101
|
Sang A, Zheng YY, Yin Y, Dozmorov I, Li H, Hsu HC, Mountz JD, Morel L. Dysregulated cytokine production by dendritic cells modulates B cell responses in the NZM2410 mouse model of lupus. PLoS One 2014; 9:e102151. [PMID: 25093822 PMCID: PMC4122346 DOI: 10.1371/journal.pone.0102151] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 06/16/2014] [Indexed: 01/18/2023] Open
Abstract
The breakdown in tolerance of autoreactive B cells in the lupus-prone NZM2410-derived B6.Sle1.Sle2.Sle3 (TC) mice results in the secretion of autoantibodies. TC dendritic cells (DCs) enhance B cell proliferation and antibody secretion in a cytokine-dependent manner. However, the specific cytokine milieu by which TC DCs activate B cells was not known. In this study, we compared TC and C57BL/6 (B6) control for the distribution of DC subsets and for their production of cytokines affecting B cell responses. We show that TC DCs enhanced B cell proliferation through the production of IL-6 and IFN-γ, while antibody secretion was only dependent on IL-6. Pre-disease TC mice showed an expanded PDCA1(+) cells prior to disease onset that was localized to the marginal zone and further expanded with age. The presence of PDCA1(+) cells in the marginal zone correlated with a Type I Interferon (IFN) signature in marginal zone B cells, and this response was higher in TC than B6 mice. In vivo administration of anti-chromatin immune complexes upregulated IL-6 and IFN-γ production by splenic DCs from TC but not B6 mice. The production of BAFF and APRIL was decreased upon TC DC stimulation both in vitro and in vivo, indicating that these B cell survival factors do not play a role in B cell modulation by TC DCs. Finally, TC B cells were defective at downregulating IL-6 expression in response to anti-inflammatory apoptotic cell exposure. Overall, these results show that the TC autoimmune genetic background induces the production of B cell-modulating inflammatory cytokines by DCs, which are regulated by the microenvironment as well as the interplay between DC.
Collapse
Affiliation(s)
- Allison Sang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Ying-Yi Zheng
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Yiming Yin
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Igor Dozmorov
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Hao Li
- Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Hui-Chen Hsu
- Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - John D. Mountz
- Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
102
|
Geng XR, Yang G, Li M, Song JP, Liu ZQ, Qiu S, Liu Z, Yang PC. Insulin-like growth factor-2 enhances functions of antigen (Ag)-specific regulatory B cells. J Biol Chem 2014; 289:17941-17950. [PMID: 24811165 PMCID: PMC4067224 DOI: 10.1074/jbc.m113.515262] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/09/2014] [Indexed: 01/27/2023] Open
Abstract
Regulatory B cells (Bregs) are important in immune regulation. The factors that regulate Breg functions are less clear. Insulin-like growth factor 2 (IGF2) is capable of inducing hematopoietic stem cell differentiation. This study aimed to investigate the role of IGF2 in the development of Bregs and the enhancement of their function. In this study, the expression of IGF1 receptor (IGF1R) and IGF2R in ovalbumin (OVA)-specific B cells (OVAsBCs) was assessed by real time RT-PCR and Western blotting. The release of interleukin (IL)-10 from OVAsBCs and OVAsBC proliferation were assessed by enzyme-linked immunoassay and proliferation assay. The role of IGF2 in enhancing the function of OVAsBCs was tested with an intestinal allergic inflammation mouse model. The results showed that OVAsBCs expressed high levels of IGF2R. Exposure to both IGF2 and a specific antigen (Ag), OVA, markedly enhanced the expression of IL-10 in OVAsBCs as well as enhanced the IL-10(+) OVAsBC proliferation. The concurrent exposure to IGF2 and specific Ag markedly induced the IL-10 promoter DNA demethylation via activating the STAT5 pathway. IGF2 also enhanced both the OVAsBC proliferation in vivo and the effect of Ag-specific immunotherapy on inhibiting allergic inflammation in the intestine. We conclude that OVAsBCs express high levels of IGF2R and that IGF2 increases the expression of IL-10 in OVAsBCs and enhances OVAsBC proliferation and the inhibitory effect on allergic inflammation.
Collapse
Affiliation(s)
- Xiao-Rui Geng
- From the Otolaryngology Institute of Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine and State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen 518060, China, Longgang Central Hospital, ENT Hospital, Shenzhen ENT Institute, Shenzhen 518116, China, and
| | - Gui Yang
- From the Otolaryngology Institute of Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine and State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen 518060, China, Longgang Central Hospital, ENT Hospital, Shenzhen ENT Institute, Shenzhen 518116, China, and
| | - Meng Li
- From the Otolaryngology Institute of Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine and State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen 518060, China
| | - Jiang-Ping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Zhi-Qiang Liu
- From the Otolaryngology Institute of Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine and State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen 518060, China, Longgang Central Hospital, ENT Hospital, Shenzhen ENT Institute, Shenzhen 518116, China, and
| | - Shuqi Qiu
- From the Otolaryngology Institute of Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine and State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen 518060, China, Longgang Central Hospital, ENT Hospital, Shenzhen ENT Institute, Shenzhen 518116, China, and
| | - Zhigang Liu
- From the Otolaryngology Institute of Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine and State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen 518060, China
| | - Ping-Chang Yang
- From the Otolaryngology Institute of Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine and State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen 518060, China,
| |
Collapse
|
103
|
Nozaki Y, Kitching AR, Akiba H, Yagita H, Kinoshita K, Funauchi M, Matsumura I. Endogenous Tim-1 promotes severe systemic autoimmunity and renal disease MRL-Faslpr mice. Am J Physiol Renal Physiol 2014; 306:F1210-21. [DOI: 10.1152/ajprenal.00570.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The T-cell immunoglobulin mucin 1, also known as kidney injury molecule-1, modulates CD4+ T-cell responses and is also expressed by damaged proximal tubules within the kidney. Both Th subset imbalance (Th1/Th2/Th17) and regulatory T-cell and B-cell alterations contribute to the pathogenesis of autoimmune disease. This study investigated the effects of an inhibitory anti-T-cell immunoglobulin mucin 1 antibody (RMT1–10) in lupus-prone MRL- Fas lpr mice. MRL- Fas lpr mice were treated with RMT1–10 or a control antibody intraperitoneally twice weekly from 3 mo of age for 16 wk. RMT1–10 treatment significantly improved survival, limited the development of lymphadenopathy and skin lesions, preserved renal function and decreased proteinuria, reduced serum anti-DNA antibody levels, and attenuated renal leukocyte accumulation. Th1 and Th17 cellular responses systemically and intrarenally were reduced, but regulatory T and B cells were increased. RMT1–10 treatment also reduced glomerular immunoglobulin and C3 deposition and suppressed cellular proliferation and apoptosis. Urinary excretion and renal expression of kidney injury molecule-1 was reduced, reflecting diminished interstitial injury. As RMT1–10 attenuated established lupus nephritis, manipulating immune system T-cell immunoglobulin mucin 1 may represent a therapeutic strategy in autoimmune diseases affecting the kidney.
Collapse
Affiliation(s)
- Yuji Nozaki
- Department of Hematology and Rheumatology, Kinki University School of Medicine, Osaka, Japan
| | - A. Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Clayton, Victoria, Australia
- Departments of Nephrology and Pediatric Nephrology, Monash Medical Centre, Clayton, Victoria, Australia; and
| | - Hisaya Akiba
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Koji Kinoshita
- Department of Hematology and Rheumatology, Kinki University School of Medicine, Osaka, Japan
| | - Masanori Funauchi
- Department of Hematology and Rheumatology, Kinki University School of Medicine, Osaka, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, Kinki University School of Medicine, Osaka, Japan
| |
Collapse
|
104
|
Gandhi R, Yi J, Ha J, Shi H, Ismail O, Nathoo S, Bonventre JV, Zhang X, Gunaratnam L. Accelerated receptor shedding inhibits kidney injury molecule-1 (KIM-1)-mediated efferocytosis. Am J Physiol Renal Physiol 2014; 307:F205-21. [PMID: 24829508 DOI: 10.1152/ajprenal.00638.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Efficient clearance of apoptotic cells (efferocytosis) prevents inflammation and permits repair following tissue injury. Kidney injury molecule-1 (KIM-1) is a receptor for phosphatidylserine, an "eat-me" signal exposed on the surface of apoptotic cells that marks them for phagocytic clearance. KIM-1 is upregulated on proximal tubule epithelial cells (PTECs) during ischemic acute kidney injury (AKI), enabling efferocytosis by surviving PTECs. KIM-1 is spontaneously cleaved at its ectodomain region to generate a soluble fragment that serves a sensitive and specific biomarker for AKI, but the biological relevance of KIM-1 shedding is unknown. Here, we sought to determine how KIM-1 shedding might regulate efferocytosis. Using cells that endogenously and exogenously express KIM-1, we found that hydrogen peroxide-mediated oxidative injury or PMA treatment accelerated KIM-1 shedding in a dose-dependent manner. KIM-1 shedding was also accelerated when apoptotic cells were added. Accelerated shedding or the presence of excess soluble KIM-1 in the extracellular milieu significantly inhibited efferocytosis. We also identified that TNF-α-converting enzyme (TACE or ADAM17) mediates both the spontaneous and PMA-accelerated shedding of KIM-1. While accelerated shedding inhibited efferocytosis, we found that spontaneous KIM-1 cleavage does not affect the phagocytic efficiency of PTECs. Our results suggest that KIM-1 shedding is accelerated by worsening cellular injury, and excess soluble KIM-1 competitively inhibits efferocytosis. These findings may be important in AKI when there is severe cellular injury.
Collapse
Affiliation(s)
- Rushi Gandhi
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - James Yi
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Jihyen Ha
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Hang Shi
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Centre for Human Immunology, Western University, London, Ontario, Canada; and
| | - Ola Ismail
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Sahra Nathoo
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Joseph V Bonventre
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Xizhong Zhang
- Division of Nephrology, Department of Medicine, Schulich School of Medicine and Dentistry, London, Ontario, Canada; Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Lakshman Gunaratnam
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Division of Nephrology, Department of Medicine, Schulich School of Medicine and Dentistry, London, Ontario, Canada; Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada; Centre for Human Immunology, Western University, London, Ontario, Canada; and
| |
Collapse
|
105
|
Lee KM, Stott RT, Zhao G, SooHoo J, Xiong W, Lian MM, Fitzgerald L, Shi S, Akrawi E, Lei J, Deng S, Yeh H, Markmann JF, Kim JI. TGF-β-producing regulatory B cells induce regulatory T cells and promote transplantation tolerance. Eur J Immunol 2014; 44:1728-36. [PMID: 24700192 DOI: 10.1002/eji.201344062] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 02/12/2014] [Accepted: 03/27/2014] [Indexed: 12/18/2022]
Abstract
Regulatory B (Breg) cells have been shown to play a critical role in immune homeostasis and in autoimmunity models. We have recently demonstrated that combined anti-T cell immunoglobulin domain and mucin domain-1 and anti-CD45RB antibody treatment results in tolerance to full MHC-mismatched islet allografts in mice by generating Breg cells that are necessary for tolerance. Breg cells are antigen-specific and are capable of transferring tolerance to untreated, transplanted animals. Here, we demonstrate that adoptively transferred Breg cells require the presence of regulatory T (Treg) cells to establish tolerance, and that adoptive transfer of Breg cells increases the number of Treg cells. Interaction with Breg cells in vivo induces significantly more Foxp3 expression in CD4(+) CD25(-) T cells than with naive B cells. We also show that Breg cells express the TGF-β associated latency-associated peptide and that Breg-cell mediated graft prolongation post-adoptive transfer is abrogated by neutralization of TGF-β activity. Breg cells, like Treg cells, demonstrate preferential expression of both C-C chemokine receptor 6 and CXCR3. Collectively, these findings suggest that in this model of antibody-induced transplantation tolerance, Breg cells promote graft survival by promoting Treg-cell development, possibly via TGF-β production.
Collapse
Affiliation(s)
- Kang Mi Lee
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Angiari S, Donnarumma T, Rossi B, Dusi S, Pietronigro E, Zenaro E, Della Bianca V, Toffali L, Piacentino G, Budui S, Rennert P, Xiao S, Laudanna C, Casasnovas JM, Kuchroo VK, Constantin G. TIM-1 glycoprotein binds the adhesion receptor P-selectin and mediates T cell trafficking during inflammation and autoimmunity. Immunity 2014; 40:542-53. [PMID: 24703780 DOI: 10.1016/j.immuni.2014.03.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 03/12/2014] [Indexed: 12/24/2022]
Abstract
Selectins play a central role in leukocyte trafficking by mediating tethering and rolling on vascular surfaces. Here we have reported that T cell immunoglobulin and mucin domain 1 (TIM-1) is a P-selectin ligand. We have shown that human and murine TIM-1 binds to P-selectin, and that TIM-1 mediates tethering and rolling of T helper 1 (Th1) and Th17, but not Th2 and regulatory T cells on P-selectin. Th1 and Th17 cells lacking the TIM-1 mucin domain showed reduced rolling in thrombin-activated mesenteric venules and inflamed brain microcirculation. Inhibition of TIM-1 had no effect on naive T cell homing, but it reduced T cell recruitment in a skin hypersensitivity model and blocked experimental autoimmune encephalomyelitis. Uniquely, the TIM-1 immunoglobulin variable domain was also required for P-selectin binding. Our data demonstrate that TIM-1 is a major P-selectin ligand with a specialized role in T cell trafficking during inflammatory responses and the induction of autoimmune disease.
Collapse
Affiliation(s)
- Stefano Angiari
- Department of Pathology and Diagnostics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Tiziano Donnarumma
- Department of Pathology and Diagnostics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Barbara Rossi
- Department of Pathology and Diagnostics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Silvia Dusi
- Department of Pathology and Diagnostics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Enrica Pietronigro
- Department of Pathology and Diagnostics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Elena Zenaro
- Department of Pathology and Diagnostics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Vittorina Della Bianca
- Department of Pathology and Diagnostics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Lara Toffali
- Department of Pathology and Diagnostics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy; The Center for Biomedical Computing (CBMC), University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Gennj Piacentino
- Department of Pathology and Diagnostics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Simona Budui
- Department of Pathology and Diagnostics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Paul Rennert
- Department of Molecular Discovery and Immunobiology, Biogen Idec Inc., 12 Cambridge Center, Cambridge, MA 02146, USA
| | - Sheng Xiao
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, HIM 785, Boston, MA 02115-5817, USA
| | - Carlo Laudanna
- Department of Pathology and Diagnostics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy; The Center for Biomedical Computing (CBMC), University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Jose M Casasnovas
- Centro Nacional de Biotecnología, CNB-CSIC, Campus UAM, C/ Darwin, 3, Campus of Cantoblanco, E-28049 Madrid, Spain
| | - Vijay K Kuchroo
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, HIM 785, Boston, MA 02115-5817, USA
| | - Gabriela Constantin
- Department of Pathology and Diagnostics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy.
| |
Collapse
|
107
|
Abstract
UNLABELLED T-cell immunoglobulin and mucin domain 1 (TIM-1) and other TIM family members were recently identified as phosphatidylserine (PtdSer)-mediated virus entry-enhancing receptors (PVEERs). These proteins enhance entry of Ebola virus (EBOV) and other viruses by binding PtdSer on the viral envelope, concentrating virus on the cell surface, and promoting subsequent internalization. The PtdSer-binding activity of the immunoglobulin-like variable (IgV) domain is essential for both virus binding and internalization by TIM-1. However, TIM-3, whose IgV domain also binds PtdSer, does not effectively enhance virus entry, indicating that other domains of TIM proteins are functionally important. Here, we investigate the domains supporting enhancement of enveloped virus entry, thereby defining the features necessary for a functional PVEER. Using a variety of chimeras and deletion mutants, we found that in addition to a functional PtdSer-binding domain PVEERs require a stalk domain of sufficient length, containing sequences that promote an extended structure. Neither the cytoplasmic nor the transmembrane domain of TIM-1 is essential for enhancing virus entry, provided the protein is still plasma membrane bound. Based on these defined characteristics, we generated a mimic lacking TIM sequences and composed of annexin V, the mucin-like domain of α-dystroglycan, and a glycophosphatidylinositol anchor that functioned as a PVEER to enhance transduction of virions displaying Ebola, Chikungunya, Ross River, or Sindbis virus glycoproteins. This identification of the key features necessary for PtdSer-mediated enhancement of virus entry provides a basis for more effective recognition of unknown PVEERs. IMPORTANCE T-cell immunoglobulin and mucin domain 1 (TIM-1) and other TIM family members are recently identified phosphatidylserine (PtdSer)-mediated virus entry-enhancing receptors (PVEERs). These proteins enhance virus entry by binding the phospholipid, PtdSer, present on the viral membrane. While it is known that the PtdSer binding is essential for the PVEER function of TIM-1, TIM-3 shares this binding activity but does not enhance virus entry. No comprehensive studies have been done to characterize the other domains of TIM-1. In this study, using a variety of chimeric proteins and deletion mutants, we define the features necessary for a functional PVEER. With these features in mind, we generated a TIM-1 mimic using functionally similar domains from other proteins. This mimic, like TIM-1, effectively enhanced transduction. These studies provide insight into the key features necessary for PVEERs and will allow for more effective identification of unknown PVEERs.
Collapse
|
108
|
Liu J, Zhan W, Kim CJ, Clayton K, Zhao H, Lee E, Cao JC, Ziegler B, Gregor A, Yue FY, Huibner S, MacParland S, Schwartz J, Song HH, Benko E, Gyenes G, Kovacs C, Kaul R, Ostrowski M. IL-10-producing B cells are induced early in HIV-1 infection and suppress HIV-1-specific T cell responses. PLoS One 2014; 9:e89236. [PMID: 24586620 PMCID: PMC3931714 DOI: 10.1371/journal.pone.0089236] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/17/2014] [Indexed: 12/20/2022] Open
Abstract
A rare subset of IL-10-producing B cells, named regulatory B cells (Bregs), suppresses adaptive immune responses and inflammation in mice. In this study, we examined the role of IL-10-producing B cells in HIV-1 infection. Compared to uninfected controls, IL-10-producing B cell frequencies were elevated in both blood and sigmoid colon during the early and chronic phase of untreated HIV-1 infection. Ex vivo IL-10-producing B cell frequency in early HIV-1 infection directly correlated with viral load. IL-10-producing B cells from HIV-1 infected individuals were enriched in CD19(+)TIM-1(+) B cells and were enriched for specificity to trimeric HIV-1 envelope protein. Anti-retroviral therapy was associated with reduced IL-10-producing B cell frequencies. Treatment of B cells from healthy donors with microbial metabolites and Toll-like receptor (TLR) agonists could induce an IL-10 producing phenotype, suggesting that the elevated bacterial translocation characteristic of HIV-1 infection may promote IL-10-producing B cell development. Similar to regulatory B cells found in mice, IL-10-producing B cells from HIV-1-infected individuals suppressed HIV-1-specific T cell responses in vitro, and this suppression is IL-10-dependent. Also, ex vivo IL-10-producing B cell frequency inversely correlated with contemporaneous ex vivo HIV-1-specific T cell responses. Our findings show that IL-10-producing B cells are induced early in HIV-1 infection, can be HIV-1 specific, and are able to inhibit effective anti-HIV-1 T cell responses. HIV-1 may dysregulate B cells toward Bregs as an immune evasion strategy.
Collapse
Affiliation(s)
- Jun Liu
- Clinical Sciences Division, University of Toronto, Toronto, Ontario, Canada
| | - Wei Zhan
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Connie J. Kim
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Kiera Clayton
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Hanqi Zhao
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Erika Lee
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jin Chao Cao
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Blake Ziegler
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Alexander Gregor
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Feng Yun Yue
- Clinical Sciences Division, University of Toronto, Toronto, Ontario, Canada
| | - Sanja Huibner
- Clinical Sciences Division, University of Toronto, Toronto, Ontario, Canada
| | - Sonya MacParland
- Clinical Sciences Division, University of Toronto, Toronto, Ontario, Canada
| | - Jordan Schwartz
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Hai Han Song
- Clinical Sciences Division, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | - Rupert Kaul
- Clinical Sciences Division, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Mario Ostrowski
- Clinical Sciences Division, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
| |
Collapse
|
109
|
Schweigert O, Dewitz C, Möller-Hackbarth K, Trad A, Garbers C, Rose-John S, Scheller J. Soluble T cell immunoglobulin and mucin domain (TIM)-1 and -4 generated by A Disintegrin And Metalloprotease (ADAM)-10 and -17 bind to phosphatidylserine. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:275-87. [DOI: 10.1016/j.bbamcr.2013.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 10/28/2013] [Accepted: 11/18/2013] [Indexed: 01/07/2023]
|
110
|
Abstract
The involvement of Bregs in cancer remains poorly understood despite their well-documented regulation of responses to the self and protection from harmful autoimmunity. We recently discovered a unique regulatory B cell subset evoked by breast cancer to mediate protection of metastasizing cancer cells. These results together with the wealth of findings of the last 40 years on B cells in tumorigenesis suggest the existence of additional cancer Bregs modulating anticancer responses. To facilitate the search for them, here we provide our detailed protocol for the characterization and generation of tumor-evoked regulatory B cells. Wherever applicable, we also discuss nuances and uniqueness of a Breg study in cancer to warn potential pitfalls.
Collapse
|
111
|
Sang A, Zheng YY, Morel L. Contributions of B cells to lupus pathogenesis. Mol Immunol 2013; 62:329-38. [PMID: 24332482 DOI: 10.1016/j.molimm.2013.11.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/14/2013] [Accepted: 11/14/2013] [Indexed: 01/09/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the production of autoantibodies. This review summarizes first the results obtained in the mouse that have revealed how B cell tolerance is breached in SLE. We then review the B cell subsets, in addition to the autoAb producing cells, which contribute to SLE pathogenesis, focusing on marginal zone B cells, B-1 cells and regulatory B cells. Finally, we review the interactions between B cells and other immune cells that have been implicated in SLE, such as dendritic cells, macrophages, neutrophils and T cells.
Collapse
Affiliation(s)
- Allison Sang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Ying-Yi Zheng
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
112
|
Humphreys BD, Xu F, Sabbisetti V, Grgic I, Movahedi Naini S, Wang N, Chen G, Xiao S, Patel D, Henderson JM, Ichimura T, Mou S, Soeung S, McMahon AP, Kuchroo VK, Bonventre JV. Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis. J Clin Invest 2013; 123:4023-35. [PMID: 23979159 DOI: 10.1172/jci45361] [Citation(s) in RCA: 274] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 06/17/2013] [Indexed: 12/19/2022] Open
Abstract
Acute kidney injury predisposes patients to the development of both chronic kidney disease and end-stage renal failure, but the molecular details underlying this important clinical association remain obscure. We report that kidney injury molecule-1 (KIM-1), an epithelial phosphatidylserine receptor expressed transiently after acute injury and chronically in fibrotic renal disease, promotes kidney fibrosis. Conditional expression of KIM-1 in renal epithelial cells (Kim1(RECtg)) in the absence of an injury stimulus resulted in focal epithelial vacuolization at birth, but otherwise normal tubule histology and kidney function. By 4 weeks of age, Kim1(RECtg) mice developed spontaneous and progressive interstitial kidney inflammation with fibrosis, leading to renal failure with anemia, proteinuria, hyperphosphatemia, hypertension, cardiac hypertrophy, and death, analogous to progressive kidney disease in humans. Kim1(RECtg) kidneys had elevated expression of proinflammatory monocyte chemotactic protein-1 (MCP-1) at early time points. Heterologous expression of KIM-1 in an immortalized proximal tubule cell line triggered MCP-1 secretion and increased MCP-1-dependent macrophage chemotaxis. In mice expressing a mutant, truncated KIM-1 polypeptide, experimental kidney fibrosis was ameliorated with reduced levels of MCP-1, consistent with a profibrotic role for native KIM-1. Thus, sustained KIM-1 expression promotes kidney fibrosis and provides a link between acute and recurrent injury with progressive chronic kidney disease.
Collapse
Affiliation(s)
- Benjamin D Humphreys
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Reduced numbers of regulatory B cells are negatively correlated with disease activity in patients with new-onset rheumatoid arthritis. Clin Rheumatol 2013; 33:187-95. [PMID: 23949637 DOI: 10.1007/s10067-013-2359-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/29/2013] [Accepted: 07/31/2013] [Indexed: 10/26/2022]
|
114
|
Kim HY, Chang YJ, Chuang YT, Lee HH, Kasahara DI, Martin T, Hsu JT, Savage PB, Shore SA, Freeman GJ, Dekruyff RH, Umetsu DT. T-cell immunoglobulin and mucin domain 1 deficiency eliminates airway hyperreactivity triggered by the recognition of airway cell death. J Allergy Clin Immunol 2013; 132:414-25.e6. [PMID: 23672783 DOI: 10.1016/j.jaci.2013.03.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/21/2013] [Accepted: 03/25/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Studies of asthma have been limited by a poor understanding of how nonallergic environmental exposures, such as air pollution and infection, are translated in the lung into inflammation and wheezing. OBJECTIVE Our goal was to understand the mechanism of nonallergic asthma that leads to airway hyperreactivity (AHR), a cardinal feature of asthma independent of adaptive immunity. METHOD We examined mouse models of experimental asthma in which AHR was induced by respiratory syncytial virus infection or ozone exposure using mice deficient in T-cell immunoglobulin and mucin domain 1 (TIM1/HAVCR1), an important asthma susceptibility gene. RESULTS TIM1(-/-) mice did not have airways disease when infected with RSV or when repeatedly exposed to ozone, a major component of air pollution. On the other hand, the TIM1(-/-) mice had allergen-induced experimental asthma, as previously shown. The RSV- and ozone-induced pathways were blocked by treatment with caspase inhibitors, indicating an absolute requirement for programmed cell death and apoptosis. TIM-1-expressing, but not TIM-1-deficient, natural killer T cells responded to apoptotic airway epithelial cells by secreting cytokines, which mediated the development of AHR. CONCLUSION We defined a novel pathway in which TIM-1, a receptor for phosphatidylserine expressed by apoptotic cells, drives the development of asthma by sensing and responding to injured and apoptotic airway epithelial cells.
Collapse
Affiliation(s)
- Hye Young Kim
- Division of Immunology and Allergy, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Matsumoto M, Baba Y. Role of STIM-dependent Ca 2+ Influx in Regulatory B Cells. YAKUGAKU ZASSHI 2013; 133:419-25. [DOI: 10.1248/yakushi.12-00227-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masanori Matsumoto
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University
| | - Yoshihiro Baba
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University
| |
Collapse
|
116
|
Fujio K, Okamura T, Sumitomo S, Yamamoto K. Regulatory cell subsets in the control of autoantibody production related to systemic autoimmunity. Ann Rheum Dis 2013; 72 Suppl 2:ii85-9. [PMID: 23253929 DOI: 10.1136/annrheumdis-2012-202341] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Dysregulated autoantibody production is responsible for the severe organ damage that occurs in systemic autoimmune diseases. Immune complexes play important roles in the pathogenesis of these diseases as they initiate and maintain the inflammatory cascade, which leads to tissue destruction. Conventional therapy for autoimmune diseases suppresses immunological accelerator in the absence of knowledge of the immunological brake. Application of a physiological regulatory system could be a rational strategy to treat autoimmune diseases. Accumulating evidence has suggested that specialised subsets of B cells and T cells could control autoantibody production. A significant decrease and impaired function of regulatory B cells (Breg) was recently reported in patients with systemic lupus erythematosus and a mice model of lupus. In T cells, follicular regulatory T cells and Qa-1 restricted CD8 regulatory T cells (Treg) were identified as the populations that control follicular T helper cell-mediated antibody production. Moreover, other Treg populations might also be involved in the control of autoantibody production. Elucidating the roles of Breg and Treg in the control of antibody production might lead to the development of a new therapeutic approach to antibody-mediated autoimmune disease.
Collapse
Affiliation(s)
- Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo,7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | | | | | | |
Collapse
|