101
|
Joshi V, Amanullah A, Upadhyay A, Mishra R, Kumar A, Mishra A. A Decade of Boon or Burden: What Has the CHIP Ever Done for Cellular Protein Quality Control Mechanism Implicated in Neurodegeneration and Aging? Front Mol Neurosci 2016; 9:93. [PMID: 27757073 PMCID: PMC5047891 DOI: 10.3389/fnmol.2016.00093] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/20/2016] [Indexed: 01/13/2023] Open
Abstract
Cells regularly synthesize new proteins to replace old and abnormal proteins for normal cellular functions. Two significant protein quality control pathways inside the cellular milieu are ubiquitin proteasome system (UPS) and autophagy. Autophagy is known for bulk clearance of cytoplasmic aggregated proteins, whereas the specificity of protein degradation by UPS comes from E3 ubiquitin ligases. Few E3 ubiquitin ligases, like C-terminus of Hsc70-interacting protein (CHIP) not only take part in protein quality control pathways, but also plays a key regulatory role in other cellular processes like signaling, development, DNA damage repair, immunity and aging. CHIP targets misfolded proteins for their degradation through proteasome, as well as autophagy; simultaneously, with the help of chaperones, it also regulates folding attempts for misfolded proteins. The broad range of CHIP substrates and their associations with multiple pathologies make it a key molecule to work upon and focus for future therapeutic interventions. E3 ubiquitin ligase CHIP interacts and degrades many protein inclusions formed in neurodegenerative diseases. The presence of CHIP at various nodes of cellular protein-protein interaction network presents this molecule as a potential candidate for further research. In this review, we have explored a wide range of functionality of CHIP inside cells by a detailed presentation of its co-chaperone, E3 and E4 enzyme like functions, with central focus on its protein quality control roles in neurodegenerative diseases. We have also raised many unexplored but expected fundamental questions regarding CHIP functions, which generate hopes for its future applications in research, as well as drug discovery.
Collapse
Affiliation(s)
- Vibhuti Joshi
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur Rajasthan, India
| | - Ayeman Amanullah
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur Rajasthan, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur Rajasthan, India
| | - Ribhav Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur Rajasthan, India
| | - Amit Kumar
- Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology Indore Madhya Pradesh, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur Rajasthan, India
| |
Collapse
|
102
|
Mitra S, Ghosh B, Gayen N, Roy J, Mandal AK. Bipartite Role of Heat Shock Protein 90 (Hsp90) Keeps CRAF Kinase Poised for Activation. J Biol Chem 2016; 291:24579-24593. [PMID: 27703006 DOI: 10.1074/jbc.m116.746420] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/21/2016] [Indexed: 01/27/2023] Open
Abstract
CRAF kinase maintains cell viability, growth, and proliferation by participating in the MAPK pathway. Unlike BRAF, CRAF requires continuous chaperoning by Hsp90 to retain MAPK signaling. However, the reason behind the continuous association of Hsp90 with CRAF is still elusive. In this study, we have identified the bipartite role of Hsp90 in chaperoning CRAF kinase. Hsp90 facilitates Ser-621 phosphorylation of CRAF and prevents the kinase from degradation. Co-chaperone Cdc37 assists in this phosphorylation event. However, after folding, the stability of the kinase becomes insensitive to Hsp90 inhibition, although the physical association between Hsp90 and CRAF remains intact. We observed that overexpression of Hsp90 stimulates MAPK signaling by activating CRAF. The interaction between Hsp90 and CRAF is substantially increased under an elevated level of cellular Hsp90 and in the presence of either active Ras (RasV12) or EGF. Surprisingly, enhanced binding of Hsp90 to CRAF occurs prior to the Ras-CRAF association and facilitates actin recruitment to CRAF for efficient Ras-CRAF interaction, which is independent of the ATPase activity of Hsp90. However, monomeric CRAF (CRAFR401H) shows abrogated interaction with both Hsp90 and actin, thereby affecting Hsp90-dependent CRAF activation. This finding suggests that stringent assemblage of Hsp90 keeps CRAF kinase equipped for participating in the MAPK pathway. Thus, the role of Hsp90 in CRAF maturation and activation acts as a limiting factor to maintain the function of a strong client like CRAF kinase.
Collapse
Affiliation(s)
- Shahana Mitra
- From the Division of Molecular Medicine, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Baijayanti Ghosh
- From the Division of Molecular Medicine, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Nilanjan Gayen
- From the Division of Molecular Medicine, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Joydeep Roy
- From the Division of Molecular Medicine, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Atin K Mandal
- From the Division of Molecular Medicine, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, India.
| |
Collapse
|
103
|
Zhang Y, Zhang J, Liu C, Du S, Feng L, Luan X, Zhang Y, Shi Y, Wang T, Wu Y, Cheng W, Meng S, Li M, Liu H. Neratinib induces ErbB2 ubiquitylation and endocytic degradation via HSP90 dissociation in breast cancer cells. Cancer Lett 2016; 382:176-185. [PMID: 27597738 DOI: 10.1016/j.canlet.2016.08.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 12/22/2022]
Abstract
Receptor tyrosine kinase ErbB2/HER2 is frequently observed to be overexpressed in human cancers, leading to over activation of downstream signaling modules. HER2 positive is a major type of breast cancer for which ErbB2 targeting is already proving to be an effective therapeutic strategy. Apart from antibodies against ErbB2, the small molecule tyrosine kinase inhibitor lapatinib has had successful clinical outcomes, and other inhibitors such as neratinib are currently undergoing clinical investigations. In this study we report the effects of lapatinib and neratinib on the mRNA and protein levels of the ErbB2 receptor. We provide evidence that neratinib-induced down regulation of ErbB2 occurs through ubiquitin-mediated endocytic sorting and lysosomal degradation. At the mechanistic level, neratinib treatment leads to HSP90 release from ErbB2 and its subsequent ubiquitylation and endocytic degradation. Our findings provide novel insights into the mechanism of ErbB2 inhibition by neratinib.
Collapse
Affiliation(s)
- Yingqiu Zhang
- Department of Oncology, Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jinrui Zhang
- Department of Oncology, Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Congcong Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China; Cancer Biotherapy & Translational Medicine Center of Liaoning Province, Dalian Medical University, Dalian, China
| | - Sha Du
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Lu Feng
- Department of Pathology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xuelin Luan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yayun Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yulin Shi
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Taishu Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yue Wu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wei Cheng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Songshu Meng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Man Li
- Department of Oncology, Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| | - Han Liu
- Department of Oncology, Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China; Cancer Biotherapy & Translational Medicine Center of Liaoning Province, Dalian Medical University, Dalian, China.
| |
Collapse
|
104
|
Ding G, Chen P, Zhang H, Huang X, Zang Y, Li J, Li J, Wong J. Regulation of Ubiquitin-like with Plant Homeodomain and RING Finger Domain 1 (UHRF1) Protein Stability by Heat Shock Protein 90 Chaperone Machinery. J Biol Chem 2016; 291:20125-35. [PMID: 27489107 DOI: 10.1074/jbc.m116.727214] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Indexed: 01/07/2023] Open
Abstract
As a protein critical for DNA maintenance methylation and cell proliferation, UHRF1 is frequently highly expressed in various human cancers and is considered as a drug target for cancer therapy. In a high throughput screening for small molecules that induce UHRF1 protein degradation, we have identified the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG). We present evidence that UHRF1 interacts with HSP90 chaperone complex and is a novel HSP90 client protein. Pharmacological inhibition of HSP90 with 17-AAG or 17-dimethylaminoethylamino-17-demethoxygeldanamycin results in UHRF1 ubiquitination and proteasome-dependent degradation. Interestingly, this HSP90 inhibitor-induced UHRF1 degradation is independent of CHIP and CUL5, two previously identified ubiquitin E3 ligases for HSP90 client proteins. In addition, this degradation is dependent neither on the intrinsic E3 ligase of UHRF1 nor on the E3 ligase SCF(β-TRCP) that has been implicated in regulation of UHRF1 stability. We also provide evidence that HSP90 inhibitors may suppress cancer cell proliferation in part through its induced UHRF1 degradation. Taken together, our results identify UHRF1 as a novel HSP90 client protein and shed light on the regulation of UHRF1 stability and function.
Collapse
Affiliation(s)
- Guangjin Ding
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241
| | - Peilin Chen
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241
| | - Hui Zhang
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241
| | - Xiaojie Huang
- the National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, and
| | - Yi Zang
- the National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, and
| | - Jiwen Li
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241
| | - Jia Li
- the National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, and
| | - Jiemin Wong
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, the Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
105
|
Szymanska M, Fosdahl AM, Nikolaysen F, Pedersen MW, Grandal MM, Stang E, Bertelsen V. A combination of two antibodies recognizing non-overlapping epitopes of HER2 induces kinase activity-dependent internalization of HER2. J Cell Mol Med 2016; 20:1999-2011. [PMID: 27469139 PMCID: PMC5020627 DOI: 10.1111/jcmm.12899] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/06/2016] [Indexed: 12/14/2022] Open
Abstract
The human epidermal growth factor receptor 2 (HER2/ErbB2) is overexpressed in a number of human cancers. HER2 is the preferred heterodimerization partner for other epidermal growth factor receptor (EGFR) family members and is considered to be resistant to endocytic down-regulation, properties which both contribute to the high oncogenic potential of HER2. Antibodies targeting members of the EGFR family are powerful tools in cancer treatment and can function by blocking ligand binding, preventing receptor dimerization, inhibiting receptor activation and/or inducing receptor internalization and degradation. With respect to antibody-induced endocytosis of HER2, various results are reported, and the effect seems to depend on the HER2 expression level and whether antibodies are given as individual antibodies or as mixtures of two or more. In this study, the effect of a mixture of two monoclonal antibodies against non-overlapping epitopes of HER2 was investigated with respect to localization and stability of HER2. Individual antibodies had limited effect, but the combination of antibodies induced internalization and degradation of HER2 by multiple endocytic pathways. In addition, HER2 was phosphorylated and ubiquitinated upon incubation with the antibody combination, and the HER2 kinase activity was found to be instrumental in antibody-induced HER2 down-regulation.
Collapse
Affiliation(s)
- Monika Szymanska
- Department of Pathology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anne M Fosdahl
- Department of Pathology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Filip Nikolaysen
- Department of Pathology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | - Espen Stang
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Vibeke Bertelsen
- Department of Pathology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
106
|
Chung C, Yoo G, Kim T, Lee D, Lee CS, Cha HR, Park YH, Moon JY, Jung SS, Kim JO, Lee JC, Kim SY, Park HS, Park M, Park DI, Lim DS, Jang KW, Lee JE. The E3 ubiquitin ligase CHIP selectively regulates mutant epidermal growth factor receptor by ubiquitination and degradation. Biochem Biophys Res Commun 2016; 479:152-158. [PMID: 27475501 DOI: 10.1016/j.bbrc.2016.07.111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022]
Abstract
Somatic mutation in the tyrosine kinase domain of epidermal growth factor receptor (EGFR) is a decisive factor for the therapeutic response to EGFR tyrosine kinase inhibitors (EGFR-TKIs) in lung adenocarcinoma. The stability of mutant EGFR is maintained by various regulators, including heat shock protein 90 (Hsp90). The C terminus of Hsc70-interacting protein (CHIP) is a Hsp70/Hsp90 co-chaperone and exhibits E3 ubiquitin ligase activity. The high-affinity Hsp90-CHIP complex recognizes and selectively regulates their client proteins. CHIP also works with its own E3 ligase activity independently of Hsp70/Hsp90. Here, we investigated the role of CHIP in regulating EGFR in lung adenocarcinoma and also evaluated the specificity of CHIP's effects on mutant EGFR. In HEK 293T cells transfected with either WT EGFR or EGFR mutants, the overexpression of CHIP selectively decreased the expression of certain EGFR mutants (G719S, L747_E749del A750P and L858R) but not WT EGFR. In a pull-down assay, CHIP selectively interacted with EGFR mutants and simultaneously induced their ubiquitination and proteasomal degradation. The expressions of mutant EGFR in PC9 and H1975 were diminished by CHIP, while the expression of WT EGFR in A549 was nearly not affected. In addition, CHIP overexpression inhibited cell proliferation and xenograft's tumor growth of EGFR mutant cell lines, but not WT EGFR cell lines. EGFR mutant specific ubiquitination by CHIP may provide a crucial regulating mechanism for EGFR in lung adenocarcinoma. Our results suggest that CHIP can be novel therapeutic target for overcoming the EGFR TKI resistance.
Collapse
Affiliation(s)
- Chaeuk Chung
- Cancer Institute of Chungnam National University, Daejeon 35015, South Korea; Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Geon Yoo
- School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Tackhoon Kim
- National Creative Research Center for Cell Division and Differentiation, Department of Biological Sciences, Korea Advanced Institute of Science and Technology(KAIST), Daejeon 34141, South Korea
| | - Dahye Lee
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Choong-Sik Lee
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Hye Rim Cha
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Yeon Hee Park
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Jae Young Moon
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Sung Soo Jung
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Ju Ock Kim
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Jae Cheol Lee
- Department of Oncology, College of Medicine, University of Ulsan Asan Medical Center, Seoul, South Korea
| | - Sun Young Kim
- Cancer Institute of Chungnam National University, Daejeon 35015, South Korea; Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Hee Sun Park
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Myoungrin Park
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Dong Il Park
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Dae-Sik Lim
- National Creative Research Center for Cell Division and Differentiation, Department of Biological Sciences, Korea Advanced Institute of Science and Technology(KAIST), Daejeon 34141, South Korea
| | - Kang Won Jang
- Cancer Institute of Chungnam National University, Daejeon 35015, South Korea; Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Jeong Eun Lee
- Cancer Institute of Chungnam National University, Daejeon 35015, South Korea; Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea.
| |
Collapse
|
107
|
Tingting Q, Jiao W, Qingfeng W, Yancheng L, Shijun YU, Zhaoqi W, Dongmei S, ShiLong W. CHIP involves in non-small cell lung cancer prognosis through VEGF pathway. Biomed Pharmacother 2016; 83:271-276. [PMID: 27392029 DOI: 10.1016/j.biopha.2016.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/21/2016] [Accepted: 06/09/2016] [Indexed: 11/30/2022] Open
Abstract
AIM CHIP (c-terminal Hsp70-interacting protein) is an E3 ligase playing vital roles in various cancers. The VEGF pathway has become an important therapeutic target in non-small cell lung cancer (NSCLC). However, little is known about the role of CHIP and the relationship between CHIP and VEGF-VEGFR2 (VEGF receptor 2) pathway in NSCLC. In this study we aimed to investigate the clinical function of CHIP in NSCLC and explore the relevant regulatory mechanism. METHODS QRT-PCR was performed to detect CHIP expression in NSCLC tissues. The association of CHIP expression and clinical parameters was analyzed using the Chi-square test. Kaplan- Meier and Cox analyses were performed to identify the role of CHIP in the prognosis of NSCLC patients. ELISA test was used to detect the VEGF secretion of NSCLC cells and western blot were used to detected the protein expression of VEGFR2 in NSCLC cells. RESULTS and the results revealed that CHIP expression was decreased in NSCLC tissues and significantly correlated with clinical stages, lymph node metastasis and distant metastasis (P<0.05). Moreover, Kaplan-Meier and Cox regression analyses showed that patients with negative expression of CHIP had a shorter survival time and CHIP could be an independent prognostic biomarker. In addition, ELISA tests showed that CHIP negatively regulated the secretion level of VEGF. Furthermore, western blot assay indicated that the VEGFR2 protein level was reduced after CHIP over-expression. CONCLUSIONS Taken together, our findings demonstrate for the first time that CHIP may serve as a promising prognostic biomarker for NSCLC patients and it may be involved in NSCLC angiogenesis through regulating VEGF secretion and expression of VEGFR2.
Collapse
Affiliation(s)
- Qian Tingting
- School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| | - Wang Jiao
- School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Wang Qingfeng
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, China
| | - Liu Yancheng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, PR China
| | - Y U Shijun
- Chuzhou University, School of Biology and Food Engineering, Chuzhou, Anhui 239000, PR China
| | - Wang Zhaoqi
- School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Sun Dongmei
- School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Wang ShiLong
- School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| |
Collapse
|
108
|
Le Clorennec C, Lazrek Y, Dubreuil O, Larbouret C, Poul MA, Mondon P, Melino G, Pèlegrin A, Chardès T. The anti-HER3 (ErbB3) therapeutic antibody 9F7-F11 induces HER3 ubiquitination and degradation in tumors through JNK1/2- dependent ITCH/AIP4 activation. Oncotarget 2016; 7:37013-37029. [PMID: 27203743 PMCID: PMC5095055 DOI: 10.18632/oncotarget.9455] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/16/2016] [Indexed: 01/28/2023] Open
Abstract
We characterized the mechanism of action of the neuregulin-non-competitive anti-HER3 therapeutic antibody 9F7-F11 that blocks the PI3K/AKT pathway, leading to cell cycle arrest and apoptosis in vitro and regression of pancreatic and breast cancer in vivo. We found that 9F7-F11 induces rapid HER3 down-regulation. Specifically, 9F7-F11-induced HER3 ubiquitination and degradation in pancreatic, breast and prostate cancer cell lines was driven mainly by the itchy E3 ubiquitin ligase (ITCH/AIP4). Overexpression of the ITCH/AIP4 inhibitor N4BP1 or small-interfering RNA-mediated knockdown of ITCH/AIP4 inhibited HER3 ubiquitination/degradation and PI3K/AKT signaling blockade induced by 9F7-F11. Moreover, 9F7-F11-mediated JNK1/2 phosphorylation led to ITCH/AIP4 activation and recruitment to HER3 for receptor ubiquitination and degradation. ITCH/AIP4 activity was activated by the deubiquitinases USP8 and USP9X, as demonstrated by RNA interference. Taken together, our results suggest that 9F7-F11-induced HER3 ubiquitination and degradation in cancer cells mainly occurs through JNK1/2-dependent ITCH/AIP4 activation.
Collapse
Affiliation(s)
- Christophe Le Clorennec
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
- INSERM, U1194 Montpellier, Montpellier, F-34298, France
- Université de Montpellier, Montpellier, F-34298, France
- ICM, Institut Régional du Cancer Montpellier, Montpellier, F-34298, France
| | - Yassamine Lazrek
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
- INSERM, U1194 Montpellier, Montpellier, F-34298, France
- Université de Montpellier, Montpellier, F-34298, France
- ICM, Institut Régional du Cancer Montpellier, Montpellier, F-34298, France
- Millegen SA, Labège, F-31670, France
- Institut Pasteur de Guyane, BP 6010, 97306, Cayenne Cedex, France
| | - Olivier Dubreuil
- Millegen SA, Labège, F-31670, France
- GamaMabs Pharma SA, Centre Pierre Potier, ONCOPOLE, BP 50624, France
| | - Christel Larbouret
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
- INSERM, U1194 Montpellier, Montpellier, F-34298, France
- Université de Montpellier, Montpellier, F-34298, France
- ICM, Institut Régional du Cancer Montpellier, Montpellier, F-34298, France
| | - Marie-Alix Poul
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
- INSERM, U1194 Montpellier, Montpellier, F-34298, France
- Université de Montpellier, Montpellier, F-34298, France
- ICM, Institut Régional du Cancer Montpellier, Montpellier, F-34298, France
| | - Philippe Mondon
- Millegen SA, Labège, F-31670, France
- LFB Biotechnologies, 59000, Lille, France
| | - Gerry Melino
- Biochemistry Laboratory, Instituto Dermopatico Dell'Immacolata, Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata,” 00133 Rome, Italy
- Toxicology Unit, Medical Research Council, Leicester University, Leicester LE1 9HN, United Kingdom
| | - André Pèlegrin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
- INSERM, U1194 Montpellier, Montpellier, F-34298, France
- Université de Montpellier, Montpellier, F-34298, France
- ICM, Institut Régional du Cancer Montpellier, Montpellier, F-34298, France
| | - Thierry Chardès
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
- INSERM, U1194 Montpellier, Montpellier, F-34298, France
- Université de Montpellier, Montpellier, F-34298, France
- ICM, Institut Régional du Cancer Montpellier, Montpellier, F-34298, France
| |
Collapse
|
109
|
Septin oligomerization regulates persistent expression of ErbB2/HER2 in gastric cancer cells. Biochem J 2016; 473:1703-18. [PMID: 27048593 DOI: 10.1042/bcj20160203] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/05/2016] [Indexed: 12/19/2022]
Abstract
Septins are a family of cytoskeletal GTP-binding proteins that assemble into membrane-associated hetero-oligomers and organize scaffolds for recruitment of cytosolic proteins or stabilization of membrane proteins. Septins have been implicated in a diverse range of cancers, including gastric cancer, but the underlying mechanisms remain unclear. The hypothesis tested here is that septins contribute to cancer by stabilizing the receptor tyrosine kinase ErbB2, an important target for cancer treatment. Septins and ErbB2 were highly over-expressed in gastric cancer cells. Immunoprecipitation followed by MS analysis identified ErbB2 as a septin-interacting protein. Knockdown of septin-2 or cell exposure to forchlorfenuron (FCF), a well-established inhibitor of septin oligomerization, decreased surface and total levels of ErbB2. These treatments had no effect on epidermal growth factor receptor (EGFR), emphasizing the specificity and functionality of the septin-ErbB2 interaction. The level of ubiquitylated ErbB2 at the plasma membrane was elevated in cells treated with FCF, which was accompanied by a decrease in co-localization of ErbB2 with septins at the membrane. Cathepsin B inhibitor, but not bafilomycin or lactacystin, prevented FCF-induced decrease in total ErbB2 by increasing accumulation of ubiquitylated ErbB2 in lysosomes. Therefore, septins protect ErbB2 from ubiquitylation, endocytosis and lysosomal degradation. The FCF-induced degradation pathway is distinct from and additive with the degradation induced by inhibiting ErbB2 chaperone Hsp90. These results identify septins as novel regulators of ErbB2 expression that contribute to the remarkable stabilization of the receptor at the plasma membrane of cancer cells and may provide a basis for the development of new ErbB2-targeting anti-cancer therapies.
Collapse
|
110
|
Hall JA, Seedarala S, Zhao H, Garg G, Ghosh S, Blagg BSJ. Novobiocin Analogues That Inhibit the MAPK Pathway. J Med Chem 2016; 59:925-33. [PMID: 26745854 DOI: 10.1021/acs.jmedchem.5b01354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Heat shock protein 90 (Hsp90) inhibition by modulation of its N- or C-terminal binding site has become an attractive strategy for the development of anticancer chemotherapeutics. The first Hsp90 C-terminus inhibitor, novobiocin, manifested a relatively high IC50 value of ∼700 μM. Therefore, investigation of the novobiocin scaffold has led to analogues with improved antiproliferative activity (nanomolar concentrations) against several cancer cell lines. During these studies, novobiocin analogues that do not inhibit Hsp90 were identified; however, these analogues demonstrated potent antiproliferative activity. Compound 2, a novobiocin analogue, was identified as a MAPK pathway signaling disruptor that lacked Hsp90 inhibitory activity. In addition, structural modifications of compound 2 were identified that segregated Hsp90 inhibition from MAPK signaling disruption. These studies indicate that compound 2 represents a novel scaffold for disruption of MAPK pathway signaling and may serve as a useful structure for the generation of new anticancer agents.
Collapse
Affiliation(s)
- Jessica A Hall
- Department of Medicinal Chemistry, The University of Kansas , 1251 Wescoe Hall Drive, 4070 Malott Hall, Lawrence, Kansas 66045, United States
| | - Sahithi Seedarala
- Department of Medicinal Chemistry, The University of Kansas , 1251 Wescoe Hall Drive, 4070 Malott Hall, Lawrence, Kansas 66045, United States
| | - Huiping Zhao
- Department of Medicinal Chemistry, The University of Kansas , 1251 Wescoe Hall Drive, 4070 Malott Hall, Lawrence, Kansas 66045, United States
| | - Gaurav Garg
- Department of Medicinal Chemistry, The University of Kansas , 1251 Wescoe Hall Drive, 4070 Malott Hall, Lawrence, Kansas 66045, United States
| | - Suman Ghosh
- Department of Medicinal Chemistry, The University of Kansas , 1251 Wescoe Hall Drive, 4070 Malott Hall, Lawrence, Kansas 66045, United States
| | - Brian S J Blagg
- Department of Medicinal Chemistry, The University of Kansas , 1251 Wescoe Hall Drive, 4070 Malott Hall, Lawrence, Kansas 66045, United States
| |
Collapse
|
111
|
Zhao Z, Wang L, James T, Jung Y, Kim I, Tan R, Hoffmann FM, Xu W. Reciprocal Regulation of ERα and ERβ Stability and Activity by Diptoindonesin G. ACTA ACUST UNITED AC 2015; 22:1608-21. [PMID: 26670079 DOI: 10.1016/j.chembiol.2015.10.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/01/2015] [Accepted: 10/22/2015] [Indexed: 02/07/2023]
Abstract
ERβ is regarded as a "tumor suppressor" in breast cancer due to its anti-proliferative effects. However, unlike ERα, ERβ has not been developed as a therapeutic target in breast cancer due to loss of ERβ in aggressive cancers. In a small-molecule library screen for ERβ stabilizers, we identified Diptoindonesin G (Dip G), which significantly increases ERβ protein stability while decreasing ERα protein levels. Dip G enhances the transcription and anti-proliferative activities of ERβ, while attenuating the transcription and proliferative effects of ERα. Further investigation revealed that instead of targeting ER, Dip G targets the CHIP E3 ubiquitin ligase shared by ERα and ERβ. Thus, Dip G is a dual-functional moiety that reciprocally controls ERα and ERβ protein stability and activities via an indirect mechanism. The ERβ stabilization effects of Dip G may enable the development of ERβ-targeted therapies for human breast cancers.
Collapse
Affiliation(s)
- Zibo Zhao
- McArdle Laboratory for Cancer Research, Wisconsin Institute for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Lu Wang
- McArdle Laboratory for Cancer Research, Wisconsin Institute for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Taryn James
- McArdle Laboratory for Cancer Research, Wisconsin Institute for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Youngeun Jung
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 406-840, Republic of Korea
| | - Ikyon Kim
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 406-840, Republic of Korea
| | - Renxiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing 210093, PR China
| | - F Michael Hoffmann
- McArdle Laboratory for Cancer Research, Wisconsin Institute for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, Wisconsin Institute for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA.
| |
Collapse
|
112
|
The E3 ubiquitin ligase CHIP mediates ubiquitination and proteasomal degradation of PRMT5. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:335-46. [PMID: 26658161 DOI: 10.1016/j.bbamcr.2015.12.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/23/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022]
Abstract
Protein arginine methyltransferase 5 (PRMT5) is an important member of the protein arginine methyltransferase family that regulates many cellular processes through epigenetic control of target gene expression. Because of its overexpression in a number of human cancers and its essential role in cell proliferation, transformation, and cell cycle progression, PRMT5 has been recently proposed to function as an oncoprotein in cancer cells. However, how its expression is regulated in cancer cells remains largely unknown. We have previously demonstrated that the transcription of PRMT5 can be negatively regulated by the PKC/c-Fos signaling pathway through modulating the transcription factor NF-Y in prostate cancer cells. In the present study, we demonstrated that PRMT5 undergoes polyubiquitination, possibly through multiple lysine residues. We also identified carboxyl terminus of heat shock cognate 70-interacting protein (CHIP), an important chaperone-dependent E3 ubiquitin ligase that couples protein folding/refolding to protein degradation, as an interacting protein of PRMT5 via mass spectrometry. Their interaction was further verified by co-immuoprecipitation, GST pull-down, and bimolecular fluorescence complementation (BiFC) assay. In addition, we provided evidence that the CHIP/chaperone system is essential for the negative regulation of PRMT5 expression via K48-linked ubiquitin-dependent proteasomal degradation. Given that down-regulation of CHIP and overexpression of PRMT5 have been observed in several human cancers, our finding suggests that down-regulation of CHIP may be one of the mechanisms underlying PRMT5 overexpression in these cancers.
Collapse
|
113
|
Butler LM, Ferraldeschi R, Armstrong HK, Centenera MM, Workman P. Maximizing the Therapeutic Potential of HSP90 Inhibitors. Mol Cancer Res 2015; 13:1445-51. [PMID: 26219697 PMCID: PMC4645455 DOI: 10.1158/1541-7786.mcr-15-0234] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/16/2015] [Indexed: 12/28/2022]
Abstract
HSP90 is required for maintaining the stability and activity of a diverse group of client proteins, including protein kinases, transcription factors, and steroid hormone receptors involved in cell signaling, proliferation, survival, oncogenesis, and cancer progression. Inhibition of HSP90 alters the HSP90-client protein complex, leading to reduced activity, misfolding, ubiquitination, and, ultimately, proteasomal degradation of client proteins. HSP90 inhibitors have demonstrated significant antitumor activity in a wide variety of preclinical models, with evidence of selectivity for cancer versus normal cells. In the clinic, however, the efficacy of this class of therapeutic agents has been relatively limited to date, with promising responses mainly observed in breast and lung cancer, but no major activity seen in other tumor types. In addition, adverse events and some significant toxicities have been documented. Key to improving these clinical outcomes is a better understanding of the cellular consequences of inhibiting HSP90 that may underlie treatment response or resistance. This review considers the recent progress that has been made in the study of HSP90 and its inhibitors and highlights new opportunities to maximize their therapeutic potential.
Collapse
Affiliation(s)
- Lisa M Butler
- School of Medicine and Freemasons Foundation Centre for Men's Health, University of Adelaide, South Australian Health and Medical Research Institute, Adelaide, Australia.
| | - Roberta Ferraldeschi
- The Institute of Cancer Research, London, United Kingdom. Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Heather K Armstrong
- School of Medicine and Freemasons Foundation Centre for Men's Health, University of Adelaide, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Margaret M Centenera
- School of Medicine and Freemasons Foundation Centre for Men's Health, University of Adelaide, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Paul Workman
- The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
114
|
Novel endogenous angiogenesis inhibitors and their therapeutic potential. Acta Pharmacol Sin 2015; 36:1177-90. [PMID: 26364800 PMCID: PMC4648174 DOI: 10.1038/aps.2015.73] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/27/2015] [Indexed: 12/17/2022]
Abstract
Angiogenesis, the formation of new blood vessels from the pre-existing vasculature is essential for embryonic development and tissue homeostasis. It also plays critical roles in diseases such as cancer and retinopathy. A delicate balance between pro- and anti-angiogenic factors ensures normal physiological homeostasis. Endogenous angiogenesis inhibitors are proteins or protein fragments that are formed in the body and have the ability to limit angiogenesis. Many endogenous angiogenesis inhibitors have been discovered, and the list continues to grow. Endogenous protein/peptide inhibitors are relatively less toxic, better tolerated and have a lower risk of drug resistance, which makes them attractive as drug candidates. In this review, we highlight ten novel endogenous protein angiogenesis inhibitors discovered within the last five years, including ISM1, FKBPL, CHIP, ARHGAP18, MMRN2, SOCS3, TAp73, ZNF24, GPR56 and JWA. Although some of these proteins have been well characterized for other biological functions, we focus on their new and specific roles in angiogenesis inhibition and discuss their potential for therapeutic application.
Collapse
|
115
|
The Inhibition of Heat Shock Protein 90 Facilitates the Degradation of Poly-Alanine Expanded Poly (A) Binding Protein Nuclear 1 via the Carboxyl Terminus of Heat Shock Protein 70-Interacting Protein. PLoS One 2015; 10:e0138936. [PMID: 26414348 PMCID: PMC4587574 DOI: 10.1371/journal.pone.0138936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/06/2015] [Indexed: 01/24/2023] Open
Abstract
Background Since the identification of poly-alanine expanded poly(A) binding protein nuclear 1 (PABPN1) as the genetic cause of oculopharyngeal muscular dystrophy (OPMD), considerable progress has been made in our understanding of the pathogenesis of the disease. However, the molecular mechanisms that regulate the onset and progression of the disease remain unclear. Results In this study, we show that PABPN1 interacts with and is stabilized by heat shock protein 90 (HSP90). Treatment with the HSP90 inhibitor 17-AAG disrupted the interaction of mutant PABPN1 with HSP90 and reduced the formation of intranuclear inclusions (INIs). Furthermore, mutant PABPN1 was preferentially degraded in the presence of 17-AAG compared with wild-type PABPN1 in vitro and in vivo. The effect of 17-AAG was mediated through an increase in the interaction of PABPN1 with the carboxyl terminus of heat shock protein 70-interacting protein (CHIP). The overexpression of CHIP suppressed the aggregation of mutant PABPN1 in transfected cells. Conclusions Our results demonstrate that the HSP90 molecular chaperone system plays a crucial role in the selective elimination of abnormal PABPN1 proteins and also suggest a potential therapeutic application of the HSP90 inhibitor 17-AAG for the treatment of OPMD.
Collapse
|
116
|
Narayan V, Landré V, Ning J, Hernychova L, Muller P, Verma C, Walkinshaw MD, Blackburn EA, Ball KL. Protein-Protein Interactions Modulate the Docking-Dependent E3-Ubiquitin Ligase Activity of Carboxy-Terminus of Hsc70-Interacting Protein (CHIP). Mol Cell Proteomics 2015; 14:2973-87. [PMID: 26330542 PMCID: PMC4638040 DOI: 10.1074/mcp.m115.051169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Indexed: 11/07/2022] Open
Abstract
CHIP is a tetratricopeptide repeat (TPR) domain protein that functions as an E3-ubiquitin ligase. As well as linking the molecular chaperones to the ubiquitin proteasome system, CHIP also has a docking-dependent mode where it ubiquitinates native substrates, thereby regulating their steady state levels and/or function. Here we explore the effect of Hsp70 on the docking-dependent E3-ligase activity of CHIP. The TPR-domain is revealed as a binding site for allosteric modulators involved in determining CHIP's dynamic conformation and activity. Biochemical, biophysical and modeling evidence demonstrate that Hsp70-binding to the TPR, or Hsp70-mimetic mutations, regulate CHIP-mediated ubiquitination of p53 and IRF-1 through effects on U-box activity and substrate binding. HDX-MS was used to establish that conformational-inhibition-signals extended from the TPR-domain to the U-box. This underscores inter-domain allosteric regulation of CHIP by the core molecular chaperones. Defining the chaperone-associated TPR-domain of CHIP as a manager of inter-domain communication highlights the potential for scaffolding modules to regulate, as well as assemble, complexes that are fundamental to protein homeostatic control.
Collapse
Affiliation(s)
- Vikram Narayan
- From the ‡IGMM, University of Edinburgh Cancer Research Centre, Cell Signalling Unit, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Vivien Landré
- From the ‡IGMM, University of Edinburgh Cancer Research Centre, Cell Signalling Unit, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Jia Ning
- From the ‡IGMM, University of Edinburgh Cancer Research Centre, Cell Signalling Unit, Crewe Road South, Edinburgh EH4 2XR, UK; §CTCB, Institute of Structural and Molecular Biology, University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Lenka Hernychova
- ¶Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Petr Muller
- ¶Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Chandra Verma
- ‖Bioinformatics Institute (A*STAR), 30 Biopolis Street, 07-01 Matrix, Singapore 138671; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543; School of Biological Sciences, Nanyang Technological University, 60 Nayang Drive, Singapore 637551
| | - Malcolm D Walkinshaw
- §CTCB, Institute of Structural and Molecular Biology, University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Elizabeth A Blackburn
- §CTCB, Institute of Structural and Molecular Biology, University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Kathryn L Ball
- From the ‡IGMM, University of Edinburgh Cancer Research Centre, Cell Signalling Unit, Crewe Road South, Edinburgh EH4 2XR, UK;
| |
Collapse
|
117
|
Schwartz H, Scroggins B, Zuehlke A, Kijima T, Beebe K, Mishra A, Neckers L, Prince T. Combined HSP90 and kinase inhibitor therapy: Insights from The Cancer Genome Atlas. Cell Stress Chaperones 2015; 20:729-41. [PMID: 26070366 PMCID: PMC4529871 DOI: 10.1007/s12192-015-0604-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 12/13/2022] Open
Abstract
The merging of knowledge from genomics, cellular signal transduction and molecular evolution is producing new paradigms of cancer analysis. Protein kinases have long been understood to initiate and promote malignant cell growth and targeting kinases to fight cancer has been a major strategy within the pharmaceutical industry for over two decades. Despite the initial success of kinase inhibitors (KIs), the ability of cancer to evolve resistance and reprogram oncogenic signaling networks has reduced the efficacy of kinase targeting. The molecular chaperone HSP90 physically supports global kinase function while also acting as an evolutionary capacitor. The Cancer Genome Atlas (TCGA) has compiled a trove of data indicating that a large percentage of tumors overexpress or possess mutant kinases that depend on the HSP90 molecular chaperone complex. Moreover, the overexpression or mutation of parallel activators of kinase activity (PAKA) increases the number of components that promote malignancy and indirectly associate with HSP90. Therefore, targeting HSP90 is predicted to complement kinase inhibitors by inhibiting oncogenic reprogramming and cancer evolution. Based on this hypothesis, consideration should be given by both the research and clinical communities towards combining kinase inhibitors and HSP90 inhibitors (H90Ins) in combating cancer. The purpose of this perspective is to reflect on the current understanding of HSP90 and kinase biology as well as promote the exploration of potential synergistic molecular therapy combinations through the utilization of The Cancer Genome Atlas.
Collapse
Affiliation(s)
- Harvey Schwartz
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Brad Scroggins
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Abbey Zuehlke
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Toshiki Kijima
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Kristin Beebe
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Alok Mishra
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Thomas Prince
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| |
Collapse
|
118
|
UBXN2A regulates nicotinic receptor degradation by modulating the E3 ligase activity of CHIP. Biochem Pharmacol 2015; 97:518-530. [PMID: 26265139 DOI: 10.1016/j.bcp.2015.08.084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/05/2015] [Indexed: 12/13/2022]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) containing the α3 subunit are known for their prominent role in normal ganglionic transmission while their involvement in the mechanisms underlying nicotine addiction and smoking-related disease has been emerging only in recent years. The amount of information available on the maturation and trafficking of α3-containing nAChRs is limited. We previously showed that UBXN2A is a p97 adaptor protein that facilitates the maturation and trafficking of α3-containing nAChRs. Further investigation of the mechanisms of UBXN2A actions revealed that the protein interacts with CHIP (carboxyl terminus of Hsc70 interacting protein), whose ubiquitin E3 ligase activity regulates the degradation of several disease-related proteins. We show that CHIP displays E3 ligase activity toward the α3 nAChR subunit and contributes to its ubiquitination and subsequent degradation. UBXN2A interferes with CHIP-mediated ubiquitination of α3 and protects the nicotinic receptor subunit from endoplasmic reticulum associated degradation (ERAD). UBXN2A also cross-talks with VCP/p97 and HSC70/HSP70 proteins in a complex where α3 is likely to be targeted by CHIP. Overall,we identify CHIP as an E3 ligase for α3 and UBXN2A as a protein that may efficiently regulate the stability of CHIP's client substrates.
Collapse
|
119
|
Wang H, Yang X, Jin Y, Pei S, Zhang D, Ma W, Huang J, Qiu H, Zhang X, Jiang Q, Sun W, Zhang H, Lin D. Expression and significance of CHIP in canine mammary gland tumors. J Vet Med Sci 2015; 77:1465-71. [PMID: 26156079 PMCID: PMC4667665 DOI: 10.1292/jvms.14-0484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
CHIP (Carboxy terminus of Hsc70 Interacting Protein) is an E3 ubiquitin ligase that can
induce ubiquitination and degradation of several oncogenic proteins. The expression of
CHIP is frequently lower in human breast cancer than in normal breast tissue. However, the
expression and role of CHIP in the canine mammary gland tumor (CMGT) remain unclear. We
investigated the potential correlation between CHIP expression and mammary gland tumor
prognosis in female dogs. CHIP expression was measured in 54 dogs by immunohistochemistry
and real-time RT-PCR. CHIP protein expression was significantly correlated with the
histopathological diagnosis, outcome of disease and tumor classification. The
transcriptional level of CHIP was significantly higher in normal tissues
(P=0.001) and benign tumors (P=0.009) than it in
malignant tumors. CHIP protein expression was significantly correlated with the
transcriptional level of CHIP (P=0.0102). The log-rank
test survival curves indicated that patients with low expression of CHIP had shorter
overall periods of survival than those with higher CHIP protein expression
(P=0.050). Our data suggest that CHIP may play an important role in the
formation and development of CMGTs and serve as a valuable prognostic marker and potential
target for genetic therapy.
Collapse
Affiliation(s)
- Huanan Wang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Alternative approaches to Hsp90 modulation for the treatment of cancer. Future Med Chem 2015; 6:1587-605. [PMID: 25367392 DOI: 10.4155/fmc.14.89] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hsp90 is responsible for the conformational maturation of newly synthesized polypeptides (client proteins) and the re-maturation of denatured proteins via the Hsp90 chaperone cycle. Inhibition of the Hsp90 N-terminus has emerged as a clinically relevant strategy for anticancer chemotherapeutics due to the involvement of clients in a variety of oncogenic pathways. Several immunophilins, co-chaperones and partner proteins are also necessary for Hsp90 chaperoning activity. Alternative strategies to inhibit Hsp90 function include disruption of the C-terminal dimerization domain and the Hsp90 heteroprotein complex. C-terminal inhibitors and Hsp90 co-chaperone disruptors prevent cancer cell proliferation similar to N-terminal inhibitors and destabilize client proteins without induction of heat shock proteins. Herein, current Hsp90 inhibitors, the chaperone cycle, and regulation of this cycle will be discussed.
Collapse
|
121
|
Khandelwal A, Crowley VM, Blagg BSJ. Natural Product Inspired N-Terminal Hsp90 Inhibitors: From Bench to Bedside? Med Res Rev 2015; 36:92-118. [PMID: 26010985 DOI: 10.1002/med.21351] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/03/2015] [Accepted: 04/19/2015] [Indexed: 02/06/2023]
Abstract
The 90 kDa heat shock proteins (Hsp90) are responsible for the conformational maturation of nascent polypeptides and the rematuration of denatured proteins. Proteins dependent upon Hsp90 are associated with all six hallmarks of cancer. Upon Hsp90 inhibition, protein substrates are degraded via the ubiquitin-proteasome pathway. Consequentially, inhibition of Hsp90 offers a therapeutic opportunity for the treatment of cancer. Natural product inhibitors of Hsp90 have been identified in vitro, which have served as leads for the development of more efficacious inhibitors and analogs that have entered clinical trials. This review highlights the development of natural product analogs, as well as the development of clinically important inhibitors that arose from natural products.
Collapse
Affiliation(s)
- Anuj Khandelwal
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, 4070 Malott Hall, Lawrence, KS 66045
| | - Vincent M Crowley
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, 4070 Malott Hall, Lawrence, KS 66045
| | - Brian S J Blagg
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, 4070 Malott Hall, Lawrence, KS 66045
| |
Collapse
|
122
|
Ferreira JV, Soares AR, Ramalho JS, Pereira P, Girao H. K63 linked ubiquitin chain formation is a signal for HIF1A degradation by Chaperone-Mediated Autophagy. Sci Rep 2015; 5:10210. [PMID: 25958982 PMCID: PMC4426689 DOI: 10.1038/srep10210] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 04/07/2015] [Indexed: 12/27/2022] Open
Abstract
Chaperone-Mediated Autophagy is a selective form of autophagy. Recently, the degradation of a newly identified CMA substrate, the HIF1A transcription factor, was found to be regulated by the ubiquitin ligase STUB1. In this study we show, for the first time, that K63 ubiquitination is necessary for CMA degradation of HIF1A in vitro and in vivo. Additionally, STUB1 mediates K63 linked ubiquitination of HIF1A. Our findings add a new regulatory step and increase the specificity of the molecular mechanism involved in CMA degradation of HIF1A, expanding the role of ubiquitination to yet another biological process, since the same mechanism might be applicable to other CMA substrates.
Collapse
Affiliation(s)
- Joao Vasco Ferreira
- Center of Ophthalmology and Vision Sciences; Institute for Biomedical Imaging and Life Science (IBILI); Faculty of Medicine; University of Coimbra; Coimbra, Portugal
| | - Ana Rosa Soares
- Center of Ophthalmology and Vision Sciences; Institute for Biomedical Imaging and Life Science (IBILI); Faculty of Medicine; University of Coimbra; Coimbra, Portugal
| | | | - Paulo Pereira
- Center of Ophthalmology and Vision Sciences; Institute for Biomedical Imaging and Life Science (IBILI); Faculty of Medicine; University of Coimbra; Coimbra, Portugal
| | - Henrique Girao
- Center of Ophthalmology and Vision Sciences; Institute for Biomedical Imaging and Life Science (IBILI); Faculty of Medicine; University of Coimbra; Coimbra, Portugal
| |
Collapse
|
123
|
Jiang B, Shen H, Chen Z, Yin L, Zan L, Rui L. Carboxyl terminus of HSC70-interacting protein (CHIP) down-regulates NF-κB-inducing kinase (NIK) and suppresses NIK-induced liver injury. J Biol Chem 2015; 290:11704-14. [PMID: 25792747 PMCID: PMC4416871 DOI: 10.1074/jbc.m114.635086] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/12/2015] [Indexed: 11/06/2022] Open
Abstract
Ser/Thr kinase NIK (NF-κB-inducing kinase) mediates the activation of the noncanonical NF-κB2 pathway, and it plays an important role in regulating immune cell development and liver homeostasis. NIK levels are extremely low in quiescent cells due to ubiquitin/proteasome-mediated degradation, and cytokines stimulate NIK activation through increasing NIK stability; however, regulation of NIK stability is not fully understood. Here we identified CHIP (carboxyl terminus of HSC70-interacting protein) as a new negative regulator of NIK. CHIP contains three N-terminal tetratricopeptide repeats (TPRs), a middle dimerization domain, and a C-terminal U-box. The U-box domain contains ubiquitin E3 ligase activity that promotes ubiquitination of CHIP-bound partners. We observed that CHIP bound to NIK via its TPR domain. In both HEK293 and primary hepatocytes, overexpression of CHIP markedly decreased NIK levels at least in part through increasing ubiquitination and degradation of NIK. Accordingly, CHIP suppressed NIK-induced activation of the noncanonical NF-κB2 pathway. CHIP also bound to TRAF3, and CHIP and TRAF3 acted coordinately to efficiently promote NIK degradation. The TPR but not the U-box domain was required for CHIP to promote NIK degradation. In mice, hepatocyte-specific overexpression of NIK resulted in liver inflammation and injury, leading to death, and liver-specific expression of CHIP reversed the detrimental effects of hepatic NIK. Our data suggest that CHIP/TRAF3/NIK interactions recruit NIK to E3 ligase complexes for ubiquitination and degradation, thus maintaining NIK at low levels. Defects in CHIP regulation of NIK may result in aberrant NIK activation in the liver, contributing to live injury, inflammation, and disease.
Collapse
Affiliation(s)
- Bijie Jiang
- From the National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China and the Departments of Molecular and Integrative Physiology and
| | - Hong Shen
- the Departments of Molecular and Integrative Physiology and
| | - Zheng Chen
- the Departments of Molecular and Integrative Physiology and
| | - Lei Yin
- the Departments of Molecular and Integrative Physiology and
| | - Linsen Zan
- From the National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China and
| | - Liangyou Rui
- the Departments of Molecular and Integrative Physiology and Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109-0622
| |
Collapse
|
124
|
Deleyrolle L, Sabourin JC, Rothhut B, Fujita H, Guichet PO, Teigell M, Ripoll C, Chauvet N, Perrin F, Mamaeva D, Noda T, Mori K, Yoshihara Y, Hugnot JP. OCAM regulates embryonic spinal cord stem cell proliferation by modulating ErbB2 receptor. PLoS One 2015; 10:e0122337. [PMID: 25875008 PMCID: PMC4395419 DOI: 10.1371/journal.pone.0122337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/10/2015] [Indexed: 01/07/2023] Open
Abstract
The proliferation and differentiation of neural stem cells are tightly controlled by intrinsic and extrinsic cues. Cell adhesion molecules are increasingly recognized as regulators of these processes. Here we report the expression of the olfactory cell adhesion molecule (OCAM/NCAM2/RNCAM) during mouse spinal cord development and in neural stem cells cultured as neurospheres. OCAM is also weakly expressed in the dormant adult stem cell niche around the central canal and is overexpressed after spinal cord injury. Both transmembrane (TM) and glycosylphosphatidylinositol (GPI)-linked isoforms are present in neurospheres. Electron microscopy and internalisation experiments revealed a dynamic trafficking of OCAM between the membrane and intracellular compartments. After differentiation, OCAM remains in neurons and oligodendrocytes whereas no expression is detected in astrocytes. Using OCAM knockout (KO) mice, we found that mutant spinal cord stem cells showed an increased proliferation and self-renewal rates although no effect on differentiation was observed. This effect was reversed by lentivirus-mediated re-introduction of OCAM. Mechanistically, we identified the ErbB2/Neu/HER2 protein as being implicated in the enhanced proliferation of mutant cells. ErbB2 protein expression and phosphorylation level were significantly increased in KO cells whereas no difference was observed at the mRNA level. Overexpression of ErbB2 in wild-type and mutant cells also increased their growth while reintroduction of OCAM in mutant cells reduced the level of phosphorylated ErbB2. These results indicate that OCAM exerts a posttranscriptional control on the ErbB2 signalling in spinal cord stem cells. This study adds further support for considering cell adhesion molecules as regulators of the ErbB signalling.
Collapse
Affiliation(s)
- Loïc Deleyrolle
- Department of Neurosurgery, College of Medicine, University of Florida Gainesville, Gainesville, Florida, United States of America
| | | | - Bernard Rothhut
- INSERM U1051, Institute for Neuroscience, Hôpital Saint Eloi, Montpellier, France
- * E-mail:
| | | | | | - Marisa Teigell
- INSERM U1051, Institute for Neuroscience, Hôpital Saint Eloi, Montpellier, France
| | - Chantal Ripoll
- INSERM U1051, Institute for Neuroscience, Hôpital Saint Eloi, Montpellier, France
| | - Norbert Chauvet
- INSERM U661, Department of Endocrinology, Institute of Functional Genomics, Montpellier, France
- University of Montpellier 2, Montpellier, France
| | - Florence Perrin
- INSERM U1051, Institute for Neuroscience, Hôpital Saint Eloi, Montpellier, France
| | - Daria Mamaeva
- INSERM U1051, Institute for Neuroscience, Hôpital Saint Eloi, Montpellier, France
| | - Tetsuo Noda
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kensaku Mori
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Jean-Philippe Hugnot
- INSERM U1051, Institute for Neuroscience, Hôpital Saint Eloi, Montpellier, France
- University of Montpellier 2, Montpellier, France
| |
Collapse
|
125
|
Flynn JM, Mishra P, Bolon DNA. Mechanistic Asymmetry in Hsp90 Dimers. J Mol Biol 2015; 427:2904-11. [PMID: 25843003 DOI: 10.1016/j.jmb.2015.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/26/2015] [Accepted: 03/26/2015] [Indexed: 12/12/2022]
Abstract
Hsp90 is a molecular chaperone that facilitates the maturation of signaling proteins including many kinases and steroid hormone receptors. Through these client proteins, Hsp90 is a key mediator of many physiological processes and has emerged as a promising drug target in cancer. Additionally, Hsp90 can mask or potentiate the impact of mutations in clients with remarkable influence on evolutionary adaptations. The influential roles of Hsp90 in biology and disease have stimulated extensive research into the molecular mechanism of this chaperone. These studies have shown that Hsp90 is a homodimeric protein that requires ATP hydrolysis and a host of accessory proteins termed co-chaperones to facilitate the maturation of clients to their active states. Flexible hinge regions between its three structured domains enable Hsp90 to sample dramatically distinct conformations that are influenced by nucleotide, client, and co-chaperone binding. While it is clear that Hsp90 can exist in symmetrical conformations, recent studies have indicated that this homodimeric chaperone can also assume a variety of asymmetric conformations and complexes that are important for client maturation. The visualization of Hsp90-client complexes at high resolution together with tools to independently manipulate each subunit in the Hsp90 dimer are providing new insights into the asymmetric function of each subunit during client maturation.
Collapse
Affiliation(s)
- Julia M Flynn
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Parul Mishra
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Daniel N A Bolon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
126
|
Zhang H, Amick J, Chakravarti R, Santarriaga S, Schlanger S, McGlone C, Dare M, Nix JC, Scaglione KM, Stuehr DJ, Misra S, Page RC. A bipartite interaction between Hsp70 and CHIP regulates ubiquitination of chaperoned client proteins. Structure 2015; 23:472-482. [PMID: 25684577 DOI: 10.1016/j.str.2015.01.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/24/2014] [Accepted: 01/05/2015] [Indexed: 11/16/2022]
Abstract
The ubiquitin ligase CHIP plays an important role in cytosolic protein quality control by ubiquitinating proteins chaperoned by Hsp70/Hsc70 and Hsp90, thereby targeting such substrate proteins for degradation. We present a 2.91 Å resolution structure of the tetratricopeptide repeat (TPR) domain of CHIP in complex with the α-helical lid subdomain and unstructured tail of Hsc70. Surprisingly, the CHIP-TPR interacts with determinants within both the Hsc70-lid subdomain and the C-terminal PTIEEVD motif of the tail, exhibiting an atypical mode of interaction between chaperones and TPR domains. We demonstrate that the interaction between CHIP and the Hsc70-lid subdomain is required for proper ubiquitination of Hsp70/Hsc70 or Hsp70/Hsc70-bound substrate proteins. Posttranslational modifications of the Hsc70 lid and tail disrupt key contacts with the CHIP-TPR and may regulate CHIP-mediated ubiquitination. Our study shows how CHIP docks onto Hsp70/Hsc70 and defines a bipartite mode of interaction between TPR domains and their binding partners.
Collapse
Affiliation(s)
- Huaqun Zhang
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Joseph Amick
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ritu Chakravarti
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | - Simon Schlanger
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Cameron McGlone
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Michelle Dare
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jay C Nix
- Molecular Biology Consortium, Beamline 4.2.2, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - K Matthew Scaglione
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Dennis J Stuehr
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Saurav Misra
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
127
|
Abstract
Carboxyl terminus of heat shock protein 70-interacting protein (CHIP) is an E3 ubiquitin ligase that is involved in protein quality control and mediates several tumor-related proteins in many cancers, but the function of CHIP in pancreatic cancer is not known. Here we show that CHIP interacts and ubiquitinates epidermal growth factor receptor (EGFR) for proteasome-mediated degradation in pancreatic cancer cells, thereby inhibiting the activation of EGFR downstream pathways. CHIP suppressed cell proliferation, anchor-independent growth, invasion and migration, as well as enhanced apoptosis induced by erlotinib in vitro and in vivo. The expression of CHIP was decreased in pancreatic cancer tissues or sera. Low CHIP expression in tumor tissues was correlated with tumor differentiation and shorter overall survival. These observations indicate that CHIP serves as a novel tumor suppressor by down-regulating EGFR pathway in pancreatic cancer cells, decreased expression of CHIP was associated with poor prognosis in pancreatic cancer.
Collapse
|
128
|
Abstract
Protein homeostasis relies on a balance between protein folding and protein degradation. Molecular chaperones like Hsp70 and Hsp90 fulfil well-defined roles in protein folding and conformational stability via ATP dependent reaction cycles. These folding cycles are controlled by associations with a cohort of non-client protein co-chaperones, such as Hop, p23 and Aha1. Pro-folding co-chaperones facilitate the transit of the client protein through the chaperone mediated folding process. However, chaperones are also involved in ubiquitin-mediated proteasomal degradation of client proteins. Similar to folding complexes, the ability of chaperones to mediate protein degradation is regulated by co-chaperones, such as the C terminal Hsp70 binding protein (CHIP). CHIP binds to Hsp70 and Hsp90 chaperones through its tetratricopeptide repeat (TPR) domain and functions as an E3 ubiquitin ligase using a modified RING finger domain (U-box). This unique combination of domains effectively allows CHIP to network chaperone complexes to the ubiquitin-proteasome system. This chapter reviews the current understanding of CHIP as a co-chaperone that switches Hsp70/Hsp90 chaperone complexes from protein folding to protein degradation.
Collapse
Affiliation(s)
- Adrienne L Edkins
- Department of Biochemistry and Microbiology, Biomedical Biotechnology Research Unit (BioBRU), Rhodes University, 6140, Grahamstown, South Africa,
| |
Collapse
|
129
|
Dittrich A, Gautrey H, Browell D, Tyson-Capper A. The HER2 Signaling Network in Breast Cancer--Like a Spider in its Web. J Mammary Gland Biol Neoplasia 2014; 19:253-70. [PMID: 25544707 DOI: 10.1007/s10911-014-9329-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/14/2014] [Indexed: 12/21/2022] Open
Abstract
The human epidermal growth factor receptor 2 (HER2) is a major player in the survival and proliferation of tumour cells and is overexpressed in up to 30 % of breast cancer cases. A considerable amount of work has been undertaken to unravel the activity and function of HER2 to try and develop effective therapies that impede its action in HER2 positive breast tumours. Research has focused on exploring the HER2 activated phosphoinositide-3-kinase (PI3K)/AKT and rat sarcoma/mitogen-activated protein kinase (RAS/MAPK) pathways for therapies. Despite the advances, cases of drug resistance and recurrence of disease still remain a challenge to overcome. An important aspect for drug resistance is the complexity of the HER2 signaling network. This includes the crosstalk between HER2 and hormone receptors; its function as a transcription factor; the regulation of HER2 by protein-tyrosine phosphatases and a complex network of positive and negative feedback-loops. This review summarises the current knowledge of many different HER2 interactions to illustrate the complexity of the HER2 network from the transcription of HER2 to the effect of its downstream targets. Exploring the novel avenues of the HER2 signaling could yield a better understanding of treatment resistance and give rise to developing new and more effective therapies.
Collapse
Affiliation(s)
- A Dittrich
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | |
Collapse
|
130
|
Bozaykut P, Ozer NK, Karademir B. Regulation of protein turnover by heat shock proteins. Free Radic Biol Med 2014; 77:195-209. [PMID: 25236750 DOI: 10.1016/j.freeradbiomed.2014.08.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 08/11/2014] [Accepted: 08/11/2014] [Indexed: 12/19/2022]
Abstract
Protein turnover reflects the balance between synthesis and degradation of proteins, and it is a crucial process for the maintenance of the cellular protein pool. The folding of proteins, refolding of misfolded proteins, and also degradation of misfolded and damaged proteins are involved in the protein quality control (PQC) system. Correct protein folding and degradation are controlled by many different factors, one of the most important of which is the heat shock protein family. Heat shock proteins (HSPs) are in the class of molecular chaperones, which may prevent the inappropriate interaction of proteins and induce correct folding. On the other hand, these proteins play significant roles in the degradation pathways, including endoplasmic reticulum-associated degradation (ERAD), the ubiquitin-proteasome system, and autophagy. This review focuses on the emerging role of HSPs in the regulation of protein turnover; the effects of HSPs on the degradation machineries ERAD, autophagy, and proteasome; as well as the role of posttranslational modifications in the PQC system.
Collapse
Affiliation(s)
- Perinur Bozaykut
- Genetic and Metabolic Diseases Research and Investigation Center, Department of Biochemistry, Faculty of Medicine, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Nesrin Kartal Ozer
- Genetic and Metabolic Diseases Research and Investigation Center, Department of Biochemistry, Faculty of Medicine, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Betul Karademir
- Genetic and Metabolic Diseases Research and Investigation Center, Department of Biochemistry, Faculty of Medicine, Marmara University, 34854 Maltepe, Istanbul, Turkey.
| |
Collapse
|
131
|
Mujoo K, Choi BK, Huang Z, Zhang N, An Z. Regulation of ERBB3/HER3 signaling in cancer. Oncotarget 2014; 5:10222-36. [PMID: 25400118 PMCID: PMC4279368 DOI: 10.18632/oncotarget.2655] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/02/2014] [Indexed: 12/18/2022] Open
Abstract
ERBB3/HER3 is emerging as a molecular target for various cancers. HER3 is overexpressed and activated in a number of cancer types under the conditions of acquired resistance to other HER family therapeutic interventions such as tyrosine kinase inhibitors and antibody therapies. Regulation of the HER3 expression and signaling involves numerous HER3 interacting proteins. These proteins include PI3K, Shc, and E3 ubiquitin ligases NEDD4 and Nrdp1. Furthermore, recent identification of a number of HER3 oncogenic mutations in colon and gastric cancers elucidate the role of HER3 in cancer development. Despite the strong evidence regarding the role of HER3 in cancer, the current understanding of the regulation of HER3 expression and activation requires additional research. Moreover, the lack of biomarkers for HER3-driven cancer poses a big challenge for the clinical development of HER3 targeting antibodies. Therefore, a better understanding of HER3 regulation should improve the strategies to therapeutically target HER3 for cancer therapy.
Collapse
Affiliation(s)
- Kalpana Mujoo
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
- Current address: Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX
| | - Byung-Kwon Choi
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Zhao Huang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
132
|
Paul I, Ghosh MK. A CHIPotle in physiology and disease. Int J Biochem Cell Biol 2014; 58:37-52. [PMID: 25448416 DOI: 10.1016/j.biocel.2014.10.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/21/2014] [Accepted: 10/25/2014] [Indexed: 01/06/2023]
Abstract
The carboxy-terminus of Hsc70 interacting protein (CHIP) is known to function as a chaperone associated E3 ligase for several proteins and regulates a variety of physiological processes. Being a connecting link between molecular chaperones and 26S proteasomes, it is widely regarded as the central player in the cellular protein quality control system. Recent analyses have provided new insights on the biochemical and functional dynamics of CHIP. In this review article, we give a comprehensive account of our current knowledge on the biology of CHIP, which apart from shedding light on fundamental biological questions promises to provide a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Indranil Paul
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology (CSIR-IICB), 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology (CSIR-IICB), 4, Raja S.C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
133
|
Bocchini CE, Kasembeli MM, Roh SH, Tweardy DJ. Contribution of chaperones to STAT pathway signaling. JAKSTAT 2014; 3:e970459. [PMID: 26413421 DOI: 10.4161/21623988.2014.970459] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/21/2014] [Accepted: 09/25/2014] [Indexed: 12/27/2022] Open
Abstract
Aberrant STAT signaling is associated with the development and progression of many cancers and immune related diseases. Recent findings demonstrate that proteostasis modulators under clinical investigation for cancer therapy have a significant impact on STAT signaling, which may be critical for mediating their anti-cancer effects. Chaperones are critical for protein folding, stability and function and, thus, play an essential role in the maintenance of proteostasis. In this review we discuss the role of chaperones in STAT and tyrosine kinase (TK) protein folding, modulation of STAT and TK activity, and degradation of TKs. We highlight the important role of chaperones in STAT signaling, and how this knowledge has provided a framework for the development of new therapeutic avenues of targeting STAT signaling related pathologies.
Collapse
Affiliation(s)
- Claire E Bocchini
- Section of Infectious Disease; Department of Pediatrics; Baylor College of Medicine ; Houston, TX USA
| | - Moses M Kasembeli
- Section of Infectious Disease; Department of Medicine; Baylor College of Medicine ; Houston, TX USA
| | - Soung-Hun Roh
- Department of Biochemistry & Molecular Biology; Baylor College of Medicine ; Houston, TX USA
| | - David J Tweardy
- Section of Infectious Disease; Department of Medicine; Baylor College of Medicine ; Houston, TX USA ; Department of Biochemistry & Molecular Biology; Baylor College of Medicine ; Houston, TX USA ; Department of Molecular & Cellular Biology; Baylor College of Medicine ; Houston, TX USA
| |
Collapse
|
134
|
Shapiro GI, Kwak E, Dezube BJ, Yule M, Ayrton J, Lyons J, Mahadevan D. First-in-human phase I dose escalation study of a second-generation non-ansamycin HSP90 inhibitor, AT13387, in patients with advanced solid tumors. Clin Cancer Res 2014; 21:87-97. [PMID: 25336693 DOI: 10.1158/1078-0432.ccr-14-0979] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE AT13387 is a potent second-generation, fragment-derived HSP90 inhibitor. This phase I study investigated the maximum tolerated dose (MTD)/recommended phase II dose (RP2D) and safety, pharmacokinetic, and pharmacodynamic profiles of two AT13387 regimens in a refractory solid tumor population. EXPERIMENTAL DESIGN Standard 3+3 dose escalation was used. MTD and RP2D determinations were based on the occurrence of dose-limiting toxicities (DLT) and overall toxicity, respectively. Pharmacokinetic parameters were measured after single and multiple doses. AT13387-mediated induction of HSP70 was evaluated in plasma, peripheral blood mononuclear cells, and paired tumor biopsies. RESULTS Sixty-two patients were treated with doses ranging from 10 to 120 mg/m(2) twice weekly and 150 to 310 mg/m(2) once weekly (both for 3 weeks every 28 days). One DLT of visual disturbance occurred at 120 mg/m(2), which was considered the MTD and RP2D for the twice-weekly regimen. No formal DLTs occurred in the once-weekly regimen, but multiple moderately severe toxicities, including diarrhea, nausea, vomiting, fatigue, and systemic infusion reactions, led to selection of 260 mg/m(2) as the RP2D. Exposures of AT13387 increased proportionally with dose. Target engagement as measured by HSP70 induction occurred in plasma and tumor biopsy samples. One patient with gastrointestinal stromal tumor (GIST) who had progressive disease on imatinib had a partial response and remained on treatment for 10 months. Twenty-one patients (34%) had stable disease, which lasted >120 days in 7 patients. CONCLUSION AT13387 administered once or twice weekly has an acceptable safety profile and demonstrated evidence of target engagement and preliminary antitumor activity.
Collapse
Affiliation(s)
- Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts. Department of Medicine, Harvard Medical School, Boston, Massachusetts.
| | - Eunice Kwak
- Department of Medicine, Harvard Medical School, Boston, Massachusetts. Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Bruce J Dezube
- Department of Medicine, Harvard Medical School, Boston, Massachusetts. Department of Medicine, Beth Israel Deaconess Medical School, Boston, Massachusetts
| | - Murray Yule
- Astex Pharmaceuticals, Inc., Dublin, California
| | - John Ayrton
- Astex Pharmaceuticals, Inc., Dublin, California
| | - John Lyons
- Astex Pharmaceuticals, Inc., Dublin, California
| | | |
Collapse
|
135
|
Taipale M, Tucker G, Peng J, Krykbaeva I, Lin ZY, Larsen B, Choi H, Berger B, Gingras AC, Lindquist S. A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways. Cell 2014; 158:434-448. [PMID: 25036637 DOI: 10.1016/j.cell.2014.05.039] [Citation(s) in RCA: 311] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/08/2014] [Accepted: 05/16/2014] [Indexed: 12/27/2022]
Abstract
Chaperones are abundant cellular proteins that promote the folding and function of their substrate proteins (clients). In vivo, chaperones also associate with a large and diverse set of cofactors (cochaperones) that regulate their specificity and function. However, how these cochaperones regulate protein folding and whether they have chaperone-independent biological functions is largely unknown. We combined mass spectrometry and quantitative high-throughput LUMIER assays to systematically characterize the chaperone-cochaperone-client interaction network in human cells. We uncover hundreds of chaperone clients, delineate their participation in specific cochaperone complexes, and establish a surprisingly distinct network of protein-protein interactions for cochaperones. As a salient example of the power of such analysis, we establish that NUDC family cochaperones specifically associate with structurally related but evolutionarily distinct β-propeller folds. We provide a framework for deciphering the proteostasis network and its regulation in development and disease and expand the use of chaperones as sensors for drug-target engagement.
Collapse
Affiliation(s)
- Mikko Taipale
- Whitehead Institute for Biomedical Research, Cambridge, MA 02114, USA
| | - George Tucker
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jian Peng
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Irina Krykbaeva
- Whitehead Institute for Biomedical Research, Cambridge, MA 02114, USA
| | - Zhen-Yuan Lin
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Brett Larsen
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Hyungwon Choi
- National University of Singapore and National University Health System, Singapore 117597, Singapore
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anne-Claude Gingras
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA 02114, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Cambridge, MA 02139, USA.
| |
Collapse
|
136
|
Abstract
ErbB2 (v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2), a receptor tyrosine kinase of the ErbB family, is overexpressed in around 25% of breast cancers. In addition to forming a heterodimer with other ErbB receptors in response to ligand stimulation, ErbB2 can be activated in a ligand-independent manner. We report here that Erbin, an ErbB2-interacting protein that was thought to act as an antitumor factor, is specifically expressed in mammary luminal epithelial cells and facilitates ErbB2-dependent proliferation of breast cancer cells and tumorigenesis in MMTV-neu transgenic mice. Disruption of their interaction decreases ErbB2-dependent proliferation, and deletion of the PDZ domain in Erbin hinders ErbB2-dependent tumor development in MMTV-neu mice. Mechanistically, Erbin forms a complex with ErbB2, promotes its interaction with the chaperon protein HSP90, and thus prevents its degradation. Finally, ErbB2 and Erbin expression correlates in human breast tumor tissues. Together, these observations establish Erbin as an ErbB2 regulator for breast tumor formation and progression.
Collapse
|
137
|
Awasthi S, Hamburger AW. Heregulin negatively regulates transcription of ErbB2/3 receptors via an AKT-mediated pathway. J Cell Physiol 2014; 229:1831-41. [PMID: 24692179 DOI: 10.1002/jcp.24637] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/28/2014] [Indexed: 11/08/2022]
Abstract
Despite the importance of the ErbB2/3 heterodimer in breast cancer progression, the negative regulation of these receptors is still poorly understood. We demonstrate here for the first time that the ErbB3/4 ligand heregulin (HRG) reduced both ErbB2 and ErbB3 mRNA and protein levels in human breast cancer cell lines. In contrast, EGFR levels were unaffected by HRG treatment. The effect was rapid with a decline in steady-state mRNA levels first noted 2 h after HRG treatment. HRG reduced the rate of transcription of ErbB2 and ErbB3 mRNA, but did not affect ErbB2 or ErbB3 mRNA stability. To test if ErbB2 kinase activity was required for the HRG-induced downregulation, we treated cells with the ErbB2/EGFR inhibitor lapatinib. Lapatinib diminished the HRG-induced decrease in ErbB2 and ErbB3 mRNA and protein, suggesting that the kinase activity of EGFR/ErbB2 is involved in the HRG-induced receptor downregulation. Further, HRG-mediated decreases in ErbB2/3 mRNA transcription are reversed by inhibiting the AKT but not MAPK pathway. To examine the functional consequences of HRG-mediated decreases in ErbB receptor levels, we performed cell-cycle analysis. HRG blocked cell-cycle progression and lapatinib reversed this block. Our findings support a role for HRG in the negative regulation of ErbB expression and suggest that inhibition of ErbB2/3 signaling by ErbB2 directed therapies may interfere with this process. J. Cell. Physiol. 229: 1831-1841, 2014. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Smita Awasthi
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland; Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
138
|
Bailey TA, Luan H, Tom E, Bielecki TA, Mohapatra B, Ahmad G, George M, Kelly DL, Natarajan A, Raja SM, Band V, Band H. A kinase inhibitor screen reveals protein kinase C-dependent endocytic recycling of ErbB2 in breast cancer cells. J Biol Chem 2014; 289:30443-30458. [PMID: 25225290 DOI: 10.1074/jbc.m114.608992] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ErbB2 overexpression drives oncogenesis in 20-30% cases of breast cancer. Oncogenic potential of ErbB2 is linked to inefficient endocytic traffic into lysosomes and preferential recycling. However, regulation of ErbB2 recycling is incompletely understood. We used a high-content immunofluorescence imaging-based kinase inhibitor screen on SKBR-3 breast cancer cells to identify kinases whose inhibition alters the clearance of cell surface ErbB2 induced by Hsp90 inhibitor 17-AAG. Less ErbB2 clearance was observed with broad-spectrum PKC inhibitor Ro 31-8220. A similar effect was observed with Go 6976, a selective inhibitor of classical Ca(2+)-dependent PKCs (α, β1, βII, and γ). PKC activation by PMA promoted surface ErbB2 clearance but without degradation, and ErbB2 was observed to move into a juxtanuclear compartment where it colocalized with PKC-α and PKC-δ together with the endocytic recycling regulator Arf6. PKC-α knockdown impaired the juxtanuclear localization of ErbB2. ErbB2 transit to the recycling compartment was also impaired upon PKC-δ knockdown. PMA-induced Erk phosphorylation was reduced by ErbB2 inhibitor lapatinib, as well as by knockdown of PKC-δ but not that of PKC-α. Our results suggest that activation of PKC-α and -δ mediates a novel positive feedback loop by promoting ErbB2 entry into the endocytic recycling compartment, consistent with reported positive roles for these PKCs in ErbB2-mediated tumorigenesis. As the endocytic recycling compartment/pericentrion has emerged as a PKC-dependent signaling hub for G-protein-coupled receptors, our findings raise the possibility that oncogenesis by ErbB2 involves previously unexplored PKC-dependent endosomal signaling.
Collapse
Affiliation(s)
- Tameka A Bailey
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Haitao Luan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Genetics, Cell Biology, and Anatomy, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Eric Tom
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Biochemistry & Molecular Biology, College of Medicine, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Timothy Alan Bielecki
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Biochemistry & Molecular Biology, College of Medicine, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Gulzar Ahmad
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Manju George
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - David L Kelly
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Srikumar M Raja
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Vimla Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Genetics, Cell Biology, and Anatomy, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Genetics, Cell Biology, and Anatomy, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Biochemistry & Molecular Biology, College of Medicine, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950.
| |
Collapse
|
139
|
Zhu X, Zhang J, Sun H, Jiang C, Dong Y, Shan Q, Su S, Xie Y, Xu N, Lou X, Liu S. Ubiquitination of inositol-requiring enzyme 1 (IRE1) by the E3 ligase CHIP mediates the IRE1/TRAF2/JNK pathway. J Biol Chem 2014; 289:30567-30577. [PMID: 25225294 DOI: 10.1074/jbc.m114.562868] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deciphering the inositol-requiring enzyme 1 (IRE1) signaling pathway is fundamentally important for understanding the unfolded protein response (UPR). The ubiquitination of proteins residing on the endoplasmic reticulum (ER) membrane has been reported to be involved in the UPR, although the mechanism has yet to be fully elucidated. Using immunoprecipitation and mass spectrometry, IRE1 was identified as a substrate of the E3 ligase CHIP (carboxyl terminus of HSC70-interacting protein) in HEK293 cells under geldanamycin-induced ER stress. Two residues of IRE1, Lys(545) and Lys(828), were targeted for Lys(63)-linked ubiquitination. Moreover, in CHIP knockdown cells, IRE1 phosphorylation and the IRE1-TRAF2 interaction were nearly abolished under ER stress, which may be due to lacking ubiquitination of IRE1 on Lys(545) and Lys(828), respectively. The cellular responses were evaluated, and the data indicated that CHIP-regulated IRE1/TRAF2/JNK signaling antagonized the senescence process. Therefore, our findings suggest that CHIP-mediated ubiquitination of IRE1 contributes to the dynamic regulation of the UPR.
Collapse
Affiliation(s)
- Xu Zhu
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China,; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ju Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Huiying Sun
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Cuicui Jiang
- Beijing Protein Innovation, Beijing 101318, China, and
| | - Yusheng Dong
- Beijing Protein Innovation, Beijing 101318, China, and
| | - Qiang Shan
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Siyuan Su
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China,; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Xie
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China,; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaomin Lou
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China,.
| | - Siqi Liu
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China,; University of Chinese Academy of Sciences, Beijing 100049, China,.
| |
Collapse
|
140
|
Smith DA, Carland CR, Guo Y, Bernstein SI. Getting folded: chaperone proteins in muscle development, maintenance and disease. Anat Rec (Hoboken) 2014; 297:1637-1649. [PMID: 25125177 PMCID: PMC4135391 DOI: 10.1002/ar.22980] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 09/26/2024]
Abstract
Chaperone proteins are critical for protein folding and stability, and hence are necessary for normal cellular organization and function. Recent studies have begun to interrogate the role of this specialized class of proteins in muscle biology. During development, chaperone-mediated folding of client proteins enables their integration into nascent functional sarcomeres. In addition to assisting with muscle differentiation, chaperones play a key role in the maintenance of muscle tissues. Furthermore, disruption of the chaperone network can result in neuromuscular disease. In this review, we discuss how chaperones are involved in myofibrillogenesis, sarcomere maintenance, and muscle disorders. We also consider the possibilities of therapeutically targeting chaperones to treat muscle disease.
Collapse
Affiliation(s)
- Daniel A. Smith
- Department of Biology and the Molecular Biology Institute, San Diego State
University, San Diego, CA 92182, USA
| | - Carmen R. Carland
- Department of Biology and the Molecular Biology Institute, San Diego State
University, San Diego, CA 92182, USA
| | - Yiming Guo
- Department of Biology and the Molecular Biology Institute, San Diego State
University, San Diego, CA 92182, USA
| | - Sanford I. Bernstein
- Department of Biology and the Molecular Biology Institute, San Diego State
University, San Diego, CA 92182, USA
| |
Collapse
|
141
|
Bertelsen V, Stang E. The Mysterious Ways of ErbB2/HER2 Trafficking. MEMBRANES 2014; 4:424-46. [PMID: 25102001 PMCID: PMC4194043 DOI: 10.3390/membranes4030424] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/01/2014] [Accepted: 07/22/2014] [Indexed: 12/14/2022]
Abstract
The EGFR- or ErbB-family of receptor tyrosine kinases consists of EGFR/ErbB1, ErbB2/HER2, ErbB3/HER3 and ErbB4/HER4. Receptor activation and downstream signaling are generally initiated upon ligand-induced receptor homo- or heterodimerization at the plasma membrane, and endocytosis and intracellular membrane transport are crucial for regulation of the signaling outcome. Among the receptors, ErbB2 is special in several ways. Unlike the others, ErbB2 has no known ligand, but is still the favored dimerization partner. Furthermore, while the other receptors are down-regulated either constitutively or upon ligand-binding, ErbB2 is resistant to down-regulation, and also inhibits down-regulation of its partner upon heterodimerization. The reason(s) why ErbB2 is resistant to down-regulation are the subject of debate. Contrary to other ErbB-proteins, mature ErbB2 needs Hsp90 as chaperone. Several data suggest that Hsp90 is an important regulator of factors like ErbB2 stability, dimerization and/or signaling. Hsp90 inhibitors induce degradation of ErbB2, but whether Hsp90 directly makes ErbB2 endocytosis resistant is unclear. Exposure to anti-ErbB2 antibodies can also induce down-regulation of ErbB2. Down-regulation induced by Hsp90 inhibitors or antibodies does at least partly involve internalization and endosomal sorting to lysosomes for degradation, but also retrograde trafficking to the nucleus has been reported. In this review, we will discuss different molecular mechanisms suggested to be important for making ErbB2 resistant to down-regulation, and review how membrane trafficking is involved when down-regulation and/or relocalization of ErbB2 is induced.
Collapse
Affiliation(s)
- Vibeke Bertelsen
- Department of Pathology, Oslo University Hospital, Rikshospitalet, Post Box 4950 Nydalen, 0424 Oslo, Norway.
| | - Espen Stang
- Department of Pathology, Oslo University Hospital, Rikshospitalet, Post Box 4950 Nydalen, 0424 Oslo, Norway.
| |
Collapse
|
142
|
Blessing NA, Brockman AL, Chadee DN. The E3 ligase CHIP mediates ubiquitination and degradation of mixed-lineage kinase 3. Mol Cell Biol 2014; 34:3132-43. [PMID: 24912674 PMCID: PMC4135596 DOI: 10.1128/mcb.00296-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/30/2014] [Accepted: 05/28/2014] [Indexed: 01/30/2023] Open
Abstract
Mixed-lineage kinase 3 (MLK3) activates mitogen-activated protein kinase (MAPK) signaling pathways and has important functions in migration, invasion, proliferation, tumorigenesis, and apoptosis. We investigated the role of the E3 ligase carboxyl terminus of Hsc70-interacting protein (CHIP) in the regulation of MLK3 protein levels. We show that CHIP interacts with MLK3 and, together with the E2 ubiquitin-conjugating enzyme UbcH5 (UbcH5a, -b, -c, or -d), ubiquitinates MLK3 in vitro. CHIP or Hsp70 overexpression promoted endogenous MLK3 ubiquitination and induced a decline in MLK3 protein levels in cells with Hsp90 inhibition. Furthermore, CHIP overexpression caused a proteasome-dependent reduction in exogenous MLK3 protein. Geldanamycin (GA), heat shock, and osmotic shock treatments also reduced the level of MLK3 protein via a CHIP-dependent mechanism. In addition, CHIP depletion in ovarian cancer SKOV3 cells increased cell invasion, and the enhancement of invasiveness was abrogated by small interfering RNA (siRNA)-mediated knockdown of MLK3. Thus, CHIP modulates MLK3 protein levels in response to GA and stress stimuli, and CHIP-dependent regulation of MLK3 is required for suppression of SKOV3 ovarian cancer cell invasion.
Collapse
Affiliation(s)
- Natalya A Blessing
- Department of Biological Sciences, The University of Toledo, Toledo, Ohio, USA
| | - April L Brockman
- Department of Biological Sciences, The University of Toledo, Toledo, Ohio, USA
| | - Deborah N Chadee
- Department of Biological Sciences, The University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
143
|
Wang HM, Xu YF, Ning SL, Yang DX, Li Y, Du YJ, Yang F, Zhang Y, Liang N, Yao W, Zhang LL, Gu LC, Gao CJ, Pang Q, Chen YX, Xiao KH, Ma R, Yu X, Sun JP. The catalytic region and PEST domain of PTPN18 distinctly regulate the HER2 phosphorylation and ubiquitination barcodes. Cell Res 2014; 24:1067-90. [PMID: 25081058 PMCID: PMC4152746 DOI: 10.1038/cr.2014.99] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/27/2014] [Accepted: 05/26/2014] [Indexed: 12/23/2022] Open
Abstract
The tyrosine phosphorylation barcode encoded in C-terminus of HER2 and its ubiquitination regulate diverse HER2 functions. PTPN18 was reported as a HER2 phosphatase; however, the exact mechanism by which it defines HER2 signaling is not fully understood. Here, we demonstrate that PTPN18 regulates HER2-mediated cellular functions through defining both its phosphorylation and ubiquitination barcodes. Enzymologic characterization and three crystal structures of PTPN18 in complex with HER2 phospho-peptides revealed the molecular basis for the recognition between PTPN18 and specific HER2 phosphorylation sites, which assumes two distinct conformations. Unique structural properties of PTPN18 contribute to the regulation of sub-cellular phosphorylation networks downstream of HER2, which are required for inhibition of HER2-mediated cell growth and migration. Whereas the catalytic domain of PTPN18 blocks lysosomal routing and delays the degradation of HER2 by dephosphorylation of HER2 on pY(1112), the PEST domain of PTPN18 promotes K48-linked HER2 ubiquitination and its rapid destruction via the proteasome pathway and an HER2 negative feedback loop. In agreement with the negative regulatory role of PTPN18 in HER2 signaling, the HER2/PTPN18 ratio was correlated with breast cancer stage. Taken together, our study presents a structural basis for selective HER2 dephosphorylation, a previously uncharacterized mechanism for HER2 degradation and a novel function for the PTPN18 PEST domain. The new regulatory role of the PEST domain in the ubiquitination pathway will broaden our understanding of the functions of other important PEST domain-containing phosphatases, such as LYP and PTPN12.
Collapse
Affiliation(s)
- Hong-Mei Wang
- 1] Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong 250012, China [2] Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Yun-Fei Xu
- 1] Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong 250012, China [2] Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Shang-Lei Ning
- Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Du-Xiao Yang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Yi Li
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Yu-Jie Du
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Fan Yang
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Ya Zhang
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Nan Liang
- 1] Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong 250012, China [2] Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Wei Yao
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Ling-Li Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Li-Chuan Gu
- Shandong University, School of Life Science, Jinan, Shandong 250012, China
| | - Cheng-Jiang Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Qi Pang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Yu-Xin Chen
- Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Kun-Hong Xiao
- Duke University, School of Medicine, Durham, 27705, USA
| | - Rong Ma
- Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Xiao Yu
- 1] Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong 250012, China [2] Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China [3] Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Jin-Peng Sun
- 1] Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong 250012, China [2] Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| |
Collapse
|
144
|
Nielsen SV, Poulsen EG, Rebula CA, Hartmann-Petersen R. Protein quality control in the nucleus. Biomolecules 2014; 4:646-61. [PMID: 25010148 PMCID: PMC4192666 DOI: 10.3390/biom4030646] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/20/2014] [Accepted: 06/04/2014] [Indexed: 01/18/2023] Open
Abstract
In their natural environment, cells are regularly exposed to various stress conditions that may lead to protein misfolding, but also in the absence of stress, misfolded proteins occur as the result of mutations or failures during protein synthesis. Since such partially denatured proteins are prone to aggregate, cells have evolved several elaborate quality control systems to deal with these potentially toxic proteins. First, various molecular chaperones will seize the misfolded protein and either attempt to refold the protein or target it for degradation via the ubiquitin-proteasome system. The degradation of misfolded proteins is clearly compartmentalized, so unique degradation pathways exist for misfolded proteins depending on whether their subcellular localization is ER/secretory, mitochondrial, cytosolic or nuclear. Recent studies, mainly in yeast, have shown that the nucleus appears to be particularly active in protein quality control. Thus, specific ubiquitin-protein ligases located in the nucleus, target not only misfolded nuclear proteins, but also various misfolded cytosolic proteins which are transported to the nucleus prior to their degradation. In comparison, much less is known about these mechanisms in mammalian cells. Here we highlight recent advances in our understanding of nuclear protein quality control, in particular regarding substrate recognition and proteasomal degradation.
Collapse
Affiliation(s)
- Sofie V Nielsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Esben G Poulsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Caio A Rebula
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Rasmus Hartmann-Petersen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
145
|
Growth hormone-releasing hormone antagonists abolish the transactivation of human epidermal growth factor receptors in advanced prostate cancer models. Invest New Drugs 2014; 32:871-82. [DOI: 10.1007/s10637-014-0131-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/23/2014] [Indexed: 02/04/2023]
|
146
|
E3 ubiquitin ligase Cullin-5 modulates multiple molecular and cellular responses to heat shock protein 90 inhibition in human cancer cells. Proc Natl Acad Sci U S A 2014; 111:6834-9. [PMID: 24760825 DOI: 10.1073/pnas.1322412111] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular chaperone heat shock protein 90 (HSP90) is required for the activity and stability of its client proteins. Pharmacologic inhibition of HSP90 leads to the ubiquitin-mediated degradation of clients, particularly activated or mutant oncogenic protein kinases. Client ubiquitination occurs via the action of one or more E3 ubiquitin ligases. We sought to identify the role of Cullin-RING family E3 ubiquitin ligases in the cellular response to HSP90 inhibition. Through a focused siRNA screen of 28 Cullin-RING ligase family members, we found that CUL5 and RBX2 were required for degradation of several HSP90 clients upon treatment of human cancer cells with the clinical HSP90 inhibitor 17-AAG. Surprisingly, silencing Cullin-5 (CUL5) also delayed the earlier loss of HSP90 client protein activity at the same time as delaying cochaperone dissociation from inhibited HSP90-client complexes. Expression of a dominant-negative CUL5 showed that NEDD8 conjugation of CUL5 is required for client degradation but not for loss of client activity or recruitment of clients and HSP90 to CUL5. Silencing CUL5 reduced cellular sensitivity to three distinct HSP90 inhibitors, across four cancer types driven by different protein kinases. Our results reveal the importance of CUL5 in multiple aspects of the cellular response to HSP90 inhibition.
Collapse
|
147
|
Choi YJ, Kim NH, Lim MS, Lee HJ, Kim SS, Chun W. Geldanamycin attenuates 3‑nitropropionic acid‑induced apoptosis and JNK activation through the expression of HSP 70 in striatal cells. Int J Mol Med 2014; 34:24-34. [PMID: 24756698 PMCID: PMC4072345 DOI: 10.3892/ijmm.2014.1747] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/14/2014] [Indexed: 11/05/2022] Open
Abstract
Although selective striatal cell death is a characteristic hallmark in the pathogenesis of Huntington's disease (HD), the underlying mechanism of striatal susceptibility remains to be clarified. Heat shock proteins (HSPs) have been reported to suppress the aggregate formation of mutant huntingtin and concurrent striatal cell death. In a previous study, we observed that heat shock transcription factor 1 (HSF1), a major transcription factor of HSPs, significantly attenuated 3‑nitropropionic acid (3NP)‑induced reactive oxygen species (ROS) production and apoptosis through the expression of HSP 70 in striatal cells. To investigate the differential roles of HSPs in 3NP‑induced striatal cell death, the effect of geldanamycin (GA), an HSP 90 inhibitor, was examined in 3NP‑stimulated striatal cells. GA significantly attenuated 3NP‑induced striatal apoptosis and ROS production with an increased expression of HSP 70. Triptolide (TL), an HSP 70 inhibitor, abolished GA‑mediated protective effects in 3NP‑stimulated striatal cells. To understand the underlying mechanism by which GA‑mediated HSP 70 protects striatal cells against 3NP stimulation, the involvement of various signaling pathways was examined. GA significantly attenuated 3NP‑induced c‑Jun N‑terminal kinase (JNK) phosphorylation and subsequent c‑Jun phosphorylation in striatal cells. Taken together, the present study demonstrated that GA exhibits protective properties against 3NP‑induced apoptosis and JNK activation via the induction of HSP 70 in striatal cells, suggesting that expression of HSP 70 may be a valuable therapeutic target in the treatment of HD.
Collapse
Affiliation(s)
- Yong-Joon Choi
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Nam Ho Kim
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Man Sup Lim
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Hee Jae Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Sung Soo Kim
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| |
Collapse
|
148
|
The E3 ubiquitin ligase NEDD4 negatively regulates HER3/ErbB3 level and signaling. Oncogene 2014; 34:1105-15. [PMID: 24662824 DOI: 10.1038/onc.2014.56] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/06/2014] [Accepted: 01/12/2014] [Indexed: 01/07/2023]
Abstract
HER3/ErbB3, a member of the epidermal growth factor receptor (EGFR) family, has a pivotal role in cancer and is emerging as a therapeutic antibody target. In this study, we identified NEDD4 (neural precursor cell expressed, developmentally downregulated 4) as a novel interaction partner and ubiquitin E3 ligase of human HER3. Using molecular and biochemical approaches, we demonstrated that the C-terminal tail of HER3 interacted with the WW domains of NEDD4 and the interaction was independent of neuregulin-1. Short hairpin RNA knockdown of NEDD4 elevated HER3 levels and resulted in increased HER3 signaling and cancer cell proliferation in vitro and in vivo. A similar inverse relationship between HER3 and NEDD4 levels was observed in prostate cancer tumor tissues. More importantly, the upregulated HER3 expression by NEDD4 knockdown sensitized cancer cells for growth inhibition by an anti-HER3 antibody. Taken together, our results suggest that low NEDD4 levels may predict activation of HER3 signaling and efficacies of anti-HER3 antibody therapies.
Collapse
|
149
|
Inhibition of post-translational N-glycosylation by HRD1 that controls the fate of ABCG5/8 transporter. Sci Rep 2014; 4:4258. [PMID: 24584735 PMCID: PMC3939451 DOI: 10.1038/srep04258] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 02/13/2014] [Indexed: 12/12/2022] Open
Abstract
N-glycosylation of proteins in endoplasmic reticulum is critical for protein quality control. We showed here a post-translational N-glycosylation affected by the HRD1 E3 ubiquitin ligase. Both WT- and E3-defective C329S-HRD1 decreased the level of high mannose form of ABCG8, a protein that heterodimerizes with ABCG5 to control sterol balance. Meanwhile, HRD1 increased the non-glycosylated ABCG8 regardless of its E3 activity, thereby suppressing full maturation of ABCG5/8 transporter. Pulse chase and mutational analysis indicated that HRD1 inhibits STT3B-dependent post-translational N-glycosylation of ABCG8. Whereas, HRD1 had only slight effect on the N-glycosylation status of ABCG5; rather it accelerated ABCG5 degradation in an E3 activity-dependent manner. Finally, RMA1, another E3 ubiquitin ligase, accelerated the degradation of both ABCG5 and ABCG8 via E3 activity-dependent manner. HRD1 and RMA1 may therefore be negative regulators of disease-associated transporter ABCG5/ABCG8. The findings also highlight the unexpected E3 activity-independent role of HRD1 in the regulation of N-glycosylation.
Collapse
|
150
|
Hsp70 and Hsp90 oppositely regulate TGF-β signaling through CHIP/Stub1. Biochem Biophys Res Commun 2014; 446:387-92. [DOI: 10.1016/j.bbrc.2014.02.124] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 12/18/2022]
|