101
|
Yang L, Xu D, Luo X, Zhu X, Zhao J, Song J, Han Y, Li G, Gao X, Liu L, Liang H. Fe(II)-Modulated Microporous Electrocatalytic Membranes for Organic Microcontaminant Oxidation and Fouling Control: Mechanisms of Regulating Electron Transport toward Enhanced Reactive Oxygen Species Activation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19000-19011. [PMID: 37162466 DOI: 10.1021/acs.est.3c01792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Regulation of the fast electron transport process for the generation and utilization of reactive oxygen species (ROS) by achieving fortified electron "nanofluidics" is effective for electrocatalytic oxidation of organic microcontaminants. However, limited available active sites and sluggish mass transfer impede oxidation efficiency. Herein, we fabricated a conductive electrocatalytic membrane decorated with hierarchical porous vertically aligned Fe(II)-modulated FeCo layered double hydroxide nanosheets (Fe(II)-FeCo LDHs) in an electro-Fenton system to maximize exposure of active sites and expedite mass transfer. The nanospaced interlayers of Fe(II)-FeCo LDHs within the microconfined porous structure formed by its vertical nanosheets highly boost the micro/nanofluidic distribution of target pollutants to active centers/species, achieving accelerated mass transferability. Aliovalent substitution by Fe(II) activates in-plane metallics to maximize the available active sites and makes each Fe(II)-FeCo LDH nanosheet a geometrical nanocarrier for constructing a fast electron "nanofluidic" to accelerate Fe(II) regeneration in Fe(III)/Fe(II) cycles. As a result, the Fe(II)-FeCo LDHs exhibited improved reactivity in catalyzing H2O2 to •OH and 1O2. Accordingly, the membrane exhibited a higher atrazine degradation kinetic (0.0441 min-1) and degradation rate (93.2%), which were 4.7 and 2.1 times more than those of the bare carbon nanotube membrane, respectively. Additionally, the enhanced hydrophilic and strongly oxidized reactivity synergistically mitigated the organic fouling occurring in the pores and surface of the membrane. These findings clarify the activation mechanism of ROS over an innovative electrocatalytic membrane reactor design for organic microcontaminant treatment.
Collapse
Affiliation(s)
- Liu Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Xinsheng Luo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Jing Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Jialin Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Yonghui Han
- State Key Laboratory of Urban Water Resource and Environment, School of Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Xinlei Gao
- National Engineering Research Center of Water Resources Co., Ltd., Harbin Institute of Technology, Harbin 150090, China
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, China
| | - Luming Liu
- National Engineering Research Center of Water Resources Co., Ltd., Harbin Institute of Technology, Harbin 150090, China
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, P. R. China
| |
Collapse
|
102
|
Feng Z, Chen M, Yang Q, Wang Z, Li L, Zhao H, Zhao G. New Insights into Selective Singlet Oxygen Production via the Typical Electroactivation of Oxygen for Water Decontamination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17123-17131. [PMID: 37875432 DOI: 10.1021/acs.est.3c06336] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Selective production of singlet oxygen (1O2) as an electrophilic oxidant is crucial for the precise control of chemical targets in environmental fields. Herein, we proposed a strategy to construct a redox interface on electrodes, which can in situ produce inorganic metal hydroperoxides with appropriate oxidative ability during oxygen activation. Benefiting from atomic Cu sites (CuN4) in a copper-carbon aerogel electrode, almost complete production of 1O2 was achieved, thereby refraining the competitive formation of other reactive oxygen species. The fast electron transfer rate between CuN4 and electrogenerated H2O2 promoted the in situ formation of copper hydroperoxide (N4-Cu-OOH), thereby selectively and efficiently oxidizing intermediate O2•- to 1O2. The optimized production of 1O2 was up to 2583 μmol L-1 without additional chemical reagents. We further considered the high production of 1O2 for efficiently removing electron-rich organic pollutants from a complex water matrix. Fast kinetics was achieved and considered for removing various pollutants with electron-donating substituents in a nonradical oxidation pathway. The BPA degradation efficiency is less susceptible to the coexisting natural organic matter (NOM) and inorganic ions. Specifically, the kinetic constant for BPA removal is 34 times higher than that for a nanoparticle of a copper-carbon electrode while producing a hydroxyl radical. Our findings highlight the innovative interfacial surface engineering of an electrocatalytic O2 activation system to selectively generate 1O2 for future potential applications.
Collapse
Affiliation(s)
- Zhiyuan Feng
- Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Min Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qianqian Yang
- Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zining Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, 239 Zhangheng Road, Shanghai 200120, China
| | - Hongying Zhao
- Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Guohua Zhao
- Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
103
|
Chu C, Yao D, Chen Z, Liu X, Huang Q, Li Q, Mao S. Cyano-Regulated Organic Polymers for Highly Efficient Photocatalytic H 2 O 2 Production in Various Actual Water Bodies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303796. [PMID: 37442785 DOI: 10.1002/smll.202303796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/27/2023] [Indexed: 07/15/2023]
Abstract
Photocatalytic production of H2 O2 has drawn significant attention in recent years, but the yield rate of current photocatalytic systems is still unsatisfactory. Moreover, the presence of various components in actual water bodies will consume the photogenerated charges and deactivate the catalyst, severely limiting the real applications of photocatalytic H2 O2 production. Herein, a cyano-modified polymer photocatalyst is synthesized by Knoevenagel condensation with subsequent thermal polymerization. The introduction of cyano group and sulfer (S), oxygen (O) elements modulates the microstructure and energy band of the polymer catalyst, and the cyano group sites can effectively adsorb and activate O2 , realizing the generation of H2 O2 in the two-step single-electron oxygen reduction process. The reported system achieves high H2 O2 generation rate up to 1119.2 µmol g-1 h-1 in various water bodies including tap water, river water, seawater, and secondary effluent. This simple and readily available catalyst demonstrates good anti-interference performance and pH adaptability in photocatalytic H2 O2 production in actual water bodies, and its photodegradation and sterilization applications are also demonstrated. This study offers new insights in developing polymer catalysts for efficient photocatalytic production of H2 O2 in various water bodies for practical application.
Collapse
Affiliation(s)
- Chengcheng Chu
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Ducheng Yao
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhong Chen
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xinru Liu
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Qisu Huang
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Qiuju Li
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shun Mao
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
104
|
Li L, Wu Q, Xiang SK, Mu S, Zhao R, Xiao M, Long C, Zheng X, Cui C. Electron Paramagnetic Resonance Tracks Condition-Sensitive Water Radical Cation. J Phys Chem Lett 2023; 14:9183-9191. [PMID: 37800664 DOI: 10.1021/acs.jpclett.3c02268] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Oxidizing species or radicals generated in water are of vital importance in catalysis, the environment, and biology. In addition to several related reactive oxygen species, using electron paramagnetic resonance (EPR), we present a nontrapping chemical transformation pathway to track water radical cation (H2O+•) species, whose formation is very sensitive to the conditioning environments, such as light irradiation, mechanical action, and gas/chemical introduction. We reveal that H2O+• can oxidize the 5,5-dimethyl-1-pyrroline N-oxide (DMPO) to the crucial epoxy hydroxylamine (HDMP=O) intermediate, which further reacts with the hydroxyl radical (•OH) for the formation of the EPR-active sextet radical (DMPO=O•). Interestingly, we uncover that H2O+• can react with dimethyl methylphosphonate (DMMP), 2-methyl-2-nitrosopropane (MNP), 5-tert-butoxycarbonyl-5-methyl-1-pyrroline N-oxide (BMPO), and α-phenyl-N-tert-butylnitrone (PBN) which contain a double-bond structure to produce corresponding derivatives as well. It is thus expected that both H2O+• and •OH are ubiquitous in nature and in various water-containing experimental systems. These findings provide a novel perspective on radicals for water redox chemistry.
Collapse
Affiliation(s)
- Lei Li
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qianbao Wu
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shi-Kai Xiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Shijia Mu
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ruijuan Zhao
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Mengjun Xiao
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chang Long
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xia Zheng
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chunhua Cui
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
105
|
Huang B, Wu Z, Wang X, Song X, Zhou H, Zhang H, Zhou P, Liu W, Xiong Z, Lai B. Coupled Surface-Confinement Effect and Pore Engineering in a Single-Fe-Atom Catalyst for Ultrafast Fenton-like Reaction with High-Valent Iron-Oxo Complex Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15667-15679. [PMID: 37801403 DOI: 10.1021/acs.est.3c05509] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
The nanoconfinement effect in Fenton-like reactions shows great potential in environmental remediation, but the construction of confinement structure and the corresponding mechanism are rarely elucidated systematically. Herein, we proposed a novel peroxymonosulfate (PMS) activation system employing the single Fe atom supported on mesoporous N-doped carbon (FeSA-MNC, specific surface area = 1520.9 m2/g), which could accelerate the catalytic oxidation process via the surface-confinement effect. The degradation activity of the confined system was remarkably increased by 34.6 times compared to its analogue unconfined system. The generation of almost 100% high-valent iron-oxo species was identified via 18O isotope-labeled experiments, quenching tests, and probe methods. The density functional theory illustrated that the surface-confinement effect narrows the gap between the d-band center and Fermi level of the single Fe atom, which strengthens the charge transfer rate at the reaction interface and reduces the free energy barrier for PMS activation. The surface-confinement system exhibited excellent pollutant degradation efficiency, robust resistance to coexisting matter, and adaptation of a wide pH range (3.0-11.0) and various temperature environments (5-40 °C). Finally, the FeSA-MNC/PMS system could achieve 100% sulfamethoxazole removal without significant performance decline after 10,000-bed volumes. This work provides novel and significant insights into the surface-confinement effect in Fenton-like chemistry and guides the design of superior oxidation systems for environmental remediation.
Collapse
Affiliation(s)
- Bingkun Huang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zelin Wu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Xinhao Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Xinyu Song
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Hongyu Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
106
|
Zhang X, Zhou M. Electro-Fenton water treatment technology for selective pollutant degradation and resourcization. Sci Bull (Beijing) 2023; 68:2151-2154. [PMID: 37634990 DOI: 10.1016/j.scib.2023.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Affiliation(s)
- Xiuwu Zhang
- Key Laboratory of Pollution Process and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
107
|
Yang C, Lin L, Shang S, Ma S, Sun F, Shih K, Li XY. Packed O V-SnO 2-Sb bead-electrodes for enhanced electrocatalytic oxidation of micropollutants in water. WATER RESEARCH 2023; 245:120628. [PMID: 37716294 DOI: 10.1016/j.watres.2023.120628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/20/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Electrocatalytic oxidation is an appealing treatment option for emerging micropollutants in wastewater, however, the limited reactive surface area and short service lifetime of planar electrodes hinder their industrial applications. This study introduces an innovative electrochemical wastewater treatment technology that employs packed bead-electrodes (PBE) as a dynamic electrocatalytic filter on a dimensionally stable anode (DSA) acting as a current collector. By using PBE, the electroactive volume is expanded beyond the vicinity of the common planar anode to the thick porous media of PBE with a vast electrocatalytic surface area. This greatly enhances the efficiency of electrochemical degradation of micropollutants. The OV-SnO2-Sb PBE filter achieved a nearly 100 % degradation of moxifloxacin (MOX) in under 2 min of single-pass filtration, with a degradation rate over an order of magnitude higher than the conventional electrochemical oxidation processes. The generation of abundant radical species (•OH) and non-radical species (1O2 and O3), along with the enhanced direct oxidation, led to the outstanding performance of the charged PBE system in MOX degradation. The OV-SnO2-Sb PBE was remarkably stable, and the separation between the electroactive PBE layer and the base Ti anode allows for easy renewal of the bead-electrode materials and scaling up of the system for practical applications. Overall, our study presents a dynamic electroactive PBE that advances the electrocatalytic oxidation technology for effective control of emerging pollutants in the water environment. This technology has the potential to revolutionize electrochemical wastewater treatment and contribute to a more sustainable future environment.
Collapse
Affiliation(s)
- Chao Yang
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong China
| | - Lin Lin
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| | - Shanshan Shang
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong China; School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Shengshou Ma
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong China
| | - Feiyun Sun
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Kaimin Shih
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong China
| | - Xiao-Yan Li
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| |
Collapse
|
108
|
Wang J, Lv H, Tong X, Ren W, Shen Y, Lu L, Zhang Y. Modulation of radical and nonradical pathways via modified carbon nanotubes toward efficient oxidation of binary pollutants in water. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132334. [PMID: 37597392 DOI: 10.1016/j.jhazmat.2023.132334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
In order to minimize the knowledge gap between single and binary pollutants degradation by persulfate-based advanced oxidation processes (PS-AOPs), iron-loaded N-doped carbon nanotubes (Fe-NCNT) and its acid-washing sample (Fe-NCNT-W) were synthesized as peroxymonosulfate (PMS) activator for simultaneous oxidation of acid orange 7 (AO7) and electron-rich (phenol/ibuprofen) or electron-deficient pollutants (nitrobenzene/benzoic acid). Mechanistic studies revealed that both radical (HO•, SO4•-) and nonradical (electron-transfer, high-valent iron) pathways involved for organic oxidation in Fe-NCNT/PMS system, while electron-transfer pathway (ETP) and high-valent iron-oxo species accounted for pollutant degradation at the surface and inner space of Fe-NCNT-W, respectively. The oxidation performances in single or binary systems were systematically investigated. In comparison to benchmark radical-based (Fe2+/PMS), nonradical ETP (NCNT/PMS) and mixed (Fe-NCNT/PMS) systems, Fe-NCNT-W/PMS outperformed superior performance toward oxidation of binary pollutants with little inference from solution pH or background substances, which could also be fabricated into membrane reactor for actual dyeing sewage treatment. Such superiorities should be mainly ascribed to the particular selectivity and intensive treatment of nonradical pathways in Fe-NCNT-W/PMS system with nanoconfinement effect. This work affords novel insights into the treatment of combined pollution via PMS activation by engineered nanomaterials.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Hao Lv
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xiandong Tong
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wei Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yi Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Lun Lu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
109
|
Yang D, Deng R, Chen M, Liu T, Luo L, He Q, Chen Y. Biochar-based microporous nanosheets-mediated nanoconfinement for high-efficiency reduction of Cr(VI). JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132283. [PMID: 37591172 DOI: 10.1016/j.jhazmat.2023.132283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/22/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
Biochar-based materials have been widely used to remove Cr(VI). However, current strategies mainly focus on slow adsorption through electrostatic and functional group properties, ignoring the confinement catalytic fast kinetics caused by inherent porous properties. Herein, we designed a confinement strategy to achieve high-efficiency Cr(VI) reduction by encapsulating the catalytic reaction of Cr(VI) and oxalic acid (OA) in the micropore of PCRN-3-10-2-800. The results showed that the removal rate constant of the PCRN-3-10-2-800/OA system was 14.3 and 146.8 times higher than that of the BC-800/OA system (low porosity) and PCRN-3-10-2-800 alone (adsorption), which was highest removal rate constant in the current reported materials under the same system. The structure-activity relationship indicated that the catalytic activity of Cr(VI) depended on the micropore characteristics of the catalyst. Density functional theory calculations confirmed that nanoscale space could enhance Cr(VI) adsorption and reduce the energy barrier of the rate-determining step. The electron paramagnetic resonance spectrum demonstrated the rapid conversion of Cr(VI) to Cr(III). Furthermore, the PCRN-3-10-2-800/OA system showed good applicability and high efficiency for Cr(VI) removal (nearly 100% in 5 min) in industrial electroplating wastewater treatment. This work first proposes a nanoconfinement-induced heavy metal reduction strategy and guides biochar's universality design in wastewater treatment.
Collapse
Affiliation(s)
- Dongxu Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Ruoyu Deng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Mengli Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Tao Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Liang Luo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yi Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
110
|
Niu H, Lv H, Mao L, Cai Y, Zhao X, Wu F. Highly efficient and continuous activation of O 2 by a novel Fe xP-FeCu composite for water purification and insights into the activation mechanisms through DFT calculation. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132267. [PMID: 37586243 DOI: 10.1016/j.jhazmat.2023.132267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Degradation of organic pollutants through O2 activation catalyzed by transitional metals is challenging without addition of external chemicals and input of energy. We prepare a novel Fe based catalyst by compositing carbon, iron phosphide (FexP), iron carbide (FexC), Fe0 and Cu NPs, which can continuously activate O2 to produce high amount of 1O2,·O2- and·OH radicals in a wide pH range. DFT calculation discloses that O2 molecules are dissociated into *O or exist as O-O in various configurations. The Fe-O2, Cu-O2 and FeP-O2 surfaces can react with H2O molecules to generate *OOH, *OH and/or OH-. The sorbed-O2 intermediates on FexC surface might be released as 1O2 or·O2-. The oxidative O2-sorbed surfaces and in-situ produced oxygen reactive species contribute to the efficient and pH-indenpendent degradation of organic pollutants. Cu NPs accelerate Fe2+/Fe3+ cycles and offer impetus to initiate O2 activation due to the potential difference between Fe and Cu. The recycling test and XPS results confirm that the mutual electron transferring among carbon, FexC, FexP, Fe and Cu maintains reactivity and stability of the catalysts.
Collapse
Affiliation(s)
- Hongyun Niu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hongzhou Lv
- Institute of Resources and Environment Engineering, Shanxi University, Taiyuan, Shanxi Province 030006, China
| | - Li Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang Province 310013, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
111
|
Jiang J, Liu S, Shi D, Sun T, Wang Y, Fu S, Liu Y, Li M, Zhou D, Dong S. Spin state-dependent in-situ photo-Fenton-like transformation from oxygen molecule towards singlet oxygen for selective water decontamination. WATER RESEARCH 2023; 244:120502. [PMID: 37651870 DOI: 10.1016/j.watres.2023.120502] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
The development of 1O2-dominanted selective decontamination for water purification was hampered by extra H2O2 consumption and poor 1O2 generation. Herein, we proposed the reconstruction of Fe spin state using near-range N atom and long-range N vacancies to enable efficient generation of H2O2 and sequential activation of H2O2 into 1O2 after visible-light irradiation. Theoretical and experimental results revealed that medium-spin Fe(III) strengthened O2 adsorption, penetrated eg electrons to antibonding p-orbital of oxygen, and lowered the free energy of O2 activation, enabling the oxygen protonation for H2O2 generation. Thereafter, the electrons of H2O2 could be extracted by low-spin Fe(III) and rapidly converted into 1O2 in a nonradical path. The developed 1O2-dominated in-situ photo-Fenton-like system had an excellent pH universality and anti-interference to inorganic ions, dissolved organic matter, and even real water matrixes (e.g., tap water and secondary effluent). This work provided a novel insight for sustainable and efficient 1O2 generation, which motivated the development of new-generation selective water treatment technology.
Collapse
Affiliation(s)
- Jingjing Jiang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Shengda Liu
- School of Chemical and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, China
| | - Donglong Shi
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Tongze Sun
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Yakun Wang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Shaozhu Fu
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Yansong Liu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Mingyu Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Shuangshi Dong
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
112
|
Ou R, Aodeng G, Ai J. Advancements in the Application of the Fenton Reaction in the Cancer Microenvironment. Pharmaceutics 2023; 15:2337. [PMID: 37765305 PMCID: PMC10536994 DOI: 10.3390/pharmaceutics15092337] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer is a complex and multifaceted disease that continues to be a global health challenge. It exerts a tremendous burden on individuals, families, healthcare systems, and society as a whole. To mitigate the impact of cancer, concerted efforts and collaboration on a global scale are essential. This includes strengthening preventive measures, promoting early detection, and advancing effective treatment strategies. In the field of cancer treatment, researchers and clinicians are constantly seeking new approaches and technologies to improve therapeutic outcomes and minimize adverse effects. One promising avenue of investigation is the utilization of the Fenton reaction, a chemical process that involves the generation of highly reactive hydroxyl radicals (·OH) through the interaction of hydrogen peroxide (H2O2) with ferrous ions (Fe2+). The generated ·OH radicals possess strong oxidative properties, which can lead to the selective destruction of cancer cells. In recent years, researchers have successfully introduced the Fenton reaction into the cancer microenvironment through the application of nanotechnology, such as polymer nanoparticles and light-responsive nanoparticles. This article reviews the progress of the application of the Fenton reaction, catalyzed by polymer nanoparticles and light-responsive nanoparticles, in the cancer microenvironment, as well as the potential applications and future development directions of the Fenton reaction in the field of tumor treatment.
Collapse
Affiliation(s)
| | | | - Jun Ai
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Enviromental Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China; (R.O.); (G.A.)
| |
Collapse
|
113
|
Xie L, Wang P, Zheng W, Zhan S, Xia Y, Liu Y, Yang W, Li Y. The strong metal-support interactions induced electrocatalytic three-electron oxygen reduction to hydroxyl radicals for water treatment. Proc Natl Acad Sci U S A 2023; 120:e2307989120. [PMID: 37603765 PMCID: PMC10466190 DOI: 10.1073/pnas.2307989120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 08/23/2023] Open
Abstract
As a promising environmental remediation technology, the electro-Fenton (EF) process is mainly limited by the two rate-limiting steps, which are H2O2 generation and activation. The electrocatalytic three-electron oxygen reduction reaction (3e- ORR) can directly activate oxygen to hydroxyl radicals (•OH), which is expected to break through the rate-limiting steps of the EF process. However, limited success has been achieved in the design of 3e- ORR electrocatalysts. Herein, we propose Cu/CoSe2/C with the strong metal-support interactions to enhance the 3e- ORR process, exhibiting remarkable reactivity and stability for •OH generation. Both experiment and DFT calculation results reveal that CoSe2 is conducive to the generation of H2O2. Meanwhile, the metallic Cu can enhance the adsorption strength of *H2O2 intermediates and thus promotes the one-electron reduction to •OH. The Cu/CoSe2/C catalyst exhibits the electron-transfer number close to 3.0 during the ORR process, and exhibits the outstanding •OH generation performance, achieving a higher apparent rate constant (6.0 times faster) toward ciprofloxacin compared with its analogy without the SMSI effect. Our work represents that the SMSI effect endows Cu/CoSe2/C high activity and selectivity for •OH generation, providing a unique perspective for the design of a high-efficiency 3e- ORR catalyst.
Collapse
Affiliation(s)
- Liangbo Xie
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
| | - Pengfei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| | - Wenwen Zheng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
| | - Sihui Zhan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| | - Yuguo Xia
- School of Chemistry and Chemical Engineering, Shandong University, Shandong250100, China
| | - Yuepeng Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
| | - Wenjing Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
| | - Yi Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
- Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus, Tianjin University, Fuzhou, Binhai New City350207, China
| |
Collapse
|
114
|
Han J, Wang L, Cao W, Yuan Q, Zhou X, Liu S, Wang XB. Photogeneration of singlet oxygen catalyzed by hexafluoroisopropanol for selective degradation of dyes. iScience 2023; 26:107306. [PMID: 37520730 PMCID: PMC10374460 DOI: 10.1016/j.isci.2023.107306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/03/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
Singlet oxygen (1O2) shows great potential for selective degradation of dyes in environmental remediation of wastewater. In this study, we showcased that 1O2 can be effectively generated from an anion complex composed of deprotonated hexafluoroisopropanol anion ([HFIP-H]‒) with hydroperoxyl radical (⋅HO2) via ultraviolet (UV) photodetachment. Electronic structure calculations and cryogenic negative ion photoelectron spectroscopy unveil critical proton transfer upon complex formation and electron ejection, effectively photoconverting prevalent triplet ground state 3O2 to long-lived excited 1O2, stabilized by nearby HFIP. Inspired by this spectroscopic study, a novel "photogeneration" strategy is proposed to produce 1O2 with the incorporation of atmospheric O2 and HFIP, acting as a catalyst. Conceptually, the designed catalytic cycle upon UV irradiation and electron injection is able to achieve different degradations of dye molecules in a controllable fashion from decolorization to complete mineralization, shedding new light on potential water purification.
Collapse
Affiliation(s)
- Jia Han
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Lei Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Qinqin Yuan
- Department of Chemistry, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Xiaoguo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Shilin Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| |
Collapse
|
115
|
Yu F, Jia C, Wu X, Sun L, Shi Z, Teng T, Lin L, He Z, Gao J, Zhang S, Wang L, Wang S, Zhu X. Rapid self-heating synthesis of Fe-based nanomaterial catalyst for advanced oxidation. Nat Commun 2023; 14:4975. [PMID: 37591830 PMCID: PMC10435566 DOI: 10.1038/s41467-023-40691-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 08/04/2023] [Indexed: 08/19/2023] Open
Abstract
Iron-based catalysts are promising candidates for advanced oxidation process-based wastewater remediation. However, the preparation of these materials often involves complex and energy intensive syntheses. Further, due to the inherent limitations of the preparation conditions, it is challenging to realise the full potential of the catalyst. Herein, we develop an iron-based nanomaterial catalyst via soft carbon assisted flash joule heating (FJH). FJH involves rapid temperature increase, electric shock, and cooling, the process simultaneously transforms a low-grade iron mineral (FeS) and soft carbon into an electron rich nano Fe0/FeS heterostructure embedded in thin-bedded graphene. The process is energy efficient and consumes 34 times less energy than conventional pyrolysis. Density functional theory calculations indicate that the electron delocalization of the FJH-derived heterostructure improves its binding ability with peroxydisulfate via bidentate binuclear model, thereby enhancing ·OH yield for organics mineralization. The Fe-based nanomaterial catalyst exhibits strong catalytic performance over a wide pH range. Similar catalysts can be prepared using other commonly available iron precursors. Finally, we also present a strategy for continuous and automated production of the iron-based nanomaterial catalysts.
Collapse
Affiliation(s)
- Fengbo Yu
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China
| | - Chao Jia
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China
| | - Xuan Wu
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China
| | - Liming Sun
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China
| | - Zhijian Shi
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China
| | - Tao Teng
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China
| | - Litao Lin
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China
| | - Zhelin He
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China
| | - Jie Gao
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China
| | - Shicheng Zhang
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, 200092, Shanghai, China
| | - Liang Wang
- School of Energy and Power, Jiangsu University of Science and Technology, 212003, Zhenjiang, China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Xiangdong Zhu
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China.
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, 215009, Suzhou, China.
| |
Collapse
|
116
|
Dan H, Han S, Gao Y, Gao B, Yue Q. Sono-enhanced heterogeneous Fenton catalysis: magnetic halloysite nanotube synthesis and accelerated free radical generation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90799-90813. [PMID: 37460893 DOI: 10.1007/s11356-023-28623-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/01/2023] [Indexed: 08/24/2023]
Abstract
Although heterogeneous Fenton catalysis has captured increasing attention compared to its homogeneous counterpart, it still confronts some inherent drawbacks in use, such as the dilemma in solid-liquid separation and greater mass transfer resistance. Driven by the acoustic cavitation effect, herein, a sono-enhanced heterogeneous Fenton catalysis process was built to overcome the above two shortcomings, by rapidly synthesizing magnetic Fenton-like catalysts and accelerating electron transfer during the catalytic reaction. The results show that, compared to the traditional chemical coprecipitation method, Fe3O4 with smaller particle size and better crystallinity grew on the surface of halloysite nanotubes (HNTs) by using the sonochemical strategy, leading to displaying the higher catalytic activity toward the degradation of methylene blue (MB, improved by ~2.5 times). In parallel, more •OH and •O2- were produced after the ultrasound was further introduced to the routine Fenton-like catalysis system, thus highly accelerating the removal of MB (improved by ~50%). Besides, benefiting from the robust chemical integration of Fe3O4 and HNTs, Fe3O4@HNTs-S had a lower iron ion leaching in use, showing superior catalytic stability. The speed, simplicity, and generality, together with the enhanced mass transfer rate, make the use of ultrasound an enabling methodology to improve the heterogeneous Fenton catalysis.
Collapse
Affiliation(s)
- Hongbing Dan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Songlin Han
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, People's Republic of China.
| |
Collapse
|
117
|
Wu JH, Chen F, Yang TH, Yu HQ. Unveiling singlet oxygen spin trapping in catalytic oxidation processes using in situ kinetic EPR analysis. Proc Natl Acad Sci U S A 2023; 120:e2305706120. [PMID: 37459516 PMCID: PMC10372693 DOI: 10.1073/pnas.2305706120] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/12/2023] [Indexed: 07/29/2023] Open
Abstract
Singlet oxygen (1O2) plays a pivotal role in numerous catalytic oxidation processes utilized in water purification and chemical synthesis. The spin-trapping method based on electron paramagnetic resonance (EPR) analysis is commonly employed for 1O2 detection. However, it is often limited to time-independent acquisition. Recent studies have raised questions about the reliability of the 1O2 trapper, 2,2,6,6-tetramethylpiperidine (TEMP), in various systems. In this study, we introduce a comprehensive, kinetic examination to monitor the spin-trapping process in EPR analysis. The EPR intensity of the trapping product was used as a quantitative measurement to evaluate the concentration of 1O2 in aqueous systems. This in situ kinetic study was successfully applied to a classical photocatalytic system with exceptional accuracy. Furthermore, we demonstrated the feasibility of our approach in more intricate 1O2-driven catalytic oxidation processes for water decontamination and elucidated the molecular mechanism of direct TEMP oxidation. This method can avoid the false-positive results associated with the conventional 2D 1O2 detection techniques, and provide insights into the reaction mechanisms in 1O2-dominated catalytic oxidation processes. This work underscores the necessity of kinetic studies for spin-trapping EPR analysis, presenting an avenue for a comprehensive exploration of the mechanisms governing catalytic oxidation processes.
Collapse
Affiliation(s)
- Jing-Hang Wu
- Department of Environmental Science and Engineering, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei230026, China
| | - Fei Chen
- Department of Environmental Science and Engineering, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei230026, China
| | - Tian-Hao Yang
- Department of Environmental Science and Engineering, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei230026, China
| | - Han-Qing Yu
- Department of Environmental Science and Engineering, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei230026, China
| |
Collapse
|
118
|
Wu Y, Wang Y, Zhang Q, Chen T, Zhang C. BP@Au undergoes rapid degradation and releases singlet oxygen under dark conditions: Doping effect and detrimental effects on superoxide-producing marine algae. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131502. [PMID: 37121040 DOI: 10.1016/j.jhazmat.2023.131502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/02/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023]
Abstract
Black phosphorus (BP) shows encouraging utility in many fields, and metal doping has been suggested as an efficient way to improve stability. However, controversial results and inconsistent mechanisms have been reported for doping modulation and stability change. We observed the unforeseen evolution of singlet oxygen (1O2) from BP integrated with gold nanoparticles (BP@Au) under dark conditions, and this led to rapid BP deterioration, even though enhanced stability is commonly thought via surface doping. Briefly, the BP reacted with oxygen and water to yield superoxide (O2•-) and hydrogen peroxide. Au0 acted as an enzyme mimic and catalyzed the conversion of these derivatives, and Au0 was converted to a mixture of Au3+ and Au+. The O2•- was converted to 1O2 via direct donation of electrons to the Au3+/+. The Au-catalyzed redox reactions accelerated the degradation of the BP nanosheets. BP@Au showed significant toxicity toward marine alga that produce O2•- in the dark, as indicated by a more than 30% reduction in cell viability after 12 h of incubation with 7.56 mg/L BP@Au. The novelty of this work lies in the demonstration of a dopant-related degradation pathway of BP that shows unrevealed toxicity toward O2•--producing marine algae.
Collapse
Affiliation(s)
- Yining Wu
- School of Environment, Beijing Normal University, Beijing 100857, China
| | - Yating Wang
- School of Environment, Beijing Normal University, Beijing 100857, China
| | - Qiurong Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Tianmin Chen
- School of Environment, Beijing Normal University, Beijing 100857, China
| | - Chengdong Zhang
- School of Environment, Beijing Normal University, Beijing 100857, China.
| |
Collapse
|
119
|
Cerqueira JVA, de Andrade MT, Rafael DD, Zhu F, Martins SVC, Nunes-Nesi A, Benedito V, Fernie AR, Zsögön A. Anthocyanins and reactive oxygen species: a team of rivals regulating plant development? PLANT MOLECULAR BIOLOGY 2023; 112:213-223. [PMID: 37351824 PMCID: PMC10352431 DOI: 10.1007/s11103-023-01362-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/22/2023] [Indexed: 06/24/2023]
Abstract
Anthocyanins are a family of water-soluble vacuolar pigments present in almost all flowering plants. The chemistry, biosynthesis and functions of these flavonoids have been intensively studied, in part due to their benefit for human health. Given that they are efficient antioxidants, intense research has been devoted to studying their possible roles against damage caused by reactive oxygen species (ROS). However, the redox homeostasis established between antioxidants and ROS is important for plant growth and development. On the one hand, high levels of ROS can damage DNA, proteins, and lipids, on the other, they are also required for cell signaling, plant development and stress responses. Thus, a balance is needed in which antioxidants can remove excessive ROS, while not precluding ROS from triggering important cellular signaling cascades. In this article, we discuss how anthocyanins and ROS interact and how a deeper understanding of the balance between them could help improve plant productivity, nutritional value, and resistance to stress, while simultaneously maintaining proper cellular function and plant growth.
Collapse
Affiliation(s)
- João Victor A Cerqueira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Moab T de Andrade
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Diego D Rafael
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Feng Zhu
- Max-Planck-Institute for Molecular Plant Physiology, 14476, Potsdam, Germany
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, National R&D Center for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Samuel V C Martins
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Vagner Benedito
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Alisdair R Fernie
- Max-Planck-Institute for Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
- Max-Planck-Institute for Molecular Plant Physiology, 14476, Potsdam, Germany
| |
Collapse
|
120
|
Zheng N, Tang X, Lian Y, Ou Z, Zhou Q, Wang R, Hu Z. Low-valent copper on molybdenum triggers molecular oxygen activation to selectively generate singlet oxygen for advanced oxidation processes. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131210. [PMID: 36958162 DOI: 10.1016/j.jhazmat.2023.131210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Singlet oxygen (1O2), which is difficult to generate, plays an important role in chemosynthesis, biomedicine and environment. Molecular oxygen (O2) is a green oxidant to produce 1O2 cost-effectively. However, O2 activation is difficult due to its spin-forbidden nature. Moreover, the main products of O2 activation are basically hydrogen peroxide (H2O2) and hydroxyl radical (•OH), but rarely 1O2. Herein, we innovatively realize the selective generation of 1O2 via O2 activation by a facile molybdenum (Mo)/Cu2+ system. In this system, Mo firstly reduces Cu2+ in solution to low-valence Cu0/Cu+ on its surface. Cu0/Cu+ activates O2 to generate superoxide radical (O2•-). Importantly, O2•- can be captured immediately and oxidized to 1O2 by surface-bound Mo6+ rather than reduced to H2O2. As a result, the Mo/Cu2+ system can selectively produce 1O2. Under air and O2 conditions, the degradation efficiency of ibuprofen by Mo/Cu2+ system is 67.2 % and 76.6 %, respectively. The degradation efficiencies of bisphenol A, rhodamine B and furfuryl alcohol are 77.1 %, 87.7 % and 91.1 %, respectively. The dosages of Mo and Cu2+ are 0.4 g/L and 3 mM, respectively, and the reaction time is 2 h. Interestingly, the activity of Mo decreased by only 4.2 % after 4 cycles. Therefore, this study provides a green pathway to selectively generate 1O2 for advanced oxidation processes.
Collapse
Affiliation(s)
- Ningchao Zheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xinhui Tang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yekai Lian
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zheshun Ou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Quan Zhou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ruilin Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhuofeng Hu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
121
|
Zong Y, Chen L, Zeng Y, Xu J, Zhang H, Zhang X, Liu W, Wu D. Do We Appropriately Detect and Understand Singlet Oxygen Possibly Generated in Advanced Oxidation Processes by Electron Paramagnetic Resonance Spectroscopy? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37311080 DOI: 10.1021/acs.est.3c01553] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy using sterically hindered amine is extensively applied to detect singlet oxygen (1O2) possibly generated in advanced oxidation processes. However, EPR-detectable 1O2 signals were observed in not only the 1O2-dominated hydrogen peroxide (H2O2)/hypochlorite (NaClO) reaction but surprisingly also the 1O2-absent Fe(II)/H2O2, UV/H2O2, and ferrate [Fe(VI)] process with even stronger intensities. By taking advantage of the characteristic reaction between 1O2 and 9,10-diphenyl-anthracene and near-infrared phosphorescent emission of 1O2, 1O2 was excluded in the Fe(II)/H2O2, UV/H2O2, and Fe(VI) process. The false detection of 1O2 was ascribed to the direct oxidation of hindered amine to piperidyl radical by reactive species [e.g., •OH and Fe(VI)/Fe(V)/Fe(IV)] via hydrogen transfer, followed by molecular oxygen addition (forming a piperidylperoxyl radical) and back reaction with piperidyl radical to generate a nitroxide radical, as evidenced by the successful identification of a piperidyl radical intermediate at 100 K and theoretical calculations. Moreover, compared to the highly oxidative species (e.g., •OH and high-valence Fe), the much lower reactivity of 1O2 and the profound nonradiative relaxation of 1O2 in H2O resulted it too selective and inefficient in organic contaminant destruction. This study demonstrated that EPR-based 1O2 detection could be remarkably misled by common oxidative species and thereby jeopardize the understandings on 1O2.
Collapse
Affiliation(s)
- Yang Zong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Long Chen
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yunqiao Zeng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Jun Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Xiaomeng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
122
|
Liu F, You J, Duan C, Li Z, Xu H. Carbonized bacterial cellulose/FeMn composite as efficient catalyst toward contaminant degradation: The crucial role of hydrogen reduction. CHEMOSPHERE 2023; 335:139176. [PMID: 37302494 DOI: 10.1016/j.chemosphere.2023.139176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/15/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
The structure especially the active site manipulation of Fenton-like catalysts was essential for the efficient removal of organic contaminants in the aquatic environment. In this study, the carbonized bacterial cellulose/FeMn oxide composite (CBC@FeMnOx) were synthetized and modified by hydrogen (H2) reduction to obtain the carbonized bacterial cellulose/FeMn composite (CBC@FeMn), with emphasis on the processes and mechanisms for atrazine (ATZ) attenuation. The results showed that H2 reduction did not change the microscopic morphology of the composites but destroy the Fe-O and Mn-O structures. Compared with the CBC@FeMnOx composite, the H2 reduction could promote the removal efficiency from 62% to 100% for CBC@FeMn, as well as the enhancement of degradation rate from 0.021 min-1 to 0.085 min-1. The quenching experiments and electron paramagnetic resonance (EPR) displayed that the hydroxyl radicals (•OH) was the major contributor for ATZ degradation. The investigation for Fe and Mn species indicated that H2 reduction could increase the content of Fe(II) and Mn(III) in the catalyst, thus improving the generation of •OH and accelerating the cycle process between Fe(III)/Fe(II). Owing to the excellent reusability and stability, it was indicated that the H2 reduction can be considered as an efficient way to regulate the chemical valence of the catalyst, thus enhancing the removal efficiency of aquatic contaminants.
Collapse
Affiliation(s)
- Fei Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China
| | - Jikang You
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Chongsen Duan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhe Li
- CAS Key Lab of Reservoir Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
123
|
Ma B, Yao J, Knudsen TŠ, Pang W, Liu B, Zhu X, Cao Y, Zhao C. Dithionite accelerated copper slag heterogeneous-homogeneous coupled Fenton degradation of organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131797. [PMID: 37302188 DOI: 10.1016/j.jhazmat.2023.131797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
The heterogeneous-homogeneous coupled Fenton (HHCF) processes combine the advantages of rapid reaction and the catalyst reuse, which makes them attractive for wastewater treatment. Nevertheless, the lack of both, cost-effective catalysts and the desirable Fe3+/Fe2+ conversion mediators limit the development of HHCF processes. This study investigates a prospective HHCF process, in which solid waste copper slag (CS) and dithionite (DNT) act as catalyst and mediator of Fe3+/Fe2+ transformation, respectively. DNT enables controlled leaching of iron and a highly efficient homogeneous Fe3+/Fe2+ cycle by dissociating to SO2- • under acidic conditions, leading to the enhanced H2O2 decomposition and •OH generation (from 48 μmol/L to 399 μmol/L) for p-chloroaniline (p-CA) degradation. The removal rate of p-CA in the CS/DNT/H2O2 system increased by 30 times in comparison with the CS/H2O2 system (increased from 1.21 × 10-3 min-1 to 3.61 × 10-2 min-1). Moreover, batch dosing of H2O2 can greatly promote the yield of •OH (from 399 μmol/L to 627 μmol/L), by mitigating the side reactions between H2O2 and SO2- •. This study highlights the importance of the iron cycle regulation for improvement of the Fenton efficiency and develops a cost-effective Fenton system for organic contaminants elimination in wastewater.
Collapse
Affiliation(s)
- Bo Ma
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jun Yao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Tatjana Šolević Knudsen
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia
| | - Wancheng Pang
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing 100083, China
| | - Bang Liu
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing 100083, China; Equipe Environnement et Microbiologie, MELODY group, Universit´e de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, 64013 Pau Cedex, France
| | - Xiaozhe Zhu
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing 100083, China
| | - Ying Cao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing 100083, China
| | - Chenchen Zhao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
124
|
Li X, Li X, Wang C, Wang B. A novel design of Cu(I) active site on the metal-organic framework for exploring the structural transformation of Fenton-like catalysts through in situ "capturing" OH . J Colloid Interface Sci 2023; 648:778-786. [PMID: 37321097 DOI: 10.1016/j.jcis.2023.05.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023]
Abstract
The mutual transformation of reactive oxygen species may affect the structural transformation of catalysts during the Fenton-like processes. Its in-depth understanding is essential to achieve high catalytic activity and stability. In this study, a novel design of Cu(I) active sites based on the metal-organic framework (MOF) is proposed to "capture" OH- produced via Fenton-like processes and re-coordinate the oxidized Cu sites. The Cu(I)-MOF presents an excellent removal efficiency for sulfamethoxazole (SMX), with a high removal kinetic constant of 7.146 min-1. Combing DFT calculations with experimental observations, we have revealed that the Cu of Cu(I)-MOF exhibits a lower d-band center, enabling efficient activation of H2O2 and spontaneous "capturing" of OH- to form Cu-MOF, which can be reorganized into the Cu(I)-MOF through molecular regulation for recycle. This research demonstrates a promising Fenton-like approach for solving the trade-off between catalytic activity and stability and provides new insights into the design and synthesis of efficient MOF-based catalysts for water treatment.
Collapse
Affiliation(s)
- Xuheng Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shanxi 710072, China
| | - Xiang Li
- Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Chunli Wang
- Research Center for Environmental Materials and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Bo Wang
- Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
125
|
Chen C, Ji R, Li W, Lan Y, Guo J. Waste self-heating bag derived iron-based composite with abundant oxygen vacancies for highly efficient Fenton-like degradation of micropollutants. CHEMOSPHERE 2023; 326:138499. [PMID: 36963587 DOI: 10.1016/j.chemosphere.2023.138499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
In this study, iron-rich waste self-heating bag was reutilized as the raw material to prepare oxygen vacancies (OV) functionalized iron-based composite (iron oxide (Fe3O4)-carbon-vermiculite, viz. OV-ICV), which exhibited excellent performance in the Fenton-like degradation of micropollutants via peroxydisulfate (PDS) activation. Above 95% of 1.0 mg/L carbaryl (CB) was efficiently eliminated in the presence of 0.1 g/L of OV-ICV and 0.5 mmol/L of PDS over a wide pH range of 3-10 within 30 min. Besides, OV-ICV also showed acceptable adaptability, stability, and renewability. Imbedding OV into Fe3O4 structure significantly generated more active iron sites and localized electrons, promoted the charge transfer ability, and assisted the redox cycle of ≡Fe(III)/≡Fe(II) for PDS activation. Mechanism investigation demonstrated that superoxide radicals (O2•-) derived from the activation of molecular oxygen mediated the generation of H2O2, and both of them further enhanced the formation of more sulfate radicals (SO4•-) and hydroxyl radicals (•OH), which led to the efficient degradation and mineralization of CB. Furthermore, the degradation pathways of CB were proposed based on the intermediates identification. This work lays a foundation for the rational reutilization of iron-containing wastes modified with defect engineering in heterogeneous Fenton-like catalysis for the remediation of micropollutants wastewater.
Collapse
Affiliation(s)
- Cheng Chen
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Runmei Ji
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Wei Li
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, 210019, China
| | - Yeqing Lan
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Jing Guo
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
126
|
Zhao Y, Chen S, Qie H, Zhu S, Zhang C, Li X, Wang W, Ma J, Sun Z. Selective activation of peroxymonosulfate govern by B-site metal in delafossite for efficient pollutants degradation: Pivotal role of d orbital electronic configuration. WATER RESEARCH 2023; 236:119957. [PMID: 37058917 DOI: 10.1016/j.watres.2023.119957] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Radical and non-radical oxidation pathways have been universally validated in transition metals (TMs) oxides activated peroxymonosulfate (PMS) processes. However, achieving high efficiency and selectivity of PMS activation remains challenging due to the ambiguous tuning mechanism of TMs sites on PMS activation in thermodynamic scope. Herein, we demonstrated that the exclusive PMS oxidation pathways were regulated by d orbital electronic configuration of B-sites in delafossites (CuBO2) for Orange I degradation (CoIII 3d6 for reactive oxygen species (ROSs) vs. CrIII 3d3 for electron transfer pathway). The d orbital electronic configuration was identified to affect the orbital overlap extent between 3d of B-sites and O 2p of PMS, which induced B-sites offering different types of hybrid orbital to coordinate with O 2p of PMS, thereby forming the high-spin complex (CuCoO2@PMS) or the low-spin complex (CuCrO2@PMS), on which basis PMS was selectively dissociated to form ROSs or achieve electron transfer pathway. As indicated by thermodynamic analysis, a general rule was proposed that B-sites of less than half-filled 3d orbital tended to act as electron shuttle, i.e., CrIII (3d3), MnIII (3d4), interacting with PMS to execute an electron transfer pathway for degrading Orange I, while B-sites of between half-filled and full-filled 3d orbital preferred to be electron donator, i.e., CoIII (3d6), FeIII (3d5), activating PMS to generate ROSs. These findings lay a foundation for the oriented design of TMs-based catalysts from the atomic level according to d orbital electronic configuration optimization, as so to facilitate the achievement of PMS-AOPs with highly selective and efficient remediation of contaminants in water purification practice.
Collapse
Affiliation(s)
- Ying Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shixuan Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hang Qie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shishu Zhu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Changyong Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xueyan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhiqiang Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
127
|
Luo M, Zhang H, Shi Y, Zhao J, Feng C, Yin J, Liu Y, Zhou P, Xiong Z, Lai B. Electrochemical activation of periodate with graphite electrodes for water decontamination: Excellent applicability and selective oxidation mechanism. WATER RESEARCH 2023; 240:120128. [PMID: 37247436 DOI: 10.1016/j.watres.2023.120128] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 05/31/2023]
Abstract
Advanced oxidation technologies based on periodate (PI, IO4-) have garnered significant attention in water decontamination. In this work, we found that electrochemical activation using graphite electrodes (E-GP) can significantly accelerate the degradation of micropollutants by PI. The E-GP/PI system achieved almost complete removal of bisphenol A (BPA) within 15 min, exhibited unprecedented pH tolerance ranging from pH 3.0 to 9.0, and showed more than 90% BPA depletion after 20 h of continuous operation. Additionally, the E-GP/PI system can realize the stoichiometric transformation of PI into iodate, dramatically decreasing the formation of iodinated disinfection by-products. Mechanistic studies confirmed that singlet oxygen (1O2) is the primary reactive oxygen species in the E-GP/PI system. A comprehensive evaluation of the oxidation kinetics of 1O2 with 15 phenolic compounds revealed a dual descriptor model based on quantitative structure-activity relationship (QSAR) analysis. The model corroborates that pollutants exhibiting strong electron-donating capabilities and high pKa values are more susceptible to attack by 1O2 through a proton transfer mechanism. The unique selectivity induced by 1O2 in the E-GP/PI system allows it to exhibit strong resistance to aqueous matrices. Thus, this study demonstrates a green system for the sustainable and effective elimination of pollutants, while providing mechanistic insights into the selective oxidation behaviour of 1O2.
Collapse
Affiliation(s)
- Mengfan Luo
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Yang Shi
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jia Zhao
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Can Feng
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Jialong Yin
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
128
|
Li L, Li J, Yan Y, Ma R, Zhang X, Wang J, Shen Y, Ullah H, Lu L. Removal of organophosphorus flame retardant by biochar-coated nZVI activating persulfate: Synergistic mechanism of adsorption and catalytic degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121880. [PMID: 37236590 DOI: 10.1016/j.envpol.2023.121880] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/21/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Triphenyl phosphate (TPhP) is a typical aromatic-based non-chlorinated organophosphorus flame retardant, which has been widely detected in a variety of environments and poses high environmental and human health risks. In this study, biochar coated nano-zero-valent iron (nZVI) was fabricated to activate persulfate (PS) to degrade TPhP from water. A range of biochars (BC400, BC500, BC600, BC700, and BC800) was prepared as potential support to coat nZVI by pyrolyzing corn stalk at 400, 500, 600, 700 and 800 °C. As outperformed other biochars in adsorption rate, adsorption capacity, and less reluctant to be influenced by environmental factors (pH, humic acid (HA), coexistence of anions), BC800 was to act as support to coat nZVI (labeled as BC800@nZVI). SEM, TEM, XRD and XPS characterization showed that nZVI was successfully supported on the BC800. Removal efficiency of 10 mg L-1 TPhP by BC800@nZVI/PS could reach to 96.9% with a high catalytic degradation kinetic rate of 0.0484 min-1 under optimal condition. The removal efficiency remained stable in a wide pH range (3-9) and moderate concentration of HA and coexistence of anions, demonstrated the promising of using BC800@nZVI/PS system to eliminate TPhP contamination. Results from the radical scavenging and electron paramagnetic resonance (EPR) experiments demonstrated radical pathway (i.e. SO4·- and HO·) and non-radical pathway via 1O2 both play important role in TPhP degradation. The TPhP degradation pathway was proposed based on the six degradation intermediates analyzed by LC-MS. This study illustrated the synergistic mechanism of adsorption and catalytic oxidation removal of TPhP by BC800@nZVI/PS system, and provided a cost-efficient approach for TPhP remediation.
Collapse
Affiliation(s)
- Liangzhong Li
- State Environmental Protection Key Laboratory of Environ Pollut Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Jianjun Li
- Longnan Ecology and Environment Bureau, Longnan, 746000, China
| | - Yile Yan
- State Environmental Protection Key Laboratory of Environ Pollut Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Ruixue Ma
- State Environmental Protection Key Laboratory of Environ Pollut Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Xiaohui Zhang
- State Environmental Protection Key Laboratory of Environ Pollut Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Jun Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yi Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Habib Ullah
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Lun Lu
- State Environmental Protection Key Laboratory of Environ Pollut Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| |
Collapse
|
129
|
Xie X, Zhu M, Xiao F, Xiang Y, Zhong H, Ao Z, Huang H. Double-Confined Ultrafine Cobalt Clusters for Efficient Peroxide Activation. JACS AU 2023; 3:1496-1506. [PMID: 37234109 PMCID: PMC10207103 DOI: 10.1021/jacsau.3c00147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
The construction of highly active catalysts presents great prospects, while it is a challenge for peroxide activation in advanced oxidation processes (AOPs). Herein, we facilely developed ultrafine Co clusters confined in mesoporous silica nanospheres containing N-doped carbon (NC) dots (termed as Co/NC@mSiO2) via a double-confinement strategy. Compared with the unconfined counterpart, Co/NC@mSiO2 exhibited unprecedented catalytic activity and durability for removal of various organic pollutants even in extremely acidic and alkaline environments (pH from 2 to 11) with very low Co ion leaching. Experiments and density functional theory (DFT) calculations proved that Co/NC@mSiO2 possessed strong peroxymonosulphate (PMS) adsorption and charge transfer capability, enabling the efficient O-O bond dissociation of PMS to HO• and SO4•- radicals. The strong interaction between Co clusters and mSiO2 containing NC dots contributed to excellent pollutant degradation performances by optimizing the electronic structures of Co clusters. This work represents a fundamental breakthrough in the design and understanding of the double-confined catalysts for peroxide activation.
Collapse
Affiliation(s)
- Xiaowen Xie
- School
of Environmental Science and Engineering, Sun Yat-Sen University, 132 East Waihuan Road, Guangzhou 510000, P. R. China
| | - Mingshan Zhu
- Guangdong
Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510000, P. R. China
| | - Fei Xiao
- School
of Environmental Science and Engineering, Sun Yat-Sen University, 132 East Waihuan Road, Guangzhou 510000, P. R. China
| | - Yongjie Xiang
- School
of Environmental Science and Engineering, Sun Yat-Sen University, 132 East Waihuan Road, Guangzhou 510000, P. R. China
| | - Huanran Zhong
- School
of Environmental Science and Engineering, Sun Yat-Sen University, 132 East Waihuan Road, Guangzhou 510000, P. R. China
| | - Zhimin Ao
- Advanced
Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, P. R. China
| | - Haibao Huang
- School
of Environmental Science and Engineering, Sun Yat-Sen University, 132 East Waihuan Road, Guangzhou 510000, P. R. China
| |
Collapse
|
130
|
Liu T, Xiao S, Li N, Chen J, Zhou X, Qian Y, Huang CH, Zhang Y. Water decontamination via nonradical process by nanoconfined Fenton-like catalysts. Nat Commun 2023; 14:2881. [PMID: 37208339 DOI: 10.1038/s41467-023-38677-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/09/2023] [Indexed: 05/21/2023] Open
Abstract
There is an urgent need to develop effective and sustainable solutions to reduce water pollution. Heterogeneous Fenton-like catalysts are frequently used to eliminate contaminants from water. However, the applicability of these catalysts is limited due to low availability of the reactive species (RS). Herein, nanoconfinement strategy was applied to encapsulate short-lived RS at nanoscale to boost the utilization efficiency of the RS in Fenton-like reactions. The nanoconfined catalyst was fabricated by assembling Co3O4 nanoparticles in carbon nanotube nanochannels to achieve exceptional reaction rate and excellent selectivity. Experiments collectively suggested that the degradation of contaminants was attributed to singlet oxygen (1O2). Density functional theory calculations demonstrated the nanoconfined space contributes to quantum mutation and alters the transition state to lower activation energy barriers. Simulation results revealed that the enrichment of contaminant on the catalyst reduced the migration distance and enhanced the utilization of 1O2. The synergy between the shell layer and core-shell structure further improved the selectivity of 1O2 towards contaminant oxidation in real waters. The nanoconfined catalyst is expected to provide a viable strategy for water pollution control.
Collapse
Affiliation(s)
- Tongcai Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Shaoze Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Nan Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Yajie Qian
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| |
Collapse
|
131
|
Lyu A, Wang Y, Cui H. Enhanced Chemiluminescence under the Nanoconfinement of Covalent-Organic Frameworks and Its Application in Sensitive Detection of Cancer Biomarkers. Anal Chem 2023; 95:7914-7923. [PMID: 37167195 DOI: 10.1021/acs.analchem.3c00372] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Chemiluminescence (CL) with intensive emission has been pursued for decades. It is still challenging to find a new mechanism to enhance CL. In this work, confinement-enhanced CL was developed for the first time by the coembedding of N-(aminobutyl)-N-(ethylisoluminol) (ABEI) and Co2+ into gold nanoparticle-modified covalent-organic frameworks (COFs). For the consideration of improving the hydrophilicity of COFs and facilitating subsequent biological modification, gold nanoparticles were first reduced on the COF surface (Au-COF) in situ without other reducing reagents. By virtue of the abundant imine bond and π backbones, ABEI and Co2+ were embedded in Au-COF synergistically through π-π stacking and coordination. The confinement of ABEI and Co2+ into Au-COF brought an over 20-fold enhancement of CL intensity compared to that of adding them to a liquid phase, which benefitted from the three aspects of the confinement effect, including the molecular enrichment effect, the physical constraint effect, and the molecular preorganization effect. As proof of concept, a lipid-protein dual-recognition sandwich strategy based on this CL-functionalized COF was developed for the detection of breast cancer cell line-derived extracellular vesicles (EVs) with four orders of magnitude improvement in the detection limit compared to ELISA. The successful distinction of human epidermal growth factor receptor 2 (HER2)-positive patients from HER2-negative patients indicated the great application potential of the proposed bioassay in HER2-positive breast cancer diagnosis. This work proposed a novel enhancement mechanism for CL based on crystalline porous materials, which provides a new perspective for the development of CL-functionalized materials for biosensors and bioassays.
Collapse
Affiliation(s)
- Aihua Lyu
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Yisha Wang
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Hua Cui
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
132
|
Song W, Xiao X, Wang G, Dong X, Zhang X. Highly efficient peroxymonosulfate activation on Fe-N-C catalyst via the collaboration of low-coordinated Fe-N structure and Fe nanoparticles for enhanced organic pollutant degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131596. [PMID: 37167867 DOI: 10.1016/j.jhazmat.2023.131596] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
Supporting Fe catalysts on N doped carbon (Fe-N-C) renders a promising way towards peroxymonosulfate (PMS) activation for water decontamination, but constructing high-efficiency Fe-N-C remains challenging due to the insufficient understanding of the structure-performance relationship. Herein, the N doped carbon nanotube supported Fe catalysts (Fe-NCNT) were prepared towards PMS activation for organic pollutants removal, in which the Fe-N coordination number and Fe species were tuned through changing the pyrolysis temperature to study their roles in PMS activation. Results showed increasing the pyrolysis temperature converted the Fe-N4 structure in Fe-NCNT to low-coordinated Fe-N3 structure and produced Fe nanoparticles (FeNP, encapsulated in carbon). The Fe-NCNT with Fe-N3 and FeNP exhibited a remarkably high specific activity (0.119 L min-1 m-2), which was 1.8 times higher than that of Fe-NCNT with only Fe-N4 and obviously outperformed those of the state-of-the-art PMS activators. The low-coordinated structure and FeNP promoted the PMS reduction on Fe2+ of Fe-Nx for •OH and SO4•- production, which served as major oxidants for pollutants degradation. The experimental results and theoretical calculation corroborated the low-coordinated structure and FeNP jointly enhanced the PMS adsorption and electron density on Fe center, which accelerated electron transfer from Fe center to PMS for radical production.
Collapse
Affiliation(s)
- Wen Song
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xinyu Xiao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Guanlong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Xiaoli Dong
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiufang Zhang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
133
|
Li J, Yan C, Sun D, Ma H, Wang G, Ma C, Hao J. Peroxymonosulfate activation by magnetic CoNi-MOF catalyst for degradation of organic dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27369-4. [PMID: 37148514 DOI: 10.1007/s11356-023-27369-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
In this work, Fe3O4/CoNi-MOF was synthesized by a simple solvothermal method. The catalytic performance of 0.2-Fe3O4/CoNi-MOF toward PMS activation was studied by degradation of 20 mg/L methylene blue (MB). The results indicated that 0.2-Fe3O4/CoNi-MOF had good catalytic ability, the removal rate of MB was 99.4% within 60 min with 125 mg/L PMS and 150 mg/L catalyst. Quenching experiment and electron paramagnetic resonance (EPR) analysis revealed that the singlet oxygen (1O2), superoxide radical (•O2-) and sulfate radical (SO4•-) played a crucial role in the catalytic degradation process. Meantime, mechanism of PMS activation by 0.2-Fe3O4/CoNi-MOF was proposed, the electrons donated by Fe2+ can also enhance the Co-Ni cycles. In conclusion, Fe3O4/CoNi-MOF composite catalyst has the advantages of simple preparation, excellent catalytic activity and reusability, which is an effective catalyst for water pollution control.
Collapse
Affiliation(s)
- Jiayi Li
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1# Qing Gong Yuan, Dalian, 116034, People's Republic of China
| | - Chumin Yan
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1# Qing Gong Yuan, Dalian, 116034, People's Republic of China
| | - Dedong Sun
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1# Qing Gong Yuan, Dalian, 116034, People's Republic of China.
| | - Hongchao Ma
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1# Qing Gong Yuan, Dalian, 116034, People's Republic of China
| | - Guowen Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1# Qing Gong Yuan, Dalian, 116034, People's Republic of China
| | - Chun Ma
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1# Qing Gong Yuan, Dalian, 116034, People's Republic of China
| | - Jun Hao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1# Qing Gong Yuan, Dalian, 116034, People's Republic of China
| |
Collapse
|
134
|
Li B, Cheng X, Zou R, Su Y, Zhang Y. Dynamic coordination of two-phase reactions in heterogeneous Fenton for selective removal of water pollutants. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131554. [PMID: 37146327 DOI: 10.1016/j.jhazmat.2023.131554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
The •OH-mediated heterogeneous Fenton reaction has been widely applied despite the limitations of low pollutant selectivity and unclear oxidation mechanism. Here we reported an adsorption-assisted heterogeneous Fenton process for the selective degradation of pollutants and systematically illustrated its dynamic coordination in two phases. The results showed that the selective removal was improved by (i) surface enrichment of target pollutants via electrostatic interactions including real adsorption and adsorption-assisted degradation and (ii) inducing the diffusion of H2O2 and pollutants from the bulk solution to the catalyst surface to trigger the homogeneous and surface heterogeneous Fenton reactions. Furthermore, surface adsorption was confirmed as a crucial but not necessary step for degradation. Mechanism studies demonstrated that •O2- and Fe3+/Fe2+ cycle increased •OH generation, which remained active in two phases within ⁓244 nm. These findings are critical for understanding the removal behavior of complex targets and expanding heterogeneous Fenton applications.
Collapse
Affiliation(s)
- Biao Li
- Department of Environmental and Resource Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Xiaolong Cheng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Rusen Zou
- Department of Environmental and Resource Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yanyan Su
- Carlsberg Research Laboratory, Bjerregaardsvej 5, Valby 2500, Denmark
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| |
Collapse
|
135
|
Niu L, Lin J, Chen W, Zhang Q, Yu X, Feng M. Ferrate(VI)/Periodate System: Synergistic and Rapid Oxidation of Micropollutants via Periodate/Iodate-Modulated Fe(IV)/Fe(V) Intermediates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7051-7062. [PMID: 37074844 DOI: 10.1021/acs.est.2c08965] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The presence of organic micropollutants in water sources worldwide has created a need for the development of effective and selective oxidation methods in complex water matrices. This study is the first report of the combination of ferrate(VI) (Fe(VI)) and periodate (PI) for synergistic, rapid, and selective elimination of multiple micropollutants. This combined system was found to outperform other Fe(VI)/oxidant systems (e.g., H2O2, peroxydisulfate, and peroxymonosulfate) in rapid water decontamination. Scavenging, probing, and electron spin resonance experiments showed that high-valent Fe(IV)/Fe(V) intermediates, rather than hydroxyl radicals, superoxide radicals, singlet oxygen, and iodyl radicals, played a dominant role in the process. Further, the generation of Fe(IV)/Fe(V) was evidenced directly by the 57Fe Mössbauer spectroscopic test. Surprisingly, the reactivity of PI toward Fe(VI) is rather low (0.8223 M-1 s-1) at pH 8.0, implying that PI was not acting as an activator. Besides, as the only iodine sink of PI, iodate also played an enhanced role in micropollutant abatement by Fe(VI) oxidation. Further experiments proved that PI and/or iodate might function as the Fe(IV)/Fe(V) ligands, causing the utilization efficiency of Fe(IV)/Fe(V) intermediates for pollutant oxidation to outcompete their auto-decomposition. Finally, the oxidized products and plausible transformation pathways of three different micropollutants by single Fe(VI) and Fe(VI)/PI oxidation were characterized and elucidated. Overall, this study proposed a novel selective oxidation strategy (i.e., Fe(VI)/PI system) that could efficiently eliminate water micropollutants and clarified the unexpected interactions between PI/iodate and Fe(VI) for accelerated oxidation.
Collapse
Affiliation(s)
- Lijun Niu
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Jiang Lin
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Wenzheng Chen
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Qian Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| |
Collapse
|
136
|
Yan H, Lai C, Liu S, Wang D, Zhou X, Zhang M, Li L, Li X, Xu F, Nie J. Metal-carbon hybrid materials induced persulfate activation: Application, mechanism, and tunable reaction pathways. WATER RESEARCH 2023; 234:119808. [PMID: 36889085 DOI: 10.1016/j.watres.2023.119808] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/07/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Proper wastewater treatment has always been the focus of human society, and many researchers have been working to find efficient and stable wastewater treatment technologies. Persulfate-based advanced oxidation processes (PS-AOPs) mainly rely on persulfate activation to form reactive species for pollutants degradation and are considered to be one of the most effective wastewater treatment technologies. Recently, metal-carbon hybrid materials have been diffusely used for PS activation because of their high stability, abundant active sites, and easy applicability. Metal-carbon hybrid materials can successfully overcome the shortcomings of onefold metal catalysts and carbon catalysts by combing the complementary advantages of the two components. This article reviews recent studies about metal-carbon hybrid materials-mediated PS-AOPs for wastewater decontamination. The interactions of metal and carbon materials, as well as the active sites of metal-carbon hybrid materials, are introduced first. Then, the application and mechanism of metal-carbon hybrid materials-mediated PS activation are presented in detail. Lastly, the modulation methods of metal-carbon hybrid materials and their tunable reaction pathways were discussed. The prospect of future development directions and challenges is proposed to facilitate metal-carbon hybrid materials-mediated PS-AOPs to take a step further for practical application.
Collapse
Affiliation(s)
- Huchuan Yan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, China.
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, China.
| | - Xuerong Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, China
| | - Xiaopei Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, China
| | - Fuhang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, China
| | - Jinxin Nie
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, China
| |
Collapse
|
137
|
Liu L, Wang A, Hu J, Hou H, Liang S, Yang J. Peroxymonosulfate activated by natural porphyrin derivatives for rapid degradation of organic pollutants via singlet oxygen and high-valent iron-oxo species. CHEMOSPHERE 2023; 331:138783. [PMID: 37119928 DOI: 10.1016/j.chemosphere.2023.138783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
The activation of peroxymonosulfate (PMS) by sodium ferric chlorophyllin (SFC), a natural porphyrin derivative extracted from chlorophyll-rich substances, was systematically investigated for facile degradation of bisphenol A (BPA). SFC/PMS is capable of degrading 97.5% of BPA in the first 10 min with the initial BPA concentration of 20 mg/L and pH = 3, whereas conventional Fe2+/PMS could only remove 22.6% of BPA under identical conditions. It demonstrates a prominent flexibility to a broad pH range of 3-11 with complete pollutant degradation. A remarkable tolerance toward concomitant high concentration of inorganic anions (100 mM) was also observed, among which (bi)carbonates can even accelerate the degradation. The nonradical oxidation species, including high-valent iron-oxo porphyrin species and 1O2, are identified as dominant species. Particularly, the generation and participation of 1O2 in the reaction is evidenced by experimental and theoretical methods, which is vastly different from the previous study. The specific activation mechanism is unveiled by density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) simulations. The results shed light on effective PMS activation by iron (III) porphyrin and the proposed natural porphyrin derivative would be a promising candidate for efficient abatement of recalcitrant pollutants toward complicated aqueous media in wastewater treatment.
Collapse
Affiliation(s)
- Lu Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Technology Research Center of Water Supply Safety and Pollution Control, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Anqi Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Technology Research Center of Water Supply Safety and Pollution Control, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Technology Research Center of Water Supply Safety and Pollution Control, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China.
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Technology Research Center of Water Supply Safety and Pollution Control, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Technology Research Center of Water Supply Safety and Pollution Control, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Technology Research Center of Water Supply Safety and Pollution Control, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| |
Collapse
|
138
|
Yi H, Almatrafi E, Ma D, Huo X, Qin L, Li L, Zhou X, Zhou C, Zeng G, Lai C. Spatial confinement: A green pathway to promote the oxidation processes for organic pollutants removal from water. WATER RESEARCH 2023; 233:119719. [PMID: 36801583 DOI: 10.1016/j.watres.2023.119719] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/27/2022] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Organic pollutants removal from water is pressing owing to the great demand for clean water. Oxidation processes (OPs) are the commonly used method. However, the efficiency of most OPs is limited owing to the poor mass transfer process. Spatial confinement is a burgeoning way to solve this limitation by use of nanoreactor. Spatial confinement in OPs would (i) alter the transport characteristics of protons and charges; (ii) bring about molecular orientation and rearrangement; (iii) cause the dynamic redistribution of active sites in catalyst and reduce the entropic barrier that is high in unconfined space. So far, spatial confinement has been utilized for various OPs, such as Fenton, persulfate, and photocatalytic oxidation. A comprehensive summary and discussion on the fundamental mechanisms of spatial confinement mediated OPs is needed. Herein, the application, performance and mechanisms of spatial confinement mediated OPs are overviewed firstly. Subsequently, the features of spatial confinement and their effects on OPs are discussed in detail. Furthermore, environmental influences (including environmental pH, organic matter and inorganic ions) are studied with analyzing their intrinsic connection with the features of spatial confinement in OPs. Lastly, challenges and future development direction of spatial confinement mediated OPs are proposed.
Collapse
Affiliation(s)
- Huan Yi
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Eydhah Almatrafi
- Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Dengsheng Ma
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China
| | - Xiuqing Huo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China
| | - Xuerong Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
139
|
Lei Y, Yu Y, Lei X, Liang X, Cheng S, Ouyang G, Yang X. Assessing the Use of Probes and Quenchers for Understanding the Reactive Species in Advanced Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5433-5444. [PMID: 36930043 DOI: 10.1021/acs.est.2c09338] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Advanced oxidation processes (AOPs) are increasingly applied in water and wastewater treatment. Understanding the role of reactive species using probes and quenchers is one of the main requirements for good process design. However, much fundamental kinetic data for the reactions of probes and quenchers with reactive species is lacking, probably leading to inappropriate probe and quencher selection and dosing. In this work, second-order rate constants for over 150 reactions of probes and quenchers with reactive species such as •OH, SO4•-, and Cl• and chemical oxidants such as free chlorine and persulfate were determined. Some previously ill-quantified reactions (e.g., furfuryl alcohol and methyl phenyl sulfoxide reactions with certain chemical oxidants, nitrobenzene and 1,4-dioxane reactions with certain halogen radicals) were found to be kinetically favorable. The selection of specific probes can be guided by the improved kinetic database. The criteria for properly choosing dosages of probes and quenchers were proposed along with a procedure for quantifying reactive species free of interference from probe addition. The limitations of probe and quencher approaches were explicated, and possible solutions (e.g., the combination with other tools) were proposed. Overall, the kinetic database and protocols provided in this work benefit future research in understanding the radical chemistry in AOPs as well as other radical-involved processes.
Collapse
Affiliation(s)
- Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| | - Yafei Yu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xi Liang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - ShuangShuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Gangfeng Ouyang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
140
|
Li Z, Ma S, Sang L, Qu G, Zhang T, Xu B, Jin W, Zhao Y. Enhanced arsenite removal from water using zirconium-ferrocene MOFs coupled with peroxymonosulfate:oxidation and multi-sites adsorption mechanism. CHEMOSPHERE 2023; 319:138044. [PMID: 36736837 DOI: 10.1016/j.chemosphere.2023.138044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/08/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The efficient removal of arsenite (As(III)) poses a significant challenge to traditional water treatment technologies due to its high toxicity and mobility. In this work, multifunctional Zirconium-Ferrocene Metal Organic Framework (ZrFc-MOF) fabricated with redox-active 1,1-ferrocene dicarboxylic acid ligands and Zr4+ precursors were elaborated to achieve remarkably enhanced As(III) removal via activation by peroxymonosulfate (PMS). The adsorption affinity coefficient increased from 0.097 to 2.035 L mg-1 and the maximum adsorption capacity increased from 59.79 to 111.34 mg g-1 compared with that without PMS. Besides the conventional homogeneous PMS oxidation and the following adsorption through Zr-O clusters of ZrFc-MOFs, the enhanced As(III) removal synergistic combines the oxidation mechanism of As(III) by reactive oxygen species (•OH, SO4•-, O2•- and 1O2) formed in Ferrocene (Fc) activating PMS process with the simultaneous formed extra adsorption sites of Ferrocenium (Fc+). PMS also help ZrFc-MOF to avoid destruction in harsh alkaline condition, making the effluent in this advanced treatment meet the World Health Organization (WHO) threshold of 10 μg L-1 over a wide range of initial pH (2-11) with high selectivity and durability. These results indicate that this novel Fc-based MOFs activating PMS system has potential applicability for As(III) in oxidation and selectively capturing in the water environment.
Collapse
Affiliation(s)
- Zongchen Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Shengjia Ma
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Linfeng Sang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Guojuan Qu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Tao Zhang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Bin Xu
- School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Wei Jin
- School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yaping Zhao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
141
|
Wang Q, Guan Z, Xiong Y, Li D. Nanoconfinement-enhanced Fenton-like polymerization via hollow hetero-shell carbon for reducing carbon emissions in organic wastewater purification. J Colloid Interface Sci 2023; 634:231-242. [PMID: 36535161 DOI: 10.1016/j.jcis.2022.12.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Lower reaction speed and excessive oxidant inputs impede the removal of contaminants from water via the advanced oxidation processes based on peroxymonosulfate. Herein, we report a new confined catalysis paradigm via the hollow hetero-shell structured CN@C (H-CN@C), which permits effective decontamination through polymerization with faster reaction rates and lower oxidant dosage. The confined space structures regulated the CN and CO and electron density of the inner shell, which increased the electron transfer rate and mass transfer rate. As a result, CN in H-CN@C-10 reacted with peroxymonosulfate in preference to CO to generate singlet oxygen, improving the second-order reaction kinetics by 503 times. The identification of oxidation products implied that bisphenol AF could effectively remove by polymerization, which could reduce carbon dioxide emissions. These favorable properties make the nanoconfined catalytic polymerization of contaminants a remarkably promising nanocatalytic water purification technology.
Collapse
Affiliation(s)
- Qihui Wang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China
| | - Zeyu Guan
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China
| | - Yi Xiong
- School of Mathematical & Physical Sciences, Department of Microelectronics, Wuhan, Hubei 430073, China
| | - Dongya Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China; Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, PR China.
| |
Collapse
|
142
|
Deng F, Olvera-Vargas H, Zhou M, Qiu S, Sirés I, Brillas E. Critical Review on the Mechanisms of Fe 2+ Regeneration in the Electro-Fenton Process: Fundamentals and Boosting Strategies. Chem Rev 2023; 123:4635-4662. [PMID: 36917618 DOI: 10.1021/acs.chemrev.2c00684] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
This review presents an exhaustive overview on the mechanisms of Fe3+ cathodic reduction within the context of the electro-Fenton (EF) process. Different strategies developed to improve the reduction rate are discussed, dividing them into two categories that regard the mechanistic feature that is promoted: electron transfer control and mass transport control. Boosting the Fe3+ conversion to Fe2+ via electron transfer control includes: (i) the formation of a series of active sites in both carbon- and metal-based materials and (ii) the use of other emerging strategies such as single-atom catalysis or confinement effects. Concerning the enhancement of Fe2+ regeneration by mass transport control, the main routes involve the application of magnetic fields, pulse electrolysis, interfacial Joule heating effects, and photoirradiation. Finally, challenges are singled out, and future prospects are described. This review aims to clarify the Fe3+/Fe2+ cycling process in the EF process, eventually providing essential ideas for smart design of highly effective systems for wastewater treatment and valorization at an industrial scale.
Collapse
Affiliation(s)
- Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China.,Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Hugo Olvera-Vargas
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco S/N, Col. Centro, Temixco, Morelos CP 62580, México
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Shan Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
143
|
Ren T, Yin M, Chen S, Ouyang C, Huang X, Zhang X. Single-Atom Fe-N 4 Sites for Catalytic Ozonation to Selectively Induce a Nonradical Pathway toward Wastewater Purification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3623-3633. [PMID: 36790324 DOI: 10.1021/acs.est.2c07653] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nonradical oxidation has been determined to be a promising pathway for the degradation of organic pollutants in heterogeneous catalytic ozonation (HCO). However, the bottlenecks are the rational design of catalysts to selectively induce nonradicals and the interpretation of detailed nonradical generation mechanisms. Herein, we propose a new HCO process based on single-atom iron catalysts, in which Fe-N4 sites anchored on the carbon skeleton exhibited outstanding catalytic ozonation activity and stability for the degradation of oxalic acid (OA) and p-hydroxybenzoic acid (pHBA) as well as the advanced treatment of a landfill leachate secondary effluent. Unlike traditional radical oxidation, nonradical pathways based on surface-adsorbed atomic oxygen (*Oad) and singlet oxygen (1O2) were identified. A substrate-dependent behavior was also observed. OA was adsorbed on the catalyst surface and mainly degraded by *Oad, while pHBA was mostly removed by O3 and 1O2 in the bulk solution. Density functional theory calculations and molecular dynamics simulations revealed that one terminal oxygen atom of ozone preferred bonding with the central iron atom of Fe-N4, subsequently inducing the cleavage of the O-O bond near the catalyst surface to produce *Oad and 1O2. These findings highlight the structural design of an ozone catalyst and an atomic-level understanding of the nonradical HCO process.
Collapse
Affiliation(s)
- Tengfei Ren
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Mengxi Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Shuning Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Changpei Ouyang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
144
|
Duan L, Jiang H, Wu W, Lin D, Yang K. Defective iron based metal-organic frameworks derived from zero-valent iron for highly efficient fenton-like catalysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130426. [PMID: 36462241 DOI: 10.1016/j.jhazmat.2022.130426] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Introducing crystal defects into iron based metal-organic frameworks (Fe-MOFs) is regarded as a promising strategy to enhance Fenton-like performance. However, developing a facile and effective strategy to construct defective Fe-MOFs as highly efficient Fenton-like catalyst is still a challenge. Herein, MIL-100(Fe) (Def-MIL-100(Fe)) with missing ligands defects was synthesized by a simple heterogeneous reaction using zero-valent iron. The bisphenol A degradation efficiency in the Def-MIL-100(Fe)/H2O2 system reached up to 91.26% within 10 min at pH 4 with a low catalyst dosage of 0.05 g/L, while the perfect MIL-100(Fe) has almost no Fenton-like performance. It was observed that missing ligands defects in the Def-MIL-100(Fe) play a key role in the Fenton-like reaction. The missing ligands defects could increase the Lewis acidity for fast H2O2 adsorption and accelerate the electron transfer between FeII and FeIII cycling, leading to faster and more·OH generation. Moreover, the missing ligands defects could promote the mass transfer for improving·OH utilization efficiency. This work provides a novel strategy to construct defective Fe-MOFs as highly efficient Fenton-like catalyst to degrade organic pollutants in water.
Collapse
Affiliation(s)
- Limin Duan
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China
| | - Huihao Jiang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China
| | - Wenhao Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China.
| |
Collapse
|
145
|
Zuo S, Ding Y, Wu L, Yang F, Guan Z, Ding S, Xia D, Li X, Li D. Revealing the synergistic mechanism of the generation, migration and nearby utilization of reactive oxygen species in FeOCl-MOF yolk-shell reactors. WATER RESEARCH 2023; 231:119631. [PMID: 36682234 DOI: 10.1016/j.watres.2023.119631] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/13/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Fenton-like reactions is attractive for environmental pollutant control, but there is an urgent need to improve the utilisation of hydroxyl radicals (·OH) in practical applications. Here, for the first time, FeOCl is encapsulated within a Metal Organic Framework (MOF) (Materials of Institut Lavoisier-101 (MIL-101(Fe))) as a yolk-shell reactor (FeOCl-MOF) by in situ growth. The interaction between FeOCl and the MOF not only increases the electron density of FeOCl, but also shifts down the d-band centre. The increase of electron density could promote the efficient conversion of H2O2 to ·OH catalysed by FeOCl. And the shift of the d-band centre to the lower energy level facilitates the desorption of ·OH. Experimental and theoretical calculations showed that the high catalytic performance was attributed to the unique yolk-shell structure that concentrates the catalytic and adsorption sites in a confinement space, as well as the improved electron density and d-band centre for efficient generation, rapid desorption and utilized nearby of ·OH. Which is utilized nearby by the organic pollutants adsorbed by the surface MOF, thus greatly improving the effective conversion of H2O2 and the ·OH utilisation (from 25.5% (Fe2+/H2O2) to 77.1% (FeOCl-MOF/H2O2)). In addition, a catalytic reactor was constructed to achieve continuous efficient treatment of organic pollutants. This work provides a Fenton-like microreactor for efficient generation, rapid desorption, and nearby utilization of ·OH to improve future technologies for deep water purification in complex environments.
Collapse
Affiliation(s)
- Shiyu Zuo
- School of Environment and Energy, South China University of Technology, Guangzhou 430073, PR China
| | - Yichen Ding
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China
| | - Li Wu
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China
| | - Fan Yang
- School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430073, PR China
| | - Zeyu Guan
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China
| | - Su Ding
- College of Environmental and Bioengineering, Henan University of Engineering, Zhengzhou 451191, PR China
| | - Dongsheng Xia
- Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, PR China
| | - Xiaohu Li
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Dongya Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China; Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, PR China..
| |
Collapse
|
146
|
Liu Q, Qie H, Sun Z, Zhen Y, Wu L, Zhao Y, Ma J. Elevated degradation of di-n-butyl phthalate by activating peroxymonosulfate over GO-CoFe2O4 composites: Synergistic effects and mechanisms. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
147
|
Shang Y, Kan Y, Xu X. Stability and regeneration of metal catalytic sites with different sizes in Fenton-like system. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108278] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
148
|
Natural polyphenol-based nanoparticles for the treatment of iron-overload disease. J Control Release 2023; 356:84-92. [PMID: 36813037 DOI: 10.1016/j.jconrel.2023.02.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Iron-overload diseases are characterized by a variety of symptoms resulting from excessive iron stores, oxidative stress and consequent end-organ damage. Deferoxamine (DFO) is an iron-chelator that can protect tissues from iron-induced damage. However, its application is limited due to its low stability and weak free radical scavenging ability. Herein, natural polyphenols have been employed to enhance the protective efficacy of DFO through the construction of supramolecular dynamic amphiphiles, which self-assemble into spherical nanoparticles with excellent scavenging capacity against both iron (III) and reactive oxygen species (ROS). This class of natural polyphenols-assisted nanoparticles was found to exhibit enhanced protective efficacy both in vitro in an iron-overload cell model and in vivo in an intracerebral hemorrhage model. This strategy of constructing natural polyphenols- assisted nanoparticles could benefit the treatment of iron-overload related diseases with excessive accumulation of toxic or harmful substances.
Collapse
|
149
|
Chen X, Fu W, Yang Z, Yang Y, Li Y, Huang H, Zhang X, Pan B. Enhanced H 2O 2 utilization efficiency in Fenton-like system for degradation of emerging contaminants: Oxygen vacancy-mediated activation of O 2. WATER RESEARCH 2023; 230:119562. [PMID: 36603306 DOI: 10.1016/j.watres.2022.119562] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/25/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Hydrogen peroxide (H2O2) is the most commonly used oxidant in advanced oxidation processes for emerging organic contaminant degradation. However, the activation of H2O2 to generate reactive oxygen species is always accompanied by O2 generation resulting in H2O2 waste. Here, we prepare a Ti doped Mn3O4/Fe3O4 ternary catalyst (Ti-Mn3O4/Fe3O4) to create abundant oxygen vacancies (OVs), which yields electron delocalization impacts on enhancing the electrical conductivity, accelerating the activation of O2 to produce H2O2. In Ti-Mn3O4/Fe3O4/H2O2 system, OVs-mediated O2/O2•-/H2O2 redox cycles trigger the activation of locally generated O2, boost the regeneration of O2•- and on site produce H2O2 for replenishment. This leads to a 100% removal of tiamulin in 30 min at an unprecedented H2O2 utilization efficiency of 96.0%, which is 24 folds higher than that with Fe3O4/H2O2. Importantly, further integration of Ti-Mn3O4/Fe3O4 catalysts into membrane filtration achieved high rejections of tiamulin (> 83.9%) from real surface water during a continuous 12-h operation, demonstrating broad pH adaptability, excellent catalytic stability and leaching resistance. This work demonstrates a feasible strategy for developing OVs-rich catalysts for improving H2O2 utilization efficiency via activation of locally generated oxygen during the Haber-Weiss reaction.
Collapse
Affiliation(s)
- Xixi Chen
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Wanyi Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| | - Zhichao Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yulong Yang
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yanjun Li
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Hui Huang
- Shenzhen Shenshui Longhua Water Co., Ltd., Shenzhen, 518000, China
| | - Xihui Zhang
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
150
|
Ly QV, Cui L, Asif MB, Khan W, Nghiem LD, Hwang Y, Zhang Z. Membrane-based nanoconfined heterogeneous catalysis for water purification: A critical review ✰. WATER RESEARCH 2023; 230:119577. [PMID: 36638735 DOI: 10.1016/j.watres.2023.119577] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Progress in heterogeneous advanced oxidation processes (AOPs) is hampered by several issues including mass transfer limitation, limited diffusion of short-lived reactive oxygen species (ROS), aggregation of nanocatalysts, and loss of nanocatalysts to treated water. These issues have been addressed in recent studies by executing the heterogeneous AOPs in confinement, especially in the nanopores of catalytic membranes. Under nanoconfinement (preferably at the length of less than 25 nm), the oxidant-nanocatalyst interaction, ROS-micropollutant interaction and diffusion of ROS have been observed to significantly improve, which results in enhanced ROS yield and mass transfer, improved reaction kinetics and reduced matrix effect as compared to conventional heterogenous AOP configuration. Given the significance of nanoconfinement effect, this study presents a critical review of the current status of membrane-based nanoconfined heterogeneous catalysis system for the first time. A succinct overview of the nanoconfinement concept in the context of membrane-based nanofluidic platforms is provided to elucidate the theoretical and experimental findings related to reaction kinetics, reaction mechanisms and molecule transport in membrane-based nanoconfined AOPs vs. conventional AOPs. In addition, strategies to construct membrane-based nanoconfined catalytic systems are explained along with conflicting arguments/opinions, which provides critical information on the viability of these strategies and future research directions. To show the desirability and applicability of membrane-based nanoconfined catalysis systems, performance governing factors including operating conditions and water matrix effect are particularly focused. Finally, this review presents a systematic account of the opportunities and technological constraints in the development of membrane-based nanoconfined catalytic platform to realize effective micropollutant elimination in water treatment.
Collapse
Affiliation(s)
- Quang Viet Ly
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China; Department of Environmental Engineering, Seoul National University of Science and Technology, 01811 Seoul, Republic of Korea
| | - Lele Cui
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Muhammad Bilal Asif
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Waris Khan
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Yuhoon Hwang
- Department of Environmental Engineering, Seoul National University of Science and Technology, 01811 Seoul, Republic of Korea
| | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|