101
|
Daouk R, Bahmad HF, Saleh E, Monzer A, Ballout F, Kadara H, Abou-Kheir W. Genome-wide gene expression analysis of a murine model of prostate cancer progression: Deciphering the roles of IL-6 and p38 MAPK as potential therapeutic targets. PLoS One 2020; 15:e0237442. [PMID: 32790767 PMCID: PMC7425932 DOI: 10.1371/journal.pone.0237442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the most commonly diagnosed cancer and the second leading cause of cancer-related deaths among adult males globally. The poor prognosis of PCa is largely due to late diagnosis of the disease when it has already progressed to an advanced stage marked by androgen-independence, thus necessitating new strategies for early detection and treatment. We construe that these direly needed advances are limited by our poor understanding of early events in the progression of PCa and that would thus represent ideal targets for early intervention. To begin to fill this void, we interrogated molecular "oncophenotypes" that embody the transition of PCa from an androgen-dependent (AD) to-independent (AI) state. METHODS To accomplish this aim, we used our previously established AD and AI murine PCa cell lines, PLum-AD and PLum-AI, respectively, which recapitulate primary and progressive PCa morphologically and molecularly. We statistically surveyed global gene expressions in these cell lines by microarray analysis. Differential profiles were functionally interrogated by pathways, gene set enrichment and topological gene network analyses. RESULTS Gene expression analysis of PLum-AD and PLum-AI transcriptomes (n = 3 each), revealed 723 differentially expressed genes (392 upregulated and 331 downregulated) in PLum-AI compared to PLum-AD cells. Gene set analysis demonstrated enrichment of biological functions and pathways in PLum-AI cells that are central to tumor aggressiveness including cell migration and invasion facilitated by epithelial-to-mesenchymal transition (EMT). Further analysis demonstrated that the p38 mitogen-activated protein kinase (MAPK) was predicted to be significantly activated in the PLum-AI cells, whereas gene sets previously associated with favorable response to the p38 inhibitor SB203580 were attenuated (i.e., inversely enriched) in the PLum-AI cells, suggesting that these aggressive cells may be therapeutically vulnerable to p38 inhibition. Gene set and gene-network analysis also alluded to activation of other signaling networks particularly those associated with enhanced EMT, inflammation and immune function/response including, but not limited to Tnf, IL-6, Mmp 2, Ctgf, and Ptges. Accordingly, we chose SB203580 and IL-6 to validate their effect on PLum-AD and PLum-AI. Some of the common genes identified in the gene-network analysis were validated at the molecular and functional level. Additionally, the vulnerability to SB203580 and the effect of IL-6 were also validated on the stem/progenitor cell population using the sphere formation assay. CONCLUSIONS In summary, our study highlights pathways associated with an augmented malignant phenotype in AI cells and presents new high-potential targets to constrain the aggressive malignancy seen in the castration-resistant PCa.
Collapse
Affiliation(s)
- Reem Daouk
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hisham F. Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL, United States of America
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States of America
| | - Eman Saleh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Alissar Monzer
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Farah Ballout
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
102
|
Mechanisms of cancer stem cell therapy. Clin Chim Acta 2020; 510:581-592. [PMID: 32791136 DOI: 10.1016/j.cca.2020.08.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) are responsible for carcinogenesis and tumorigenesis and are involved in drug and radiation resistance, metastasis, tumor relapse and initiation. Remarkably, they have other abilities such as inheritance of self-renewal and de-differentiation. Hence, targeting CSCs is considered a potential anti-cancer therapeutic strategy. Recent advances in the identification of biomarkers to recognize CSCs and the development of new techniques to evaluate tumorigenic and carcinogenic roles of CSCs are instrumental to this approach. Elucidation of signaling pathways that regulate CSCs colony progression and drug resistance are critical in establishing effective targeted therapies. CSCs play a central key role in immunomodulation, immune evasion and effector immunity, which alters immune system balancing. These include mTOR, SHH, NOTCH and Wnt/β-catering in cancer progression. In this review article, we discuss the importance of these CSCs pathways in cancer therapy.
Collapse
|
103
|
Tanabe S, Quader S, Cabral H, Ono R. Interplay of EMT and CSC in Cancer and the Potential Therapeutic Strategies. Front Pharmacol 2020; 11:904. [PMID: 32625096 PMCID: PMC7311659 DOI: 10.3389/fphar.2020.00904] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023] Open
Abstract
The mechanism of epithelial-mesenchymal transition (EMT) consists of the cellular phenotypic transition from epithelial to mesenchymal status. The cells exhibiting EMT exist in cancer stem cell (CSC) population, which is involved in drug resistance. CSCs demonstrating EMT feature remain after cancer treatment, which leads to drug resistance, recurrence, metastasis and malignancy of cancer. In this context, the recent advance of nanotechnology in the medical application has ascended the possibility to target CSCs using nanomedicines. In this review article, we focused on the mechanism of CSCs and EMT, especially into the signaling pathways in EMT, regulation of EMT and CSCs by microRNAs and nanomedicine-based approaches to target CSCs.
Collapse
Affiliation(s)
- Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety and Research (CBSR), National Institute of Health Science (NIHS), Kawasaki, Japan
| | - Sabina Quader
- Innovation Centre of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Ryuichi Ono
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research (CBSR), National Institute of Health Science (NIHS), Kawasaki, Japan
| |
Collapse
|
104
|
Metformin: Sentinel of the Epigenetic Landscapes That Underlie Cell Fate and Identity. Biomolecules 2020; 10:biom10050780. [PMID: 32443566 PMCID: PMC7277648 DOI: 10.3390/biom10050780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/08/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022] Open
Abstract
The biguanide metformin is the first drug to be tested as a gerotherapeutic in the clinical trial TAME (Targeting Aging with Metformin). The current consensus is that metformin exerts indirect pleiotropy on core metabolic hallmarks of aging, such as the insulin/insulin-like growth factor 1 and AMP-activated protein kinase/mammalian Target Of Rapamycin signaling pathways, downstream of its primary inhibitory effect on mitochondrial respiratory complex I. Alternatively, but not mutually exclusive, metformin can exert regulatory effects on components of the biologic machinery of aging itself such as chromatin-modifying enzymes. An integrative metabolo-epigenetic outlook supports a new model whereby metformin operates as a guardian of cell identity, capable of retarding cellular aging by preventing the loss of the information-theoretic nature of the epigenome. The ultimate anti-aging mechanism of metformin might involve the global preservation of the epigenome architecture, thereby ensuring cell fate commitment and phenotypic outcomes despite the challenging effects of aging noise. Metformin might therefore inspire the development of new gerotherapeutics capable of preserving the epigenome architecture for cell identity. Such gerotherapeutics should replicate the ability of metformin to halt the erosion of the epigenetic landscape, mitigate the loss of cell fate commitment, delay stochastic/environmental DNA methylation drifts, and alleviate cellular senescence. Yet, it remains a challenge to confirm if regulatory changes in higher-order genomic organizers can connect the capacity of metformin to dynamically regulate the three-dimensional nature of epigenetic landscapes with the 4th dimension, the aging time.
Collapse
|
105
|
Ravindran Menon D, Hammerlindl H, Torrano J, Schaider H, Fujita M. Epigenetics and metabolism at the crossroads of stress-induced plasticity, stemness and therapeutic resistance in cancer. Theranostics 2020; 10:6261-6277. [PMID: 32483452 PMCID: PMC7255038 DOI: 10.7150/thno.42523] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the recent advances in the treatment of cancers, acquired drug resistance remains a major challenge in cancer management. While earlier studies suggest Darwinian factors driving acquired drug resistance, recent studies point to a more dynamic process involving phenotypic plasticity and tumor heterogeneity in the evolution of acquired drug resistance. Chronic stress after drug treatment induces intrinsic cellular reprogramming and cancer stemness through a slow-cycling persister state, which subsequently drives cancer progression. Both epigenetic and metabolic mechanisms play an important role in this dynamic process. In this review, we discuss how epigenetic and metabolic reprogramming leads to stress-induced phenotypic plasticity and acquired drug resistance, and how the two reprogramming mechanisms crosstalk with each other.
Collapse
|
106
|
Gao Y, Tang M, Leung E, Svirskis D, Shelling A, Wu Z. Dual or multiple drug loaded nanoparticles to target breast cancer stem cells. RSC Adv 2020; 10:19089-19105. [PMID: 35518295 PMCID: PMC9054075 DOI: 10.1039/d0ra02801k] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
Breast cancer stem(-like) cells (BCSCs) have been found to be responsible for therapeutic resistance and disease relapse. BCSCs are difficult to eradicate due to their high resistance to conventional treatments and high plasticity. Functionalised nanoparticles have been investigated as smart vehicles to transport across various barriers and increase the interaction of therapeutic agents with cancer cells, as well as BCSCs. In this review, we discuss the different characteristics of BCSCs, and challenges to tackle BCSCs at cellular and molecular levels. The mechanisms of action and physicochemical properties of the current BCSC targeting agents are also covered. We will focus on the rational design and recent advances of "Nano + Nano" or single tumour targeting nanoparticle systems loaded with dual or multiple agents to kill all cancer cells including BCSCs. These cocktail therapies include the combination of a chemotherapy agent with a BCSC-specific inhibitor, a phytochemical agent or RNA based therapy. Given the heterogeneity of breast tumour tissue, targeting both BCSCs and bulk breast cancer cells simultaneously with multiple agents holds great promise in eliminating breast cancer. The future research needs to focus on overcoming various barriers in the 'clinical translation' of BCSC-targeting nanomedicines to cure breast cancer, which requires a significant multidisciplinary effort.
Collapse
Affiliation(s)
- Yu Gao
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland Auckland 1142 New Zealand +64-9-9231709
| | - Mingtan Tang
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland Auckland 1142 New Zealand +64-9-9231709
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland Auckland 1023 New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland Auckland 1142 New Zealand +64-9-9231709
| | - Andrew Shelling
- School of Medicine, Faculty of Medical and Health Sciences, The University of Auckland Auckland 1142 New Zealand
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland Auckland 1142 New Zealand +64-9-9231709
| |
Collapse
|
107
|
Tampaki EC, Tampakis A, Nonni A, von Flüe M, Patsouris E, Kontzoglou K, Kouraklis G. Combined Fascin-1 and MAP17 Expression in Breast Cancer Identifies Patients with High Risk for Disease Recurrence. Mol Diagn Ther 2020; 23:635-644. [PMID: 31273628 DOI: 10.1007/s40291-019-00411-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVE Breast cancer stem cells are considered to be a major cause of disease recurrence in breast cancer as they appear to be chemoresistant. Fascin-1 and MAP17 are stem cell markers whose excessive expression in tumors is associated with aggressive tumor phenotypes. The aim of the present study was to investigate the expression patterns of fascin-1 and MAP17 in breast cancer and to assess their clinical significance. METHODS Expression of fascin-1 and MAP17 was assessed via immunohistochemistry in surgical specimens of a cohort comprised of 127 patients with resectable breast cancer. Results were correlated with clinicopathological characteristics and survival data. Progression-free survival (PFS) was defined as the primary outcome of the present study. RESULTS Fascin-1 and MAP17 expression were strongly associated with the presence of triple-negative cancers (p < 0.0001). Tumors displaying high expression of fascin-1 presented correlations with high tumor grade (p = 0.002) and high expression of Ki-67 (p = 0.004). PFS of patients exhibiting high expression of fascin-1 and MAP17 in cancer cells in the first 5 years after surgery was significantly worse than in patients with low expression of the two markers (47.8%, 95% confidence interval [CI] 33-51 vs. 80.5%, 95% CI 47-56; p = 0.012) and independent of other clinicopathological characteristics (hazard ratio 0.171, 95% CI 0.034-0.869; p = 0.033). CONCLUSION Combined expression of fascin-1 and MAP17 in breast cancer cells is associated with a significantly worse 5-year PFS, therefore recognizing a group of patients with high risk for early disease recurrence.
Collapse
Affiliation(s)
- Ekaterini Christina Tampaki
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, 17 Agiou Thoma Street, 11527, Athens, Greece
| | - Athanasios Tampakis
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, 17 Agiou Thoma Street, 11527, Athens, Greece.
- Clarunis, University Center for Gastrointestinal and Liver Disorders, University Hospital of Basel, Spitalstraße 21, 4031, Basel, Switzerland.
| | - Afroditi Nonni
- 1st Department of Pathology, School of Medicine, National University of Athens, Athens, Greece
| | - Markus von Flüe
- Clarunis, University Center for Gastrointestinal and Liver Disorders, University Hospital of Basel, Spitalstraße 21, 4031, Basel, Switzerland
| | - Efstratios Patsouris
- 1st Department of Pathology, School of Medicine, National University of Athens, Athens, Greece
| | - Konstantinos Kontzoglou
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, 17 Agiou Thoma Street, 11527, Athens, Greece
| | - Gregory Kouraklis
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, 17 Agiou Thoma Street, 11527, Athens, Greece
| |
Collapse
|
108
|
Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol 2020. [PMID: 32399610 DOI: 10.1007/s00204-020-02752-z)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Knowledge about established breast carcinogens can support improved and modernized toxicological testing methods by identifying key mechanistic events. Ionizing radiation (IR) increases the risk of breast cancer, especially for women and for exposure at younger ages, and evidence overall supports a linear dose-response relationship. We used the Adverse Outcome Pathway (AOP) framework to outline and evaluate the evidence linking ionizing radiation with breast cancer from molecular initiating events to the adverse outcome through intermediate key events, creating a qualitative AOP. We identified key events based on review articles, searched PubMed for recent literature on key events and IR, and identified additional papers using references. We manually curated publications and evaluated data quality. Ionizing radiation directly and indirectly causes DNA damage and increases production of reactive oxygen and nitrogen species (RONS). RONS lead to DNA damage and epigenetic changes leading to mutations and genomic instability (GI). Proliferation amplifies the effects of DNA damage and mutations leading to the AO of breast cancer. Separately, RONS and DNA damage also increase inflammation. Inflammation contributes to direct and indirect effects (effects in cells not directly reached by IR) via positive feedback to RONS and DNA damage, and separately increases proliferation and breast cancer through pro-carcinogenic effects on cells and tissue. For example, gene expression changes alter inflammatory mediators, resulting in improved survival and growth of cancer cells and a more hospitable tissue environment. All of these events overlap at multiple points with events characteristic of "background" induction of breast carcinogenesis, including hormone-responsive proliferation, oxidative activity, and DNA damage. These overlaps make the breast particularly susceptible to ionizing radiation and reinforce that these biological activities are important characteristics of carcinogens. Agents that increase these biological processes should be considered potential breast carcinogens, and predictive methods are needed to identify chemicals that increase these processes. Techniques are available to measure RONS, DNA damage and mutation, cell proliferation, and some inflammatory proteins or processes. Improved assays are needed to measure GI and chronic inflammation, as well as the interaction with hormonally driven development and proliferation. Several methods measure diverse epigenetic changes, but it is not clear which changes are relevant to breast cancer. In addition, most toxicological assays are not conducted in mammary tissue, and so it is a priority to evaluate if results from other tissues are generalizable to breast, or to conduct assays in breast tissue. Developing and applying these assays to identify exposures of concern will facilitate efforts to reduce subsequent breast cancer risk.
Collapse
Affiliation(s)
- Jessica S Helm
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA.
| |
Collapse
|
109
|
Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol 2020; 94:1511-1549. [PMID: 32399610 PMCID: PMC7261741 DOI: 10.1007/s00204-020-02752-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022]
Abstract
Knowledge about established breast carcinogens can support improved and modernized toxicological testing methods by identifying key mechanistic events. Ionizing radiation (IR) increases the risk of breast cancer, especially for women and for exposure at younger ages, and evidence overall supports a linear dose-response relationship. We used the Adverse Outcome Pathway (AOP) framework to outline and evaluate the evidence linking ionizing radiation with breast cancer from molecular initiating events to the adverse outcome through intermediate key events, creating a qualitative AOP. We identified key events based on review articles, searched PubMed for recent literature on key events and IR, and identified additional papers using references. We manually curated publications and evaluated data quality. Ionizing radiation directly and indirectly causes DNA damage and increases production of reactive oxygen and nitrogen species (RONS). RONS lead to DNA damage and epigenetic changes leading to mutations and genomic instability (GI). Proliferation amplifies the effects of DNA damage and mutations leading to the AO of breast cancer. Separately, RONS and DNA damage also increase inflammation. Inflammation contributes to direct and indirect effects (effects in cells not directly reached by IR) via positive feedback to RONS and DNA damage, and separately increases proliferation and breast cancer through pro-carcinogenic effects on cells and tissue. For example, gene expression changes alter inflammatory mediators, resulting in improved survival and growth of cancer cells and a more hospitable tissue environment. All of these events overlap at multiple points with events characteristic of "background" induction of breast carcinogenesis, including hormone-responsive proliferation, oxidative activity, and DNA damage. These overlaps make the breast particularly susceptible to ionizing radiation and reinforce that these biological activities are important characteristics of carcinogens. Agents that increase these biological processes should be considered potential breast carcinogens, and predictive methods are needed to identify chemicals that increase these processes. Techniques are available to measure RONS, DNA damage and mutation, cell proliferation, and some inflammatory proteins or processes. Improved assays are needed to measure GI and chronic inflammation, as well as the interaction with hormonally driven development and proliferation. Several methods measure diverse epigenetic changes, but it is not clear which changes are relevant to breast cancer. In addition, most toxicological assays are not conducted in mammary tissue, and so it is a priority to evaluate if results from other tissues are generalizable to breast, or to conduct assays in breast tissue. Developing and applying these assays to identify exposures of concern will facilitate efforts to reduce subsequent breast cancer risk.
Collapse
Affiliation(s)
- Jessica S Helm
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA.
| |
Collapse
|
110
|
Thankamony AP, Saxena K, Murali R, Jolly MK, Nair R. Cancer Stem Cell Plasticity - A Deadly Deal. Front Mol Biosci 2020; 7:79. [PMID: 32426371 PMCID: PMC7203492 DOI: 10.3389/fmolb.2020.00079] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Intratumoral heterogeneity is a major ongoing challenge in the effective therapeutic targeting of cancer. Accumulating evidence suggests that a fraction of cells within a tumor termed Cancer Stem Cells (CSCs) are primarily responsible for this diversity resulting in therapeutic resistance and metastasis. Adding to this complexity, recent studies have shown that there can be different subpopulations of CSCs with varying biochemical and biophysical traits resulting in varied dissemination and drug-resistance potential. Moreover, cancer cells can exhibit a high level of plasticity or the ability to dynamically switch between CSC and non-CSC states or among different subsets of CSCs. In addition, CSCs also display extensive metabolic plasticity. The molecular mechanisms underlying these different interconnected axes of plasticity has been under extensive investigation and the trans-differentiation process of Epithelial to Mesenchymal transition (EMT) has been identified as a major contributing factor. Besides genetic and epigenetic factors, CSC plasticity is also shaped by non-cell-autonomous effects such as the tumor microenvironment (TME). In this review, we discuss the latest developments in decoding mechanisms and implications of CSC plasticity in tumor progression at biochemical and biophysical levels, and the latest in silico approaches being taken for characterizing cancer cell plasticity. These efforts can help improve existing therapeutic approaches by taking into consideration the contribution of cellular plasticity/heterogeneity in enabling drug resistance.
Collapse
Affiliation(s)
- Archana P. Thankamony
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Kritika Saxena
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Reshma Murali
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Radhika Nair
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
111
|
Rahman MA, Saha SK, Rahman MS, Uddin MJ, Uddin MS, Pang MG, Rhim H, Cho SG. Molecular Insights Into Therapeutic Potential of Autophagy Modulation by Natural Products for Cancer Stem Cells. Front Cell Dev Biol 2020; 8:283. [PMID: 32391363 PMCID: PMC7193248 DOI: 10.3389/fcell.2020.00283] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/02/2020] [Indexed: 12/24/2022] Open
Abstract
Autophagy, a cellular self-digestion process that is activated in response to stress, has a functional role in tumor formation and progression. Cancer stem cells (CSCs) accounting for a minor proportion of total cancer cells-have distinct self-renewal and differentiation abilities and promote metastasis. Researchers have shown that a numeral number of natural products using traditional experimental methods have been revealed to target CSCs. However, the specific role of autophagy with respect to CSCs and tumorigenesis using natural products are still unknown. Currently, CSCs are considered to be one of the causative reasons underlying the failure of anticancer treatment as a result of tumor recurrence, metastasis, and chemo- or radio-resistance. Autophagy may play a dual role in CSC-related resistance to anticancer treatment; it is responsible for cell fate determination and the targeted degradation of transcription factors via growth arrest. It has been established that autophagy promotes drug resistance, dormancy, and stemness and maintenance of CSCs. Surprisingly, numerous studies have also suggested that autophagy can facilitate the loss of stemness in CSCs. Here, we review current progress in research related to the multifaceted connections between autophagy modulation and CSCs control using natural products. Overall, we emphasize the importance of understanding the role of autophagy in the maintenance of different CSCs and implications of this connection for the development of new strategies for cancer treatment targeting natural products.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, South Korea.,Department of Biotechnology and Genetic Engineering, Global Biotechnology & Biomedical Research Network, Islamic University, Kushtia, Bangladesh
| | - Subbroto Kumar Saha
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea.,Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, South Korea
| | - Md Jamal Uddin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea.,ABEx Bio-Research Center, Dhaka, Bangladesh
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, South Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, South Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| |
Collapse
|
112
|
Chiodi I, Mondello C. Life style factors, tumor cell plasticity and cancer stem cells. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 784:108308. [PMID: 32430096 DOI: 10.1016/j.mrrev.2020.108308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022]
Abstract
Cancers are heterogeneous tissues and a layer of heterogeneity is determined by the presence of cells showing stemness traits, known as cancer stem cells (CSCs). Evidence indicates that CSCs are important players in tumor development, progression and relapse. Oncogenic transformation of normal stem cells can give rise to CSCs, but CSCs can also originate from de-differentiation of bulk tumor cells. Thus, factors promoting the increase of normal stem cell pools or stimulating the acquisition of stemness features by tumor cells can have serious consequences on cancer origin and progression. In this review, we will first give an overview of the CSC model of cancer development and we will then discuss the role of life style factors, such as high caloric diet, alcohol drinking and smoking, on the widening of stem cell pools and the induction of CSC features in tumors. Finally, we will discuss some healthy life style factors that can help to prevent cancer.
Collapse
Affiliation(s)
- Ilaria Chiodi
- Istituto di Genetica Molecolare L. L. Cavalli-Sforza, CNR, via Abbiategrasso 207, 27100, Pavia, Italy
| | - Chiara Mondello
- Istituto di Genetica Molecolare L. L. Cavalli-Sforza, CNR, via Abbiategrasso 207, 27100, Pavia, Italy.
| |
Collapse
|
113
|
Tumor Milieu Controlled by RB Tumor Suppressor. Int J Mol Sci 2020; 21:ijms21072450. [PMID: 32244804 PMCID: PMC7177274 DOI: 10.3390/ijms21072450] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 02/08/2023] Open
Abstract
The RB gene is one of the most frequently mutated genes in human cancers. Canonically, RB exerts its tumor suppressive activity through the regulation of the G1/S transition during cell cycle progression by modulating the activity of E2F transcription factors. However, aberration of the RB gene is most commonly detected in tumors when they gain more aggressive phenotypes, including metastatic activity or drug resistance, rather than accelerated proliferation. This implicates RB controls' malignant progression to a considerable extent in a cell cycle-independent manner. In this review, we highlight the multifaceted functions of the RB protein in controlling tumor lineage plasticity, metabolism, and the tumor microenvironment (TME), with a focus on the mechanism whereby RB controls the TME. In brief, RB inactivation in several types of cancer cells enhances production of pro-inflammatory cytokines, including CCL2, through upregulation of mitochondrial reactive oxygen species (ROS) production. These factors not only accelerate the growth of cancer cells in a cell-autonomous manner, but also stimulate non-malignant cells in the TME to generate a pro-tumorigenic niche in a non-cell-autonomous manner. Here, we discuss the biological and pathological significance of the non-cell-autonomous functions of RB and attempt to predict their potential clinical relevance to cancer immunotherapy.
Collapse
|
114
|
The Cancer Stem Cell in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12030684. [PMID: 32183251 PMCID: PMC7140091 DOI: 10.3390/cancers12030684] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
The recognition of intra-tumoral cellular heterogeneity has given way to the concept of the cancer stem cell (CSC). According to this concept, CSCs are able to self-renew and differentiate into all of the cancer cell lineages present within the tumor, placing the CSC at the top of a hierarchical tree. The observation that these cells—in contrast to bulk tumor cells—are able to exclusively initiate new tumors, initiate metastatic spread and resist chemotherapy implies that CSCs are solely responsible for tumor recurrence and should be therapeutically targeted. Toward this end, dissecting and understanding the biology of CSCs should translate into new clinical therapeutic approaches. In this article, we review the CSC concept in cancer, with a special focus on hepatocellular carcinoma.
Collapse
|
115
|
The Basal Level of Gene Expression Associated with Chromatin Loosening Shapes Waddington Landscapes and Controls Cell Differentiation. J Mol Biol 2020; 432:2253-2270. [PMID: 32105732 DOI: 10.1016/j.jmb.2020.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 01/01/2023]
Abstract
The baseline level of transcription, which is variable and difficult to quantify, seriously complicates the normalization of comparative transcriptomic data, but its biological importance remains unappreciated. We show that this currently neglected ingredient is essential for controlling gene network multistability and therefore cellular differentiation. Basal expression is correlated to the degree of chromatin loosening measured by DNA accessibility and systematically leads to cellular dedifferentiation as assessed by transcriptomic signatures, irrespective of the molecular and cellular tools used. Modeling gene network motifs formally involved in developmental bifurcations reveals that the epigenetic landscapes of Waddington are restructured by the level of nonspecific expression, such that the attractors of progenitor and differentiated cells can be mutually exclusive. This mechanism is universal and holds beyond the particular nature of the genes involved, provided the multistable circuits are correctly described with autonomous basal expression. These results explain the relationships long established between gene expression noise, chromatin decondensation and cellular dedifferentiation, and highlight how heterochromatin maintenance is essential for preventing pathological cellular reprogramming, age-related diseases, and cancer.
Collapse
|
116
|
Müller L, Tunger A, Plesca I, Wehner R, Temme A, Westphal D, Meier F, Bachmann M, Schmitz M. Bidirectional Crosstalk Between Cancer Stem Cells and Immune Cell Subsets. Front Immunol 2020; 11:140. [PMID: 32117287 PMCID: PMC7013084 DOI: 10.3389/fimmu.2020.00140] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/20/2020] [Indexed: 12/22/2022] Open
Abstract
Cancer stem cells (CSCs), also known as tumor-initiating cells, are characterized by an increased capacity for self-renewal, multipotency, and tumor initiation. While CSCs represent only a small proportion of the tumor mass, they significantly account for metastatic dissemination and tumor recurrence, thus making them attractive targets for therapy. Due to their ability to sustain in dormancy, chemo- and radiotherapy often fail to eliminate cancer cells with stemness properties. Recent advances in the understanding of the tumor microenvironment (TME) illustrated the importance of the immune contexture, determining the response to therapy and clinical outcome of patients. In this context, CSCs exhibit special properties to escape the recognition by innate and adaptive immunity and shape the TME into an immunosuppressive, pro-tumorigenic landscape. As CSCs sculpt the immune contexture, the phenotype and functional properties of the tumor-infiltrating immune cells in turn influence the differentiation and phenotype of tumor cells. In this review, we summarize recent studies investigating main immunomodulatory properties of CSCs and their underlying molecular mechanisms as well as the impact of immune cells on cancer cells with stemness properties. A deeper understanding of this bidirectional crosstalk shaping the immunological landscape and determining therapeutic responses will facilitate the improvement of current treatment modalities and the design of innovative strategies to precisely target CSCs.
Collapse
Affiliation(s)
- Luise Müller
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, TU Dresden, Dresden, Germany
| | - Antje Tunger
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, TU Dresden, Dresden, Germany.,National Center for Tumor Diseases, Partner Site Dresden, Dresden, Germany
| | - Ioana Plesca
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, TU Dresden, Dresden, Germany
| | - Rebekka Wehner
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, TU Dresden, Dresden, Germany.,National Center for Tumor Diseases, Partner Site Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center, Heidelberg, Germany
| | - Achim Temme
- National Center for Tumor Diseases, Partner Site Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center, Heidelberg, Germany.,Department of Neurosurgery, Section Experimental Neurosurgery and Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Dana Westphal
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Friedegund Meier
- National Center for Tumor Diseases, Partner Site Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center, Heidelberg, Germany.,Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Michael Bachmann
- National Center for Tumor Diseases, Partner Site Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center, Heidelberg, Germany.,Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, Dresden, Germany
| | - Marc Schmitz
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, TU Dresden, Dresden, Germany.,National Center for Tumor Diseases, Partner Site Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
117
|
Arnold KM, Opdenaker LM, Flynn NJ, Appeah DK, Sims-Mourtada J. Radiation induces an inflammatory response that results in STAT3-dependent changes in cellular plasticity and radioresistance of breast cancer stem-like cells. Int J Radiat Biol 2020; 96:434-447. [PMID: 31850822 DOI: 10.1080/09553002.2020.1705423] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Purpose: Pro-inflammatory cytokines within the tumor microenvironment, such as IL-6, contribute to the maintenance of stem cells and promote their survival following treatment. The IL-6/STAT3 pathway is a key regulator of genes involved in cancer progression. Activation of STAT3 promotes expansion of cancer stem cells in triple negative breast cancer. Radiation has also been shown to expand cancer stem cell populations and can induce stemness in nonstem cells. However, the role of IL-6/STAT3 in radiation-induced changes in cellular plasticity is unclear.Materials and methods: Expression and secretion of IL-6 from triple-negative breast cancer cell lines SUM159PT and MDA-MB-231 were determined after radiation treatment by real-time PCR and ELISA. Activation of STAT3 after radiation was determined by western blotting. Changes in cellular plasticity induced by radiation were determined by examining ALDEFLUOR activity, gene expression analysis of aldehyde dehydrogenase isoforms and mammosphere forming assays with and without the addition of STAT3 inhibitors. To determine the effect of radiation on nonstem cell populations, experiments were also carried out in ALDEFLUOR sorted cells.Results: Radiation induced an inflammatory response in both cell lines that resulted in activation of STAT3. Additionally, radiation induced a stem-like state as evidenced by an increased activity and expression of the ALDH isoforms ALDH1A1 and ALDH1A3, and increased self-renewal capabilities. Radiation increased ALDH activity and self-renewal in non-stem cell (ALDH-) populations, suggesting radiation-induced cellular reprograming. However, inhibition of STAT3 blocked the radiation-induced stem-like state in both ALDEFLUOR positive and negative populations, and enhanced radiosensitivity.Conclusions: Radiation-induced changes in cellular plasticity are STAT3 dependent and may be a potential target to reduce radioresistance in TNBC and improve treatment outcome.
Collapse
Affiliation(s)
- Kimberly M Arnold
- Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Christiana Care Health Services, Inc, Newark, DE, USA.,Department of Medical Laboratory Sciences, The University of Delaware, Newark, DE, USA
| | - Lynn M Opdenaker
- Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Christiana Care Health Services, Inc, Newark, DE, USA.,Department of Biological Sciences, The University of Delaware, Newark, DE, USA
| | - Nicole J Flynn
- Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Christiana Care Health Services, Inc, Newark, DE, USA.,Department of Biological Sciences, The University of Delaware, Newark, DE, USA
| | - Daniel Kwesi Appeah
- Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Christiana Care Health Services, Inc, Newark, DE, USA.,Department of Biological Sciences, The University of Delaware, Newark, DE, USA
| | - Jennifer Sims-Mourtada
- Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Christiana Care Health Services, Inc, Newark, DE, USA.,Department of Biological Sciences, The University of Delaware, Newark, DE, USA
| |
Collapse
|
118
|
Gor R, Ramalingam S. Controversies in Isolation and Characterization of Cancer Stem Cells. CANCER STEM CELLS: NEW HORIZONS IN CANCER THERAPIES 2020:257-272. [DOI: 10.1007/978-981-15-5120-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
119
|
Veschi V, Verona F, Lo Iacono M, D'Accardo C, Porcelli G, Turdo A, Gaggianesi M, Forte S, Giuffrida D, Memeo L, Todaro M. Cancer Stem Cells in Thyroid Tumors: From the Origin to Metastasis. Front Endocrinol (Lausanne) 2020; 11:566. [PMID: 32982967 PMCID: PMC7477072 DOI: 10.3389/fendo.2020.00566] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Thyroid tumors are extremely heterogeneous varying from almost benign tumors with good prognosis as papillary or follicular tumors, to the undifferentiated ones with severe prognosis. Recently, several models of thyroid carcinogenesis have been described, mostly hypothesizing a major role of the thyroid cancer stem cell (TCSC) population in both cancer initiation and metastasis formation. However, the cellular origin of TCSC is still incompletely understood. Here, we review the principal epigenetic mechanisms relevant to TCSC origin and maintenance in both well-differentiated and anaplastic thyroid tumors. Specifically, we describe the alterations in DNA methylation, histone modifiers, and microRNAs (miRNAs) involved in TCSC survival, focusing on the potential of targeting aberrant epigenetic modifications for developing novel therapeutic approaches. Moreover, we discuss the bidirectional relationship between TCSCs and immune cells. The cells of innate and adaptive response can promote the TCSC-driven tumorigenesis, and conversely, TCSCs may favor the expansion of immune cells with protumorigenic functions. Finally, we evaluate the role of the tumor microenvironment and the complex cross-talk of chemokines, hormones, and cytokines in regulating thyroid tumor initiation, progression, and therapy refractoriness. The re-education of the stromal cells can be an effective strategy to fight thyroid cancer. Dissecting the genetic and epigenetic landscape of TCSCs and their interactions with tumor microenvironment cells is urgently needed to select more appropriate treatment and improve the outcome of patients affected by advanced differentiated and undifferentiated thyroid cancers.
Collapse
Affiliation(s)
- Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Francesco Verona
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Melania Lo Iacono
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Caterina D'Accardo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Gaetana Porcelli
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Alice Turdo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Miriam Gaggianesi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Stefano Forte
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Dario Giuffrida
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
- *Correspondence: Matilde Todaro
| |
Collapse
|
120
|
Anticancer and antimicrobial effects of novel ciprofloxacin fatty acids conjugates. Eur J Med Chem 2020; 185:111810. [DOI: 10.1016/j.ejmech.2019.111810] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/21/2022]
|
121
|
Missair A, Cata JP, Votta-Velis G, Johnson M, Borgeat A, Tiouririne M, Gottumukkala V, Buggy D, Vallejo R, Marrero EBD, Sessler D, Huntoon MA, Andres JD, Casasola ODL. Impact of perioperative pain management on cancer recurrence: an ASRA/ESRA special article. Reg Anesth Pain Med 2019; 44:13-28. [PMID: 30640648 DOI: 10.1136/rapm-2018-000001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/31/2018] [Accepted: 06/05/2018] [Indexed: 12/31/2022]
Abstract
Cancer causes considerable suffering and 80% of advanced cancer patients experience moderate to severe pain. Surgical tumor excision remains a cornerstone of primary cancer treatment, but is also recognized as one of the greatest risk factors for metastatic spread. The perioperative period, characterized by the surgical stress response, pharmacologic-induced angiogenesis, and immunomodulation results in a physiologic environment that supports tumor spread and distant reimplantation.In the perioperative period, anesthesiologists may have a brief and uniquewindow of opportunity to modulate the unwanted consequences of the stressresponse on the immune system and minimize residual disease. This reviewdiscusses the current research on analgesic therapies and their impact ondisease progression, followed by an evidence-based evaluation of perioperativepain interventions and medications.
Collapse
Affiliation(s)
- Andres Missair
- Department of Anesthesiology, Veterans Affairs Hospital, Miami, Florida, USA .,Department of Anesthesiology, University of Miami, Miami, Florida, USA
| | - Juan Pablo Cata
- Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gina Votta-Velis
- Department of Anesthesiology, University of Illinois Hospital and Health Sciences System, Chicago, Illinois, USA
| | - Mark Johnson
- Department of Anesthesiology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Alain Borgeat
- Department of Anesthesiology, University of Zurich, Balgrist, Switzerland
| | - Mohammed Tiouririne
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Vijay Gottumukkala
- Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Donal Buggy
- Department of Anesthesiology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Ricardo Vallejo
- Department of Anesthesiology, Illinois Wesleyan University, Bloomington, Illinois, USA
| | - Esther Benedetti de Marrero
- Department of Anesthesiology, Veterans Affairs Hospital, Miami, Florida, USA.,Department of Anesthesiology, University of Miami, Miami, Florida, USA
| | - Dan Sessler
- Department of Anesthesiology and Pain Management, Cleveland Clinic, Cleveland, Ohio, USA
| | - Marc A Huntoon
- Department of Anesthesiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jose De Andres
- Department of Anesthesiology, General University Hospital, Valencia, Spain
| | - Oscar De Leon Casasola
- Department of Anesthesiology, University of Buffalo / Roswell Park Cancer Institute, Buffalo, New York, USA
| |
Collapse
|
122
|
Steinbichler TB, Savic D, Dejaco D, Romani A, Kofler B, Skvortsova II, Riechelmann H, Dudas J. Pleiotropic Effects of Epithelial Mesenchymal Crosstalk on Head and Neck Cancer: EMT and beyond. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2019; 12:67-76. [PMID: 31297730 PMCID: PMC6937358 DOI: 10.1007/s12307-019-00228-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/03/2019] [Indexed: 12/30/2022]
Abstract
Epithelial mesenchymal crosstalk (EMC) describes the interaction of the tumor stroma and associated fibroblasts with epithelial cancer cells. In this study we analysed the effects of EMC on head and neck cancer cells. In tumor cell lines EMC was induced using media conditioned from a mix-culture of cancer cells and fibroblasts. Cell proliferation and chemotherapy response were assessed using direct cell counting. Flow cytometry, immunohistochemistry of markers of epithelial-mesenchymal transition (EMT) and subsequent TissueFaxs™ acquisition and quantification and western blot analysis were performed. Holotomographic microscopy imaging was used to visualize the effects of EMC on Cisplatin response of SCC-25 cells. EMC induced a hybrid epithelial-mesenchymal phenotype in SCC-25 cells with co-expression of vimentin and cytokeratin. This hybrid phenotype was associated with chemotherapy resistance and increased proliferation of the cells. The EMC conditioned medium led to an activation of the IL-6/STAT3 pathway with subsequent phosphorylation of STAT3. EMC induced a hybrid epithelial-mesenchymal phenotype in HNSCC cells accompanied by increased therapy resistance and cell proliferation. The IL-6/STAT3 pathway might be one of the major pathways involved in these EMC-related effects.
Collapse
Affiliation(s)
- T B Steinbichler
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Anichstr.35, A-6020, Innsbruck, Austria.
| | - D Savic
- Department of Radiation Oncology, Medical University of Innsbruck, Anichstr.35, A-6020, Innsbruck, Austria
| | - D Dejaco
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Anichstr.35, A-6020, Innsbruck, Austria
| | - A Romani
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Anichstr.35, A-6020, Innsbruck, Austria
| | - B Kofler
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Anichstr.35, A-6020, Innsbruck, Austria
| | - I I Skvortsova
- Department of Radiation Oncology, Medical University of Innsbruck, Anichstr.35, A-6020, Innsbruck, Austria
| | - H Riechelmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Anichstr.35, A-6020, Innsbruck, Austria
| | - J Dudas
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Anichstr.35, A-6020, Innsbruck, Austria
| |
Collapse
|
123
|
Gao J, Liu J, Xie F, Lu Y, Yin C, Shen X. Co-Delivery of Docetaxel and Salinomycin to Target Both Breast Cancer Cells and Stem Cells by PLGA/TPGS Nanoparticles. Int J Nanomedicine 2019; 14:9199-9216. [PMID: 32063706 PMCID: PMC6884979 DOI: 10.2147/ijn.s230376] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/13/2019] [Indexed: 01/27/2023] Open
Abstract
PURPOSE Conventional chemotherapy is hampered by the presence of breast cancer stem cells (BCSCs). It is crucial to eradicating both the bulky breast cancer cells and BCSCs, using a combination of conventional chemotherapy and anti-CSCs drugs. However, the synergistic ratio of drug combinations cannot be easily maintained in vivo. In our previous studies, we demonstrated that the simultaneous delivery of two drugs via nanoliposomes could maintain the synergistic drug ratio for 12 h in vivo. However, nanoliposomes have the disadvantage of quick drug release, which makes it difficult to maintain the synergistic drug ratio for a long time. Herein, we developed a co-delivery system for docetaxel (DTX)-a first-line chemotherapy drug for breast cancer-and salinomycin (SAL)-an anti-BCSCs drug-in rigid nanoparticles constituted of polylactide-co-glycolide/D-alpha-tocopherol polyethylene glycol 1000 succinate (PLGA/TPGS). METHODS Nanoparticles loaded with SAL and DTX at the optimized ratio (NSD) were prepared by the nanoprecipitation method. The characterization, cellular uptake, and cytotoxicity of nanoparticles were investigated in vitro, and the pharmacokinetics, tissue distribution, antitumor and anti-CSCs activity of nanoparticles were evaluated in vivo. RESULTS We demonstrated that a SAL/DTX molar ratio of 1:1 was synergistic in MCF-7 cells and MCF-7-MS. Moreover, the enhanced internalization of nanoparticles was observed in MCF-7 cells and MCF-7-MS. Furthermore, the cytotoxicity of NSD against both MCF-7 cells and MCF-7-MS was stronger than the cytotoxicity of any single treatment in vitro. Significantly, NSD could prolong the circulation time and maintain the synergistic ratio of SAL to DTX in vivo for 24 h, thus exhibiting superior tumor targeting and anti-tumor activity compared to other treatments. CONCLUSION Co-encapsulation of SAL and DTX in PLGA/TPGS nanoparticles could maintain the synergistic ratio of drugs in vivo in a better manner; thus, providing a promising strategy for synergistic inhibition of breast cancer.
Collapse
Affiliation(s)
- Jie Gao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
- Scientific Research Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Junjie Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
- Department of Pharmaceutical Sciences, Second Military Medical University, Shanghai, People’s Republic of China
| | - Fangyuan Xie
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, People’s Republic of China
| | - Ying Lu
- Department of Pharmaceutical Sciences, Second Military Medical University, Shanghai, People’s Republic of China
| | - Chuan Yin
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Xian Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| |
Collapse
|
124
|
Ye J, Lei J, Fang Q, Shen Y, Xia W, Hu X, Xu Q, Yuan H, Huang J, Ni C. miR-4666-3p and miR-329 Synergistically Suppress the Stemness of Colorectal Cancer Cells via Targeting TGF-β/Smad Pathway. Front Oncol 2019; 9:1251. [PMID: 31824844 PMCID: PMC6880832 DOI: 10.3389/fonc.2019.01251] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022] Open
Abstract
Quiescent caner stem cells are identified as a subpopulation of colon cancer cells in dormant state and possess strong stem-cell like characteristics. Previously, we have identified this subpopulation in colorectal cancer (quiescent colon cancer stem cells, QCCSCs), and find QCCSCs are sensitive to the apoptotic effect of IFN-γ, which is attributed to their high IFN-γR expression levels. Microarray and bioinformatic analysis indicate miR-4666-3p is low expressed in QCCSCs and target IFN-γR1/2, which is proved by luciferase assay and western-blot. Furthermore, we find miR-4666-3p could also target TGF-βR1 to block the activation of TGF-β1/Smad pathway, therefore function as a tumor suppressor gene to inhibit the stemness of colon cancer cells. Besides, compared with QCCSCs, we find the TGF-β1 expression also decreased with the weakening of stemness properties. In terms of mechanism, our result reveal TGF-β1 is the target gene of miR-329, which is also high expressed in non-QCCSCs. Thereafter, we perform gain- and loss- function experiments to confirm the synergistic effect between miR-4666-3p and miR-329 in blocking the activation of TGF-β/Smad pathway. Finally, we evaluate the expression of both miR-4666-3p and miR-329 in 73 tumor specimens and paired normal tissue, and find both two miRNAs are related to unfavorable prognosis and advanced tumor stage in colorectal cancer. Our study revealed a novel epigenetic regulation mechanism in colon cancer stem cells, which could be exploited as a novel therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Jun Ye
- Key Laboratory of Tumor Microenvironment and Immune Therapy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jiacai Lei
- Department of Gastroenterology, Hangzhou Dajiangdong Hospital, Hangzhou, China
| | - Qingqing Fang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yimin Shen
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjie Xia
- Department of General Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiaoge Hu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Qiuran Xu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Hongjun Yuan
- Department of General Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jian Huang
- Key Laboratory of Tumor Microenvironment and Immune Therapy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Department of Breast Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Ni
- Key Laboratory of Tumor Microenvironment and Immune Therapy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Department of Breast Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
125
|
Aravindan N, Jain D, Somasundaram DB, Herman TS, Aravindan S. Cancer stem cells in neuroblastoma therapy resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:948-967. [PMID: 31867574 PMCID: PMC6924637 DOI: 10.20517/cdr.2019.72] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuroblastoma (NB) is the most common cancer of infancy and accounts for nearly one tenth of pediatric cancer deaths. This mortality rate has been attributed to the > 50% frequency of relapse despite intensive, multimodal clinical therapy in patients with progressive NB. Given the disease’s heterogeneity and developed resistance, attaining a cure after relapse of progressive NB is highly challenging. A rapid decrease in the timeline between successive recurrences is likely due to the ongoing acquisition of genetic rearrangements in undifferentiated NB-cancer stem cells (CSCs). In this review, we present the current understanding of NB-CSCs, their intrinsic role in tumorigenesis, their function in disease progression, and their influence on acquired therapy resistance and tumor evolution. In particular, this review focus on the intrinsic involvement of stem cells and signaling in the genesis of NB, the function of pre-existing CSCs in NB progression and therapy response, the formation and influence of induced CSCs (iCSCs) in drug resistance and tumor evolution, and the development of a CSC-targeted therapeutic approach.
Collapse
Affiliation(s)
- Natarajan Aravindan
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Department of Anesthesiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Drishti Jain
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Dinesh Babu Somasundaram
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Terence S Herman
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
126
|
Abstract
Cancer stem cells (CSC) are a subpopulation of tumor cells that have superior capacities of self-renewal, metastatic dissemination, and chemoresistance. These characteristics resemble, to some extent, the outcome of certain biological processes, including epithelial-mesenchymal transition (EMT), autophagy, and cellular stress response. Indeed, it has been shown that the stimuli that induce these processes and CSC are overlapping, and CSC and tumor cells that underwent EMT or autophagy are much alike. However, as the cross talk between CSC, EMT, autophagy, and cellular stress is further explored, these processes are also found to have an opposing role in CSC, depending on the condition and status of cells. This contextual effect is likely due to overwhelming reliance on CSC markers for their identification, and/or discrepancies in recognition of CSC as a particular cell population or cellular state. In this review, we summarize how EMT, autophagy, and cellular stress response are tied or unwound with CSC. We also discuss the current view of CSC theory evolved from the emphasis of heterogenicity and plasticity of CSC.
Collapse
Affiliation(s)
- Kai-Feng Hung
- Department of Medical Research, Division of Translational Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Ting Yang
- Department of Medical Research, Division of Translational Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Shou-Yen Kao
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan, ROC
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
127
|
Dai X, Zhang S, Cheng H, Cai D, Chen X, Huang Z. FA2H Exhibits Tumor Suppressive Roles on Breast Cancers via Cancer Stemness Control. Front Oncol 2019; 9:1089. [PMID: 31709178 PMCID: PMC6821679 DOI: 10.3389/fonc.2019.01089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/02/2019] [Indexed: 12/31/2022] Open
Abstract
Background: Triple negative breast cancers are aggressive, enriched with cancer stem cells, and lack effective targeted therapies with little side effects. Methods: We isolated cancer stem cells from two triple negative breast cancer cell lines via cell sorting following transcriptome sequencing, bioinformatics analysis, experimental and clinical validations, as well as functional investigations to explore genes capturing triple negative breast cancer features for improved diagnosis and therapeutics in clinics. Results: We found that FA2H is under-expressed in triple negative breast cancers both in vitro and in clinics, and FA2H suppresses cancer stemness via inhibiting the STAT3/IL6 axis and NFkB signaling. Conclusions: This study reports the tumor suppressive roles of FA2H on breast cancer cells through cancer stemness control. FA2H and other candidates unveiled in this study that capture the features of cancer stem cells may contribute as diagnostic marker and/or effective therapeutic targets for improved triple negative breast cancer management.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, JiangNan University, Wuxi, China
| | - Shuo Zhang
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hongye Cheng
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Dongyan Cai
- Wuxi School of Medicine, JiangNan University, Wuxi, China
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiao Chen
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhaohui Huang
- Wuxi School of Medicine, JiangNan University, Wuxi, China
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
128
|
Zhang L, Shi H, Chen H, Gong A, Liu Y, Song L, Xu X, You T, Fan X, Wang D, Cheng F, Zhu H. Dedifferentiation process driven by radiotherapy-induced HMGB1/TLR2/YAP/HIF-1α signaling enhances pancreatic cancer stemness. Cell Death Dis 2019; 10:724. [PMID: 31558702 PMCID: PMC6763460 DOI: 10.1038/s41419-019-1956-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 08/16/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022]
Abstract
Differentiated cancer cells reacquiring stem cell traits following radiotherapy may enrich cancer stem cells and accelerate tumor recurrence and metastasis. We are interested in the mechanistic role of dying cells-derived HMGB1 in CD133- pancreatic cancer cells dedifferentiation following radiotherapy. We firstly confirmed that X-ray irradiation induced differentiation of CD133- pancreatic cancer cells, from either sorted from patient samples or established cell lines, into cancer stem-like cells (iCSCs). Using an in vitro coculture model, X-ray irradiation induced dying cells to release HMGB1, which further promoted CD133- pancreatic cancer cells regaining stem cell traits, such as higher sphere forming ability and expressed higher level of stemness-related genes and proteins. Inhibiting the expression and activity of HMGB1 attenuated the dedifferentiation stimulating effect of irradiated, dying cells on C133- pancreatic cancer cells in vitro and in PDX models. Mechanistically, HMGB1 binding with TLR2 receptor functions in a paracrine manner to affect CD133- pancreatic cancer cells dedifferentiation via activating Hippo-YAP pathway and HIF-1α expression in oxygen independent manner in vitro and in vivo. We conclude that X-ray irradiation induces CD133- pancreatic cancer cell dedifferentiation into a CSC phenotype, and inhibiting HMGB1 may be a strategy to prevent CSC enrichment and further pancreatic carcinoma relapse.
Collapse
MESH Headings
- AC133 Antigen/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Cell Death/radiation effects
- Cell Dedifferentiation/radiation effects
- Cell Line, Tumor
- Chromatin Immunoprecipitation
- Epithelial-Mesenchymal Transition/genetics
- Epithelial-Mesenchymal Transition/radiation effects
- Female
- HMGB1 Protein/genetics
- HMGB1 Protein/metabolism
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, Nude
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/radiotherapy
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/radiation effects
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/radiotherapy
- Signal Transduction/genetics
- Signal Transduction/radiation effects
- Toll-Like Receptor 2/genetics
- Toll-Like Receptor 2/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transplantation, Heterologous
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Lirong Zhang
- The Affiliated Hospital of Jiangsu University, 212001, Zhenjiang, China
| | - Hui Shi
- The Affiliated Hospital of Jiangsu University, 212001, Zhenjiang, China
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), SYSU, 518107, Shenzhen, China
| | - Aihua Gong
- School of Medicine, Jiangsu University, 212013, Zhenjiang, China
| | - Yanfang Liu
- The First People's Hospital of Zhenjiang, 212001, Zhenjiang, China
| | - Lian Song
- The Affiliated Hospital of Jiangsu University, 212001, Zhenjiang, China
| | - Xuewen Xu
- The Affiliated Hospital of Jiangsu University, 212001, Zhenjiang, China
| | - Tao You
- The Affiliated Hospital of Jiangsu University, 212001, Zhenjiang, China
| | - Xin Fan
- The Affiliated Hospital of Jiangsu University, 212001, Zhenjiang, China
| | - Dongqing Wang
- The Affiliated Hospital of Jiangsu University, 212001, Zhenjiang, China.
| | - Fang Cheng
- The Affiliated Hospital of Jiangsu University, 212001, Zhenjiang, China.
- School of Pharmaceutical Sciences (Shenzhen), SYSU, 518107, Shenzhen, China.
- Faculty of Science and Engineering, ÅboAkademi University and Turku Centre for Biotechnology, FI-20520, Turku, Finland.
| | - Haitao Zhu
- The Affiliated Hospital of Jiangsu University, 212001, Zhenjiang, China.
| |
Collapse
|
129
|
Jolly MK, Celià-Terrassa T. Dynamics of Phenotypic Heterogeneity Associated with EMT and Stemness during Cancer Progression. J Clin Med 2019; 8:E1542. [PMID: 31557977 PMCID: PMC6832750 DOI: 10.3390/jcm8101542] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic and phenotypic heterogeneity contribute to the generation of diverse tumor cell populations, thus enhancing cancer aggressiveness and therapy resistance. Compared to genetic heterogeneity, a consequence of mutational events, phenotypic heterogeneity arises from dynamic, reversible cell state transitions in response to varying intracellular/extracellular signals. Such phenotypic plasticity enables rapid adaptive responses to various stressful conditions and can have a strong impact on cancer progression. Herein, we have reviewed relevant literature on mechanisms associated with dynamic phenotypic changes and cellular plasticity, such as epithelial-mesenchymal transition (EMT) and cancer stemness, which have been reported to facilitate cancer metastasis. We also discuss how non-cell-autonomous mechanisms such as cell-cell communication can lead to an emergent population-level response in tumors. The molecular mechanisms underlying the complexity of tumor systems are crucial for comprehending cancer progression, and may provide new avenues for designing therapeutic strategies.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Toni Celià-Terrassa
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain.
| |
Collapse
|
130
|
Hass R, von der Ohe J, Ungefroren H. Potential Role of MSC/Cancer Cell Fusion and EMT for Breast Cancer Stem Cell Formation. Cancers (Basel) 2019; 11:1432. [PMID: 31557960 PMCID: PMC6826868 DOI: 10.3390/cancers11101432] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023] Open
Abstract
Solid tumors comprise of maturated cancer cells and self-renewing cancer stem-like cells (CSCs), which are associated with various other nontumorigenic cell populations in the tumor microenvironment. In addition to immune cells, endothelial cells, fibroblasts, and further cell types, mesenchymal stroma/stem-like cells (MSC) represent an important cell population recruited to tumor sites and predominantly interacting with the different cancer cells. Breast cancer models were among the first to reveal distinct properties of CSCs, however, the cellular process(es) through which these cells are generated, maintained, and expanded within neoplastic tissues remains incompletely understood. Here, we discuss several possible scenarios that are not mutually exclusive but may even act synergistically: fusion of cancer cells with MSC to yield hybrid cells and/or the induction of epithelial-mesenchymal transition (EMT) in breast cancer cells by MSC, which can relay signals for retrodifferentiation and eventually, the generation of breast CSCs (BCSCs). In either case, the consequences may be promotion of self-renewal capacity, tumor cell plasticity and heterogeneity, an increase in the cancer cells' invasive and metastatic potential, and the acquisition of resistance mechanisms towards chemo- or radiotherapy. While specific signaling mechanisms involved in each of these properties remain to be elucidated, the present review article focusses on a potential involvement of cancer cell fusion and EMT in the development of breast cancer stem cells.
Collapse
Affiliation(s)
- Ralf Hass
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany.
| | - Juliane von der Ohe
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany.
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany.
- Department of General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany.
| |
Collapse
|
131
|
Epigenetic Regulation of Inflammatory Cytokine-Induced Epithelial-To-Mesenchymal Cell Transition and Cancer Stem Cell Generation. Cells 2019; 8:cells8101143. [PMID: 31557902 PMCID: PMC6829508 DOI: 10.3390/cells8101143] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
The neoplastic transformation of normal to metastatic cancer cells is a complex multistep process involving the progressive accumulation of interacting genetic and epigenetic changes that alter gene function and affect cell physiology and homeostasis. Epigenetic changes including DNA methylation, histone modifications and changes in noncoding RNA expression, and deregulation of epigenetic processes can alter gene expression during the multistep process of carcinogenesis. Cancer progression and metastasis through an ‘invasion–metastasis cascade’ involving an epithelial-to-mesenchymal cell transition (EMT), the generation of cancer stem cells (CSCs), invasion of adjacent tissues, and dissemination are fueled by inflammation, which is considered a hallmark of cancer. Chronic inflammation is generated by inflammatory cytokines secreted by the tumor and the tumor-associated cells within the tumor microenvironment. Inflammatory cytokine signaling initiates signaling pathways leading to the activation of master transcription factors (TFs) such as Smads, STAT3, and NF-κB. Moreover, the same inflammatory responses also activate EMT-inducing TF (EMT-TF) families such as Snail, Twist, and Zeb, and epigenetic regulators including DNA and histone modifying enzymes and micoRNAs, through complex interconnected positive and negative feedback loops to regulate EMT and CSC generation. Here, we review the molecular regulatory feedback loops and networks involved in inflammatory cytokine-induced EMT and CSC generation.
Collapse
|
132
|
Rojas-Sanchez G, Cotzomi-Ortega I, Pazos-Salazar NG, Reyes-Leyva J, Maycotte P. Autophagy and Its Relationship to Epithelial to Mesenchymal Transition: When Autophagy Inhibition for Cancer Therapy Turns Counterproductive. BIOLOGY 2019; 8:biology8040071. [PMID: 31554173 PMCID: PMC6956138 DOI: 10.3390/biology8040071] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/14/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023]
Abstract
The manipulation of autophagy for cancer therapy has gained recent interest in clinical settings. Although inhibition of autophagy is currently being used in clinical trials for the treatment of several malignancies, autophagy has been shown to have diverse implications for normal cell homeostasis, cancer cell survival, and signaling to cells in the tumor microenvironment. Among these implications and of relevance for cancer therapy, the autophagic process is known to be involved in the regulation of protein secretion, in tumor cell immunogenicity, and in the regulation of epithelial-to-mesenchymal transition (EMT), a critical step in the process of cancer cell invasion. In this work, we have reviewed recent evidence linking autophagy to the regulation of EMT in cancer and normal epithelial cells, and have discussed important implications for the manipulation of autophagy during cancer therapy.
Collapse
Affiliation(s)
- Guadalupe Rojas-Sanchez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla 72570, Mexico.
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico.
| | - Israel Cotzomi-Ortega
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla 72570, Mexico.
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico.
| | - Nidia G Pazos-Salazar
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla 72570, Mexico.
| | - Julio Reyes-Leyva
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico.
| | - Paola Maycotte
- Consejo Nacional de Ciencia y Tecnología (CONACYT)-CIBIOR, IMSS, Puebla 74360, Mexico.
| |
Collapse
|
133
|
Kim DM, Kim M, Park HB, Kim KS, Kim DE. Anti-MUC1/CD44 Dual-Aptamer-Conjugated Liposomes for Cotargeting Breast Cancer Cells and Cancer Stem Cells. ACS APPLIED BIO MATERIALS 2019; 2:4622-4633. [DOI: 10.1021/acsabm.9b00705] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Dong-Min Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Minhee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hee-Bin Park
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Republic of Korea
| | - Keun-Sik Kim
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Republic of Korea
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
134
|
Fresques T, Zirbes A, Shalabi S, Samson S, Preto S, Stampfer MR, LaBarge MA. Breast Tissue Biology Expands the Possibilities for Prevention of Age-Related Breast Cancers. Front Cell Dev Biol 2019; 7:174. [PMID: 31555644 PMCID: PMC6722426 DOI: 10.3389/fcell.2019.00174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/12/2019] [Indexed: 12/24/2022] Open
Abstract
Preventing breast cancer before it is able to form is an ideal way to stop breast cancer. However, there are limited existing options for prevention of breast cancer. Changes in the breast tissue resulting from the aging process contribute to breast cancer susceptibility and progression and may therefore provide promising targets for prevention. Here, we describe new potential targets, immortalization and inflammaging, that may be useful for prevention of age-related breast cancers. We also summarize existing studies of warfarin and metformin, current drugs used for non-cancerous diseases, that also may be repurposed for breast cancer prevention.
Collapse
Affiliation(s)
- Tara Fresques
- Department of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Arrianna Zirbes
- Department of Population Sciences, Beckman Research Institute at City of Hope, Duarte, CA, United States.,Center for Cancer and Aging Research, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Sundus Shalabi
- Department of Population Sciences, Beckman Research Institute at City of Hope, Duarte, CA, United States.,Center for Cancer and Aging Research, Beckman Research Institute at City of Hope, Duarte, CA, United States.,Medical Research Center, Al-Quds University, Jerusalem, Palestine
| | - Susan Samson
- Breast Science Advocacy Core, Breast Oncology Program, University of California, San Francisco, San Francisco, CA, United States
| | | | - Martha R Stampfer
- Department of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Mark A LaBarge
- Department of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Population Sciences, Beckman Research Institute at City of Hope, Duarte, CA, United States.,Center for Cancer and Aging Research, Beckman Research Institute at City of Hope, Duarte, CA, United States
| |
Collapse
|
135
|
Role of the Microenvironment in Regulating Normal and Cancer Stem Cell Activity: Implications for Breast Cancer Progression and Therapy Response. Cancers (Basel) 2019; 11:cancers11091240. [PMID: 31450577 PMCID: PMC6770706 DOI: 10.3390/cancers11091240] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
The epithelial cells in an adult woman’s breast tissue are continuously replaced throughout their reproductive life during pregnancy and estrus cycles. Such extensive epithelial cell turnover is governed by the primitive mammary stem cells (MaSCs) that proliferate and differentiate into bipotential and lineage-restricted progenitors that ultimately generate the mature breast epithelial cells. These cellular processes are orchestrated by tightly-regulated paracrine signals and crosstalk between breast epithelial cells and their tissue microenvironment. However, current evidence suggests that alterations to the communication between MaSCs, epithelial progenitors and their microenvironment plays an important role in breast carcinogenesis. In this article, we review the current knowledge regarding the role of the breast tissue microenvironment in regulating the special functions of normal and cancer stem cells. Understanding the crosstalk between MaSCs and their microenvironment will provide new insights into how an altered breast tissue microenvironment could contribute to breast cancer development, progression and therapy response and the implications of this for the development of novel therapeutic strategies to target cancer stem cells.
Collapse
|
136
|
Yang C, Cao M, Liu Y, He Y, Du Y, Zhang G, Gao F. Inducible formation of leader cells driven by CD44 switching gives rise to collective invasion and metastases in luminal breast carcinomas. Oncogene 2019; 38:7113-7132. [PMID: 31417182 DOI: 10.1038/s41388-019-0899-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/25/2019] [Accepted: 05/04/2019] [Indexed: 12/11/2022]
Abstract
Collective invasion into adjacent tissue is a hallmark of luminal breast cancer, and ~20% of these cases eventually undergo metastasis. How less aggressive luminal-like breast cancer transitions to invasive cancer remains unclear. Our study revealed that CD44hi cancer cells are the leading subpopulation in collectively invading luminal cancer cells and efficiently promote the collective invasion of CD44lo/follower cells. The CD44hi/leader subpopulation showed a specific gene signature of various hybrid epithelial/mesenchymal genes and key functional coregulators of collective invasion, which was distinct from that of CD44lo/follower cells. However, the CD44hi/leader cells, which showed a partial epithelial-mesenchymal transition (EMT) phenotype, readily switched to the CD44lo phenotype along with collective migration and vice versa; this phenomenon was spontaneous and sensitive to the tumor microenvironment. The CD44lo-to-CD44hi conversion was accompanied by a shift in CD44s to CD44v but not a conversion of non-cancer stem cells to cancer stem cells (CSCs). Therefore, the CD44hi leader cells, as currently identified, are not a stable subpopulation in breast tumors. This plasticity and ability to generate CD44hi carcinoma cells with enhanced migratory and invasive behavior might be responsible for the transition from in situ to invasive behavior of luminal-type breast cancer.
Collapse
Affiliation(s)
- Cuixia Yang
- Department of Molecular Biology Laboratory, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, 200233, Shanghai, China.,Department of Clinical Laboratory, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, 200233, Shanghai, China
| | - Manlin Cao
- Department of Rehabilitation Medicine, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, 200233, Shanghai, China
| | - Yiwen Liu
- Department of Molecular Biology Laboratory, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, 200233, Shanghai, China
| | - Yiqing He
- Department of Molecular Biology Laboratory, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, 200233, Shanghai, China
| | - Yan Du
- Department of Molecular Biology Laboratory, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, 200233, Shanghai, China
| | - Guoliang Zhang
- Department of Molecular Biology Laboratory, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, 200233, Shanghai, China
| | - Feng Gao
- Department of Molecular Biology Laboratory, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, 200233, Shanghai, China. .,Department of Clinical Laboratory, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, 200233, Shanghai, China.
| |
Collapse
|
137
|
Cancer stem cell fate determination: a nuclear phenomenon. THE NUCLEUS 2019. [DOI: 10.1007/s13237-019-00281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
138
|
Abdel-Mohsen MA, Abo Deif SM, Abou-Shamaa LA. IL-6 Impairs the Activity of Vitamin D3 in the Regulation of Epithelial-Mesenchymal Transition in Triple Negative Breast Cancer. Asian Pac J Cancer Prev 2019; 20:2267-2273. [PMID: 31450894 PMCID: PMC6852800 DOI: 10.31557/apjcp.2019.20.8.2267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Indexed: 01/08/2023] Open
Abstract
Objective: The present study aimed to investigate the possible role of IL-6 and 1α,25-dihydroxyvitamin D3 (1,25D) signaling in epithelial-mesenchymal transition (EMT) and stemness in triple-negative breast cancer (TNBC) cell line. Methods: TNBC cell line, HCC 1806, was treated with IL-6 and 1,25D for three and six days. Also, the role of vitamin D receptor (VDR) was studied by transfection of TNBC cell line with VDR gene and transfection efficiency was assessed using Human VDR enzyme-linked immunosorbent assay (ELISA). Changes in E-cadherin gene expression were analyzed by quantitative real-time PCR (qRT-PCR). Also, changes in CD44+ cells were analyzed by flow cytometry. Finally, morphological changes were investigated by light microscopy after 6 days. Results: Treatment of HCC1806 cells with IL-6 has no significant effect either on E-cadherin gene expression or CD44+ cells, (p > 0.05). However, E-cadherin gene expression was significantly up-regulated after treatment with 1,25D for 6 days, (p < 0.05). Also, CD44+ cells were significantly reduced after treatment with 1,25D either for 3 or 6 days, (p < 0.05). Transfection of TNBC cell line with VDR gene significantly up-regulated VDR protein expression, (p < 0.05). In addition, overexpression of VDR in TNBC cells and treatment with 1,25D significantly up-regulated E-cadherin gene expression, (p < 0.05) and reduced CD44+ cells, (p < 0.05). Moreover, transfection with VDR and treatment with a combination of 1,25D and IL-6 significantly down-regulated E-cadherin gene expression and increased CD44+ cells compared with transfected cells with VDR treated with 1,25D alone, (p < 0.05). No significant morphological changes were observed in treated cells, 6 days post-treatment. Conclusion: The presence of IL-6 in the breast tumor microenvironment may impair the activity of vitamin D3 signaling, limiting its anti-tumor effects in TNBC.
Collapse
Affiliation(s)
- Mohamed A Abdel-Mohsen
- Department of Applied Medical Chemistry, Medical Research Institute, Medical Research Institute, 165 El-Horreya Avenue, El-Hadara, 21561 Alexandria, Alexandria University, Egypt.
| | - Samar M Abo Deif
- Department of Applied Medical Chemistry, Medical Research Institute, Medical Research Institute, 165 El-Horreya Avenue, El-Hadara, 21561 Alexandria, Alexandria University, Egypt.
| | - Lobna A Abou-Shamaa
- Department of Immunology and Allergy, Medical Research Institute, 165 El-Horreya Avenue, El-Hadara, 21561 Alexandria, Alexandria University, Egypt
| |
Collapse
|
139
|
Chan TS, Shaked Y, Tsai KK. Targeting the Interplay Between Cancer Fibroblasts, Mesenchymal Stem Cells, and Cancer Stem Cells in Desmoplastic Cancers. Front Oncol 2019; 9:688. [PMID: 31417869 PMCID: PMC6684765 DOI: 10.3389/fonc.2019.00688] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/12/2019] [Indexed: 12/27/2022] Open
Abstract
Malignant tumors are highly heterogeneous and likely contain a subset of cancer cells termed cancer stem cells (CSCs). CSCs exist in a dynamic equilibrium with their microenvironments and the CSC phenotype is tightly regulated by both cell-intrinsic and cell-extrinsic factors including those derived from their surrounding cells or stroma. Many human solid tumors like breast, lung, colorectal and pancreatic cancers are characterized by a pronounced stromal reaction termed “the desmoplastic response.” Carcinoma-associated fibroblasts (CAFs) derived either from resident fibroblasts or tumor-infiltrating mesenchymal stem cells (MSCs) are a major component of the stroma in desmoplastic cancers. Recent studies identified subpopulations of CAFs proficient in secreting a plethora of factors to foster CSCs, tumor growth, and invasion. In addition, cytotoxic therapy can lead to the enrichment of functionally perturbed CAFs, which are endowed with additional capabilities to enhance cancer stemness, leading to treatment resistance and tumor aggressiveness. When recruited into the tumor stroma, bone-marrow-derived MSCs can promote cancer stemness by secreting a specific set of paracrine factors or converting into pro-stemness CAFs. Thus, blockade of the crosstalk of pro-stemness CAFs and MSCs with CSCs may provide a new avenue to improving the therapeutic outcome of desmoplastic tumors. This up-to-date, in-depth and balanced review describes the recent progress in understanding the pro-stemness roles of CAFs and tumor-infiltrating MSCs and the associated paracrine signaling processes. We emphasize the effects of systemic chemotherapy on the CAF/MSC–CSC interplay. We summarize various promising and novel approaches in mitigating the stimulatory effect of CAFs or MSCs on CSCs that have shown efficacies in preclinical models of desmoplastic tumors and highlight the unique advantages of CAF- or MSC-targeted therapies. We also discuss potential challenges in the clinical development of CSC- or MSC-targeted therapies and propose CAF-related biomarkers that can guide the next-generation clinical studies.
Collapse
Affiliation(s)
- Tze-Sian Chan
- Laboratory of Advanced Molecular Therapeutics, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Integrative Therapy Center for Gastroenterologic Cancers, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yuval Shaked
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, Israel
| | - Kelvin K Tsai
- Laboratory of Advanced Molecular Therapeutics, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Integrative Therapy Center for Gastroenterologic Cancers, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,National Institute of Cancer Research, National Health Research Institutes, Taipei, Taiwan
| |
Collapse
|
140
|
Pivotal Role of AKT2 during Dynamic Phenotypic Change of Breast Cancer Stem Cells. Cancers (Basel) 2019; 11:cancers11081058. [PMID: 31357505 PMCID: PMC6721305 DOI: 10.3390/cancers11081058] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/10/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Therapeutic resistance seen in aggressive forms of breast cancer remains challenging for current treatments. More than half of the patients suffer from a disease relapse, most of them with distant metastases. Cancer maintenance, resistance to therapy, and metastatic disease seem to be sustained by the presence of cancer stem cells (CSC) within a tumor. The difficulty in targeting this subpopulation derives from their dynamic interconversion process, where CSC can differentiate to non-CSC, which in turn de-differentiate into cells with CSC properties. Using fluorescent CSC models driven by the expression of ALDH1A 1(aldehyde dehydrogenase 1A1), we confirmed this dynamic phenotypic change in MDA-MB-231 breast cancer cells and to identify Serine/Threonine Kinase 2 (AKT2) as an important player in the process. To confirm the central role of AKT2, we silenced AKT2 expression via small interfering RNA and using a chemical inhibitor (CCT128930), in both CSC and non-CSC from different cancer cell lines. Our results revealed that AKT2 inhibition effectively prevents non-CSC reversion through mesenchymal to epithelial transition, reducing invasion and colony formation ability of both, non-CSC and CSC. Further, AKT2 inhibition reduced CSC survival in low attachment conditions. Interestingly, in orthotopic tumor mouse models, high expression levels of AKT2 were detected in circulating tumor cells (CTC). These findings suggest AKT2 as a promising target for future anti-cancer therapies at three important levels: (i) Epithelial-to-mesenchymal transition (EMT) reversion and maintenance of CSC subpopulation in primary tumors, (ii) reduction of CTC and the likelihood of metastatic spread, and (iii) prevention of tumor recurrence through inhibition of CSC tumorigenic and metastatic potential.
Collapse
|
141
|
Identification of important invasion and proliferation related genes in adrenocortical carcinoma. Med Oncol 2019; 36:73. [PMID: 31321566 DOI: 10.1007/s12032-019-1296-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/01/2019] [Indexed: 12/17/2022]
|
142
|
Das B, Pal B, Bhuyan R, Li H, Sarma A, Gayan S, Talukdar J, Sandhya S, Bhuyan S, Gogoi G, Gouw AM, Baishya D, Gotlib JR, Kataki AC, Felsher DW. MYC Regulates the HIF2α Stemness Pathway via Nanog and Sox2 to Maintain Self-Renewal in Cancer Stem Cells versus Non-Stem Cancer Cells. Cancer Res 2019; 79:4015-4025. [PMID: 31266772 DOI: 10.1158/0008-5472.can-18-2847] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/08/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022]
Abstract
Cancer stem cells (CSC) maintain both undifferentiated self-renewing CSCs and differentiated, non-self-renewing non-CSCs through cellular division. However, molecular mechanisms that maintain self-renewal in CSCs versus non-CSCs are not yet clear. Here, we report that in a transgenic mouse model of MYC-induced T-cell leukemia, MYC, maintains self-renewal in Sca1+ CSCs versus Sca-1- non-CSCs. MYC preferentially bound to the promoter and activated hypoxia-inducible factor-2α (HIF2α) in Sca-1+ cells only. Furthermore, the reprogramming factors, Nanog and Sox2, facilitated MYC regulation of HIF2α in Sca-1+ versus Sca-1- cells. Reduced expression of HIF2α inhibited the self-renewal of Sca-1+ cells; this effect was blocked through suppression of ROS by N-acetyl cysteine or the knockdown of p53, Nanog, or Sox2. Similar results were seen in ABCG2+ CSCs versus ABCG2- non-CSCs from primary human T-cell lymphoma. Thus, MYC maintains self-renewal exclusively in CSCs by selectively binding to the promoter and activating the HIF2α stemness pathway. Identification of this stemness pathway as a unique CSC determinant may have significant therapeutic implications. SIGNIFICANCE: These findings show that the HIF2α stemness pathway maintains leukemic stem cells downstream of MYC in human and mouse T-cell leukemias. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/16/4015/F1.large.jpg.
Collapse
Affiliation(s)
- Bikul Das
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, California. .,Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, Assam, India.,Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, Massachusetts.,Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, Massachusetts
| | - Bidisha Pal
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, Assam, India.,Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, Massachusetts.,Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, Massachusetts
| | - Rashmi Bhuyan
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, California.,Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, Assam, India.,Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, Massachusetts.,Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, Massachusetts
| | - Hong Li
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, California.,Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, Massachusetts.,Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, Massachusetts
| | - Anupam Sarma
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, Assam, India.,Dr. B. Borooah Cancer Institute, Guwahati, Assam, India
| | - Sukanya Gayan
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, Assam, India.,Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, Massachusetts.,Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, Massachusetts
| | - Joyeeta Talukdar
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, Assam, India
| | - Sorra Sandhya
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, Assam, India
| | - Seema Bhuyan
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, Assam, India
| | - Gayatri Gogoi
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, Assam, India.,Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, Massachusetts.,Department of Pathology, Assam Medical College, Dibrugarh, Assam, India
| | - Arvin M Gouw
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, California
| | - Debabrat Baishya
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, Assam, India.,Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
| | - Jason R Gotlib
- Division of Hematology, Stanford Cancer Institute, Stanford, California
| | - Amal C Kataki
- Dr. B. Borooah Cancer Institute, Guwahati, Assam, India
| | - Dean W Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
143
|
Jacobsson H, Harrison H, Hughes É, Persson E, Rhost S, Fitzpatrick P, Gustafsson A, Andersson D, Gregersson P, Magnusson Y, Ståhlberg A, Landberg G. Hypoxia-induced secretion stimulates breast cancer stem cell regulatory signalling pathways. Mol Oncol 2019; 13:1693-1705. [PMID: 31066211 PMCID: PMC6670019 DOI: 10.1002/1878-0261.12500] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/09/2019] [Accepted: 05/07/2019] [Indexed: 01/08/2023] Open
Abstract
It is well known that tumour cells are dependent on communication with the tumour microenvironment. Previously, it has been shown that hypoxia (HX) induces pronounced, diverse and direct effects on cancer stem cell (CSC) qualities in different breast cancer subtypes. Here, we describe the mechanism by which HX-induced secretion influences the spreading of CSCs. Conditioned media (CM) from estrogen receptor (ER)-α-positive hypoxic breast cancer cell cultures increased the fraction of CSCs compared to normal growth conditions, as determined using sets of CSC assays and model systems. In contrast, media from ERα-negative hypoxic cell cultures instead decreased this key subpopulation of cancer cells. Further, there was a striking overrepresentation of JAK-STAT-associated cytokines in both the ERα-positive and ERα-negative linked hypoxic responses as determined by a protein screen of the CM. JAK-STAT inhibitors and knockdown experiments further supported the hypothesis that this pathway is critical for the CSC-activating and CSC-inactivating effects induced by hypoxic secretion. We also observed that the interleukin-6-JAK2-STAT3 axis was specifically central for the ERα-negative hypoxic behaviour. Our results underline the importance of considering breast cancer subtypes in treatments targeting JAK-STAT or HX-associated processes and indicate that HX is not only a confined tumour biological event, but also influences key tumour properties in widespread normoxic microenvironments.
Collapse
Affiliation(s)
- Hanna Jacobsson
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Sweden
| | - Hannah Harrison
- Breakthrough Breast Cancer Unit, Centre for Molecular Pathology, Institute of Cancer Sciences, Paterson Institute for Cancer Research, University of Manchester, UK.,Manchester Cancer Research Centre, The University of Manchester, UK
| | - Éamon Hughes
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Sweden
| | - Emma Persson
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Sweden
| | - Sara Rhost
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Sweden
| | - Paul Fitzpatrick
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Sweden
| | - Anna Gustafsson
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Sweden
| | - Daniel Andersson
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Sweden
| | - Pernilla Gregersson
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Sweden
| | - Ylva Magnusson
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Sweden
| | - Anders Ståhlberg
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden.,Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Göran Landberg
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Sweden.,Breakthrough Breast Cancer Unit, Centre for Molecular Pathology, Institute of Cancer Sciences, Paterson Institute for Cancer Research, University of Manchester, UK
| |
Collapse
|
144
|
Biava PM, Burigana F, Germano R, Kurian P, Verzegnassi C, Vitiello G. Stem Cell Differentiation Stage Factors and their Role in Triggering Symmetry Breaking Processes during Cancer Development: A Quantum Field Theory Model for Reprogramming Cancer Cells to Healthy Phenotypes. Curr Med Chem 2019; 26:988-1001. [PMID: 28933288 DOI: 10.2174/0929867324666170920142609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/18/2017] [Accepted: 09/18/2017] [Indexed: 01/06/2023]
Abstract
A long history of research has pursued the use of embryonic factors isolated during cell differentiation processes for the express purpose of transforming cancer cells back to healthy phenotypes. Recent results have clarified that the substances present at different stages of cell differentiation-which we call stem cell differentiation stage factors (SCDSFs)-are proteins with low molecular weight and nucleic acids that regulate genomic expression. The present review summarizes how these substances, taken at different stages of cellular maturation, are able to retard proliferation of many human tumor cell lines and thereby reprogram cancer cells to healthy phenotypes. The model presented here is a quantum field theory (QFT) model in which SCDSFs are able to trigger symmetry breaking processes during cancer development. These symmetry breaking processes, which lie at the root of many phenomena in elementary particle physics and condensed matter physics, govern the phase transitions of totipotent cells to higher degrees of diversity and order, resulting in cell differentiation. In cancers, which share many genomic and metabolic similarities with embryonic stem cells, stimulated redifferentiation often signifies the phenotypic reversion back to health and nonproliferation. In addition to acting on key components of the cellular cycle, SCDSFs are able to reprogram cancer cells by delicately influencing the cancer microenvironment, modulating the electrochemistry and thus the collective electrodynamic behaviors between dipole networks in biomacromolecules and the interstitial water field. Coherent effects in biological water, which are derived from a dissipative QFT framework, may offer new diagnostic and therapeutic targets at a systemic level, before tumor instantiation occurs in specific tissues or organs. Thus, by including the environment as an essential component of our model, we may push the prevailing paradigm of mutation-driven oncogenesis toward a closer description of reality.
Collapse
Affiliation(s)
- P M Biava
- Scientific Institute of Research and Care Multimedica, Via Milanese 300 Sesto S. G., Milano, Italy
| | - F Burigana
- Associazione Medicina e Complessita, Trieste, Italy
| | - R Germano
- PROMETE_CNR Spin off, Piazzale V. Tecchio, 45, Napoli, Italy
| | - P Kurian
- Quantum Biology Laboratory, Howard University, Washington, DC, United States
| | - C Verzegnassi
- Politecnico di Ingegneria e Architettura, Universita di Udine, Udine, Italy and Associazione Medicina e Complessita, Trieste, Italy
| | - G Vitiello
- Dipartimento di Fisica "E.R.Caianiello" and Istituto Nazionale di Fisica Nucleare, Universita di Salerno, Fisciano, Italy
| |
Collapse
|
145
|
Jia D, Li X, Bocci F, Tripathi S, Deng Y, Jolly MK, Onuchic JN, Levine H. Quantifying Cancer Epithelial-Mesenchymal Plasticity and its Association with Stemness and Immune Response. J Clin Med 2019; 8:E725. [PMID: 31121840 PMCID: PMC6572429 DOI: 10.3390/jcm8050725] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer cells can acquire a spectrum of stable hybrid epithelial/mesenchymal (E/M) states during epithelial-mesenchymal transition (EMT). Cells in these hybrid E/M phenotypes often combine epithelial and mesenchymal features and tend to migrate collectively commonly as small clusters. Such collectively migrating cancer cells play a pivotal role in seeding metastases and their presence in cancer patients indicates an adverse prognostic factor. Moreover, cancer cells in hybrid E/M phenotypes tend to be more associated with stemness which endows them with tumor-initiation ability and therapy resistance. Most recently, cells undergoing EMT have been shown to promote immune suppression for better survival. A systematic understanding of the emergence of hybrid E/M phenotypes and the connection of EMT with stemness and immune suppression would contribute to more effective therapeutic strategies. In this review, we first discuss recent efforts combining theoretical and experimental approaches to elucidate mechanisms underlying EMT multi-stability (i.e., the existence of multiple stable phenotypes during EMT) and the properties of hybrid E/M phenotypes. Following we discuss non-cell-autonomous regulation of EMT by cell cooperation and extracellular matrix. Afterwards, we discuss various metrics that can be used to quantify EMT spectrum. We further describe possible mechanisms underlying the formation of clusters of circulating tumor cells. Last but not least, we summarize recent systems biology analysis of the role of EMT in the acquisition of stemness and immune suppression.
Collapse
Affiliation(s)
- Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
| | - Xuefei Li
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
| | - Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Department of Chemistry, Rice University, Houston, TX 77005, USA.
| | - Shubham Tripathi
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX 77005, USA.
| | - Youyuan Deng
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Applied Physics Graduate Program, Rice University, Houston, TX 77005, USA.
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Department of Chemistry, Rice University, Houston, TX 77005, USA.
- Department of Biosciences, Rice University, Houston, TX 77005, USA.
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA.
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA.
- Department of Physics, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
146
|
Tsai KK, Chan TS, Shaked Y. Next Viable Routes to Targeting Pancreatic Cancer Stemness: Learning from Clinical Setbacks. J Clin Med 2019; 8:jcm8050702. [PMID: 31108941 PMCID: PMC6571629 DOI: 10.3390/jcm8050702] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating and highly aggressive malignancy. Existing therapeutic strategies only provide a small survival benefit in patients with PDAC. Laboratory and clinical research have identified various populations of stem-cell-like cancer cells or cancer stem cells (CSCs) as the driving force of PDAC progression, treatment-resistance, and metastasis. Whilst a number of therapeutics aiming at inhibiting or killing CSCs have been developed over the past decade, a series of notable clinical trial setbacks have led to their deprioritization from the pipelines, triggering efforts to refine the current CSC model and exploit alternative therapeutic strategies. This review describes the current and the evolving models of pancreatic CSCs (panCSCs) and the potential factors that hamper the clinical development of panCSC-targeted therapies, emphasizing the heterogeneity, the plasticity, and the non-binary pattern of cancer stemness, as well as the desmoplastic stroma impeding drug penetration. We summarized novel and promising therapeutic strategies implicated by the works of our groups and others' that may overcome these hurdles and have shown efficacies in preclinical models of PDAC, emphasizing the unique advantages of targeting the stroma-engendered panCSC-niches and metronomic chemotherapy. Finally, we proposed feasible clinical trial strategies and biomarkers that can guide the next-generation clinical trials.
Collapse
Affiliation(s)
- Kelvin K Tsai
- Laboratory of Advanced Molecular Therapeutics, Division of Gastroenterology, Department of Internal Medicine, Integrative Therapy Center for Gastroenterologic Cancers, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan.
- Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan.
| | - Tze-Sian Chan
- Laboratory of Advanced Molecular Therapeutics, Division of Gastroenterology, Department of Internal Medicine, Integrative Therapy Center for Gastroenterologic Cancers, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan.
- Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yuval Shaked
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3525433, Israel.
| |
Collapse
|
147
|
Role of the calcium toolkit in cancer stem cells. Cell Calcium 2019; 80:141-151. [PMID: 31103948 DOI: 10.1016/j.ceca.2019.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
Cancer stem cells are a subpopulation of tumor cells that proliferate, self-renew and produce more differentiated tumoral cells building-up the tumor. Responsible for the sustained growth of malignant tumors, cancer stem cells are proposed to play significant roles in cancer resistance to standard treatment and in tumor recurrence. Among the mechanisms dysregulated in neoplasms, those related to Ca2+ play significant roles in various aspects of cancers. Ca2+ is a ubiquitous second messenger whose fluctuations of its intracellular concentrations are tightly controlled by channels, pumps, exchangers and Ca2+ binding proteins. These components support the genesis of Ca2+ signals with specific spatio-temporal characteristics that define the cell response. Being involved in the coupling of extracellular events with intracellular responses, the Ca2+ toolkit is often hijacked by cancer cells to promote notably their proliferation and invasion. Growing evidence obtained during the last decade pointed to a role of Ca2+ handling and mishandling in cancer stem cells. In this review, after a general overview of the concept of cancer stem cells we analyse and discuss the studies and current knowledge regarding the complex roles of Ca2+ toolkit and signaling in these cells. We highlight that numbers of Ca2+ signaling actors promote cancer stem cell state and are associated with cell resistance to current cancer treatments and thus may represent promising targets for potential clinical applications.
Collapse
|
148
|
Robinson NJ, Taylor DJ, Schiemann WP. Stem cells, immortality, and the evolution of metastatic properties in breast cancer: telomere maintenance mechanisms and metastatic evolution. JOURNAL OF CANCER METASTASIS AND TREATMENT 2019; 5:39. [PMID: 31440584 PMCID: PMC6706062 DOI: 10.20517/2394-4722.2019.15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Breast cancer is the most significant cause of cancer-related death in women around the world. The vast majority of breast cancer-associated mortality stems from metastasis, which remains an incurable disease state. Metastasis results from evolution of clones that possess the insidious properties required for dissemination and colonization of distant organs. These clonal populations are descended from breast cancer stem cells (CSCs), which are also responsible for their prolonged maintenance and continued evolution. Telomeres impose a lifespan on cells that can be extended when they are actively elongated, as occurs in CSCs. Thus, changes in telomere structure serve to promote the survival of CSCs and subsequent metastatic evolution. The selection of telomere maintenance mechanism (TMM) has important consequences not only for CSC survival and evolution, but also for their coordination of various signaling pathways that choreograph the metastatic cascade. Targeting the telomere maintenance machinery may therefore provide a boon to the treatment of metastatic breast cancer. Here we review the two major TMMs and the roles they play in the development of stem and metastatic breast cancer cells. We also highlight current and future approaches to targeting these mechanisms in clinical settings to alleviate metastatic breast cancers.
Collapse
Affiliation(s)
- Nathaniel J. Robinson
- Department of Pathology, Case Western Reserve University
School of Medicine, Cleveland, OH 44106, USA
| | - Derek J. Taylor
- Department of Pharmacology, Case Western Reserve University
School of Medicine, Cleveland, OH 44106, USA
| | - William P. Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve
University, Cleveland, OH 44106 USA
| |
Collapse
|
149
|
Saga R, Matsuya Y, Takahashi R, Hasegawa K, Date H, Hosokawa Y. Analysis of the high-dose-range radioresistance of prostate cancer cells, including cancer stem cells, based on a stochastic model. JOURNAL OF RADIATION RESEARCH 2019; 60:298-307. [PMID: 31034058 PMCID: PMC6530629 DOI: 10.1093/jrr/rrz011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/20/2019] [Indexed: 05/29/2023]
Abstract
In radiotherapy, cancer stem cells (CSCs) are well recognized as one of the radioresistant cell types. Even in a small subpopulation, CSCs may have an influence on tumor control probability, represented by cell killing after irradiation. However, the relationship between the percentage content of CSCs and the cell survival dose-response curve has not yet been quantitatively clarified. In this study, we developed a cell-killing model for two cell populations (CSCs and progeny cells) to predict the surviving fractions, and compared it with the conventional linear-quadratic (LQ) model. Three prostate cancer cell lines (DU145, PC3 and LNCaP) were exposed to X-rays at doses ranging from 0 to 10 Gy. After the irradiation, we performed clonogenic survival assays to generate the cell survival curves, and carried out flow-cytometric analyses to estimate the percentage content of CSCs for each cell line. The cell survival curves for DU145 cells and PC3 cells seemed not to follow the conventional LQ model in the high dose range (>8 Gy). However, the outputs of the developed model agreed better with the experimental cell survival curves than those of the LQ model. The percentage content of CSCs predicted by the developed model was almost coincident with the measured percentage content for both DU145 cells and PC3 cells. The experiments and model analyses indicate that a small subpopulation of radioresistant CSCs has lower radiosensitivity in the high-dose range, which may lessen the clinical outcome for patients with prostate cancer after high-dose radiation therapy.
Collapse
Affiliation(s)
- Ryo Saga
- Department of Radiation Sciences, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki Aomori, Japan
| | - Yusuke Matsuya
- Graduate School of Health Sciences, Hokkaido University, Kita-12 Nishi-8, Kita-ku, Sapporo, Hokkaido, Japan
- Nuclear Science and Engineering Center, Research Group for Radiation Transport Analysis, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Ibaraki, Japan
| | - Rei Takahashi
- Department of Radiation Sciences, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki Aomori, Japan
| | - Kazuki Hasegawa
- Department of Radiation Sciences, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki Aomori, Japan
| | - Hiroyuki Date
- Faculty of Health Science, Hokkaido University, Kita-12 Nishi-8, Kita-ku, Sapporo, Hokkaido, Japan
| | - Yoichiro Hosokawa
- Department of Radiation Sciences, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki Aomori, Japan
| |
Collapse
|
150
|
Dai X, Cheng H, Chen X, Li T, Zhang J, Jin G, Cai D, Huang Z. FOXA1 is Prognostic of Triple Negative Breast Cancers by Transcriptionally Suppressing SOD2 and IL6. Int J Biol Sci 2019; 15:1030-1041. [PMID: 31182923 PMCID: PMC6535797 DOI: 10.7150/ijbs.31009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/08/2019] [Indexed: 12/20/2022] Open
Abstract
Having markers feasible for breast cancer subtyping, especially for triple negative breast cancer identification is crucial for improving the treatment outcome of such cancers. Here we explore the role of FOXA1 in characterizing triple negative breast cancers and the driving mechanisms. Through in vitro examination of the expression pattern at both transcriptional and translational levels, patient relapse-free survival analysis, immunohistochemistry staining and prediction power assessment using clinical samples, as well as functional studies, we systematically compared the role of FOXA1 in identifying triple negative and luminal type of breast cancers and explored the mechanisms driving such functionalities. We report that FOXA1 under-expression can lead to increased malignancy and cancer stemness, and is a subtyping marker identifying triple negative breast cancers rather than the luminal subtype by transcriptionally suppressing the expression of SOD2 and IL6. We are the first to systematically address the significance of FOXA1 in triple negative breast cancer identification as a biomarker and elucidate the mechanism at the molecular level, through a sequential bioinformatics analysis and experimental validations both in vitro and in clinics. Our discoveries compliment the current biomarker modalities once verified using larger clinical cohorts and improve the precision on characterizing breast cancer heterogeneity.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Hongye Cheng
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiao Chen
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Ting Li
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jia Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Guoyin Jin
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Dongyan Cai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Zhaohui Huang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|