101
|
Cleavage factor Im (CFIm) as a regulator of alternative polyadenylation. Biochem Soc Trans 2017; 44:1051-7. [PMID: 27528751 DOI: 10.1042/bst20160078] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Indexed: 11/17/2022]
Abstract
Most mammalian protein coding genes are subject to alternative cleavage and polyadenylation (APA), which can generate distinct mRNA 3'UTRs with differing regulatory potential. Although this process has been intensely studied in recent years, it remains unclear how and to what extent cleavage site selection is regulated under different physiological conditions. The cleavage factor Im (CFIm) complex is a core component of the mammalian cleavage machinery, and the observation that its depletion causes transcriptome-wide changes in cleavage site use makes it a key candidate regulator of APA. This review aims to summarize current knowledge of the CFIm complex, and explores the evidence surrounding its potential contribution to regulation of APA.
Collapse
|
102
|
Catania F. From intronization to intron loss: How the interplay between mRNA-associated processes can shape the architecture and the expression of eukaryotic genes. Int J Biochem Cell Biol 2017; 91:136-144. [PMID: 28673893 DOI: 10.1016/j.biocel.2017.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/25/2017] [Accepted: 06/30/2017] [Indexed: 12/29/2022]
Abstract
Transcription-coupled processes such as capping, splicing, and cleavage/polyadenylation participate in the journey from genes to proteins. Although they are traditionally thought to serve only as steps in the generation of mature mRNAs, a synthesis of available data indicates that these processes could also act as a driving force for the evolution of eukaryotic genes. A theoretical framework for how mRNA-associated processes may shape gene structure and expression has recently been proposed. Factors that promote splicing and cleavage/polyadenylation in this framework compete for access to overlapping or neighboring signals throughout the transcription cycle. These antagonistic interactions allow mechanisms for intron gain and splice site recognition as well as common trends in eukaryotic gene structure and expression to be coherently integrated. Here, I extend this framework further. Observations that largely (but not exclusively) revolve around the formation of DNA-RNA hybrid structures, called R loops, and promoter directionality are integrated. Additionally, the interplay between splicing factors and cleavage/polyadenylation factors is theorized to also affect the formation of intragenic DNA double-stranded breaks thereby contributing to intron loss. The most notable prediction in this proposition is that RNA molecules can mediate intron loss by serving as a template to repair DNA double-stranded breaks. The framework presented here leverages a vast body of empirical observations, logically extending previous suggestions, and generating verifiable predictions to further substantiate the view that the intracellular environment plays an active role in shaping the structure and the expression of eukaryotic genes.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149 Münster, Germany.
| |
Collapse
|
103
|
Exploring the Impact of Cleavage and Polyadenylation Factors on Pre-mRNA Splicing Across Eukaryotes. G3-GENES GENOMES GENETICS 2017; 7:2107-2114. [PMID: 28500052 PMCID: PMC5499120 DOI: 10.1534/g3.117.041483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In human, mouse, and Drosophila, the spliceosomal complex U1 snRNP (U1) protects transcripts from premature cleavage and polyadenylation at proximal intronic polyadenylation signals (PAS). These U1-mediated effects preserve transcription integrity, and are known as telescripting. The watchtower role of U1 throughout transcription is clear. What is less clear is whether cleavage and polyadenylation factors (CPFs) are simply patrolled or if they might actively antagonize U1 recruitment. In addressing this question, we found that, in the introns of human, mouse, and Drosophila, and of 14 other eukaryotes, including multi- and single-celled species, the conserved AATAAA PAS—a major target for CPFs—is selected against. This selective pressure, approximated using DNA strand asymmetry, is detected for peripheral and internal introns alike. Surprisingly, it is more pronounced within—rather than outside—the action range of telescripting, and particularly intense in the vicinity of weak 5′ splice sites. Our study uncovers a novel feature of eukaryotic genes: that the AATAAA PAS is universally counter-selected in spliceosomal introns. This pattern implies that CPFs may attempt to access introns at any time during transcription. However, natural selection operates to minimize this access. By corroborating and extending previous work, our study further indicates that CPF access to intronic PASs might perturb the recruitment of U1 to the adjacent 5′ splice sites. These results open the possibility that CPFs may impact the splicing process across eukaryotes.
Collapse
|
104
|
Neve J, Patel R, Wang Z, Louey A, Furger AM. Cleavage and polyadenylation: Ending the message expands gene regulation. RNA Biol 2017; 14:865-890. [PMID: 28453393 PMCID: PMC5546720 DOI: 10.1080/15476286.2017.1306171] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
Cleavage and polyadenylation (pA) is a fundamental step that is required for the maturation of primary protein encoding transcripts into functional mRNAs that can be exported from the nucleus and translated in the cytoplasm. 3'end processing is dependent on the assembly of a multiprotein processing complex on the pA signals that reside in the pre-mRNAs. Most eukaryotic genes have multiple pA signals, resulting in alternative cleavage and polyadenylation (APA), a widespread phenomenon that is important to establish cell state and cell type specific transcriptomes. Here, we review how pA sites are recognized and comprehensively summarize how APA is regulated and creates mRNA isoform profiles that are characteristic for cell types, tissues, cellular states and disease.
Collapse
Affiliation(s)
- Jonathan Neve
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Radhika Patel
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Zhiqiao Wang
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Alastair Louey
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
105
|
The role of alternative polyadenylation in the antiviral innate immune response. Nat Commun 2017; 8:14605. [PMID: 28233779 PMCID: PMC5333124 DOI: 10.1038/ncomms14605] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/17/2017] [Indexed: 01/05/2023] Open
Abstract
Alternative polyadenylation (APA) is an important regulatory mechanism of gene functions in many biological processes. However, the extent of 3' UTR variation and the function of APA during the innate antiviral immune response are unclear. Here, we show genome-wide poly(A) sites switch and average 3' UTR length shortens gradually in response to vesicular stomatitis virus (VSV) infection in macrophages. Genes with APA and mRNA abundance change are enriched in immune-related categories such as the Toll-like receptor, RIG-I-like receptor, JAK-STAT and apoptosis-related signalling pathways. The expression of 3' processing factors is down-regulated upon VSV infection. When the core 3' processing factors are knocked down, viral replication is affected. Thus, our study reports the annotation of genes with APA in antiviral immunity and highlights the roles of 3' processing factors on 3' UTR variation upon viral infection.
Collapse
|
106
|
Díaz-Muñoz MD, Monzón-Casanova E, Turner M. Characterization of the B Cell Transcriptome Bound by RNA-Binding Proteins with iCLIP. Methods Mol Biol 2017; 1623:159-179. [PMID: 28589356 DOI: 10.1007/978-1-4939-7095-7_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Posttranscriptional regulation of gene expression shapes the B cell transcriptome and controls messenger RNA (mRNA) translation into protein. Recent reports have highlighted the importance of RNA binding proteins (RBPs) for mRNA splicing, subcellular location, stability, and translation during B lymphocyte development, activation, and differentiation. Here we describe individual-nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP) in primary lymphocytes, a method that maps RNA-protein interactions in a genome-wide scale allowing mechanistic analysis of RBP function. We discuss the latest improvements in iCLIP technology and provide some examples of how integration of the RNA-protein interactome with other high-throughput mRNA sequencing methodologies uncovers the important role of RBP-mediated RNA regulation in key biological cell processes.
Collapse
Affiliation(s)
- Manuel D Díaz-Muñoz
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, CB22 3AT, UK.
- Department of Immunobiology, Division of Immunology, Infection and Inflammatory Disease, King's College London, SE1 9RT, London, UK.
| | - Elisa Monzón-Casanova
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, CB22 3AT, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, CB22 3AT, UK.
| |
Collapse
|
107
|
Xiao MS, Zhang B, Li YS, Gao Q, Sun W, Chen W. Global analysis of regulatory divergence in the evolution of mouse alternative polyadenylation. Mol Syst Biol 2016; 12:890. [PMID: 27932516 PMCID: PMC5199128 DOI: 10.15252/msb.20167375] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Alternative polyadenylation (APA), which is regulated by both cis‐elements and trans‐factors, plays an important role in post‐transcriptional regulation of eukaryotic gene expression. However, comparing to the extensively studied transcription and alternative splicing, the extent of APA divergence during evolution and the relative cis‐ and trans‐contribution remain largely unexplored. To directly address these questions for the first time in mammals, by using deep sequencing‐based methods, we measured APA divergence between C57BL/6J and SPRET/EiJ mouse strains as well as allele‐specific APA pattern in their F1 hybrids. Among the 24,721 polyadenylation sites (pAs) from 7,271 genes expressing multiple pAs, we identified 3,747 pAs showing significant divergence between the two strains. After integrating the allele‐specific data from F1 hybrids, we demonstrated that these events could be predominately attributed to cis‐regulatory effects. Further systematic sequence analysis of the regions in proximity to cis‐divergent pAs revealed that the local RNA secondary structure and a poly(U) tract in the upstream region could negatively modulate the pAs usage.
Collapse
Affiliation(s)
- Mei-Sheng Xiao
- Laboratory for Functional Genomics and Systems Biology, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Bin Zhang
- Laboratory for Functional Genomics and Systems Biology, Berlin Institute for Medical Systems Biology, Berlin, Germany.,Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yi-Sheng Li
- Laboratory for Functional Genomics and Systems Biology, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Qingsong Gao
- Laboratory for Functional Genomics and Systems Biology, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Wei Sun
- Laboratory for Functional Genomics and Systems Biology, Berlin Institute for Medical Systems Biology, Berlin, Germany.,Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wei Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China .,Medi-X Institute, SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
108
|
The Cstf2t Polyadenylation Gene Plays a Sex-Specific Role in Learning Behaviors in Mice. PLoS One 2016; 11:e0165976. [PMID: 27812195 PMCID: PMC5094787 DOI: 10.1371/journal.pone.0165976] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/20/2016] [Indexed: 11/19/2022] Open
Abstract
Polyadenylation is an essential mechanism for the processing of mRNA 3′ ends. CstF-64 (the 64,000 Mr subunit of the cleavage stimulation factor; gene symbol Cstf2) is an RNA-binding protein that regulates mRNA polyadenylation site usage. We discovered a paralogous form of CstF-64 called τCstF-64 (Cstf2t). The Cstf2t gene is conserved in all eutherian mammals including mice and humans, but the τCstF-64 protein is expressed only in a subset of mammalian tissues, mostly testis and brain. Male mice that lack Cstf2t (Cstf2t-/- mice) experience disruption of spermatogenesis and are infertile, although female fertility is unaffected. However, a role for τCstF-64 in the brain has not yet been determined. Given the importance of RNA polyadenylation and splicing in neuronal gene expression, we chose to test the hypothesis that τCstF-64 is important for brain function. Male and female 185-day old wild type and Cstf2t-/- mice were examined for motor function, general activity, learning, and memory using rotarod, open field activity, 8-arm radial arm maze, and Morris water maze tasks. Male wild type and Cstf2t-/- mice did not show differences in learning and memory. However, female Cstf2t-/- mice showed significantly better retention of learned maze tasks than did female wild type mice. These results suggest that τCstf-64 is important in memory function in female mice. Interestingly, male Cstf2t-/- mice displayed less thigmotactic behavior than did wild type mice, suggesting that Cstf2t may play a role in anxiety in males. Taken together, our studies highlight the importance of mRNA processing in cognition and behavior as well as their established functions in reproduction.
Collapse
|
109
|
Hudson SW, McNally LM, McNally MT. Evidence that a threshold of serine/arginine-rich (SR) proteins recruits CFIm to promote rous sarcoma virus mRNA 3' end formation. Virology 2016; 498:181-191. [PMID: 27596537 DOI: 10.1016/j.virol.2016.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 11/24/2022]
Abstract
The weak polyadenylation site (PAS) of Rous sarcoma virus (RSV) is activated by the juxtaposition of SR protein binding sites within the spatially separate negative regulator of splicing (NRS) element and the env RNA splicing enhancer (Env enhancer), which are far upstream of the PAS. Juxtaposition occurs by formation of the NRS - 3' ss splicing regulatory complex and is thought to provide a threshold of SR proteins that facilitate long-range stimulation of the PAS. We provide evidence for the threshold model by showing that greater than three synthetic SR protein binding sites are needed to substitute for the Env enhancer, that either the NRS or Env enhancer alone promotes polyadenylation when the distance to the PAS is decreased, and that SR protein binding sites promote binding of the polyadenylation factor cleavage factor I (CFIm) to the weak PAS. These observations may be relevant for cellular PASs.
Collapse
Affiliation(s)
- Stephen W Hudson
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Lisa M McNally
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Mark T McNally
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
110
|
Kainov YA, Aushev VN, Naumenko SA, Tchevkina EM, Bazykin GA. Complex Selection on Human Polyadenylation Signals Revealed by Polymorphism and Divergence Data. Genome Biol Evol 2016; 8:1971-9. [PMID: 27324920 PMCID: PMC4943204 DOI: 10.1093/gbe/evw137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2016] [Indexed: 12/19/2022] Open
Abstract
Polyadenylation is a step of mRNA processing which is crucial for its expression and stability. The major polyadenylation signal (PAS) represents a nucleotide hexamer that adheres to the AATAAA consensus sequence. Over a half of human genes have multiple cleavage and polyadenylation sites, resulting in a great diversity of transcripts differing in function, stability, and translational activity. Here, we use available whole-genome human polymorphism data together with data on interspecies divergence to study the patterns of selection acting on PAS hexamers. Common variants of PAS hexamers are depleted of single nucleotide polymorphisms (SNPs), and SNPs within PAS hexamers have a reduced derived allele frequency (DAF) and increased conservation, indicating prevalent negative selection; at the same time, the SNPs that "improve" the PAS (i.e., those leading to higher cleavage efficiency) have increased DAF, compared to those that "impair" it. SNPs are rarer at PAS of "unique" polyadenylation sites (one site per gene); among alternative polyadenylation sites, at the distal PAS and at exonic PAS. Similar trends were observed in DAFs and divergence between species of placental mammals. Thus, selection permits PAS mutations mainly at redundant and/or weakly functional PAS. Nevertheless, a fraction of the SNPs at PAS hexamers likely affect gene functions; in particular, some of the observed SNPs are associated with disease.
Collapse
Affiliation(s)
- Yaroslav A Kainov
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom Oncogenes Regulation Department, N.N. Blokhin Russian Cancer Research Center, Institute of Carcinogenesis, Moscow, Russia
| | - Vasily N Aushev
- Oncogenes Regulation Department, N.N. Blokhin Russian Cancer Research Center, Institute of Carcinogenesis, Moscow, Russia Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York
| | - Sergey A Naumenko
- Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences, Moscow, Russia Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Elena M Tchevkina
- Oncogenes Regulation Department, N.N. Blokhin Russian Cancer Research Center, Institute of Carcinogenesis, Moscow, Russia
| | - Georgii A Bazykin
- Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences, Moscow, Russia Skolkovo Institute of Science and Technology, Skolkovo, Russia Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russia Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
111
|
Weng L, Li Y, Xie X, Shi Y. Poly(A) code analyses reveal key determinants for tissue-specific mRNA alternative polyadenylation. RNA (NEW YORK, N.Y.) 2016; 22:813-21. [PMID: 27095026 PMCID: PMC4878608 DOI: 10.1261/rna.055681.115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/22/2016] [Indexed: 05/23/2023]
Abstract
mRNA alternative polyadenylation (APA) is a critical mechanism for post-transcriptional gene regulation and is often regulated in a tissue- and/or developmental stage-specific manner. An ultimate goal for the APA field has been to be able to computationally predict APA profiles under different physiological or pathological conditions. As a first step toward this goal, we have assembled a poly(A) code for predicting tissue-specific poly(A) sites (PASs). Based on a compendium of over 600 features that have known or potential roles in PAS selection, we have generated and refined a machine-learning algorithm using multiple high-throughput sequencing-based data sets of tissue-specific and constitutive PASs. This code can predict tissue-specific PASs with >85% accuracy. Importantly, by analyzing the prediction performance based on different RNA features, we found that PAS context, including the distance between alternative PASs and the relative position of a PAS within the gene, is a key feature for determining the susceptibility of a PAS to tissue-specific regulation. Our poly(A) code provides a useful tool for not only predicting tissue-specific APA regulation, but also for studying its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Lingjie Weng
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, California 92697, USA Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, California 92697, USA Department of Computer Science, University of California, Irvine, Irvine, California 92697, USA
| | - Yi Li
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, California 92697, USA Department of Computer Science, University of California, Irvine, Irvine, California 92697, USA
| | - Xiaohui Xie
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, California 92697, USA Department of Computer Science, University of California, Irvine, Irvine, California 92697, USA
| | - Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| |
Collapse
|
112
|
Movassat M, Crabb TL, Busch A, Yao C, Reynolds DJ, Shi Y, Hertel KJ. Coupling between alternative polyadenylation and alternative splicing is limited to terminal introns. RNA Biol 2016; 13:646-55. [PMID: 27245359 DOI: 10.1080/15476286.2016.1191727] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Alternative polyadenylation has been implicated as an important regulator of gene expression. In some cases, alternative polyadenylation is known to couple with alternative splicing to influence last intron removal. However, it is unknown whether alternative polyadenylation events influence alternative splicing decisions at upstream exons. Knockdown of the polyadenylation factors CFIm25 or CstF64 in HeLa cells was used as an approach in identifying alternative polyadenylation and alternative splicing events on a genome-wide scale. Although hundreds of alternative splicing events were found to be differentially spliced in the knockdown of CstF64, genes associated with alternative polyadenylation did not exhibit an increased incidence of alternative splicing. These results demonstrate that the coupling between alternative polyadenylation and alternative splicing is usually limited to defining the last exon. The striking influence of CstF64 knockdown on alternative splicing can be explained through its effects on UTR selection of known splicing regulators such as hnRNP A2/B1, thereby indirectly influencing splice site selection. We conclude that changes in the expression of the polyadenylation factor CstF64 influences alternative splicing through indirect effects.
Collapse
Affiliation(s)
- Maliheh Movassat
- a Department of Microbiology and Molecular Genetics , School of Medicine, University of California , Irvine , CA , USA
| | - Tara L Crabb
- b Institute of Molecular Biology (IMB) , Mainz , Germany
| | - Anke Busch
- a Department of Microbiology and Molecular Genetics , School of Medicine, University of California , Irvine , CA , USA.,b Institute of Molecular Biology (IMB) , Mainz , Germany
| | - Chengguo Yao
- a Department of Microbiology and Molecular Genetics , School of Medicine, University of California , Irvine , CA , USA
| | - Derrick J Reynolds
- a Department of Microbiology and Molecular Genetics , School of Medicine, University of California , Irvine , CA , USA
| | - Yongsheng Shi
- a Department of Microbiology and Molecular Genetics , School of Medicine, University of California , Irvine , CA , USA
| | - Klemens J Hertel
- a Department of Microbiology and Molecular Genetics , School of Medicine, University of California , Irvine , CA , USA
| |
Collapse
|
113
|
Dissecting the expression relationships between RNA-binding proteins and their cognate targets in eukaryotic post-transcriptional regulatory networks. Sci Rep 2016; 6:25711. [PMID: 27161996 PMCID: PMC4861959 DOI: 10.1038/srep25711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/21/2016] [Indexed: 12/13/2022] Open
Abstract
RNA-binding proteins (RBPs) are pivotal in orchestrating several steps in the metabolism of RNA in eukaryotes thereby controlling an extensive network of RBP-RNA interactions. Here, we employed CLIP (cross-linking immunoprecipitation)-seq datasets for 60 human RBPs and RIP-ChIP (RNP immunoprecipitation-microarray) data for 69 yeast RBPs to construct a network of genome-wide RBP- target RNA interactions for each RBP. We show in humans that majority (~78%) of the RBPs are strongly associated with their target transcripts at transcript level while ~95% of the studied RBPs were also found to be strongly associated with expression levels of target transcripts when protein expression levels of RBPs were employed. At transcript level, RBP - RNA interaction data for the yeast genome, exhibited a strong association for 63% of the RBPs, confirming the association to be conserved across large phylogenetic distances. Analysis to uncover the features contributing to these associations revealed the number of target transcripts and length of the selected protein-coding transcript of an RBP at the transcript level while intensity of the CLIP signal, number of RNA-Binding domains, location of the binding site on the transcript, to be significant at the protein level. Our analysis will contribute to improved modelling and prediction of post-transcriptional networks.
Collapse
|
114
|
Yeh HS, Yong J. Alternative Polyadenylation of mRNAs: 3'-Untranslated Region Matters in Gene Expression. Mol Cells 2016; 39:281-5. [PMID: 26912084 PMCID: PMC4844933 DOI: 10.14348/molcells.2016.0035] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/11/2016] [Indexed: 12/26/2022] Open
Abstract
Almost all of eukaryotic mRNAs are subjected to polyadenylation during mRNA processing. Recent discoveries showed that many of these mRNAs contain more than one polyadenylation sites in their 3' untranslated regions (UTR) and that alternative polyadenylation (APA) is prevalent among these genes. Many biological processes such as differentiation, proliferation, and tumorigenesis have been correlated to global APA events in the 3' UTR of mRNAs, suggesting that these APA events are tightly regulated and may play important physiological roles. In this review, recent discoveries in the physiological roles of APA events, as well as the known and proposed mechanisms are summarized. Perspective for future directions is also discussed.
Collapse
Affiliation(s)
- Hsin-Sung Yeh
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455,
USA
| | - Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455,
USA
| |
Collapse
|
115
|
Erson-Bensan AE, Can T. Alternative Polyadenylation: Another Foe in Cancer. Mol Cancer Res 2016; 14:507-17. [PMID: 27075335 DOI: 10.1158/1541-7786.mcr-15-0489] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/30/2016] [Indexed: 11/16/2022]
Abstract
Advancements in sequencing and transcriptome analysis methods have led to seminal discoveries that have begun to unravel the complexity of cancer. These studies are paving the way toward the development of improved diagnostics, prognostic predictions, and targeted treatment options. However, it is clear that pieces of the cancer puzzle are still missing. In an effort to have a more comprehensive understanding of the development and progression of cancer, we have come to appreciate the value of the noncoding regions of our genomes, partly due to the discovery of miRNAs and their significance in gene regulation. Interestingly, the miRNA-mRNA interactions are not solely dependent on variations in miRNA levels. Instead, the majority of genes harbor multiple polyadenylation signals on their 3' UTRs (untranslated regions) that can be differentially selected on the basis of the physiologic state of cells, resulting in alternative 3' UTR isoforms. Deregulation of alternative polyadenylation (APA) has increasing interest in cancer research, because APA generates mRNA 3' UTR isoforms with potentially different stabilities, subcellular localizations, translation efficiencies, and functions. This review focuses on the link between APA and cancer and discusses the mechanisms as well as the tools available for investigating APA events in cancer. Overall, detection of deregulated APA-generated isoforms in cancer may implicate some proto-oncogene activation cases of unknown causes and may help the discovery of novel cases; thus, contributing to a better understanding of molecular mechanisms of cancer. Mol Cancer Res; 14(6); 507-17. ©2016 AACR.
Collapse
Affiliation(s)
- Ayse Elif Erson-Bensan
- Department of Biological Sciences, Middle East Technical University (METU) (ODTU), Ankara, Turkey.
| | - Tolga Can
- Department of Computer Engineering, Middle East Technical University (METU) (ODTU), Ankara, Turkey
| |
Collapse
|
116
|
Hwang HW, Park CY, Goodarzi H, Fak JJ, Mele A, Moore MJ, Saito Y, Darnell RB. PAPERCLIP Identifies MicroRNA Targets and a Role of CstF64/64tau in Promoting Non-canonical poly(A) Site Usage. Cell Rep 2016; 15:423-35. [PMID: 27050522 DOI: 10.1016/j.celrep.2016.03.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/11/2016] [Accepted: 03/04/2016] [Indexed: 12/13/2022] Open
Abstract
Accurate and precise annotation of 3' UTRs is critical for understanding how mRNAs are regulated by microRNAs (miRNAs) and RNA-binding proteins (RBPs). Here, we describe a method, poly(A) binding protein-mediated mRNA 3' end retrieval by crosslinking immunoprecipitation (PAPERCLIP), that shows high specificity for mRNA 3' ends and compares favorably with existing 3' end mapping methods. PAPERCLIP uncovers a previously unrecognized role of CstF64/64tau in promoting the usage of a selected group of non-canonical poly(A) sites, the majority of which contain a downstream GUKKU motif. Furthermore, in the mouse brain, PAPERCLIP discovers extended 3' UTR sequences harboring functional miRNA binding sites and reveals developmentally regulated APA shifts, including one in Atp2b2 that is evolutionarily conserved in humans and results in the gain of a functional binding site of miR-137. PAPERCLIP provides a powerful tool to decipher post-transcriptional regulation of mRNAs through APA in vivo.
Collapse
Affiliation(s)
- Hun-Way Hwang
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA.
| | - Christopher Y Park
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA
| | - Hani Goodarzi
- Laboratory of Systems Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - John J Fak
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Aldo Mele
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Michael J Moore
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Yuhki Saito
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA.
| |
Collapse
|
117
|
Huang G, Huang S, Wang R, Yan X, Li Y, Feng Y, Wang S, Yang X, Chen L, Li J, You L, Chen S, Luo G, Xu A. Dynamic Regulation of Tandem 3' Untranslated Regions in Zebrafish Spleen Cells during Immune Response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:715-725. [PMID: 26673144 DOI: 10.4049/jimmunol.1500847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 11/08/2015] [Indexed: 12/24/2022]
Abstract
Alternative polyadenylation (APA) has been found to be involved in tumorigenesis, development, and cell differentiation, as well as in the activation of several subsets of immune cells in vitro. Whether APA takes place in immune responses in vivo is largely unknown. We profiled the variation in tandem 3' untranslated regions (UTRs) in pathogen-challenged zebrafish and identified hundreds of APA genes with ∼ 10% being immune response genes. The detected immune response APA genes were enriched in TLR signaling, apoptosis, and JAK-STAT signaling pathways. A greater number of microRNA target sites and AU-rich elements were found in the extended 3' UTRs than in the common 3' UTRs of these APA genes. Further analysis suggested that microRNA and AU-rich element-mediated posttranscriptional regulation plays an important role in modulating the expression of APA genes. These results indicate that APA is extensively involved in immune responses in vivo, and it may be a potential new paradigm for immune regulation.
Collapse
Affiliation(s)
- Guangrui Huang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China; State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Shengfeng Huang
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Ruihua Wang
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Xinyu Yan
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Yuxin Li
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Yuchao Feng
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Shaozhou Wang
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Xia Yang
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Liutao Chen
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Jun Li
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Leiming You
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China; State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Guangbin Luo
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Anlong Xu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China; State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| |
Collapse
|
118
|
AĞUŞ HH, ERSON BENSAN AE. Mechanisms of mRNA polyadenylation. Turk J Biol 2016. [DOI: 10.3906/biy-1505-94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
119
|
Licatalosi DD. Roles of RNA-binding Proteins and Post-transcriptional Regulation in Driving Male Germ Cell Development in the Mouse. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 907:123-51. [PMID: 27256385 DOI: 10.1007/978-3-319-29073-7_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tissue development and homeostasis are dependent on highly regulated gene expression programs in which cell-specific combinations of regulatory factors determine which genes are expressed and the post-transcriptional fate of the resulting RNA transcripts. Post-transcriptional regulation of gene expression by RNA-binding proteins has critical roles in tissue development-allowing individual genes to generate multiple RNA and protein products, and the timing, location, and abundance of protein synthesis to be finely controlled. Extensive post-transcriptional regulation occurs during mammalian gametogenesis, including high levels of alternative mRNA expression, stage-specific expression of mRNA variants, broad translational repression, and stage-specific activation of mRNA translation. In this chapter, an overview of the roles of RNA-binding proteins and the importance of post-transcriptional regulation in male germ cell development in the mouse is presented.
Collapse
Affiliation(s)
- Donny D Licatalosi
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
120
|
Grozdanov PN, Amatullah A, Graber JH, MacDonald CC. TauCstF-64 Mediates Correct mRNA Polyadenylation and Splicing of Activator and Repressor Isoforms of the Cyclic AMP-Responsive Element Modulator (CREM) in Mouse Testis. Biol Reprod 2015; 94:34. [PMID: 26700942 PMCID: PMC4787626 DOI: 10.1095/biolreprod.115.134684] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/17/2015] [Indexed: 12/12/2022] Open
Abstract
Spermatogenesis is coordinated by the spatial and temporal expression of many transcriptional and posttranscriptional factors. The cyclic AMP-responsive element modulator (CREM) gene encodes both activator and repressor isoforms that act as transcription factors to regulate spermiogenesis. We found that the testis-expressed paralog of CstF-64, tauCstF-64 (gene symbol Cstf2t), is involved in a polyadenylation site choice switch of Crem mRNA and leads to an overall decrease of the Crem mRNAs that are generated from internal promoters in Cstf2t(-/-) mice. More surprisingly, loss of tauCstF-64 also leads to alternative splicing of Crem exon 4, which contains an important activation domain. Thus, testis-specific CREMtau2 isoform protein levels are reduced in Cstf2t(-/-) mice. Consequently, expression of 15 CREM-regulated genes is decreased in testes of Cstf2t(-/-) mice at 25 days postpartum. These effects might further contribute to the infertility phenotype of these animals. This demonstrates that tauCstF-64 is an important stage-specific regulator of Crem mRNA processing that modulates the spatial and temporal expression of downstream stage-specific genes necessary for the proper development of sperm in mice.
Collapse
Affiliation(s)
- Petar N Grozdanov
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Atia Amatullah
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Joel H Graber
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine
| | - Clinton C MacDonald
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
121
|
Kandala DT, Mohan N, A V, A P S, G R, Laishram RS. CstF-64 and 3'-UTR cis-element determine Star-PAP specificity for target mRNA selection by excluding PAPα. Nucleic Acids Res 2015; 44:811-23. [PMID: 26496945 PMCID: PMC4737136 DOI: 10.1093/nar/gkv1074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/06/2015] [Indexed: 01/02/2023] Open
Abstract
Almost all eukaryotic mRNAs have a poly (A) tail at the 3′-end. Canonical PAPs (PAPα/γ) polyadenylate nuclear pre-mRNAs. The recent identification of the non-canonical Star-PAP revealed specificity of nuclear PAPs for pre-mRNAs, yet the mechanism how Star-PAP selects mRNA targets is still elusive. Moreover, how Star-PAP target mRNAs having canonical AAUAAA signal are not regulated by PAPα is unclear. We investigate specificity mechanisms of Star-PAP that selects pre-mRNA targets for polyadenylation. Star-PAP assembles distinct 3′-end processing complex and controls pre-mRNAs independent of PAPα. We identified a Star-PAP recognition nucleotide motif and showed that suboptimal DSE on Star-PAP target pre-mRNA 3′-UTRs inhibit CstF-64 binding, thus preventing PAPα recruitment onto it. Altering 3′-UTR cis-elements on a Star-PAP target pre-mRNA can switch the regulatory PAP from Star-PAP to PAPα. Our results suggest a mechanism of poly (A) site selection that has potential implication on the regulation of alternative polyadenylation.
Collapse
Affiliation(s)
- Divya T Kandala
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India
| | - Nimmy Mohan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India
| | - Vivekanand A
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India
| | - Sudheesh A P
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India
| | - Reshmi G
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India
| | - Rakesh S Laishram
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India
| |
Collapse
|
122
|
Ke S, Alemu EA, Mertens C, Gantman EC, Fak JJ, Mele A, Haripal B, Zucker-Scharff I, Moore MJ, Park CY, Vågbø CB, Kusśnierczyk A, Klungland A, Darnell JE, Darnell RB. A majority of m6A residues are in the last exons, allowing the potential for 3' UTR regulation. Genes Dev 2015; 29:2037-53. [PMID: 26404942 PMCID: PMC4604345 DOI: 10.1101/gad.269415.115] [Citation(s) in RCA: 632] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/01/2015] [Indexed: 12/13/2022]
Abstract
Ke et al. found that >70% of m6A residues are present in the 3′-most (last) exons, with a sharp rise within 150–400 nucleotides of the start of the last exon. This report also suggests a role of m6A modification in regulating proximal alternative polyA choice. We adapted UV CLIP (cross-linking immunoprecipitation) to accurately locate tens of thousands of m6A residues in mammalian mRNA with single-nucleotide resolution. More than 70% of these residues are present in the 3′-most (last) exons, with a very sharp rise (sixfold) within 150–400 nucleotides of the start of the last exon. Two-thirds of last exon m6A and >40% of all m6A in mRNA are present in 3′ untranslated regions (UTRs); contrary to earlier suggestions, there is no preference for location of m6A sites around stop codons. Moreover, m6A is significantly higher in noncoding last exons than in next-to-last exons harboring stop codons. We found that m6A density peaks early in the 3′ UTR and that, among transcripts with alternative polyA (APA) usage in both the brain and the liver, brain transcripts preferentially use distal polyA sites, as reported, and also show higher proximal m6A density in the last exons. Furthermore, when we reduced m6A methylation by knocking down components of the methylase complex and then examined 661 transcripts with proximal m6A peaks in last exons, we identified a set of 111 transcripts with altered (approximately two-thirds increased proximal) APA use. Taken together, these observations suggest a role of m6A modification in regulating proximal alternative polyA choice.
Collapse
Affiliation(s)
- Shengdong Ke
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, New York 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Endalkachew A Alemu
- Department of Microbiology, Division of Diagnostics and Intervention, Institute of Clinical Medicine, Oslo University Hospital, Rikshospitalet, NO-0027, Oslo, Norway; Department of Molecular Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, 0316 Oslo, Norway
| | - Claudia Mertens
- Laboratory of Molecular Cell Biology, The Rockefeller University, New York, New York 10065, USA
| | - Emily Conn Gantman
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, New York 10065, USA; New York Genome Center, New York, New York 10013, USA
| | - John J Fak
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, New York 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Aldo Mele
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, New York 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Bhagwattie Haripal
- Laboratory of Molecular Cell Biology, The Rockefeller University, New York, New York 10065, USA
| | - Ilana Zucker-Scharff
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, New York 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Michael J Moore
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, New York 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Christopher Y Park
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, New York 10065, USA; New York Genome Center, New York, New York 10013, USA
| | - Cathrine Broberg Vågbø
- Proteomics and Metabolomics Core Facility, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway
| | - Anna Kusśnierczyk
- Proteomics and Metabolomics Core Facility, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway
| | - Arne Klungland
- Department of Microbiology, Division of Diagnostics and Intervention, Institute of Clinical Medicine, Oslo University Hospital, Rikshospitalet, NO-0027, Oslo, Norway; Department of Molecular Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, 0316 Oslo, Norway
| | - James E Darnell
- Laboratory of Molecular Cell Biology, The Rockefeller University, New York, New York 10065, USA
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, New York 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA; New York Genome Center, New York, New York 10013, USA
| |
Collapse
|
123
|
Masuda A, Takeda JI, Okuno T, Okamoto T, Ohkawara B, Ito M, Ishigaki S, Sobue G, Ohno K. Position-specific binding of FUS to nascent RNA regulates mRNA length. Genes Dev 2015; 29:1045-57. [PMID: 25995189 PMCID: PMC4441052 DOI: 10.1101/gad.255737.114] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
More than half of all human genes produce prematurely terminated polyadenylated short mRNAs. Masuda et al. show that FUS is frequently clustered around an alternative polyadenylation (APA) site of nascent RNA, stalls RNAP II, and prematurely terminates transcription in neuronal cells. Position-specific regulation of mRNA lengths by FUS is operational in two-thirds of transcripts in neuronal cells, with enrichment in genes involved in synaptic activities. More than half of all human genes produce prematurely terminated polyadenylated short mRNAs. However, the underlying mechanisms remain largely elusive. CLIP-seq (cross-linking immunoprecipitation [CLIP] combined with deep sequencing) of FUS (fused in sarcoma) in neuronal cells showed that FUS is frequently clustered around an alternative polyadenylation (APA) site of nascent RNA. ChIP-seq (chromatin immunoprecipitation [ChIP] combined with deep sequencing) of RNA polymerase II (RNAP II) demonstrated that FUS stalls RNAP II and prematurely terminates transcription. When an APA site is located upstream of an FUS cluster, FUS enhances polyadenylation by recruiting CPSF160 and up-regulates the alternative short transcript. In contrast, when an APA site is located downstream from an FUS cluster, polyadenylation is not activated, and the RNAP II-suppressing effect of FUS leads to down-regulation of the alternative short transcript. CAGE-seq (cap analysis of gene expression [CAGE] combined with deep sequencing) and PolyA-seq (a strand-specific and quantitative method for high-throughput sequencing of 3' ends of polyadenylated transcripts) revealed that position-specific regulation of mRNA lengths by FUS is operational in two-thirds of transcripts in neuronal cells, with enrichment in genes involved in synaptic activities.
Collapse
Affiliation(s)
- Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Showa-ku, Nagoya 466-8550, Japan
| | - Jun-ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Showa-ku, Nagoya 466-8550, Japan
| | - Tatsuya Okuno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Showa-ku, Nagoya 466-8550, Japan
| | - Takaaki Okamoto
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Showa-ku, Nagoya 466-8550, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Showa-ku, Nagoya 466-8550, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Showa-ku, Nagoya 466-8550, Japan
| | - Shinsuke Ishigaki
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Showa-ku, Nagoya 466-8550, Japan;
| |
Collapse
|
124
|
Nojima T, Gomes T, Grosso ARF, Kimura H, Dye MJ, Dhir S, Carmo-Fonseca M, Proudfoot NJ. Mammalian NET-Seq Reveals Genome-wide Nascent Transcription Coupled to RNA Processing. Cell 2015; 161:526-540. [PMID: 25910207 PMCID: PMC4410947 DOI: 10.1016/j.cell.2015.03.027] [Citation(s) in RCA: 414] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/24/2014] [Accepted: 02/25/2015] [Indexed: 11/18/2022]
Abstract
Transcription is a highly dynamic process. Consequently, we have developed native elongating transcript sequencing technology for mammalian chromatin (mNET-seq), which generates single-nucleotide resolution, nascent transcription profiles. Nascent RNA was detected in the active site of RNA polymerase II (Pol II) along with associated RNA processing intermediates. In particular, we detected 5'splice site cleavage by the spliceosome, showing that cleaved upstream exon transcripts are associated with Pol II CTD phosphorylated on the serine 5 position (S5P), which is accumulated over downstream exons. Also, depletion of termination factors substantially reduces Pol II pausing at gene ends, leading to termination defects. Notably, termination factors play an additional promoter role by restricting non-productive RNA synthesis in a Pol II CTD S2P-specific manner. Our results suggest that CTD phosphorylation patterns established for yeast transcription are significantly different in mammals. Taken together, mNET-seq provides dynamic and detailed snapshots of the complex events underlying transcription in mammals.
Collapse
Affiliation(s)
- Takayuki Nojima
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Tomás Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana Rita Fialho Grosso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Hiroshi Kimura
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 226-8501Yokohama, Japan
| | - Michael J Dye
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Somdutta Dhir
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| | - Nicholas J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
125
|
Shi Y, Manley JL. The end of the message: multiple protein-RNA interactions define the mRNA polyadenylation site. Genes Dev 2015; 29:889-97. [PMID: 25934501 PMCID: PMC4421977 DOI: 10.1101/gad.261974.115] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Recent studies have significantly reshaped current models for the protein–RNA interactions involved in poly(A) site recognition. Here, Shi and Manley review the recent advances in this area and provide a perspective for future studies. The key RNA sequence elements and protein factors necessary for 3′ processing of polyadenylated mRNA precursors are well known. Recent studies, however, have significantly reshaped current models for the protein–RNA interactions involved in poly(A) site recognition, painting a picture more complex than previously envisioned and also providing new insights into regulation of this important step in gene expression. Here we review the recent advances in this area and provide a perspective for future studies.
Collapse
Affiliation(s)
- Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, California 92697, USA;
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
126
|
Chakrabarti M, Hunt AG. CPSF30 at the Interface of Alternative Polyadenylation and Cellular Signaling in Plants. Biomolecules 2015; 5:1151-68. [PMID: 26061761 PMCID: PMC4496715 DOI: 10.3390/biom5021151] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 01/05/2023] Open
Abstract
Post-transcriptional processing, involving cleavage of precursor messenger RNA (pre mRNA), and further incorporation of poly(A) tail to the 3' end is a key step in the expression of genetic information. Alternative polyadenylation (APA) serves as an important check point for the regulation of gene expression. Recent studies have shown widespread prevalence of APA in diverse systems. A considerable amount of research has been done in characterizing different subunits of so-called Cleavage and Polyadenylation Specificity Factor (CPSF). In plants, CPSF30, an ortholog of the 30 kD subunit of mammalian CPSF is a key polyadenylation factor. CPSF30 in the model plant Arabidopsis thaliana was reported to possess unique biochemical properties. It was also demonstrated that poly(A) site choice in a vast majority of genes in Arabidopsis are CPSF30 dependent, suggesting a pivotal role of this gene in APA and subsequent regulation of gene expression. There are also indications of this gene being involved in oxidative stress and defense responses and in cellular signaling, suggesting a role of CPSF30 in connecting physiological processes and APA. This review will summarize the biochemical features of CPSF30, its role in regulating APA, and possible links with cellular signaling and stress response modules.
Collapse
Affiliation(s)
- Manohar Chakrabarti
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, USA.
| | - Arthur G Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, USA.
| |
Collapse
|
127
|
Wang T, Xiao G, Chu Y, Zhang MQ, Corey DR, Xie Y. Design and bioinformatics analysis of genome-wide CLIP experiments. Nucleic Acids Res 2015; 43:5263-74. [PMID: 25958398 PMCID: PMC4477666 DOI: 10.1093/nar/gkv439] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/23/2015] [Indexed: 01/05/2023] Open
Abstract
The past decades have witnessed a surge of discoveries revealing RNA regulation as a central player in cellular processes. RNAs are regulated by RNA-binding proteins (RBPs) at all post-transcriptional stages, including splicing, transportation, stabilization and translation. Defects in the functions of these RBPs underlie a broad spectrum of human pathologies. Systematic identification of RBP functional targets is among the key biomedical research questions and provides a new direction for drug discovery. The advent of cross-linking immunoprecipitation coupled with high-throughput sequencing (genome-wide CLIP) technology has recently enabled the investigation of genome-wide RBP–RNA binding at single base-pair resolution. This technology has evolved through the development of three distinct versions: HITS-CLIP, PAR-CLIP and iCLIP. Meanwhile, numerous bioinformatics pipelines for handling the genome-wide CLIP data have also been developed. In this review, we discuss the genome-wide CLIP technology and focus on bioinformatics analysis. Specifically, we compare the strengths and weaknesses, as well as the scopes, of various bioinformatics tools. To assist readers in choosing optimal procedures for their analysis, we also review experimental design and procedures that affect bioinformatics analyses.
Collapse
Affiliation(s)
- Tao Wang
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yongjun Chu
- Departments of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Michael Q Zhang
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA Bioinformatics Division, Center for Synthetic and System Biology, TNLIST, Tsinghua University, Beijing 100084, China
| | - David R Corey
- Departments of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yang Xie
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
128
|
Li W, You B, Hoque M, Zheng D, Luo W, Ji Z, Park JY, Gunderson SI, Kalsotra A, Manley JL, Tian B. Systematic profiling of poly(A)+ transcripts modulated by core 3' end processing and splicing factors reveals regulatory rules of alternative cleavage and polyadenylation. PLoS Genet 2015; 11:e1005166. [PMID: 25906188 PMCID: PMC4407891 DOI: 10.1371/journal.pgen.1005166] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 03/20/2015] [Indexed: 12/18/2022] Open
Abstract
Alternative cleavage and polyadenylation (APA) results in mRNA isoforms containing different 3’ untranslated regions (3’UTRs) and/or coding sequences. How core cleavage/polyadenylation (C/P) factors regulate APA is not well understood. Using siRNA knockdown coupled with deep sequencing, we found that several C/P factors can play significant roles in 3’UTR-APA. Whereas Pcf11 and Fip1 enhance usage of proximal poly(A) sites (pAs), CFI-25/68, PABPN1 and PABPC1 promote usage of distal pAs. Strong cis element biases were found for pAs regulated by CFI-25/68 or Fip1, and the distance between pAs plays an important role in APA regulation. In addition, intronic pAs are substantially regulated by splicing factors, with U1 mostly inhibiting C/P events in introns near the 5’ end of gene and U2 suppressing those in introns with features for efficient splicing. Furthermore, PABPN1 inhibits expression of transcripts with pAs near the transcription start site (TSS), a property possibly related to its role in RNA degradation. Finally, we found that groups of APA events regulated by C/P factors are also modulated in cell differentiation and development with distinct trends. Together, our results support an APA code where an APA event in a given cellular context is regulated by a number of parameters, including relative location to the TSS, splicing context, distance between competing pAs, surrounding cis elements and concentrations of core C/P factors. A gene can express multiple isoforms varying in the 3’ end, a phenomenon called alternative cleavage and polyadenylation, or APA. Previous studies have indicated that most eukaryotic genes display APA and the APA profile changes under different physiological and pathological conditions. However, how APA is regulated in the cell is unclear. Here using gene knockdown and high throughput sequencing we examine how APA is regulated by factors in the machinery responsible for cleavage and polyadenylation as well as factors that play essential roles in splicing. We identify several factors that play significant roles in APA in the last exon, including CFI-25/68, PABPN1, PABPC1, Fip1 and Pcf11. We also elucidate how cleavage and polyadenylation events are regulated in introns and near the transcription start site. We uncover a group of APA events that are highly regulated by core factors as well as in cell differentiation and development. We present an APA code where an APA event in a given cellular context is regulated by a number of parameters, including relative location to the transcription start site, splicing context, distance between competing pAs, surrounding cis elements and concentrations of core cleavage and polyadenylation factors.
Collapse
Affiliation(s)
- Wencheng Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, United States of America
| | - Bei You
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Mainul Hoque
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, United States of America
| | - Wenting Luo
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
- Rutgers Graduate School of Biomedical Sciences, Newark, New Jersey, United States of America
| | - Zhe Ji
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
- Rutgers Graduate School of Biomedical Sciences, Newark, New Jersey, United States of America
| | - Ji Yeon Park
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Samuel I. Gunderson
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Auinash Kalsotra
- Departments of Biochemistry and Medical Biochemistry, University of Illinois, Urbana, Illinois, United States of America
| | - James L. Manley
- Department of Biological Sciences, Columbia University, New York, New York, United Staes of America
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, United States of America
- Rutgers Graduate School of Biomedical Sciences, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
129
|
Genomic analysis of ADAR1 binding and its involvement in multiple RNA processing pathways. Nat Commun 2015; 6:6355. [PMID: 25751603 PMCID: PMC4355961 DOI: 10.1038/ncomms7355] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/22/2015] [Indexed: 12/15/2022] Open
Abstract
Adenosine deaminases acting on RNA (ADARs) are the primary factors underlying adenosine to inosine (A-to-I) editing in metazoans. Here we report the first global study of ADAR1-RNA interaction in human cells using CLIP-Seq. A large number of CLIP sites are observed in Alu repeats, consistent with ADAR1's function in RNA editing. Surprisingly, thousands of other CLIP sites are located in non-Alu regions, revealing functional and biophysical targets of ADAR1 in the regulation of alternative 3' UTR usage and miRNA biogenesis. We observe that binding of ADAR1 to 3' UTRs precludes binding by other factors, causing 3' UTR lengthening. Similarly, ADAR1 interacts with DROSHA and DGCR8 in the nucleus and possibly out-competes DGCR8 in primary miRNA binding, which enhances mature miRNA expression. These functions are dependent on ADAR1's editing activity, at least for a subset of targets. Our study unfolds a broad landscape of the functional roles of ADAR1.
Collapse
|
130
|
de Klerk E, 't Hoen PAC. Alternative mRNA transcription, processing, and translation: insights from RNA sequencing. Trends Genet 2015; 31:128-39. [PMID: 25648499 DOI: 10.1016/j.tig.2015.01.001] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/22/2014] [Accepted: 01/05/2015] [Indexed: 12/13/2022]
Abstract
The human transcriptome comprises >80,000 protein-coding transcripts and the estimated number of proteins synthesized from these transcripts is in the range of 250,000 to 1 million. These transcripts and proteins are encoded by less than 20,000 genes, suggesting extensive regulation at the transcriptional, post-transcriptional, and translational level. Here we review how RNA sequencing (RNA-seq) technologies have increased our understanding of the mechanisms that give rise to alternative transcripts and their alternative translation. We highlight four different regulatory processes: alternative transcription initiation, alternative splicing, alternative polyadenylation, and alternative translation initiation. We discuss their transcriptome-wide distribution, their impact on protein expression, their biological relevance, and the possible molecular mechanisms leading to their alternative regulation. We conclude with a discussion of the coordination and the interdependence of these four regulatory layers.
Collapse
Affiliation(s)
- Eleonora de Klerk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
131
|
Davis R, Shi Y. The polyadenylation code: a unified model for the regulation of mRNA alternative polyadenylation. J Zhejiang Univ Sci B 2015; 15:429-37. [PMID: 24793760 DOI: 10.1631/jzus.b1400076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The majority of eukaryotic genes produce multiple mRNA isoforms with distinct 3' ends through a process called mRNA alternative polyadenylation (APA). Recent studies have demonstrated that APA is dynamically regulated during development and in response to environmental stimuli. A number of mechanisms have been described for APA regulation. In this review, we attempt to integrate all the known mechanisms into a unified model. This model not only explains most of previous results, but also provides testable predictions that will improve our understanding of the mechanistic details of APA regulation. Finally, we briefly discuss the known and putative functions of APA regulation.
Collapse
Affiliation(s)
- Ryan Davis
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | | |
Collapse
|
132
|
Eifler TT, Shao W, Bartholomeeusen K, Fujinaga K, Jäger S, Johnson JR, Luo Z, Krogan NJ, Peterlin BM. Cyclin-dependent kinase 12 increases 3' end processing of growth factor-induced c-FOS transcripts. Mol Cell Biol 2015; 35:468-78. [PMID: 25384976 PMCID: PMC4272423 DOI: 10.1128/mcb.01157-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 10/07/2014] [Accepted: 11/01/2014] [Indexed: 01/05/2023] Open
Abstract
Transcriptional cyclin-dependent kinases (CDKs) regulate RNA polymerase II initiation and elongation as well as cotranscriptional mRNA processing. In this report, we describe an important role for CDK12 in the epidermal growth factor (EGF)-induced c-FOS proto-oncogene expression in mammalian cells. This kinase was found in the exon junction complexes (EJC) together with SR proteins and was thus recruited to RNA polymerase II. In cells depleted of CDK12 or eukaryotic translation initiation factor 4A3 (eIF4A3) from the EJC, EGF induced fewer c-FOS transcripts. In these cells, phosphorylation of serines at position 2 in the C-terminal domain (CTD) of RNA polymerase II, as well as levels of cleavage-stimulating factor 64 (Cstf64) and 73-kDa subunit of cleavage and polyadenylation specificity factor (CPSF73), was reduced at the c-FOS gene. These effects impaired 3' end processing of c-FOS transcripts. Mutant CDK12 proteins lacking their Arg-Ser-rich (RS) domain or just the RS domain alone acted as dominant negative proteins. Thus, CDK12 plays an important role in cotranscriptional processing of c-FOS transcripts.
Collapse
Affiliation(s)
- Tristan T Eifler
- Department of Medicine, Microbiology and Immunology, University of California at San Francisco, San Francisco, California, USA
| | - Wei Shao
- Department of Medicine, Microbiology and Immunology, University of California at San Francisco, San Francisco, California, USA
| | - Koen Bartholomeeusen
- Department of Medicine, Microbiology and Immunology, University of California at San Francisco, San Francisco, California, USA
| | - Koh Fujinaga
- Department of Medicine, Microbiology and Immunology, University of California at San Francisco, San Francisco, California, USA
| | - Stefanie Jäger
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California, USA California Institute for Quantitative Biosciences, QB3, San Francisco, California, USA
| | - Jeff R Johnson
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California, USA California Institute for Quantitative Biosciences, QB3, San Francisco, California, USA
| | - Zeping Luo
- Department of Medicine, Microbiology and Immunology, University of California at San Francisco, San Francisco, California, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California, USA California Institute for Quantitative Biosciences, QB3, San Francisco, California, USA
| | - B Matija Peterlin
- Department of Medicine, Microbiology and Immunology, University of California at San Francisco, San Francisco, California, USA
| |
Collapse
|
133
|
Rodríguez-Romero J, Franceschetti M, Bueno E, Sesma A. Multilayer regulatory mechanisms control cleavage factor I proteins in filamentous fungi. Nucleic Acids Res 2014; 43:179-95. [PMID: 25514925 PMCID: PMC4288187 DOI: 10.1093/nar/gku1297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cleavage factor I (CFI) proteins are core components of the polyadenylation machinery that can regulate several steps of mRNA life cycle, including alternative polyadenylation, splicing, export and decay. Here, we describe the regulatory mechanisms that control two fungal CFI protein classes in Magnaporthe oryzae: Rbp35/CfI25 complex and Hrp1. Using mutational, genetic and biochemical studies we demonstrate that cellular concentration of CFI mRNAs is a limited indicator of their protein abundance. Our results suggest that several post-transcriptional mechanisms regulate Rbp35/CfI25 complex and Hrp1 in the rice blast fungus, some of which are also conserved in other ascomycetes. With respect to Rbp35, these include C-terminal processing, RGG-dependent localization and cleavage, C-terminal autoregulatory domain and regulation by an upstream open reading frame of Rbp35-dependent TOR signalling pathway. Our proteomic analyses suggest that Rbp35 regulates the levels of proteins involved in melanin and phenylpropanoids synthesis, among others. The drastic reduction of fungal CFI proteins in carbon-starved cells suggests that the pre-mRNA processing pathway is altered. Our findings uncover broad and multilayer regulatory mechanisms controlling fungal polyadenylation factors, which have profound implications in pre-mRNA maturation. This area of research offers new avenues for fungicide design by targeting fungal-specific proteins that globally affect thousands of mRNAs.
Collapse
Affiliation(s)
- J Rodríguez-Romero
- Centre for Plant Biotechnology and Genomics (CBGP), Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - M Franceschetti
- Disease & Stress Biology Department, John Innes Centre, Colney lane, Norwich NR4 7UH, UK
| | - E Bueno
- Disease & Stress Biology Department, John Innes Centre, Colney lane, Norwich NR4 7UH, UK
| | - A Sesma
- Centre for Plant Biotechnology and Genomics (CBGP), Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
134
|
Di Giammartino DC, Li W, Ogami K, Yashinskie JJ, Hoque M, Tian B, Manley JL. RBBP6 isoforms regulate the human polyadenylation machinery and modulate expression of mRNAs with AU-rich 3' UTRs. Genes Dev 2014; 28:2248-60. [PMID: 25319826 PMCID: PMC4201286 DOI: 10.1101/gad.245787.114] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Campigli Di Giammartino et al. find that RBBP6 is a component of a large multisubunit protein complex that mediates polyadenylation of mRNA precursors. Genome-wide analyses following RBBP6 knockdown revealed decreased transcript levels, especially of mRNAs with AU-rich 3′ UTRs such as c-Fos and c-Jun, and increased usage of distal poly(A) sites. Polyadenylation of mRNA precursors is mediated by a large multisubunit protein complex. Here we show that RBBP6 (retinoblastoma-binding protein 6), identified initially as an Rb- and p53-binding protein, is a component of this complex and functions in 3′ processing in vitro and in vivo. RBBP6 associates with other core factors, and this interaction is mediated by an unusual ubiquitin-like domain, DWNN (“domain with no name”), that is required for 3′ processing activity. The DWNN is also expressed, via alternative RNA processing, as a small single-domain protein (isoform 3 [iso3]). Importantly, we show that iso3, known to be down-regulated in several cancers, competes with RBBP6 for binding to the core machinery, thereby inhibiting 3′ processing. Genome-wide analyses following RBBP6 knockdown revealed decreased transcript levels, especially of mRNAs with AU-rich 3′ untranslated regions (UTRs) such as c-Fos and c-Jun, and increased usage of distal poly(A) sites. Our results implicate RBBP6 and iso3 as novel regulators of 3′ processing, especially of RNAs with AU-rich 3′ UTRs.
Collapse
Affiliation(s)
| | - Wencheng Li
- Department of Biochemistry and Molecular Biology, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Koichi Ogami
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Jossie J Yashinskie
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Mainul Hoque
- Department of Biochemistry and Molecular Biology, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Bin Tian
- Department of Biochemistry and Molecular Biology, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA;
| |
Collapse
|
135
|
Xia Z, Donehower LA, Cooper TA, Neilson JR, Wheeler DA, Wagner EJ, Li W. Dynamic analyses of alternative polyadenylation from RNA-seq reveal a 3'-UTR landscape across seven tumour types. Nat Commun 2014; 5:5274. [PMID: 25409906 DOI: 10.1038/ncomms6274] [Citation(s) in RCA: 397] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/15/2014] [Indexed: 12/26/2022] Open
Abstract
Alternative polyadenylation (APA) is a pervasive mechanism in the regulation of most human genes, and its implication in diseases including cancer is only beginning to be appreciated. Since conventional APA profiling has not been widely adopted, global cancer APA studies are very limited. Here we develop a novel bioinformatics algorithm (DaPars) for the de novo identification of dynamic APAs from standard RNA-seq. When applied to 358 TCGA Pan-Cancer tumour/normal pairs across seven tumour types, DaPars reveals 1,346 genes with recurrent and tumour-specific APAs. Most APA genes (91%) have shorter 3'-untranslated regions (3' UTRs) in tumours that can avoid microRNA-mediated repression, including glutaminase (GLS), a key metabolic enzyme for tumour proliferation. Interestingly, selected APA events add strong prognostic power beyond common clinical and molecular variables, suggesting their potential as novel prognostic biomarkers. Finally, our results implicate CstF64, an essential polyadenylation factor, as a master regulator of 3'-UTR shortening across multiple tumour types.
Collapse
Affiliation(s)
- Zheng Xia
- 1] Division of Biostatistics, Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA [2] Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Lawrence A Donehower
- 1] Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA [2] Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Thomas A Cooper
- 1] Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA [2] Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA [3] Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Joel R Neilson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - David A Wheeler
- 1] Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA [2] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Eric J Wagner
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | - Wei Li
- 1] Division of Biostatistics, Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA [2] Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
136
|
Grozdanov PN, Macdonald CC. High-throughput sequencing of RNA isolated by cross-linking and immunoprecipitation (HITS-CLIP) to determine sites of binding of CstF-64 on nascent RNAs. Methods Mol Biol 2014; 1125:187-208. [PMID: 24590791 DOI: 10.1007/978-1-62703-971-0_17] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Genome-wide analysis of gene expression has changed the RNA world. Recent techniques leading to this revolution have been the use of cross-linking and immunoprecipitation (CLIP) combined with high-throughput sequencing (HITS-CLIP) to determine sites on nascent mRNAs to which RNA-binding proteins bind. Several researchers (including us) have been examining the role of RNA-binding proteins in polyadenylation, including the role of the 64,000 Mr component of the cleavage stimulation factor, CstF-64. In this chapter, we present our optimizations of the CLIP procedure for examination of CstF-64 binding to nascent pre-mRNAs expressed in testis. For CstF-64 CLIP, we use a well-characterized monoclonal antibody (3A7) that recognizes CstF-64. Rather than optimizing tricky but essential RNA fragment cloning schemes, we illustrate the use of the proprietary Illumina TruSeq Small RNA Sample Preparation kit for this step. Other techniques such as SDS-PAGE and the transfer to the nitrocellulose membrane techniques follow the original Illumina protocol (though we point out potential pitfalls). Finally, we discuss the options for high-throughput sequencing and some general suggestions for bioinformatic analysis of the data.
Collapse
Affiliation(s)
- Petar N Grozdanov
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 Fourth Street, STOP 6540, Lubbock, TX, 79430, USA
| | | |
Collapse
|
137
|
Chan SL, Huppertz I, Yao C, Weng L, Moresco JJ, Yates JR, Ule J, Manley JL, Shi Y. CPSF30 and Wdr33 directly bind to AAUAAA in mammalian mRNA 3' processing. Genes Dev 2014. [PMID: 25301780 DOI: 10.1101/gad.250993.114.these] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
AAUAAA is the most highly conserved motif in eukaryotic mRNA polyadenylation sites and, in mammals, is specifically recognized by the multisubunit CPSF (cleavage and polyadenylation specificity factor) complex. Despite its critical functions in mRNA 3' end formation, the molecular basis for CPSF-AAUAAA interaction remains poorly defined. The CPSF subunit CPSF160 has been implicated in AAUAAA recognition, but direct evidence has been lacking. Using in vitro and in vivo assays, we unexpectedly found that CPSF subunits CPSF30 and Wdr33 directly contact AAUAAA. Importantly, the CPSF30-RNA interaction is essential for mRNA 3' processing and is primarily mediated by its zinc fingers 2 and 3, which are specifically targeted by the influenza protein NS1A to suppress host mRNA 3' processing. Our data suggest that AAUAAA recognition in mammalian mRNA 3' processing is more complex than previously thought and involves multiple protein-RNA interactions.
Collapse
Affiliation(s)
- Serena L Chan
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, California 92697, USA
| | - Ina Huppertz
- Department of Molecular Neuroscience, University College London Institute of Neurology, London WC1N 3BG, United Kingdom; Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Chengguo Yao
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, California 92697, USA
| | - Lingjie Weng
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, California 92697, USA; Institute for Genomics and Bioinformatics, Department of Computer Science, University of California at Irvine Irvine, California 92697, USA
| | - James J Moresco
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jernej Ule
- Department of Molecular Neuroscience, University College London Institute of Neurology, London WC1N 3BG, United Kingdom; Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, California 92697, USA
| |
Collapse
|
138
|
Batra R, Charizanis K, Manchanda M, Mohan A, Li M, Finn DJ, Goodwin M, Zhang C, Sobczak K, Thornton CA, Swanson MS. Loss of MBNL leads to disruption of developmentally regulated alternative polyadenylation in RNA-mediated disease. Mol Cell 2014; 56:311-322. [PMID: 25263597 PMCID: PMC4224598 DOI: 10.1016/j.molcel.2014.08.027] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/28/2014] [Accepted: 08/21/2014] [Indexed: 10/24/2022]
Abstract
Inhibition of muscleblind-like (MBNL) activity due to sequestration by microsatellite expansion RNAs is a major pathogenic event in the RNA-mediated disease myotonic dystrophy (DM). Although MBNL1 and MBNL2 bind to nascent transcripts to regulate alternative splicing during muscle and brain development, another major binding site for the MBNL protein family is the 3' untranslated region of target RNAs. Here, we report that depletion of Mbnl proteins in mouse embryo fibroblasts leads to misregulation of thousands of alternative polyadenylation events. HITS-CLIP and minigene reporter analyses indicate that these polyadenylation switches are a direct consequence of MBNL binding to target RNAs. Misregulated alternative polyadenylation also occurs in skeletal muscle in a mouse polyCUG model and human DM, resulting in the persistence of neonatal polyadenylation patterns. These findings reveal an additional developmental function for MBNL proteins and demonstrate that DM is characterized by misregulation of pre-mRNA processing at multiple levels.
Collapse
Affiliation(s)
- Ranjan Batra
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Konstantinos Charizanis
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Mini Manchanda
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Apoorva Mohan
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Moyi Li
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Dustin J Finn
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Marianne Goodwin
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Chaolin Zhang
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | - Krzysztof Sobczak
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Charles A Thornton
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA.
| |
Collapse
|
139
|
Beisang D, Reilly C, Bohjanen PR. Alternative polyadenylation regulates CELF1/CUGBP1 target transcripts following T cell activation. Gene 2014; 550:93-100. [PMID: 25123787 PMCID: PMC4162518 DOI: 10.1016/j.gene.2014.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/22/2014] [Accepted: 08/10/2014] [Indexed: 01/19/2023]
Abstract
Alternative polyadenylation (APA) is an evolutionarily conserved mechanism for regulating gene expression. Transcript 3' end shortening through changes in polyadenylation site usage occurs following T cell activation, but the consequences of APA on gene expression are poorly understood. We previously showed that GU-rich elements (GREs) found in the 3' untranslated regions of select transcripts mediate rapid mRNA decay by recruiting the protein CELF1/CUGBP1. Using a global RNA sequencing approach, we found that a network of CELF1 target transcripts involved in cell division underwent preferential 3' end shortening via APA following T cell activation, resulting in decreased inclusion of CELF1 binding sites and increased transcript expression. We present a model whereby CELF1 regulates APA site selection following T cell activation through reversible binding to nearby GRE sequences. These findings provide insight into the role of APA in controlling cellular proliferation during biological processes such as development, oncogenesis and T cell activation.
Collapse
Affiliation(s)
- Daniel Beisang
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, MN, USA; Department of Microbiology, University of Minnesota, Minneapolis, MN, USA.
| | - Cavan Reilly
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA.
| | - Paul R Bohjanen
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, MN, USA; Department of Microbiology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
140
|
Yao C, Weng L, Shi Y. Global protein-RNA interaction mapping at single nucleotide resolution by iCLIP-seq. Methods Mol Biol 2014; 1126:399-410. [PMID: 24549678 DOI: 10.1007/978-1-62703-980-2_27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Eukaryotic genomes encode a large number of RNA-binding proteins, which play critical roles in many aspects of gene regulation. To functionally characterize these proteins, a key step is to map their interactions with target RNAs. UV crosslinking and immunoprecipitation coupled with high-throughput sequencing has become the standard method for this purpose. Here we describe the detailed procedure that we have used to characterize the protein-RNA interactions of the mRNA 3' processing factors.
Collapse
Affiliation(s)
- Chengguo Yao
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, USA
| | | | | |
Collapse
|
141
|
Chan SL, Huppertz I, Yao C, Weng L, Moresco JJ, Yates JR, Ule J, Manley JL, Shi Y. CPSF30 and Wdr33 directly bind to AAUAAA in mammalian mRNA 3' processing. Genes Dev 2014; 28:2370-80. [PMID: 25301780 PMCID: PMC4215182 DOI: 10.1101/gad.250993.114] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AAUAAA is the most highly conserved motif in eukaryotic mRNA polyadenylation sites and, in mammals, is specifically recognized by the multisubunit CPSF complex. Chan et al. found that CPSF subunits CPSF30 and Wdr33 directly contact AAUAAA. The CPSF30–RNA interaction is essential for mRNA 3′ processing and is primarily mediated by its zinc fingers 2 and 3, which are specifically targeted by the influenza protein NS1A to suppress host mRNA 3′ processing. AAUAAA is the most highly conserved motif in eukaryotic mRNA polyadenylation sites and, in mammals, is specifically recognized by the multisubunit CPSF (cleavage and polyadenylation specificity factor) complex. Despite its critical functions in mRNA 3′ end formation, the molecular basis for CPSF–AAUAAA interaction remains poorly defined. The CPSF subunit CPSF160 has been implicated in AAUAAA recognition, but direct evidence has been lacking. Using in vitro and in vivo assays, we unexpectedly found that CPSF subunits CPSF30 and Wdr33 directly contact AAUAAA. Importantly, the CPSF30–RNA interaction is essential for mRNA 3′ processing and is primarily mediated by its zinc fingers 2 and 3, which are specifically targeted by the influenza protein NS1A to suppress host mRNA 3′ processing. Our data suggest that AAUAAA recognition in mammalian mRNA 3′ processing is more complex than previously thought and involves multiple protein–RNA interactions.
Collapse
Affiliation(s)
- Serena L Chan
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, California 92697, USA
| | - Ina Huppertz
- Department of Molecular Neuroscience, University College London Institute of Neurology, London WC1N 3BG, United Kingdom; Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Chengguo Yao
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, California 92697, USA
| | - Lingjie Weng
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, California 92697, USA; Institute for Genomics and Bioinformatics, Department of Computer Science, University of California at Irvine Irvine, California 92697, USA
| | - James J Moresco
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jernej Ule
- Department of Molecular Neuroscience, University College London Institute of Neurology, London WC1N 3BG, United Kingdom; Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, California 92697, USA
| |
Collapse
|
142
|
Hunt AG. The Arabidopsis polyadenylation factor subunit CPSF30 as conceptual link between mRNA polyadenylation and cellular signaling. CURRENT OPINION IN PLANT BIOLOGY 2014; 21:128-132. [PMID: 25104048 DOI: 10.1016/j.pbi.2014.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 06/03/2023]
Abstract
Alternative polyadenylation plays important roles in growth processes in plants. Although the scope and significance of the phenomenon have been described to considerable extent, the mechanisms that govern differential poly(A) site selection remain active areas of investigation. Of particular interest are the means by which the factors that control differential poly(A) site choice are themselves activated and inhibited. In this review, the case is made that one particular Arabidopsis polyadenylation factor subunit, termed AtCPSF30, stands out as a conceptual link between cellular signaling pathways and differential poly(A) site choice.
Collapse
Affiliation(s)
- Arthur G Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, USA.
| |
Collapse
|
143
|
Youngblood BA, MacDonald CC. CstF-64 is necessary for endoderm differentiation resulting in cardiomyocyte defects. Stem Cell Res 2014; 13:413-21. [PMID: 25460602 DOI: 10.1016/j.scr.2014.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/06/2014] [Accepted: 09/16/2014] [Indexed: 12/23/2022] Open
Abstract
Although adult cardiomyocytes have the capacity for cellular regeneration, they are unable to fully repair severely injured hearts. The use of embryonic stem cell (ESC)-derived cardiomyocytes as transplantable heart muscle cells has been proposed as a solution, but is limited by the lack of understanding of the developmental pathways leading to specification of cardiac progenitors. Identification of these pathways will enhance the ability to differentiate cardiomyocytes into a clinical source of transplantable cells. Here, we show that the mRNA 3' end processing protein, CstF-64, is essential for cardiomyocyte differentiation in mouse ESCs. Loss of CstF-64 in mouse ESCs results in loss of differentiation potential toward the endodermal lineage. However, CstF-64 knockout (Cstf2(E6)) cells were able to differentiate into neuronal progenitors, demonstrating that some differentiation pathways were still intact. Markers for mesodermal differentiation were also present, although Cstf2(E6) cells were defective in forming beating cardiomyocytes and expressing cardiac specific markers. Since the extraembryonic endoderm is needed for cardiomyocyte differentiation and endodermal markers were decreased, we hypothesized that endodermal factors were required for efficient cardiomyocyte formation in the Cstf2(E6) cells. Using conditioned medium from the extraembryonic endodermal (XEN) stem cell line we were able to restore cardiomyocyte differentiation in Cstf2(E6) cells, suggesting that CstF-64 has a role in regulating endoderm differentiation that is necessary for cardiac specification and that extraembryonic endoderm signaling is essential for cardiomyocyte development.
Collapse
Affiliation(s)
- Bradford A Youngblood
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430-6540, USA
| | - Clinton C MacDonald
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430-6540, USA.
| |
Collapse
|
144
|
Di Giammartino DC, Manley JL. New links between mRNA polyadenylation and diverse nuclear pathways. Mol Cells 2014; 37:644-9. [PMID: 25081038 PMCID: PMC4179132 DOI: 10.14348/molcells.2014.0177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 06/28/2014] [Indexed: 11/27/2022] Open
Abstract
The 3' ends of most eukaryotic messenger RNAs must undergo a maturation step that includes an endonuc-leolytic cleavage followed by addition of a polyadenylate tail. While this reaction is catalyzed by the action of only two enzymes it is supported by an unexpectedly large number of proteins. This complexity reflects the necessity of coordinating this process with other nuclear events, and growing evidence indicates that even more factors than previously thought are necessary to connect 3' processing to additional cellular pathways. In this review we summarize the current understanding of the molecular machinery involved in this step of mRNA maturation, focusing on new core and auxiliary proteins that connect polyadenylation to splicing, DNA damage, transcription and cancer.
Collapse
Affiliation(s)
| | - James L Manley
- Columbia University, Department of Biological Sciences, New York NY, 10027, USA
| |
Collapse
|
145
|
Miura P, Sanfilippo P, Shenker S, Lai EC. Alternative polyadenylation in the nervous system: to what lengths will 3' UTR extensions take us? Bioessays 2014; 36:766-77. [PMID: 24903459 PMCID: PMC4503322 DOI: 10.1002/bies.201300174] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Alternative cleavage and polyadenylation (APA) can diversify coding and non-coding regions, but has particular impact on increasing 3' UTR diversity. Through the gain or loss of regulatory elements such as RNA binding protein and microRNA sites, APA can influence transcript stability, localization, and translational efficiency. Strikingly, the central nervous systems of invertebrate and vertebrate species express a broad range of transcript isoforms bearing extended 3' UTRs. The molecular mechanism that permits proximal 3' end bypass in neurons is mysterious, and only beginning to be elucidated. This landscape of neural 3' UTR extensions, many reaching unprecedented lengths, may help service the unique post-transcriptional regulatory needs of neurons. A combination of approaches, including transcriptome-wide profiling, genetic screening to identify APA factors, biochemical dissection of alternative 3' end formation, and manipulation of individual neural APA targets, will be necessary to gain fuller perspectives on the mechanism and biology of neural-specific 3' UTR lengthening.
Collapse
Affiliation(s)
- Pedro Miura
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York NY 10065
| | - Piero Sanfilippo
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York NY 10065
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center
| | - Sol Shenker
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York NY 10065
- Tri-Institutional Program in Computational Biology and Medicine, Weill Cornell Medical College
| | - Eric C. Lai
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York NY 10065
| |
Collapse
|
146
|
Hollerer I, Grund K, Hentze MW, Kulozik AE. mRNA 3'end processing: A tale of the tail reaches the clinic. EMBO Mol Med 2014; 6:16-26. [PMID: 24408965 PMCID: PMC3936486 DOI: 10.1002/emmm.201303300] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent advances reveal mRNA 3′end processing as a highly regulated process that fine-tunes posttranscriptional gene expression. This process can affect the site and/or the efficiency of 3′end processing, controlling the quality and the quantity of substrate mRNAs. The regulation of 3′end processing plays a central role in fundamental physiology such as blood coagulation and innate immunity. In addition, errors in mRNA 3′end processing have been associated with a broad spectrum of human diseases, including cancer. We summarize and discuss the paradigmatic shift in the understanding of 3′end processing as a mechanism of posttranscriptional gene regulation that has reached clinical medicine.
Collapse
Affiliation(s)
- Ina Hollerer
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | | | | | | |
Collapse
|
147
|
Youngblood BA, Grozdanov PN, MacDonald CC. CstF-64 supports pluripotency and regulates cell cycle progression in embryonic stem cells through histone 3' end processing. Nucleic Acids Res 2014; 42:8330-42. [PMID: 24957598 PMCID: PMC4117776 DOI: 10.1093/nar/gku551] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Embryonic stem cells (ESCs) exhibit a unique cell cycle with a shortened G1 phase that supports their pluripotency, while apparently buffering them against pro-differentiation stimuli. In ESCs, expression of replication-dependent histones is a main component of this abbreviated G1 phase, although the details of this mechanism are not well understood. Similarly, the role of 3' end processing in regulation of ESC pluripotency and cell cycle is poorly understood. To better understand these processes, we examined mouse ESCs that lack the 3' end-processing factor CstF-64. These ESCs display slower growth, loss of pluripotency and a lengthened G1 phase, correlating with increased polyadenylation of histone mRNAs. Interestingly, these ESCs also express the τCstF-64 paralog of CstF-64. However, τCstF-64 only partially compensates for lost CstF-64 function, despite being recruited to the histone mRNA 3' end-processing complex. Reduction of τCstF-64 in CstF-64-deficient ESCs results in even greater levels of histone mRNA polyadenylation, suggesting that both CstF-64 and τCstF-64 function to inhibit polyadenylation of histone mRNAs. These results suggest that CstF-64 plays a key role in modulating the cell cycle in ESCs while simultaneously controlling histone mRNA 3' end processing.
Collapse
Affiliation(s)
- Bradford A Youngblood
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430-6540, USA
| | - Petar N Grozdanov
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430-6540, USA
| | - Clinton C MacDonald
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430-6540, USA
| |
Collapse
|
148
|
Masamha CP, Xia Z, Yang J, Albrecht TR, Li M, Shyu AB, Li W, Wagner EJ. CFIm25 links alternative polyadenylation to glioblastoma tumour suppression. Nature 2014; 510:412-6. [PMID: 24814343 PMCID: PMC4128630 DOI: 10.1038/nature13261] [Citation(s) in RCA: 327] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/13/2014] [Indexed: 01/05/2023]
Abstract
The global shortening of messenger RNAs through alternative polyadenylation (APA) that occurs during enhanced cellular proliferation represents an important, yet poorly understood mechanism of regulated gene expression. The 3' untranslated region (UTR) truncation of growth-promoting mRNA transcripts that relieves intrinsic microRNA- and AU-rich-element-mediated repression has been observed to correlate with cellular transformation; however, the importance to tumorigenicity of RNA 3'-end-processing factors that potentially govern APA is unknown. Here we identify CFIm25 as a broad repressor of proximal poly(A) site usage that, when depleted, increases cell proliferation. Applying a regression model on standard RNA-sequencing data for novel APA events, we identified at least 1,450 genes with shortened 3' UTRs after CFIm25 knockdown, representing 11% of significantly expressed mRNAs in human cells. Marked increases in the expression of several known oncogenes, including cyclin D1, are observed as a consequence of CFIm25 depletion. Importantly, we identified a subset of CFIm25-regulated APA genes with shortened 3' UTRs in glioblastoma tumours that have reduced CFIm25 expression. Downregulation of CFIm25 expression in glioblastoma cells enhances their tumorigenic properties and increases tumour size, whereas CFIm25 overexpression reduces these properties and inhibits tumour growth. These findings identify a pivotal role of CFIm25 in governing APA and reveal a previously unknown connection between CFIm25 and glioblastoma tumorigenicity.
Collapse
Affiliation(s)
- Chioniso P. Masamha
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston. Houston, TX
| | - Zheng Xia
- Division of Biostatistics, Dan L Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Jingxuan Yang
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston. Houston, TX
| | - Todd R. Albrecht
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston. Houston, TX
| | - Min Li
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston. Houston, TX
| | - Ann-Bin Shyu
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston. Houston, TX
| | - Wei Li
- Division of Biostatistics, Dan L Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Eric J. Wagner
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston. Houston, TX
| |
Collapse
|
149
|
Lackford B, Yao C, Charles GM, Weng L, Zheng X, Choi EA, Xie X, Wan J, Xing Y, Freudenberg JM, Yang P, Jothi R, Hu G, Shi Y. Fip1 regulates mRNA alternative polyadenylation to promote stem cell self-renewal. EMBO J 2014; 33:878-89. [PMID: 24596251 DOI: 10.1002/embj.201386537] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
mRNA alternative polyadenylation (APA) plays a critical role in post-transcriptional gene control and is highly regulated during development and disease. However, the regulatory mechanisms and functional consequences of APA remain poorly understood. Here, we show that an mRNA 3' processing factor, Fip1, is essential for embryonic stem cell (ESC) self-renewal and somatic cell reprogramming. Fip1 promotes stem cell maintenance, in part, by activating the ESC-specific APA profiles to ensure the optimal expression of a specific set of genes, including critical self-renewal factors. Fip1 expression and the Fip1-dependent APA program change during ESC differentiation and are restored to an ESC-like state during somatic reprogramming. Mechanistically, we provide evidence that the specificity of Fip1-mediated APA regulation depends on multiple factors, including Fip1-RNA interactions and the distance between APA sites. Together, our data highlight the role for post-transcriptional control in stem cell self-renewal, provide mechanistic insight on APA regulation in development, and establish an important function for APA in cell fate specification.
Collapse
Affiliation(s)
- Brad Lackford
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Zheng D, Tian B. RNA-binding proteins in regulation of alternative cleavage and polyadenylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:97-127. [PMID: 25201104 DOI: 10.1007/978-1-4939-1221-6_3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Almost all eukaryotic pre-mRNAs are processed at the 3' end by the cleavage and polyadenylation (C/P) reaction, which preludes termination of transcription and gives rise to the poly(A) tail of mature mRNA. Genomic studies in recent years have indicated that most eukaryotic mRNA genes have multiple cleavage and polyadenylation sites (pAs), leading to alternative cleavage and polyadenylation (APA) products. APA isoforms generally differ in their 3' untranslated regions (3' UTRs), but can also have different coding sequences (CDSs). APA expands the repertoire of transcripts expressed from the genome, and is highly regulated under various physiological and pathological conditions. Growing lines of evidence have shown that RNA-binding proteins (RBPs) play important roles in regulation of APA. Some RBPs are part of the machinery for C/P; others influence pA choice through binding to adjacent regions. In this chapter, we review cis elements and trans factors involved in C/P, the significance of APA, and increasingly elucidated roles of RBPs in APA regulation. We also discuss analysis of APA using transcriptome-wide techniques as well as molecular biology approaches.
Collapse
Affiliation(s)
- Dinghai Zheng
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey (UMDNJ)-New Jersey Medical School, 185 South Orange Ave., Newark, NJ, 07103, USA
| | | |
Collapse
|