is inhibited. This conformation is present in resting skeletal muscle, but it is not known how exit from the IHM state is achieved during muscle activation. Here, we investigated this by measuring the in situ conformation of the light chain domain of the myosin heads in relaxed demembranated fibers from rabbit psoas muscle using fluorescence polarization from bifunctional rhodamine probes at four sites on the C-terminal lobe of the myosin regulatory light chain (RLC). The order parameter 〈P2〉 describing probe orientation with respect to the filament axis had a roughly sigmoidal dependence on temperature in relaxing conditions, with a half-maximal change at ∼19°C. Either lattice compression by 5% dextran T500 or addition of 25 μM blebbistatin decreased the transition temperature to ∼14°C. Maximum entropy analysis revealed three preferred orientations of the myosin RLC region at 25°C and above, two with its long axis roughly parallel to the filament axis and one roughly perpendicular. The parallel orientations are similar to those of the so-called blocked and free heads in the IHM and are stabilized by either lattice compression or blebbistatin. In relaxed skeletal muscle at near-physiological temperature and myofilament lattice spacing, the majority of the myosin heads have their light chain domains in IHM-like conformations, with a minority in a distinct conformation with their RLC regions roughly perpendicular to the filament axis. None of these three orientation populations were present during active contraction. These results are consistent with a regulatory transition of the thick filament in skeletal muscle associated with a conformational equilibrium of the myosin heads.
Collapse
Affiliation(s)
- Luca Fusi
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.
| | - Zhe Huang
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Malcolm Irving
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| |
Collapse
|
122
|
Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments. Proc Natl Acad Sci U S A 2016; 113:E3039-47. [PMID: 27162358 DOI: 10.1073/pnas.1602776113] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease.
Collapse
|
123
|
Lai S, Collins BC, Colson BA, Kararigas G, Lowe DA. Estradiol modulates myosin regulatory light chain phosphorylation and contractility in skeletal muscle of female mice. Am J Physiol Endocrinol Metab 2016; 310:E724-33. [PMID: 26956186 PMCID: PMC4867308 DOI: 10.1152/ajpendo.00439.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/02/2016] [Indexed: 11/22/2022]
Abstract
Impairment of skeletal muscle function has been associated with changes in ovarian hormones, especially estradiol. To elucidate mechanisms of estradiol on skeletal muscle strength, the hormone's effects on phosphorylation of the myosin regulatory light chain (pRLC) and muscle contractility were investigated, hypothesizing an estradiol-specific beneficial impact. In a skeletal muscle cell line, C2C12, pRLC was increased by 17β-estradiol (E2) in a concentration-dependent manner. In skeletal muscles of C57BL/6 mice that were E2 deficient via ovariectomy (OVX), pRLC was lower than that from ovary-intact, sham-operated mice (Sham). The reduced pRLC in OVX muscle was reversed by in vivo E2 treatment. Posttetanic potentiation (PTP) of muscle from OVX mice was low compared with that from Sham mice, and this decrement was reversed by acute E2 treatment, demonstrating physiological consequence. Western blot of those muscles revealed that low PTP corresponded with low pRLC and higher PTP with greater pRLC. We aimed to elucidate signaling pathways affecting E2-mediated pRLC using a kinase inhibitor library and C2C12 cells as well as a specific myosin light chain kinase inhibitor in muscles. PI3K/Akt, MAPK, and CamKII were identified as candidate kinases sensitive to E2 in terms of phosphorylating RLC. Applying siRNA strategy in C2C12 cells, pRLC triggered by E2 was found to be mediated by estrogen receptor-β and the G protein-coupled estrogen receptor. Together, these results provide evidence that E2 modulates myosin pRLC in skeletal muscle and is one mechanism by which this hormone can affect muscle contractility in females.
Collapse
Affiliation(s)
- Shaojuan Lai
- Programs in Rehabilitation Sciences and Physical Therapy, Department of Physical Medicine and Rehabilitation, Medical School, University of Minnesota, Minneapolis, Minnesota; College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China; and
| | - Brittany C Collins
- Programs in Rehabilitation Sciences and Physical Therapy, Department of Physical Medicine and Rehabilitation, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Brett A Colson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Georgios Kararigas
- Institute of Gender in Medicine, Charite University Hospital, and German Centre for Cardiovascular Research (DZHK), Partner Site, Berlin, Germany
| | - Dawn A Lowe
- Programs in Rehabilitation Sciences and Physical Therapy, Department of Physical Medicine and Rehabilitation, Medical School, University of Minnesota, Minneapolis, Minnesota;
| |
Collapse
|
124
|
Espinoza-Fonseca LM, Alamo L, Pinto A, Thomas DD, Padrón R. Sequential myosin phosphorylation activates tarantula thick filament via a disorder-order transition. MOLECULAR BIOSYSTEMS 2016; 11:2167-79. [PMID: 26038232 DOI: 10.1039/c5mb00162e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Phosphorylation of myosin regulatory light chain (RLC) N-terminal extension (NTE) activates myosin in thick filaments. RLC phosphorylation plays a primary regulatory role in smooth muscles and a secondary (modulatory) role in striated muscles, which is regulated by Ca(2+)via TnC/TM on the thin filament. Tarantula striated muscle exhibits both regulatory systems: one switches on/off contraction through thin filament regulation, and another through PKC constitutively Ser35 phosphorylated swaying free heads in the thick filaments that produces quick force on twitches regulated from 0 to 50% and modulation is accomplished recruiting additional force-potentiating free and blocked heads via Ca(2+)4-CaM-MLCK Ser45 phosphorylation. We have used microsecond molecular dynamics (MD) simulations of tarantula RLC NTE to understand the structural basis for phosphorylation-based regulation in tarantula thick filament activation. Trajectory analysis revealed that an inter-domain salt bridge network (R39/E58,E61) facilitates the formation of a stable helix-coil-helix (HCH) motif formed by helices P and A in the unphosphorylated NTE of both myosin heads. Phosphorylation of the blocked head on Ser45 does not induce any substantial structural changes. However, phosphorylation of the free head on Ser35 disrupts this salt bridge network and induces a partial extension of helix P along RLC helix A. While not directly participating in the HCH folding, phosphorylation of Ser35 unlocks a compact structure and allows the NTE to spontaneously undergo coil-helix transitions. The modest structural change induced by the subsequent Ser45 diphosphorylation monophosphorylated Ser35 free head facilitates full helix P extension into a single structurally stable α-helix through a network of intra-domain salt bridges (pS35/R38,R39,R42). We conclude that tarantula thick filament activation is controlled by sequential Ser35-Ser45 phosphorylation via a conserved disorder-to-order transition.
Collapse
Affiliation(s)
- L Michel Espinoza-Fonseca
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
125
|
McNamara JW, Li A, Smith NJ, Lal S, Graham RM, Kooiker KB, van Dijk SJ, Remedios CGD, Harris SP, Cooke R. Ablation of cardiac myosin binding protein-C disrupts the super-relaxed state of myosin in murine cardiomyocytes. J Mol Cell Cardiol 2016; 94:65-71. [PMID: 27021517 DOI: 10.1016/j.yjmcc.2016.03.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 11/24/2022]
Abstract
Cardiac myosin binding protein-C (cMyBP-C) is a structural and regulatory component of cardiac thick filaments. It is observed in electron micrographs as seven to nine transverse stripes in the central portion of each half of the A band. Its C-terminus binds tightly to the myosin rod and contributes to thick filament structure, while the N-terminus can bind both myosin S2 and actin, influencing their structure and function. Mutations in the MYBPC3 gene (encoding cMyBP-C) are commonly associated with hypertrophic cardiomyopathy (HCM). In cardiac cells there exists a population of myosin heads in the super-relaxed (SRX) state, which are bound to the thick filament core with a highly inhibited ATPase activity. This report examines the role cMyBP-C plays in regulating the population of the SRX state of cardiac myosin by using an assay that measures single ATP turnover of myosin. We report a significant decrease in the proportion of myosin heads in the SRX state in homozygous cMyBP-C knockout mice, however heterozygous cMyBP-C knockout mice do not significantly differ from the wild type. A smaller, non-significant decrease is observed when thoracic aortic constriction is used to induce cardiac hypertrophy in mutation negative mice. These results support the proposal that cMyBP-C stabilises the thick filament and that the loss of cMyBP-C results in an untethering of myosin heads. This results in an increased myosin ATP turnover, further consolidating the relationship between thick filament structure and the myosin ATPase.
Collapse
Affiliation(s)
- James W McNamara
- Discipline of Anatomy & Histology, Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia.
| | - Amy Li
- Discipline of Anatomy & Histology, Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Nicola J Smith
- Molecular Cardiology Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Sean Lal
- Discipline of Anatomy & Histology, Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Robert M Graham
- Molecular Cardiology Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Kristina Bezold Kooiker
- Department of Pediatrics (Cardiology), Cardiovascular Institute, Stanford University, CA 94304, USA
| | - Sabine J van Dijk
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Cristobal G Dos Remedios
- Discipline of Anatomy & Histology, Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Samantha P Harris
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Roger Cooke
- Department of Biochemistry & Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517, USA
| |
Collapse
|
126
|
Yamaguchi M, Kimura M, Li ZB, Ohno T, Takemori S, Hoh JFY, Yagi N. X-ray diffraction analysis of the effects of myosin regulatory light chain phosphorylation and butanedione monoxime on skinned skeletal muscle fibers. Am J Physiol Cell Physiol 2016; 310:C692-700. [PMID: 26911280 DOI: 10.1152/ajpcell.00318.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/16/2016] [Indexed: 01/04/2023]
Abstract
The phosphorylation of the myosin regulatory light chain (RLC) is an important modulator of skeletal muscle performance and plays a key role in posttetanic potentiation and staircase potentiation of twitch contractions. The structural basis for these phenomena within the filament lattice has not been thoroughly investigated. Using a synchrotron radiation source at SPring8, we obtained X-ray diffraction patterns from skinned rabbit psoas muscle fibers before and after phosphorylation of myosin RLC in the presence of myosin light chain kinase, calmodulin, and calcium at a concentration below the threshold for tension development ([Ca(2+)] = 10(-6.8)M). After phosphorylation, the first myosin layer line slightly decreased in intensity at ∼0.05 nm(-1)along the equatorial axis, indicating a partial loss of the helical order of myosin heads along the thick filament. Concomitantly, the (1,1/1,0) intensity ratio of the equatorial reflections increased. These results provide a firm structural basis for the hypothesis that phosphorylation of myosin RLC caused the myosin heads to move away from the thick filaments towards the thin filaments, thereby enhancing the probability of interaction with actin. In contrast, 2,3-butanedione monoxime (BDM), known to inhibit contraction by impeding phosphate release from myosin, had exactly the opposite effects on meridional and equatorial reflections to those of phosphorylation. We hypothesize that these antagonistic effects are due to the acceleration of phosphate release from myosin by phosphorylation and its inhibition by BDM, the consequent shifts in crossbridge equilibria leading to opposite changes in abundance of the myosin-ADP-inorganic phosphate complex state associated with helical order of thick filaments.
Collapse
Affiliation(s)
- Maki Yamaguchi
- Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, Japan;
| | - Masako Kimura
- Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Zhao-Bo Li
- Ludwig Center for Cancer Genetic and Therapeutics, The Johns Hopkins University, Baltimore, Maryland
| | - Tetsuo Ohno
- Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shigeru Takemori
- Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Joseph F Y Hoh
- Discipline of Physiology and the Bosch Institute, School of Medical Sciences, Sydney Medical School, The University of Sydney, New South Wales, Australia; and
| | - Naoto Yagi
- Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| |
Collapse
|
127
|
Site-directed spectroscopy of cardiac myosin-binding protein C reveals effects of phosphorylation on protein structural dynamics. Proc Natl Acad Sci U S A 2016; 113:3233-8. [PMID: 26908877 DOI: 10.1073/pnas.1521281113] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We have used the site-directed spectroscopies of time-resolved fluorescence resonance energy transfer (TR-FRET) and double electron-electron resonance (DEER), combined with complementary molecular dynamics (MD) simulations, to resolve the structure and dynamics of cardiac myosin-binding protein C (cMyBP-C), focusing on the N-terminal region. The results have implications for the role of this protein in myocardial contraction, with particular relevance to β-adrenergic signaling, heart failure, and hypertrophic cardiomyopathy. N-terminal cMyBP-C domains C0-C2 (C0C2) contain binding regions for potential interactions with both thick and thin filaments. Phosphorylation by PKA in the MyBP-C motif regulates these binding interactions. Our spectroscopic assays detect distances between pairs of site-directed probes on cMyBP-C. We engineered intramolecular pairs of labeling sites within cMyBP-C to measure, with high resolution, the distance and disorder in the protein's flexible regions using TR-FRET and DEER. Phosphorylation reduced the level of molecular disorder and the distribution of C0C2 intramolecular distances became more compact, with probes flanking either the motif between C1 and C2 or the Pro/Ala-rich linker (PAL) between C0 and C1. Further insight was obtained from microsecond MD simulations, which revealed a large structural change in the disordered motif region in which phosphorylation unmasks the surface of a series of residues on a stable α-helix within the motif with high potential as a protein-protein interaction site. These experimental and computational findings elucidate structural transitions in the flexible and dynamic portions of cMyBP-C, providing previously unidentified molecular insight into the modulatory role of this protein in cardiac muscle contractility.
Collapse
|
128
|
Alamo L, Qi D, Wriggers W, Pinto A, Zhu J, Bilbao A, Gillilan RE, Hu S, Padrón R. Conserved Intramolecular Interactions Maintain Myosin Interacting-Heads Motifs Explaining Tarantula Muscle Super-Relaxed State Structural Basis. J Mol Biol 2016; 428:1142-1164. [PMID: 26851071 DOI: 10.1016/j.jmb.2016.01.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/15/2016] [Accepted: 01/25/2016] [Indexed: 01/08/2023]
Abstract
Tarantula striated muscle is an outstanding system for understanding the molecular organization of myosin filaments. Three-dimensional reconstruction based on cryo-electron microscopy images and single-particle image processing revealed that, in a relaxed state, myosin molecules undergo intramolecular head-head interactions, explaining why head activity switches off. The filament model obtained by rigidly docking a chicken smooth muscle myosin structure to the reconstruction was improved by flexibly fitting an atomic model built by mixing structures from different species to a tilt-corrected 2-nm three-dimensional map of frozen-hydrated tarantula thick filament. We used heavy and light chain sequences from tarantula myosin to build a single-species homology model of two heavy meromyosin interacting-heads motifs (IHMs). The flexibly fitted model includes previously missing loops and shows five intramolecular and five intermolecular interactions that keep the IHM in a compact off structure, forming four helical tracks of IHMs around the backbone. The residues involved in these interactions are oppositely charged, and their sequence conservation suggests that IHM is present across animal species. The new model, PDB 3JBH, explains the structural origin of the ATP turnover rates detected in relaxed tarantula muscle by ascribing the very slow rate to docked unphosphorylated heads, the slow rate to phosphorylated docked heads, and the fast rate to phosphorylated undocked heads. The conservation of intramolecular interactions across animal species and the presence of IHM in bilaterians suggest that a super-relaxed state should be maintained, as it plays a role in saving ATP in skeletal, cardiac, and smooth muscles.
Collapse
Affiliation(s)
- Lorenzo Alamo
- Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas 1020A, Venezuela.
| | - Dan Qi
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, 1 Beichen West Road, Chaoyang District, Beijing 100101, China.
| | - Willy Wriggers
- Department of Mechanical and Aerospace Engineering, Old Dominion University, 5115 Hampton Boulevard, Norfolk, VA 23529, USA.
| | - Antonio Pinto
- Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas 1020A, Venezuela.
| | - Jingui Zhu
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, 1 Beichen West Road, Chaoyang District, Beijing 100101, China.
| | - Aivett Bilbao
- Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas 1020A, Venezuela.
| | - Richard E Gillilan
- Macromolecular Diffraction Facility, Cornell High Energy Synchrotron Source, 161 Wilson Laboratory, Synchrotron Drive, Ithaca, NY 14853, USA.
| | - Songnian Hu
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, 1 Beichen West Road, Chaoyang District, Beijing 100101, China.
| | - Raúl Padrón
- Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas 1020A, Venezuela.
| |
Collapse
|
129
|
Yang S, Woodhead JL, Zhao FQ, Sulbarán G, Craig R. An approach to improve the resolution of helical filaments with a large axial rise and flexible subunits. J Struct Biol 2015; 193:45-54. [PMID: 26592473 DOI: 10.1016/j.jsb.2015.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/12/2015] [Accepted: 11/20/2015] [Indexed: 11/18/2022]
Abstract
Single particle analysis is widely used for three-dimensional reconstruction of helical filaments. Near-atomic resolution has been obtained for several well-ordered filaments. However, it is still a challenge to achieve high resolution for filaments with flexible subunits and a large axial rise per subunit relative to pixel size. Here, we describe an approach that improves the resolution in such cases. In filaments with a large axial rise, many segments must be shifted a long distance along the filament axis to match with a reference projection, potentially causing loss of alignment accuracy and hence resolution. In our study of myosin filaments, we overcame this problem by pre-determining the axial positions of myosin head crowns within segments to decrease the alignment error. In addition, homogeneous, well-ordered segments were selected from the raw data set by checking the assigned azimuthal rotation angle of segments in each filament against those expected for perfect helical symmetry. These procedures improved the resolution of the filament reconstruction from 30 Å to 13 Å. This approach could be useful in other helical filaments with a large axial rise and/or flexible subunits.
Collapse
Affiliation(s)
- Shixin Yang
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - John L Woodhead
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Fa-Qing Zhao
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Guidenn Sulbarán
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Roger Craig
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
130
|
Sequeira V, van der Velden J. Historical perspective on heart function: the Frank-Starling Law. Biophys Rev 2015; 7:421-447. [PMID: 28510104 DOI: 10.1007/s12551-015-0184-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 12/18/2022] Open
Abstract
More than a century of research on the Frank-Starling Law has significantly advanced our knowledge about the working heart. The Frank-Starling Law mandates that the heart is able to match cardiac ejection to the dynamic changes occurring in ventricular filling and thereby regulates ventricular contraction and ejection. Significant efforts have been attempted to identify a common fundamental basis for the Frank-Starling heart and, although a unifying idea has still to come forth, there is mounting evidence of a direct relationship between length changes in individual constituents (cardiomyocytes) and their sensitivity to Ca2+ ions. As the Frank-Starling Law is a vital event for the healthy heart, it is of utmost importance to understand its mechanical basis in order to optimize and organize therapeutic strategies to rescue the failing human heart. The present review is a historic perspective on cardiac muscle function. We "revive" a century of scientific research on the heart's fundamental protein constituents (contractile proteins), to their assemblies in the muscle (the sarcomeres), culminating in a thorough overview of the several synergistically events that compose the Frank-Starling mechanism. It is the authors' personal beliefs that much can be gained by understanding the Frank-Starling relationship at the cellular and whole organ level, so that we can finally, in this century, tackle the pathophysiologic mechanisms underlying heart failure.
Collapse
Affiliation(s)
- Vasco Sequeira
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
| | - Jolanda van der Velden
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.,ICIN- Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
131
|
Kampourakis T, Sun YB, Irving M. Orientation of the N- and C-terminal lobes of the myosin regulatory light chain in cardiac muscle. Biophys J 2015; 108:304-14. [PMID: 25606679 PMCID: PMC4302210 DOI: 10.1016/j.bpj.2014.11.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 11/07/2014] [Accepted: 11/10/2014] [Indexed: 02/02/2023] Open
Abstract
The orientations of the N- and C-terminal lobes of the cardiac isoform of the myosin regulatory light chain (cRLC) in the fully dephosphorylated state in ventricular trabeculae from rat heart were determined using polarized fluorescence from bifunctional sulforhodamine probes. cRLC mutants with one of eight pairs of surface-accessible cysteines were expressed, labeled with bifunctional sulforhodamine, and exchanged into demembranated trabeculae to replace some of the native cRLC. Polarized fluorescence data from the probes in each lobe were combined with RLC crystal structures to calculate the lobe orientation distribution with respect to the filament axis. The orientation distribution of the N-lobe had three distinct peaks (N1–N3) at similar angles in relaxation, isometric contraction, and rigor. The orientation distribution of the C-lobe had four peaks (C1–C4) in relaxation and isometric contraction, but only two of these (C2 and C4) remained in rigor. The N3 and C4 orientations are close to those of the corresponding RLC lobes in myosin head fragments bound to isolated actin filaments in the absence of ATP (in rigor), but also close to those of the pair of heads folded back against the filament surface in isolated thick filaments in the so-called J-motif conformation. The N1 and C1 orientations are close to those expected for actin-bound myosin heads with their light chain domains in a pre-powerstroke conformation. The N2 and C3 orientations have not been observed previously. The results show that the average change in orientation of the RLC region of the myosin heads on activation of cardiac muscle is small; the RLC regions of most heads remain in the same conformation as in relaxation. This suggests that the orientation of the dephosphorylated RLC region of myosin heads in cardiac muscle is primarily determined by an interaction with the thick filament surface.
Collapse
Affiliation(s)
- Thomas Kampourakis
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Yin-Biao Sun
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Malcolm Irving
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom.
| |
Collapse
|
132
|
Abstract
Muscle tissues are classically divided into two major types, depending on the presence or absence of striations. In striated muscles, the actin filaments are anchored at Z-lines and the myosin and actin filaments are in register, whereas in smooth muscles, the actin filaments are attached to dense bodies and the myosin and actin filaments are out of register. The structure of the filaments in smooth muscles is also different from that in striated muscles. Here we have studied the structure of myosin filaments from the smooth muscles of the human parasite Schistosoma mansoni. We find, surprisingly, that they are indistinguishable from those in an arthropod striated muscle. This structural similarity is supported by sequence comparison between the schistosome myosin II heavy chain and known striated muscle myosins. In contrast, the actin filaments of schistosomes are similar to those of smooth muscles, lacking troponin-dependent regulation. We conclude that schistosome muscles are hybrids, containing striated muscle-like myosin filaments and smooth muscle-like actin filaments in a smooth muscle architecture. This surprising finding has broad significance for understanding how muscles are built and how they evolved, and challenges the paradigm that smooth and striated muscles always have distinctly different components.
Collapse
|
133
|
Cardiac myosin-binding protein C (MYBPC3) in cardiac pathophysiology. Gene 2015; 573:188-97. [PMID: 26358504 DOI: 10.1016/j.gene.2015.09.008] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/21/2015] [Accepted: 09/01/2015] [Indexed: 12/27/2022]
Abstract
More than 350 individual MYPBC3 mutations have been identified in patients with inherited hypertrophic cardiomyopathy (HCM), thus representing 40–50% of all HCM mutations, making it the most frequently mutated gene in HCM. HCM is considered a disease of the sarcomere and is characterized by left ventricular hypertrophy, myocyte disarray and diastolic dysfunction. MYBPC3 encodes for the thick filament associated protein cardiac myosin-binding protein C (cMyBP-C), a signaling node in cardiac myocytes that contributes to the maintenance of sarcomeric structure and regulation of contraction and relaxation. This review aims to provide a succinct overview of how mutations in MYBPC3 are considered to affect the physiological function of cMyBP-C, thus causing the deleterious consequences observed inHCM patients. Importantly, recent advances to causally treat HCM by repairing MYBPC3 mutations by gene therapy are discussed here, providing a promising alternative to heart transplantation for patients with a fatal form of neonatal cardiomyopathy due to bi-allelic truncating MYBPC3 mutations.
Collapse
|
134
|
Wilson C, Naber N, Pate E, Cooke R. The myosin inhibitor blebbistatin stabilizes the super-relaxed state in skeletal muscle. Biophys J 2015; 107:1637-46. [PMID: 25296316 DOI: 10.1016/j.bpj.2014.07.075] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 10/24/2022] Open
Abstract
The super-relaxed state of myosin (SRX), in which the myosin ATPase activity is strongly inhibited, has been observed in a variety of muscle types. It has been proposed that myosin heads in this state are inhibited by binding to the core of the thick filament in a structure known as the interacting-heads motif. The myosin inhibitor blebbistatin has been shown in structural studies to stabilize the binding of myosin heads to the thick filament, and here we have utilized measurements of single ATP turnovers to show that blebbistatin also stabilizes the SRX in both fast and slow skeletal muscle, providing further support for the proposal that myosin heads in the SRX are also in the interacting-heads motif. We find that the SRX is stabilized using blebbistatin even in conditions that normally destabilize it, e.g., rigor ADP. Using blebbistatin we show that spin-labeled nucleotides bound to myosin have an oriented spectrum in the SRX in both slow and fast skeletal muscle. This is to our knowledge the first observation of oriented spin probes on the myosin motor domain in relaxed skeletal muscle fibers. The spectra for skeletal muscle with blebbistatin are similar to those observed in relaxed tarantula fibers in the absence of blebbistatin, demonstrating that the structure of the SRX is similar in different muscle types and in the presence and absence of blebbistatin. The mobility of spin probes attached to nucleotides bound to myosin shows that the conformation of the nucleotide site is closed in the SRX.
Collapse
Affiliation(s)
- Clyde Wilson
- Department of Biochemistry and Biophysics, University of California, San Francisco, California
| | - Nariman Naber
- Department of Biochemistry and Biophysics, University of California, San Francisco, California
| | - Edward Pate
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| | - Roger Cooke
- Department of Biochemistry and Biophysics, University of California, San Francisco, California; Cardiovascular Research Institute, University of California, San Francisco, California.
| |
Collapse
|
135
|
Kampourakis T, Irving M. Phosphorylation of myosin regulatory light chain controls myosin head conformation in cardiac muscle. J Mol Cell Cardiol 2015; 85:199-206. [PMID: 26057075 PMCID: PMC4535163 DOI: 10.1016/j.yjmcc.2015.06.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/18/2015] [Accepted: 06/03/2015] [Indexed: 11/25/2022]
Abstract
The effect of phosphorylation on the conformation of the regulatory light chain (cRLC) region of myosin in ventricular trabeculae from rat heart was determined by polarized fluorescence from thiophosphorylated cRLCs labelled with bifunctional sulforhodamine (BSR). Less than 5% of cRLCs were endogenously phosphorylated in this preparation, and similarly low values of basal cRLC phosphorylation were measured in fresh intact ventricle from both rat and mouse hearts. BSR-labelled cRLCs were thiophosphorylated by a recombinant fragment of human cardiac myosin light chain kinase, which was shown to phosphorylate cRLCs specifically at serine 15 in a calcium- and calmodulin-dependent manner, both in vitro and in situ. The BSR-cRLCs were exchanged into demembranated trabeculae, and polarized fluorescence intensities measured for each BSR-cRLC in relaxation, active isometric contraction and rigor were combined with RLC crystal structures to calculate the orientation distribution of the C-lobe of the cRLC in each state. Only two of the four C-lobe orientation populations seen during relaxation and active isometric contraction in the unphosphorylated state were present after cRLC phosphorylation. Thus cRLC phosphorylation alters the equilibrium between defined conformations of the cRLC regions of the myosin heads, rather than simply disordering the heads as assumed previously. cRLC phosphorylation also changes the orientation of the cRLC C-lobe in rigor conditions, showing that the orientation of this part of the myosin head is determined by its interaction with the thick filament even when the head is strongly bound to actin. These results suggest that cRLC phosphorylation controls the contractility of the heart by modulating the interaction of the cRLC region of the myosin heads with the thick filament backbone. The orientation of the phosphorylated cRLC was measured by polarized fluorescence. Phosphorylated myosin heads are not disordered on the level of the cRLC region. cRLC phosphorylation induces a new conformational state of myosin. cRLC phosphorylation controls contractility at the myosin head–backbone interface.
Collapse
Affiliation(s)
- Thomas Kampourakis
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, United Kingdom.
| | - Malcolm Irving
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
136
|
Colegrave M, Peckham M. Structural implications of β-cardiac myosin heavy chain mutations in human disease. Anat Rec (Hoboken) 2015; 297:1670-80. [PMID: 25125180 DOI: 10.1002/ar.22973] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 12/11/2022]
Abstract
Over 500 disease-causing point mutations have been found in the human β-cardiac myosin heavy chain, many quite recently with modern sequencing techniques. This review shows that clusters of these mutations occur at critical points in the sequence and investigates whether the many studies on these mutants reveal information about the function of this protein.
Collapse
Affiliation(s)
- Melanie Colegrave
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | |
Collapse
|
137
|
Chang AN, Battiprolu PK, Cowley PM, Chen G, Gerard RD, Pinto JR, Hill JA, Baker AJ, Kamm KE, Stull JT. Constitutive phosphorylation of cardiac myosin regulatory light chain in vivo. J Biol Chem 2015; 290:10703-16. [PMID: 25733667 DOI: 10.1074/jbc.m115.642165] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Indexed: 01/03/2023] Open
Abstract
In beating hearts, phosphorylation of myosin regulatory light chain (RLC) at a single site to 0.45 mol of phosphate/mol by cardiac myosin light chain kinase (cMLCK) increases Ca(2+) sensitivity of myofilament contraction necessary for normal cardiac performance. Reduction of RLC phosphorylation in conditional cMLCK knock-out mice caused cardiac dilation and loss of cardiac performance by 1 week, as shown by increased left ventricular internal diameter at end-diastole and decreased fractional shortening. Decreased RLC phosphorylation by conventional or conditional cMLCK gene ablation did not affect troponin-I or myosin-binding protein-C phosphorylation in vivo. The extent of RLC phosphorylation was not changed by prolonged infusion of dobutamine or treatment with a β-adrenergic antagonist, suggesting that RLC is constitutively phosphorylated to maintain cardiac performance. Biochemical studies with myofilaments showed that RLC phosphorylation up to 90% was a random process. RLC is slowly dephosphorylated in both noncontracting hearts and isolated cardiac myocytes from adult mice. Electrically paced ventricular trabeculae restored RLC phosphorylation, which was increased to 0.91 mol of phosphate/mol of RLC with inhibition of myosin light chain phosphatase (MLCP). The two RLCs in each myosin appear to be readily available for phosphorylation by a soluble cMLCK, but MLCP activity limits the amount of constitutive RLC phosphorylation. MLCP with its regulatory subunit MYPT2 bound tightly to myofilaments was constitutively phosphorylated in beating hearts at a site that inhibits MLCP activity. Thus, the constitutive RLC phosphorylation is limited physiologically by low cMLCK activity in balance with low MLCP activity.
Collapse
Affiliation(s)
| | | | - Patrick M Cowley
- the Veterans Affairs Medical Center, San Francisco, California 94143, the University of California, San Francisco, California 94143, and
| | | | - Robert D Gerard
- Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Jose R Pinto
- the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306
| | - Joseph A Hill
- Internal Medicine (Cardiology), and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Anthony J Baker
- the Veterans Affairs Medical Center, San Francisco, California 94143, the University of California, San Francisco, California 94143, and
| | | | | |
Collapse
|
138
|
Affiliation(s)
- Gerald Offer
- Muscle Contraction Group, School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
139
|
The role of super-relaxed myosin in skeletal and cardiac muscle. Biophys Rev 2014; 7:5-14. [PMID: 28509977 DOI: 10.1007/s12551-014-0151-5] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/16/2014] [Indexed: 01/10/2023] Open
Abstract
The super-relaxed (SRX) state of myosin was only recently reported in striated muscle. It is characterised by a sub-population of myosin heads with a highly inhibited rate of ATP turnover. Myosin heads in the SRX state are bound to each other along the thick filament core producing a highly ordered arrangement. Upon activation, these heads project into the interfilament space where they can bind to the actin filaments. Thus far, the population and lifetimes of myosin heads in the SRX state have been characterised in rabbit cardiac, and fast and slow skeletal muscle, as well as in the skeletal muscle of the tarantula. These studies suggest that the role of SRX in cardiac and skeletal muscle regulation is tailored to their specific functions. In skeletal muscle, the SRX modulates the resting metabolic rate. Cardiac SRX represents a "reserve" of inactive myosin heads that may protect the heart during times of stress, e.g. hypoxia and ischaemia. These heads may also be called up when there is a sustained demand for increased power. The SRX in cardiac muscle provides a potential target for novel therapies.
Collapse
|
140
|
Myosin binding protein-C activates thin filaments and inhibits thick filaments in heart muscle cells. Proc Natl Acad Sci U S A 2014; 111:18763-8. [PMID: 25512492 DOI: 10.1073/pnas.1413922112] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Myosin binding protein-C (MyBP-C) is a key regulatory protein in heart muscle, and mutations in the MYBPC3 gene are frequently associated with cardiomyopathy. However, the mechanism of action of MyBP-C remains poorly understood, and both activating and inhibitory effects of MyBP-C on contractility have been reported. To clarify the function of the regulatory N-terminal domains of MyBP-C, we determined their effects on the structure of thick (myosin-containing) and thin (actin-containing) filaments in intact sarcomeres of heart muscle. We used fluorescent probes on troponin C in the thin filaments and on myosin regulatory light chain in the thick filaments to monitor structural changes associated with activation of demembranated trabeculae from rat ventricle by the C1mC2 region of rat MyBP-C. C1mC2 induced larger structural changes in thin filaments than calcium activation, and these were still present when active force was blocked with blebbistatin, showing that C1mC2 directly activates the thin filaments. In contrast, structural changes in thick filaments induced by C1mC2 were smaller than those associated with calcium activation and were abolished or reversed by blebbistatin. Low concentrations of C1mC2 did not affect resting force but increased calcium sensitivity and reduced cooperativity of force and structural changes in both thin and thick filaments. These results show that the N-terminal region of MyBP-C stabilizes the ON state of thin filaments and the OFF state of thick filaments and lead to a novel hypothesis for the physiological role of MyBP-C in the regulation of cardiac contractility.
Collapse
|
141
|
Orientation of myosin binding protein C in the cardiac muscle sarcomere determined by domain-specific immuno-EM. J Mol Biol 2014; 427:274-86. [PMID: 25451032 DOI: 10.1016/j.jmb.2014.10.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 01/09/2023]
Abstract
Myosin binding protein C is a thick filament protein of vertebrate striated muscle. The cardiac isoform [cardiac myosin binding protein C (cMyBP-C)] is essential for normal cardiac function, and mutations in cMyBP-C cause cardiac muscle disease. The rod-shaped molecule is composed primarily of 11 immunoglobulin- or fibronectin-like domains and is located at nine sites, 43nm apart, in each half of the A-band. To understand how cMyBP-C functions, it is important to know its structural organization in the sarcomere, as this will affect its ability to interact with other sarcomeric proteins. Several models, in which cMyBP-C wraps around, extends radially from, or runs axially along the thick filament, have been proposed. Our goal was to define cMyBP-C orientation by determining the relative axial positions of different cMyBP-C domains. Immuno-electron microscopy was performed using mouse cardiac myofibrils labeled with antibodies specific to the N- and C-terminal domains and to the middle of cMyBP-C. Antibodies to all regions of the molecule, except the C-terminus, labeled at the same nine axial positions in each half A-band, consistent with a circumferential and/or radial rather than an axial orientation of the bulk of the molecule. The C-terminal antibody stripes were slightly displaced axially, demonstrating an axial orientation of the C-terminal three domains, with the C-terminus closer to the M-line. These results, combined with previous studies, suggest that the C-terminal domains of cMyBP-C run along the thick filament surface, while the N-terminus extends toward neighboring thin filaments. This organization provides a structural framework for understanding cMyBP-C's modulation of cardiac muscle contraction.
Collapse
|
142
|
Luther PK, Craig R. Modulation of striated muscle contraction by binding of myosin binding protein C to actin. BIOARCHITECTURE 2014; 1:277-283. [PMID: 22545180 PMCID: PMC3337130 DOI: 10.4161/bioa.1.6.19341] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Myosin binding protein C (MyBP-C or C-protein) is a protein of the thick (myosin-containing) filaments of striated muscle thought to be involved in the modulation of cardiac contraction in response to β-adrenergic stimulation. The mechanism of this modulation is unknown, but one possibility is through transient binding of the N-terminal end of MyBP-C to the thin (actin-containing) filaments. While such binding has been demonstrated in vitro, it was not known until recently whether such a link between thick and thin filaments also occurred in vivo. Here we review a recent paper in which electron microscopy (EM) is used to directly demonstrate MyBP-C links between myosin and actin filaments in the intact sarcomere, suggesting a possible physical mechanism for modulating filament sliding. Molecular details of MyBP-C binding to actin have recently been elucidated by EM of isolated filaments: the results suggest that MyBP-C might contribute to the modulation of contraction in part by competing with tropomyosin for binding sites on actin. New results on the structure and dynamics of the MyBP-C molecule provide additional insights into the function of this enigmatic molecule.
Collapse
|
143
|
Tanner BCW, Wang Y, Robbins J, Palmer BM. Kinetics of cardiac myosin isoforms in mouse myocardium are affected differently by presence of myosin binding protein-C. J Muscle Res Cell Motil 2014; 35:267-78. [PMID: 25287107 DOI: 10.1007/s10974-014-9390-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/22/2014] [Indexed: 10/24/2022]
Abstract
We tested whether cardiac myosin binding protein-C (cMyBP-C) affects myosin cross-bridge kinetics in the two cardiac myosin heavy chain (MyHC) isoforms. Mice lacking cMyBP-C (t/t) and transgenic controls (WT(t/t)) were fed L-thyroxine (T4) to induce 90/10% expression of α/β-MyHC. Non-transgenic (NTG) and t/t mice were fed 6-n-propyl-2-thiouracil (PTU) to induce 100% expression of β-MyHC. Ca(2+)-activated, chemically-skinned myocardium underwent length perturbation analysis with varying [MgATP] to estimate the MgADP release rate (k(-ADP)) and MgATP binding rate (k(+ATP)). Values for (k(-ADP)) were not significantly different between t/t(T4) (102.2 ± 7.0 s(-1)) and WT(t/t)(T4) (91.3 ± 8.9 s(-1)), but k(+ATP)) was lower in t/t(T4) (165.9 ± 12.5 mM(-1) s(-1)) compared to WT(t/t)(T4) (298.6 ± 15.7 mM(-1) s(-1), P < 0.01). In myocardium expressing β-MyHC, values for k(-ADP) were higher in t/t(PTU) (24.8 ± 1.0 s(-1)) compared to NTG(PTU) (15.6 ± 1.3 s(-1), P < 0.01), and k(+ATP) was not different. At saturating [MgATP], myosin detachment rate approximates k(-ADP), and detachment rate decreased as sarcomere length (SL) was increased in both t/t(T4) and WT(t/t)(T4) with similar sensitivities to SL. In myocardium expressing β-MyHC, detachment rate decreased more as SL increased in t/t(PTU) (21.5 ± 1.3 s(-1) at 2.2 μm and 13.3 ± 0.9 s(-1) at 3.3 μm) compared to NTGPTU (15.8 ± 0.3 s(-1) at 2.2 μm and 10.9 ± 0.3 s(-1) at 3.3 μm) as detected by repeated-measures ANOVA (P < 0.01). These findings suggest that cMyBP-C reduces MgADP release rate for β-MyHC, but not for α-MyHC, even as the number of cMyBP-C that overlap with the thin filament is reduced to zero. Therefore, cMyBP-C appears to affect β-MyHC kinetics independent of its interaction with the thin filament.
Collapse
Affiliation(s)
- Bertrand C W Tanner
- Department of Molecular Physiology and Biophysics, University of Vermont, 122 HSRF, 149 Beaumont Ave., Burlington, VT, 05405, USA
| | | | | | | |
Collapse
|
144
|
Elhamine F, Radke MH, Pfitzer G, Granzier H, Gotthardt M, Stehle R. Deletion of the titin N2B region accelerates myofibrillar force development but does not alter relaxation kinetics. J Cell Sci 2014; 127:3666-74. [PMID: 24982444 DOI: 10.1242/jcs.141796] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cardiac titin is the main determinant of sarcomere stiffness during diastolic relaxation. To explore whether titin stiffness affects the kinetics of cardiac myofibrillar contraction and relaxation, we used subcellular myofibrils from the left ventricles of homozygous and heterozygous N2B-knockout mice which express truncated cardiac titins lacking the unique elastic N2B region. Compared with myofibrils from wild-type mice, myofibrils from knockout and heterozygous mice exhibit increased passive myofibrillar stiffness. To determine the kinetics of Ca(2+)-induced force development (rate constant kACT), myofibrils from knockout, heterozygous and wild-type mice were stretched to the same sarcomere length (2.3 µm) and rapidly activated with Ca(2+). Additionally, mechanically induced force-redevelopment kinetics (rate constant kTR) were determined by slackening and re-stretching myofibrils during Ca(2+)-mediated activation. Myofibrils from knockout mice exhibited significantly higher kACT, kTR and maximum Ca(2+)-activated tension than myofibrils from wild-type mice. By contrast, the kinetic parameters of biphasic force relaxation induced by rapidly reducing [Ca(2+)] were not significantly different among the three genotypes. These results indicate that increased titin stiffness promotes myocardial contraction by accelerating the formation of force-generating cross-bridges without decelerating relaxation.
Collapse
Affiliation(s)
- Fatiha Elhamine
- Institute of Vegetative Physiology, University of Cologne, Robert Koch Str. 39, D-50931 Köln, Germany
| | - Michael H Radke
- Neuromuscular and Cardiovascular Cell Biology, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, D-13125 Berlin, Germany
| | - Gabriele Pfitzer
- Institute of Vegetative Physiology, University of Cologne, Robert Koch Str. 39, D-50931 Köln, Germany
| | - Henk Granzier
- Sarver Molecular Cardiovascular Research and Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, D-13125 Berlin, Germany
| | - Robert Stehle
- Institute of Vegetative Physiology, University of Cologne, Robert Koch Str. 39, D-50931 Köln, Germany
| |
Collapse
|
145
|
Molecular and subcellular-scale modeling of nucleotide diffusion in the cardiac myofilament lattice. Biophys J 2014; 105:2130-40. [PMID: 24209858 DOI: 10.1016/j.bpj.2013.09.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 08/26/2013] [Accepted: 09/18/2013] [Indexed: 01/02/2023] Open
Abstract
Contractile function of cardiac cells is driven by the sliding displacement of myofilaments powered by the cycling myosin crossbridges. Critical to this process is the availability of ATP, which myosin hydrolyzes during the cross-bridge cycle. The diffusion of adenine nucleotides through the myofilament lattice has been shown to be anisotropic, with slower radial diffusion perpendicular to the filament axis relative to parallel, and is attributed to the periodic hexagonal arrangement of the thin (actin) and thick (myosin) filaments. We investigated whether atomistic-resolution details of myofilament proteins can refine coarse-grain estimates of diffusional anisotropy for adenine nucleotides in the cardiac myofibril, using homogenization theory and atomistic thin filament models from the Protein Data Bank. Our results demonstrate considerable anisotropy in ATP and ADP diffusion constants that is consistent with experimental measurements and dependent on lattice spacing and myofilament overlap. A reaction-diffusion model of the half-sarcomere further suggests that diffusional anisotropy may lead to modest adenine nucleotide gradients in the myoplasm under physiological conditions.
Collapse
|
146
|
Márquez G, Pinto A, Alamo L, Baumann B, Ye F, Winkler H, Taylor K, Padrón R. A method for 3D-reconstruction of a muscle thick filament using the tilt series images of a single filament electron tomogram. J Struct Biol 2014; 186:265-72. [PMID: 24727133 DOI: 10.1016/j.jsb.2014.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 03/19/2014] [Accepted: 04/04/2014] [Indexed: 10/25/2022]
Abstract
Myosin interacting-heads (MIH) motifs are visualized in 3D-reconstructions of thick filaments from striated muscle. These reconstructions are calculated by averaging methods using images from electron micrographs of grids prepared using numerous filament preparations. Here we propose an alternative method to calculate the 3D-reconstruction of a single thick filament using only a tilt series images recorded by electron tomography. Relaxed thick filaments, prepared from tarantula leg muscle homogenates, were negatively stained. Single-axis tilt series of single isolated thick filaments were obtained with the electron microscope at a low electron dose, and recorded on a CCD camera by electron tomography. An IHRSR 3D-recontruction was calculated from the tilt series images of a single thick filament. The reconstruction was enhanced by including in the search stage dual tilt image segments while only single tilt along the filament axis is usually used, as well as applying a band pass filter just before the back projection. The reconstruction from a single filament has a 40 Å resolution and clearly shows the presence of MIH motifs. In contrast, the electron tomogram 3D-reconstruction of the same thick filament - calculated without any image averaging and/or imposition of helical symmetry - only reveals MIH motifs infrequently. This is - to our knowledge - the first application of the IHRSR method to calculate a 3D reconstruction from tilt series images. This single filament IHRSR reconstruction method (SF-IHRSR) should provide a new tool to assess structural differences between well-ordered thick (or thin) filaments in a grid by recording separately their electron tomograms.
Collapse
Affiliation(s)
- G Márquez
- Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo. 20632, Caracas 1020A, Venezuela.
| | - A Pinto
- Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo. 20632, Caracas 1020A, Venezuela.
| | - L Alamo
- Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo. 20632, Caracas 1020A, Venezuela.
| | - B Baumann
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan way, Tallahassee, FL 32306-4380, USA.
| | - F Ye
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan way, Tallahassee, FL 32306-4380, USA.
| | - H Winkler
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan way, Tallahassee, FL 32306-4380, USA.
| | - K Taylor
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan way, Tallahassee, FL 32306-4380, USA.
| | - R Padrón
- Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo. 20632, Caracas 1020A, Venezuela.
| |
Collapse
|
147
|
González-Solá M, Al-Khayat HA, Behra M, Kensler RW. Zebrafish cardiac muscle thick filaments: isolation technique and three-dimensional structure. Biophys J 2014; 106:1671-80. [PMID: 24739166 PMCID: PMC4008832 DOI: 10.1016/j.bpj.2014.01.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 01/07/2014] [Accepted: 01/10/2014] [Indexed: 12/11/2022] Open
Abstract
To understand how mutations in thick filament proteins such as cardiac myosin binding protein-C or titin, cause familial hypertrophic cardiomyopathies, it is important to determine the structure of the cardiac thick filament. Techniques for the genetic manipulation of the zebrafish are well established and it has become a major model for the study of the cardiovascular system. Our goal is to develop zebrafish as an alternative system to the mammalian heart model for the study of the structure of the cardiac thick filaments and the proteins that form it. We have successfully isolated thick filaments from zebrafish cardiac muscle, using a procedure similar to those for mammalian heart, and analyzed their structure by negative-staining and electron microscopy. The isolated filaments appear well ordered with the characteristic 42.9 nm quasi-helical repeat of the myosin heads expected from x-ray diffraction. We have performed single particle image analysis on the collected electron microscopy images for the C-zone region of these filaments and obtained a three-dimensional reconstruction at 3.5 nm resolution. This reconstruction reveals structure similar to the mammalian thick filament, and demonstrates that zebrafish may provide a useful model for the study of the changes in the cardiac thick filament associated with disease processes.
Collapse
Affiliation(s)
- Maryví González-Solá
- Department of Anatomy and Neurobiology, University of Puerto Rico Medical School, San Juan, Puerto Rico.
| | - Hind A Al-Khayat
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Martine Behra
- Department of Anatomy and Neurobiology, University of Puerto Rico Medical School, San Juan, Puerto Rico
| | - Robert W Kensler
- Department of Anatomy and Neurobiology, University of Puerto Rico Medical School, San Juan, Puerto Rico
| |
Collapse
|
148
|
Previs MJ, Michalek AJ, Warshaw DM. Molecular modulation of actomyosin function by cardiac myosin-binding protein C. Pflugers Arch 2014; 466:439-44. [PMID: 24407948 PMCID: PMC3932558 DOI: 10.1007/s00424-013-1433-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/23/2013] [Indexed: 11/29/2022]
Abstract
Cardiac myosin-binding protein C is a key regulator of cardiac contractility and is capable of both activating the thin filament to initiate actomyosin motion generation and governing maximal sliding velocities. While MyBP-C's C terminus localizes the molecule within the sarcomere, the N terminus appears to confer regulatory function by binding to the myosin motor domain and/or actin. Literature pertaining to how MyBP-C binding to the myosin motor domain and or actin leads to MyBP-C's dual modulatory roles that can impact actomyosin interactions are discussed.
Collapse
Affiliation(s)
- Michael J Previs
- Department of Molecular Physiology & Biophysics, University of Vermont, 149 Beaumont Ave., HSRF Building Rm.-116, Burlington, VT, 05405, USA
| | | | | |
Collapse
|
149
|
Waldmüller S, Erdmann J, Binner P, Gelbrich G, Pankuweit S, Geier C, Timmermann B, Haremza J, Perrot A, Scheer S, Wachter R, Schulze-Waltrup N, Dermintzoglou A, Schönberger J, Zeh W, Jurmann B, Brodherr T, Börgel J, Farr M, Milting H, Blankenfeldt W, Reinhardt R, Özcelik C, Osterziel KJ, Loeffler M, Maisch B, Regitz-Zagrosek V, Schunkert H, Scheffold T. Novel correlations between the genotype and the phenotype of hypertrophic and dilated cardiomyopathy: results from the German Competence Network Heart Failure. Eur J Heart Fail 2014; 13:1185-92. [DOI: 10.1093/eurjhf/hfr074] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Stephan Waldmüller
- Universität Witten/Herdecke; Institut für Herz-Kreislaufforschung; Otto-Hahn-Str. 15 44227 Dortmund Germany
| | | | - Priska Binner
- Universität Witten/Herdecke; Institut für Herz-Kreislaufforschung; Otto-Hahn-Str. 15 44227 Dortmund Germany
| | - Götz Gelbrich
- Universität Leipzig; Zentrum für Klinische Studien; Leipzig Germany
| | - Sabine Pankuweit
- Kardiologie des Universitätsklinikums Gießen & Marburg; Marburg Germany
| | | | | | - Janine Haremza
- Universität Witten/Herdecke; Institut für Herz-Kreislaufforschung; Otto-Hahn-Str. 15 44227 Dortmund Germany
| | | | - Steffen Scheer
- Max-Planck-Institut für Molekulare Genetik; Berlin Germany
| | | | | | | | - Jost Schönberger
- Universitäts-Klinikum Würzburg; Abteilung für Medizin I und Kardiovaskuläres Zentrum; Würzburg Germany
| | - Wolfgang Zeh
- Herzzentrum Bad Krozingen; Bad Krozingen Germany
| | | | - Turgut Brodherr
- Berufsgenossenschaftliche Kliniken Bergmannsheil; Bochum Germany
| | | | - Martin Farr
- Herz- und Diabeteszentrum NRW; Bad Oeynhausen Germany
| | | | | | - Richard Reinhardt
- Max-Planck-Institut für Pflanzenzüchtungsforschung; Genomzentrum, Köln Germany
| | | | | | - Markus Loeffler
- Universität Leipzig; Institut für Medizinische Informatik, Statistik und Epidemiologie; Leipzig Germany
| | - Bernhard Maisch
- Kardiologie des Universitätsklinikums Gießen & Marburg; Marburg Germany
| | | | | | - Thomas Scheffold
- Universität Witten/Herdecke; Institut für Herz-Kreislaufforschung; Otto-Hahn-Str. 15 44227 Dortmund Germany
| | | |
Collapse
|
150
|
Myosin-binding protein C displaces tropomyosin to activate cardiac thin filaments and governs their speed by an independent mechanism. Proc Natl Acad Sci U S A 2014; 111:2170-5. [PMID: 24477690 DOI: 10.1073/pnas.1316001111] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Myosin-binding protein C (MyBP-C) is an accessory protein of striated muscle thick filaments and a modulator of cardiac muscle contraction. Defects in the cardiac isoform, cMyBP-C, cause heart disease. cMyBP-C includes 11 Ig- and fibronectin-like domains and a cMyBP-C-specific motif. In vitro studies show that in addition to binding to the thick filament via its C-terminal region, cMyBP-C can also interact with actin via its N-terminal domains, modulating thin filament motility. Structural observations of F-actin decorated with N-terminal fragments of cMyBP-C suggest that cMyBP-C binds to actin close to the low Ca(2+) binding site of tropomyosin. This suggests that cMyBP-C might modulate thin filament activity by interfering with tropomyosin regulatory movements on actin. To determine directly whether cMyBP-C binding affects tropomyosin position, we have used electron microscopy and in vitro motility assays to study the structural and functional effects of N-terminal fragments binding to thin filaments. 3D reconstructions suggest that under low Ca(2+) conditions, cMyBP-C displaces tropomyosin toward its high Ca(2+) position, and that this movement corresponds to thin filament activation in the motility assay. At high Ca(2+), cMyBP-C had little effect on tropomyosin position and caused slowing of thin filament sliding. Unexpectedly, a shorter N-terminal fragment did not displace tropomyosin or activate the thin filament at low Ca(2+) but slowed thin filament sliding as much as the larger fragments. These results suggest that cMyBP-C may both modulate thin filament activity, by physically displacing tropomyosin from its low Ca(2+) position on actin, and govern contractile speed by an independent molecular mechanism.
Collapse
|