101
|
Fukui K. DNA mismatch repair in eukaryotes and bacteria. J Nucleic Acids 2010; 2010. [PMID: 20725617 PMCID: PMC2915661 DOI: 10.4061/2010/260512] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 06/24/2010] [Indexed: 12/17/2022] Open
Abstract
DNA mismatch repair (MMR) corrects mismatched base pairs mainly caused by DNA replication errors. The fundamental mechanisms and proteins involved in the early reactions of MMR are highly conserved in almost all organisms ranging from bacteria to human. The significance of this repair system is also indicated by the fact that defects in MMR cause human hereditary nonpolyposis colon cancers as well as sporadic tumors. To date, 2 types of MMRs are known: the human type and Escherichia coli type. The basic features of the former system are expected to be universal among the vast majority of organisms including most bacteria. Here, I review the molecular mechanisms of eukaryotic and bacterial MMR, emphasizing on the similarities between them.
Collapse
Affiliation(s)
- Kenji Fukui
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
102
|
Sass LE, Lanyi C, Weninger K, Erie DA. Single-molecule FRET TACKLE reveals highly dynamic mismatched DNA-MutS complexes. Biochemistry 2010; 49:3174-90. [PMID: 20180598 DOI: 10.1021/bi901871u] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first step in DNA mismatch repair (MMR) is the recognition of DNA mismatches or nucleotide insertions/deletions (IDLs) by MutS and MutS homologues. To investigate the conformational properties of MutS-mismatch complexes, we used single-molecule fluorescence resonance energy transfer (smFRET) to examine the dynamics of MutS-induced DNA bending at a GT mismatch. The FRET measurements reveal that the MutS-GT mismatch recognition complex is highly dynamic, undergoing conformational transitions between many states with different degrees of DNA bending. Due to the complexity of the data, we developed an analysis approach, called FRET TACKLE, in which we combine direct analysis of FRET transitions with examination of kinetic lifetimes to identify all of the conformational states and characterize the kinetics of the binding and conformational equilibria. The data reveal that MutS-GT complexes can reside in six different conformations, which have lifetimes that differ by as much as 20-fold and exhibit rates of interconversion that vary by 2 orders of magnitude. To gain further insight into the dynamic properties of GT-MutS complexes and to bolster the validity of our analysis, we complemented our experimental data with Monte Carlo simulations. Taken together, our results suggest that the dynamics of the MutS-mismatch complex could govern the efficiency of repair of different DNA mismatches. Finally, in addition to revealing these important biological implications of MutS-DNA interactions, this FRET TACKLE method will enable the analysis of the complex dynamics of other biological systems.
Collapse
Affiliation(s)
- Lauryn E Sass
- Department of Chemistry, University of North Carolina, Chapel Hill,North Carolina 27599, USA
| | | | | | | |
Collapse
|
103
|
Polosina YY, Cupples CG. MutL: conducting the cell's response to mismatched and misaligned DNA. Bioessays 2010; 32:51-9. [PMID: 19953589 DOI: 10.1002/bies.200900089] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Base pair mismatches in DNA arise from errors in DNA replication, recombination, and biochemical modification of bases. Mismatches are inherently transient. They are resolved passively by DNA replication, or actively by enzymatic removal and resynthesis of one of the bases. The first step in removal is recognition of strand discontinuity by one of the MutS proteins. Mismatches arising from errors in DNA replication are repaired in favor of the base on the template strand, but other mismatches trigger base excision or nucleotide excision repair (NER), or non-repair pathways such as hypermutation, cell cycle arrest, or apoptosis. We argue that MutL homologues play a key role in determining biologic outcome by recruiting and/or activating effector proteins in response to lesion recognition by MutS. We suggest that the process is regulated by conformational changes in MutL caused by cycles of ATP binding and hydrolysis, and by physiologic changes which influence effector availability.
Collapse
Affiliation(s)
- Yaroslava Y Polosina
- Department of Biochemistry and Microbiology, University of Victoria, BC, Canada.
| | | |
Collapse
|
104
|
Labazi M, Jaafar L, Flores-Rozas H. Modulation of the DNA-binding activity of Saccharomyces cerevisiae MSH2-MSH6 complex by the high-mobility group protein NHP6A, in vitro. Nucleic Acids Res 2010; 37:7581-9. [PMID: 19843605 PMCID: PMC2794155 DOI: 10.1093/nar/gkp649] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
DNA mismatch repair corrects mispaired bases and small insertions/deletions in DNA. In eukaryotes, the mismatch repair complex MSH2–MSH6 binds to mispairs with only slightly higher affinity than to fully paired DNA in vitro. Recently, the high-mobility group box1 protein, (HMGB1), has been shown to stimulate the mismatch repair reaction in vitro. In yeast, the closest homologs of HMGB1 are NHP6A and NHP6B. These proteins have been shown to be required for genome stability maintenance and mutagenesis control. In this work, we show that MSH2–MSH6 and NHP6A modulate their binding to DNA in vitro. Binding of the yeast MSH2–MSH6 to homoduplex regions of DNA significantly stimulates the loading of NHP6A. Upon binding of NHP6A to DNA, MSH2–MSH6 is excluded from binding unless a mismatch is present. A DNA binding-impaired MSH2–MSH6F337A significantly reduced the loading of NHP6A to DNA, suggesting that MSH2–MSH6 binding is a requisite for NHP6A loading. MSH2–MSH6 and NHP6A form a stable complex, which is responsive to ATP on mismatched substrates. These results suggest that MSH2–MSH6 binding to homoduplex regions of DNA recruits NHP6A, which then prevents further binding of MSH2–MSH6 to these sites unless a mismatch is present.
Collapse
Affiliation(s)
- Mohamed Labazi
- Department of Medicine, Institute of Molecular Medicine and Genetics and MCG Cancer Center, Medical College of Georgia, 1120 15th Street CA-3018, Augusta, GA 30912, USA
| | | | | |
Collapse
|
105
|
Kim S, Kim TG, Byon HR, Shin HJ, Ban C, Choi HC. Recognition of single mismatched DNA using MutS-immobilized carbon nanotube field effect transistor devices. J Phys Chem B 2009; 113:12164-8. [PMID: 19685907 DOI: 10.1021/jp9063559] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Label-free and real-time detections of mismatched dsDNAs are demonstrated using MutS-protein-immobilized, single-walled carbon nanotube field effect transistor (SWNT-FET) devices. The E. coli MutS proteins specifically recognizing mismatched dsDNAs are immobilized on SWNT-FET devices that have been fabricated for high sensitivity using a shadow mask lithographic technique to obtain a thin and wide Schottky contact region. The MutS-immobilized SWNT-FETs have successfully detected 40 base pair dsDNAs having single G-T mismatches at the 20th base pair positions by displaying significant electrical conductance drops at as low as 100 pM concentration. Systematic control experiments have revealed that the signal changes indeed originated from specific recognitions of mismatched DNAs by the immobilized MutS proteins.
Collapse
|
106
|
Le Gall S, Desbordes L, Gracieux P, Saffroy S, Bousarghin L, Bonnaure-Mallet M, Jolivet-Gougeon A. Distribution of mutation frequencies among Salmonella enterica isolates from animal and human sources and genetic characterization of a Salmonella Heidelberg hypermutator. Vet Microbiol 2009; 137:306-12. [DOI: 10.1016/j.vetmic.2009.01.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 01/08/2009] [Accepted: 01/12/2009] [Indexed: 01/11/2023]
|
107
|
Kouso H, Yoshino I, Miura N, Takenaka T, Ohba T, Yohena T, Osoegawa A, Shoji F, Maehara Y. Expression of mismatch repair proteins, hMLH1/hMSH2, in non-small cell lung cancer tissues and its clinical significance. J Surg Oncol 2008; 98:377-83. [PMID: 18646042 DOI: 10.1002/jso.21108] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND hMLH1 and hMSH2 have been implicated to be involved in the DNA mismatch repair (MMR) system. The purpose of this study is to investigate the expression of hMLH1 and hMSH2 DNA MMR proteins in non-small cell lung cancer (NSCLC) tissue and to elucidate their clinical significance. METHODS The hMLH1 and hMSH2 protein expression was evaluated by immunohistochemistry for a consecutive series of 113 NSCLC patients. The expressions of each protein were examined for an association with the clinicopathological variables, including genetic alterations analyzed by high resolution fluorescent microsatellite analysis. RESULTS Regarding the hMLH1 expression, the MSI-positive patients showed significantly lower scores than the MSI-negative patients. For hMSH2 expression, the patients with a 20 or higher pack-year index (PYI) showed significantly higher scores than the patients with a PYI less than 20. The expression status of proteins did not affect both the disease free and overall survival of the patients. No significant correlation was observed among the scores for the proteins. CONCLUSIONS The expressions of hMLH1 and hMSH2 are independently regulated and play different roles in NSCLC. The genetic instability is possibly due to the reduced expression of hMLH1 protein, and hMSH2 expression is associated with smoking status.
Collapse
Affiliation(s)
- Hidenori Kouso
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Tessmer I, Yang Y, Zhai J, Du C, Hsieh P, Hingorani MM, Erie DA. Mechanism of MutS searching for DNA mismatches and signaling repair. J Biol Chem 2008; 283:36646-54. [PMID: 18854319 DOI: 10.1074/jbc.m805712200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA mismatch repair is initiated by the recognition of mismatches by MutS proteins. The mechanism by which MutS searches for and recognizes mismatches and subsequently signals repair remains poorly understood. We used single-molecule analyses of atomic force microscopy images of MutS-DNA complexes, coupled with biochemical assays, to determine the distributions of conformational states, the DNA binding affinities, and the ATPase activities of wild type and two mutants of MutS, with alanine substitutions in the conserved Phe-Xaa-Glu mismatch recognition motif. We find that on homoduplex DNA, the conserved Glu, but not the Phe, facilitates MutS-induced DNA bending, whereas at mismatches, both Phe and Glu promote the formation of an unbent conformation. The data reveal an unusual role for the Phe residue in that it promotes the unbending, not bending, of DNA at mismatch sites. In addition, formation of the specific unbent MutS-DNA conformation at mismatches appears to be required for the inhibition of ATP hydrolysis by MutS that signals initiation of repair. These results provide a structural explanation for the mechanism by which MutS searches for and recognizes mismatches and for the observed phenotypes of mutants with substitutions in the Phe-Xaa-Glu motif.
Collapse
Affiliation(s)
- Ingrid Tessmer
- Department of Chemistry and Curriculum in Applied Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
109
|
Huang SYN, Crothers DM. The role of nucleotide cofactor binding in cooperativity and specificity of MutS recognition. J Mol Biol 2008; 384:31-47. [PMID: 18773911 DOI: 10.1016/j.jmb.2008.08.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 08/14/2008] [Accepted: 08/20/2008] [Indexed: 10/21/2022]
Abstract
Mismatch repair (MMR) is essential for eliminating biosynthetic errors generated during replication or genetic recombination in virtually all organisms. The critical first step in Escherichia coli MMR is the specific recognition and binding of MutS to a heteroduplex, containing either a mismatch or an insertion/deletion loop of up to four nucleotides. All known MutS homologs recognize a similar broad spectrum of substrates. Binding and hydrolysis of nucleotide cofactors by the MutS-heteroduplex complex are required for downstream MMR activity, although the exact role of the nucleotide cofactors is less clear. Here, we showed that MutS bound to a 30-bp heteroduplex containing an unpaired T with a binding affinity approximately 400-fold stronger than to a 30-bp homoduplex, a much higher specificity than previously reported. The binding of nucleotide cofactors decreased both MutS specific and nonspecific binding affinity, with the latter marked by a larger drop, further increasing MutS specificity by approximately 3-fold. Kinetic studies showed that the difference in MutS K(d) for various heteroduplexes was attributable to the difference in intrinsic dissociation rate of a particular MutS-heteroduplex complex. Furthermore, the kinetic association event of MutS binding to heteroduplexes was marked by positive cooperativity. Our studies showed that the positive cooperativity in MutS binding was modulated by the binding of nucleotide cofactors. The binding of nucleotide cofactors transformed E. coli MutS tetramers, the functional unit in E. coli MMR, from a cooperative to a noncooperative binding form. Finally, we found that E. coli MutS bound to single-strand DNA with significant affinity, which could have important implication for strand discrimination in eukaryotic MMR mechanism.
Collapse
Affiliation(s)
- Shar-yin N Huang
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, P.O. Box 208114, New Haven, CT 06520-8114, USA
| | | |
Collapse
|
110
|
Miguel V, Monti MR, Argaraña CE. The role of MutS oligomers on Pseudomonas aeruginosa mismatch repair system activity. DNA Repair (Amst) 2008; 7:1799-808. [PMID: 18687413 DOI: 10.1016/j.dnarep.2008.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 07/09/2008] [Indexed: 11/26/2022]
Abstract
The Escherichia coli DNA Mismatch Repair (MMR) protein MutS exist as dimers and tetramers in solution, and the identification of its functional oligomeric state has been matter of extensive study. In the present work, we have analyzed the oligomerization state of MutS from Pseudomonas aeruginosa a bacterial species devoid of Dam methylation and MutH homologue. By analyzing native MutS and different mutated versions of the protein, we determined that P. aeruginosa MutS is mainly tetrameric in solution and that its oligomerization capacity is conducted as in E. coli, by the C-terminal region of the protein. The analysis of mismatch oligonucleotide binding activity showed that wild-type MutS binds to DNA as tetramer. The DNA binding activity decreased when the C-terminal region was deleted (MutSDelta798) or when a full-length MutS with tetramerization defects (MutSR842E) was tested. The ATPase activity of MutSDelta798 was similar to MutSR842E and diminished respect to the wild-type protein. Experiments carried out on a P. aeruginosa mutS strain to test the proficiency of different oligomeric versions of MutS to function in vivo showed that MutSDelta798 is not functional and that full-length dimeric version MutSR842E, is not capable of completely restoring the MMR activity of the mutant strain. Additional experiments carried out in conditions of high mutation rate induced by the base analogue 2-AP confirm that the dimeric version of MutS is not as efficient as the tetrameric wild-type protein to prevent mutations. Therefore, it is concluded that although dimeric MutS is sufficient for MMR activity, optimal activity is obtained with the tetrameric version of the protein and therefore it should be considered as the active form of MutS in P. aeruginosa.
Collapse
Affiliation(s)
- Virginia Miguel
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | | | | |
Collapse
|
111
|
Hsieh P, Yamane K. DNA mismatch repair: molecular mechanism, cancer, and ageing. Mech Ageing Dev 2008; 129:391-407. [PMID: 18406444 PMCID: PMC2574955 DOI: 10.1016/j.mad.2008.02.012] [Citation(s) in RCA: 306] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 02/22/2008] [Accepted: 02/28/2008] [Indexed: 02/09/2023]
Abstract
DNA mismatch repair (MMR) proteins are ubiquitous players in a diverse array of important cellular functions. In its role in post-replication repair, MMR safeguards the genome correcting base mispairs arising as a result of replication errors. Loss of MMR results in greatly increased rates of spontaneous mutation in organisms ranging from bacteria to humans. Mutations in MMR genes cause hereditary nonpolyposis colorectal cancer, and loss of MMR is associated with a significant fraction of sporadic cancers. Given its prominence in mutation avoidance and its ability to target a range of DNA lesions, MMR has been under investigation in studies of ageing mechanisms. This review summarizes what is known about the molecular details of the MMR pathway and the role of MMR proteins in cancer susceptibility and ageing.
Collapse
Affiliation(s)
- Peggy Hsieh
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
112
|
Jia Y, Bi L, Li F, Chen Y, Zhang C, Zhang X. Alpha-shaped DNA loops induced by MutS. Biochem Biophys Res Commun 2008; 372:618-22. [PMID: 18514060 DOI: 10.1016/j.bbrc.2008.05.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 05/15/2008] [Indexed: 11/19/2022]
Abstract
DNA mismatch repair (MMR) is critical for the maintenance of genomic stability. MMR is initiated by recognition of DNA mismatches by the protein, MutS, which subsequently recruits downstream repair factors. To better understand the mechanism by which MutS identifies and specifically binds mismatched basepairs embedded in random DNA sequences, we monitored the interaction between MutS and DNA substrates using atomic force microscopy (AFM). An alpha-shaped DNA loop formed by the interaction between MutS and DNA, which was independent of whether or not a mismatch was present in the DNA substrate. These data indicate that MutS associates with DNA non-specifically and forms an alpha-loop interaction with the DNA substrate. In this conformation, MutS is able to scan two arms of DNA simultaneously for each MutS dimer formed.
Collapse
Affiliation(s)
- Yanxia Jia
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
113
|
Slean MM, Panigrahi GB, Ranum LP, Pearson CE. Mutagenic roles of DNA "repair" proteins in antibody diversity and disease-associated trinucleotide repeat instability. DNA Repair (Amst) 2008; 7:1135-54. [PMID: 18485833 DOI: 10.1016/j.dnarep.2008.03.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
While DNA repair proteins are generally thought to maintain the integrity of the whole genome by correctly repairing mutagenic DNA intermediates, there are cases where DNA "repair" proteins are involved in causing mutations instead. For instance, somatic hypermutation (SHM) and class switch recombination (CSR) require the contribution of various DNA repair proteins, including UNG, MSH2 and MSH6 to mutate certain regions of immunoglobulin genes in order to generate antibodies of increased antigen affinity and altered effector functions. Another instance where "repair" proteins drive mutations is the instability of gene-specific trinucleotide repeats (TNR), the causative mutations of numerous diseases including Fragile X mental retardation syndrome (FRAXA), Huntington's disease (HD), myotonic dystrophy (DM1) and several spinocerebellar ataxias (SCAs) all of which arise via various modes of pathogenesis. These healthy and deleterious mutations that are induced by repair proteins are distinct from the genome-wide mutations that arise in the absence of repair proteins: they occur at specific loci, are sensitive to cis-elements (sequence context and/or epigenetic marks) and transcription, occur in specific tissues during distinct developmental windows, and are age-dependent. Here we review and compare the mutagenic role of DNA "repair" proteins in the processes of SHM, CSR and TNR instability.
Collapse
Affiliation(s)
- Meghan M Slean
- Program of Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1L7
| | | | | | | |
Collapse
|
114
|
McMurray CT. Hijacking of the mismatch repair system to cause CAG expansion and cell death in neurodegenerative disease. DNA Repair (Amst) 2008; 7:1121-34. [PMID: 18472310 DOI: 10.1016/j.dnarep.2008.03.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mammalian cells have evolved sophisticated DNA repair systems to correct mispaired or damaged bases and extrahelical loops. Emerging evidence suggests that, in some cases, the normal DNA repair machinery is "hijacked" to become a causative factor in mutation and disease, rather than act as a safeguard of genomic integrity. In this review, we consider two cases in which active MMR leads to mutation or to cell death. There may be similar mechanisms by which uncoupling of normal MMR recognition from downstream repair allows triplet expansions underlying human neurodegenerative disease, or cell death in response to chemical lesion.
Collapse
Affiliation(s)
- Cynthia T McMurray
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
115
|
Park S, Lim BBC, Perez-Terzic C, Mer G, Terzic A. Interaction of asymmetric ABCC9-encoded nucleotide binding domains determines KATP channel SUR2A catalytic activity. J Proteome Res 2008; 7:1721-8. [PMID: 18311911 DOI: 10.1021/pr7007847] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nucleotide binding domains (NBDs) secure ATP-binding cassette (ABC) transporter function. Distinct from traditional ABC transporters, ABCC9-encoded sulfonylurea receptors (SUR2A) form, with Kir6.2 potassium channels, ATP-sensitive K+ (K ATP) channel complexes. SUR2A contains ATPase activity harbored within NBD2 and, to a lesser degree, NBD1, with catalytically driven conformations exerting determinate linkage on the Kir6.2 channel pore. While homodomain interactions typify NBDs of conventional ABC transporters, heterodomain NBD interactions and their functional consequence have not been resolved for the atypical SUR2A protein. Here, nanoscale protein topography mapped assembly of monodisperse purified recombinant SUR2A NBD1/NBD2 domains, precharacterized by dynamic light scattering. Heterodomain interaction produced conformational rearrangements inferred by secondary structural change in circular dichroism, and validated by atomic force and transmission electron microscopy. Physical engagement of NBD1 with NBD2 translated into enhanced intrinsic ATPase activity. Molecular modeling delineated a complemental asymmetry of NBD1/NBD2 ATP-binding sites. Mutation in the predicted catalytic base residue, D834E of NBD1, altered NBD1 ATPase activity disrupting potentiation of catalytic behavior in the NBD1/NBD2 interactome. Thus, NBD1/NBD2 assembly, resolved by a panel of proteomic approaches, provides a molecular substrate that determines the optimal catalytic activity in SUR2A, establishing a paradigm for the structure-function relationship within the K ATP channel complex.
Collapse
Affiliation(s)
- Sungjo Park
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
116
|
Gorman J, Chowdhury A, Surtees JA, Shimada J, Reichman DR, Alani E, Greene EC. Dynamic basis for one-dimensional DNA scanning by the mismatch repair complex Msh2-Msh6. Mol Cell 2008; 28:359-70. [PMID: 17996701 DOI: 10.1016/j.molcel.2007.09.008] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 08/15/2007] [Accepted: 09/11/2007] [Indexed: 11/18/2022]
Abstract
The ability of proteins to locate specific sites or structures among a vast excess of nonspecific DNA is a fundamental theme in biology. Yet the basic principles that govern these mechanisms remain poorly understood. For example, mismatch repair proteins must scan millions of base pairs to find rare biosynthetic errors, and they then must probe the surrounding region to identify the strand discrimination signals necessary to distinguish the parental and daughter strands. To determine how these proteins might function we used single-molecule optical microscopy to answer the following question: how does the mismatch repair complex Msh2-Msh6 interrogate undamaged DNA? Here we show that Msh2-Msh6 slides along DNA via one-dimensional diffusion. These findings indicate that interactions between Msh2-Msh6 and DNA are dominated by lateral movement of the protein along the helical axis and have implications for how MutS family members travel along DNA at different stages of the repair reaction.
Collapse
Affiliation(s)
- Jason Gorman
- Department of Biological Sciences, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
117
|
|
118
|
Nag N, Rao BJ, Krishnamoorthy G. Altered dynamics of DNA bases adjacent to a mismatch: a cue for mismatch recognition by MutS. J Mol Biol 2007; 374:39-53. [PMID: 17919654 DOI: 10.1016/j.jmb.2007.08.065] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 08/27/2007] [Accepted: 08/27/2007] [Indexed: 10/22/2022]
Abstract
The structural deviations as well as the alteration in the dynamics of DNA at mismatch sites are considered to have a crucial role in mismatch recognition followed by its repair utilizing mismatch repair family proteins. To compare the dynamics at a mismatch and a non-mismatch site, we incorporated 2-aminopurine, a fluorescent analogue of adenine next to a G.T mismatch, a C.C mismatch, or an unpaired T, and at several other non-mismatch positions. Rotational diffusion of 2-aminopurine at these locations, monitored by time-resolved fluorescence anisotropy, showed distinct differences in the dynamics. This alteration in the motional dynamics is largely confined to the normally matched base-pairs that are immediately adjacent to a mismatch/ unpaired base and could be used by MutS as a cue for mismatch-specific recognition. Interestingly, the enhanced dynamics associated with base-pairs adjacent to a mismatch are significantly restricted upon MutS binding, perhaps "resetting" the cues for downstream events that follow MutS binding. Recognition of such details of motional dynamics of DNA for the first time in the current study enabled us to propose a model that integrates the details of mismatch recognition by MutS as revealed by the high-resolution crystal structure with that of observed base dynamics, and unveils a minimal composite read-out involving the base mismatch and its adjacent normal base-pairs.
Collapse
Affiliation(s)
- Nabanita Nag
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| | | | | |
Collapse
|
119
|
Warren JJ, Pohlhaus TJ, Changela A, Iyer RR, Modrich PL, Beese LS. Structure of the human MutSalpha DNA lesion recognition complex. Mol Cell 2007; 26:579-92. [PMID: 17531815 DOI: 10.1016/j.molcel.2007.04.018] [Citation(s) in RCA: 279] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 03/22/2007] [Accepted: 04/20/2007] [Indexed: 12/21/2022]
Abstract
Mismatch repair (MMR) ensures the fidelity of DNA replication, initiates the cellular response to certain classes of DNA damage, and has been implicated in the generation of immune diversity. Each of these functions depends on MutSalpha (MSH2*MSH6 heterodimer). Inactivation of this protein complex is responsible for tumor development in about half of known hereditary nonpolyposis colorectal cancer kindreds and also occurs in sporadic tumors in a variety of tissues. Here, we describe a series of crystal structures of human MutSalpha bound to different DNA substrates, each known to elicit one of the diverse biological responses of the MMR pathway. All lesions are recognized in a similar manner, indicating that diversity of MutSalpha-dependent responses to DNA lesions is generated in events downstream of this lesion recognition step. This study also allows rigorous mapping of cancer-causing mutations and furthermore suggests structural pathways for allosteric communication between different regions within the heterodimer.
Collapse
Affiliation(s)
- Joshua J Warren
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
120
|
Abstract
The eukaryotic mismatch repair protein Msh6 shares five domains in common with other MutS members. However, it also contains several hundred additional residues at its N-terminus. A few of these residues bind to PCNA, but the functions of the other amino acids in the N-terminal region (NTR) are unknown. Here we demonstrate that the Msh6 NTR binds to duplex DNA in a salt-sensitive, mismatch-independent manner. Partial proteolysis, DNA affinity chromatography and mass spectrometry identified a fragment comprised of residues 228–299 of yeast Msh6 that binds to DNA and is rich in positively charged residues. Deleting these residues, or replacing lysines and arginines with glutamate, reduces DNA binding in vitro and elevates spontaneous mutation rates and resistance to MNNG treatment in vivo. Similar in vivo defects are conferred by alanine substitutions in a highly conserved motif in the NTR that immediately precedes domain I of MutS proteins, the domain that interacts with mismatched DNA. These data suggest that, in addition to PCNA binding, DNA binding and possibly other functions in the amino terminal region of Msh6 are important for eukaryotic DNA mismatch repair and cellular response to alkylation damage.
Collapse
Affiliation(s)
- Alan B. Clark
- Laboratory of Structural Biology and Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Leesa Deterding
- Laboratory of Structural Biology and Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Kenneth B. Tomer
- Laboratory of Structural Biology and Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Thomas A. Kunkel
- Laboratory of Structural Biology and Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
- *To whom correspondence should be addressed. 919-541-2644919-541-7613
| |
Collapse
|
121
|
Jiang Y, Ke C, Mieczkowski PA, Marszalek PE. Detecting ultraviolet damage in single DNA molecules by atomic force microscopy. Biophys J 2007; 93:1758-67. [PMID: 17483180 PMCID: PMC1948057 DOI: 10.1529/biophysj.107.108209] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report detection and quantification of ultraviolet (UV) damage in DNA at a single molecule level by atomic force microscopy (AFM). By combining the supercoiled plasmid relaxation assay with AFM imaging, we find that high doses of medium wave ultraviolet (UVB) and short wave ultraviolet (UVC) light not only produce cyclobutane pyrimidine dimers (CPDs) as reported but also cause significant DNA degradation. Specifically, 12.5 kJ/m(2) of UVC and 165 kJ/m(2) of UVB directly relax 95% and 78% of pUC18 supercoiled plasmids, respectively. We also use a novel combination of the supercoiled plasmid assay with T4 Endonuclease V treatment of irradiated plasmids and AFM imaging of their relaxation to detect damage caused by low UVB doses, which on average produced approximately 0.5 CPD per single plasmid. We find that at very low UVB doses, the relationship between the number of CPDs and UVB dose is almost linear, with 4.4 CPDs produced per Mbp per J/m(2) of UVB radiation. We verified these AFM results by agarose gel electrophoresis separation of UV-irradiated and T4 Endonuclease V treated plasmids. Our AFM and gel electrophoresis results are consistent with the previous result obtained using other traditional DNA damage detection methods. We also show that damage detection assay sensitivity increases with plasmid size. In addition, we used photolyase to mark the sites of UV lesions in supercoiled plasmids for detection and quantification by AFM, and these results were found to be consistent with the results obtained by the plasmid relaxation assay. Our results suggest that AFM can supplement traditional methods for high resolution measurements of UV damage to DNA.
Collapse
Affiliation(s)
- Yong Jiang
- Center for Biologically Inspired Materials and Material Systems and Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
122
|
Sedletska Y, Fourrier L, Malinge JM. Modulation of MutS ATP-dependent functional activities by DNA containing a cisplatin compound lesion (base damage and mismatch). J Mol Biol 2007; 369:27-40. [PMID: 17400248 DOI: 10.1016/j.jmb.2007.02.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 02/03/2007] [Accepted: 02/12/2007] [Indexed: 11/27/2022]
Abstract
DNA damage-dependent signaling by the DNA mismatch repair (MMR) system is thought to mediate cytotoxicity of the anti-tumor drug cisplatin through molecular mechanisms that could differ from those required for normal mismatch repair. The present study investigated whether ATP-dependent biochemical properties of Escherichia coli MutS protein differ when the protein interacts with a DNA oligonucleotide containing a GT mismatch versus a unique site specifically placed cisplatin compound lesion, a cisplatin 1,2-d(GpG) intrastrand cross-link with a mispaired thymine opposite the 3' platinated guanine. MutS exhibited substantial affinity for this compound lesion in hydrolytic and in non-hydrolytic conditions of ATP, contrasting with the normal nucleotide inhibition effect of mispair binding. The cisplatin compound lesion was also shown to stimulate poorly MutS ATPase activity to approach the hydrolysis rate induced by nonspecific DNA. Moreover, MutS undergoes distinct conformation changes in the presence of the compound lesion and ATP under hydrolytic conditions as shown by limited proteolysis. In the absence of MutS, the cisplatin compound lesion was shown to induce a 39 degrees rigid bending of the DNA double helix contrasting with an unbent state for DNA containing a GT mispair. Furthermore, an unbent DNA substrate containing a monofunctional adduct mimicking a cisplatin residue failed to form a persistent nucleoprotein complex with MutS in the presence of adenine nucleotide. We propose that DNA bending could play a role in MutS biochemical modulations induced by a compound lesion and that cisplatin DNA damage signaling by the MMR system could be modulated in a direct mode.
Collapse
Affiliation(s)
- Yuliya Sedletska
- Centre de Biophysique Moléculaire, CNRS, Rue Charles Sadron, 45071 Orléans Cedex 02, France
| | | | | |
Collapse
|
123
|
Lee SD, Surtees JA, Alani E. Saccharomyces cerevisiae MSH2–MSH3 and MSH2–MSH6 Complexes Display Distinct Requirements for DNA Binding Domain I in Mismatch Recognition. J Mol Biol 2007; 366:53-66. [PMID: 17157869 PMCID: PMC1805781 DOI: 10.1016/j.jmb.2006.10.099] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2006] [Revised: 10/27/2006] [Accepted: 10/30/2006] [Indexed: 11/19/2022]
Abstract
In eukaryotic mismatch repair (MMR) MSH2-MSH6 initiates the repair of base-base and small insertion/deletion mismatches while MSH2-MSH3 repairs larger insertion/deletion mismatches. Here, we show that the msh2Delta1 mutation, containing a complete deletion of the conserved mismatch recognition domain I of MSH2, conferred a separation of function phenotype with respect to MSH2-MSH3 and MSH2-MSH6 functions. Strains bearing the msh2Delta1 mutation were nearly wild-type in MSH2-MSH6-mediated MMR and in suppressing recombination between DNA sequences predicted to form mismatches recognized by MSH2-MSH6. However, these strains were completely defective in MSH2-MSH3-mediated MMR and recombination functions. This information encouraged us to analyze the contributions of domain I to the mismatch binding specificity of MSH2-MSH3 in genetic and biochemical assays. We found that domain I in MSH2 contributed a non-specific DNA binding activity while domain I of MSH3 appeared important for mismatch binding specificity and for suppressing non-specific DNA binding. These observations reveal distinct requirements for the MSH2 DNA binding domain I in the repair of DNA mismatches and suggest that the binding of MSH2-MSH3 to mismatch DNA involves protein-DNA contacts that appear very different from those required for MSH2-MSH6 mismatch binding.
Collapse
Affiliation(s)
| | | | - Eric Alani
- *Corresponding author Dr. Eric Alani, Department of Molecular Biology and Genetics, Cornell University, 459 Biotechnology Building, Ithaca, NY 14853-2703. Phone: 607-254-4811; Fax: 607-255-6249. E-mail:
| |
Collapse
|
124
|
Jacobs-Palmer E, Hingorani MM. The effects of nucleotides on MutS-DNA binding kinetics clarify the role of MutS ATPase activity in mismatch repair. J Mol Biol 2006; 366:1087-98. [PMID: 17207499 PMCID: PMC1941710 DOI: 10.1016/j.jmb.2006.11.092] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 11/24/2006] [Accepted: 11/28/2006] [Indexed: 02/02/2023]
Abstract
MutS protein initiates mismatch repair with recognition of a non-Watson-Crick base-pair or base insertion/deletion site in DNA, and its interactions with DNA are modulated by ATPase activity. Here, we present a kinetic analysis of these interactions, including the effects of ATP binding and hydrolysis, reported directly from the mismatch site by 2-aminopurine fluorescence. When free of nucleotides, the Thermus aquaticus MutS dimer binds a mismatch rapidly (k(ON)=3 x 10(6) M(-1) s(-1)) and forms a stable complex with a half-life of 10 s (k(OFF)=0.07 s(-1)). When one or both nucleotide-binding sites on the MutS*mismatch complex are occupied by ATP, the complex remains fairly stable, with a half-life of 5-7 s (k(OFF)=0.1-0.14 s(-1)), although MutS(ATP) becomes incapable of (re-)binding the mismatch. When one or both nucleotide-binding sites on the MutS dimer are occupied by ADP, the MutS*mismatch complex forms rapidly (k(ON)=7.3 x 10(6) M(-1) s(-1)) and also dissociates rapidly, with a half-life of 0.4 s (k(OFF)=1.7 s(-1)). Integration of these MutS DNA-binding kinetics with previously described ATPase kinetics reveals that: (a) in the absence of a mismatch, MutS in the ADP-bound form engages in highly dynamic interactions with DNA, perhaps probing base-pairs for errors; (b) in the presence of a mismatch, MutS stabilized in the ATP-bound form releases the mismatch slowly, perhaps allowing for onsite interactions with downstream repair proteins; (c) ATP-bound MutS then moves off the mismatch, perhaps as a mobile clamp facilitating repair reactions at distant sites on DNA, until ATP is hydrolyzed (or dissociates) and the protein turns over.
Collapse
Affiliation(s)
| | - Manju M. Hingorani
- *Corresponding Author Contact information: Phone: (860) 685-2284, Fax: (860) 685-2141,
| |
Collapse
|
125
|
Holmes SF, Scarpinato KD, McCulloch SD, Schaaper RM, Kunkel TA. Specialized mismatch repair function of Glu339 in the Phe-X-Glu motif of yeast Msh6. DNA Repair (Amst) 2006; 6:293-303. [PMID: 17141577 PMCID: PMC1839834 DOI: 10.1016/j.dnarep.2006.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 10/20/2006] [Accepted: 10/21/2006] [Indexed: 01/23/2023]
Abstract
The major eukaryotic mismatch repair (MMR) pathway requires Msh2-Msh6, which, like Escherichia coli MutS, binds to and participates in repair of the two most common replication errors, single base-base and single base insertion-deletion mismatches. For both types of mismatches, the side chain of E. coli Glu38 in a conserved Phe-X-Glu motif interacts with a mismatched base. The Ovarepsilon of Glu38 forms a hydrogen bond with either the N7 of purines or the N3 of pyrimidines. We show here that changing E. coli Glu38 to alanine results in nearly complete loss of repair of both single base-base and single base deletion mismatches. In contrast, a yeast strain with alanine replacing homologous Glu339 in Msh6 has nearly normal repair for insertion-deletion and most base-base mismatches, but is defective in repairing base-base mismatches characteristic of oxidative stress, e.g. 8-oxo-G.A mismatches. The results suggest that bacterial MutS and yeast Msh2-Msh6 differ in how they recognize and/or process replication errors involving undamaged bases, and that Glu339 in Msh6 may have a specialized role in repairing mismatches containing oxidized bases.
Collapse
Affiliation(s)
- Shannon F. Holmes
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences Research Triangle Park, NC 27709
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences Research Triangle Park, NC 27709
| | | | - Scott D. McCulloch
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences Research Triangle Park, NC 27709
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences Research Triangle Park, NC 27709
| | - Roel M. Schaaper
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences Research Triangle Park, NC 27709
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences Research Triangle Park, NC 27709
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences Research Triangle Park, NC 27709
- Corresponding author: Phone: 919-541-2644, Fax: 919-541-7613
| |
Collapse
|
126
|
Hiller DA, Perona JJ. Positively charged C-terminal subdomains of EcoRV endonuclease: contributions to DNA binding, bending, and cleavage. Biochemistry 2006; 45:11453-63. [PMID: 16981705 PMCID: PMC2515858 DOI: 10.1021/bi0606400] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The carboxy-terminal subdomains of the homodimeric EcoRV restriction endonuclease each bear a net charge of +4 and are positioned on the inner concave surface of the 50 degree DNA bend that is induced by the enzyme. A complete kinetic and structural analysis of a truncated EcoRV mutant lacking these domains was performed to assess the importance of this diffuse charge in facilitating DNA binding, bending, and cleavage. At the level of formation of an enzyme-DNA complex, the association rate for the dimeric mutant enzyme was sharply decreased by 10(3)-fold, while the equilibrium dissociation constant was weakened by nearly 10(6)-fold compared with that of wild-type EcoRV. Thus, the C-terminal subdomains strongly stabilize the enzyme-DNA ground-state complex in which the DNA is known to be bent. Further, the extent of DNA bending as observed by fluorescence resonance energy transfer was also significantly decreased. The crystal structure of the truncated enzyme bound to DNA and calcium ions at 2.4 A resolution reveals that the global fold is preserved and suggests that a divalent metal ion crucial to catalysis is destabilized in the active site. This may explain the 100-fold decrease in the rate of metal-dependent phosphoryl transfer observed for the mutant. These results show that diffuse positive charge associated with the C-terminal subdomains of EcoRV plays a key role in DNA association, bending, and cleavage.
Collapse
Affiliation(s)
| | - John J. Perona
- Corresponding author Telephone: 805−893−7389 FAX: 805−893−4120
| |
Collapse
|
127
|
Huen MSY, Li XT, Lu LY, Watt RM, Liu DP, Huang JD. The involvement of replication in single stranded oligonucleotide-mediated gene repair. Nucleic Acids Res 2006; 34:6183-94. [PMID: 17088285 PMCID: PMC1693898 DOI: 10.1093/nar/gkl852] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Targeted gene repair mediated by single-stranded oligonucleotides (SSOs) has great potential for use in functional genomic studies and gene therapy. Genetic changes have been created using this approach in a number of prokaryotic and eukaryotic systems, including mouse embryonic stem cells. However, the underlying mechanisms remain to be fully established. In one of the current models, the ‘annealing-integration’ model, the SSO anneals to its target locus at the replication fork, serving as a primer for subsequent DNA synthesis mediated by the host replication machinery. Using a λ-Red recombination-based system in the bacterium Escherichia coli, we systematically examined several fundamental premises that form the mechanistic basis of this model. Our results provide direct evidence strongly suggesting that SSO-mediated gene repair is mechanistically linked to the process of DNA replication, and most likely involves a replication intermediate. These findings will help guide future experiments involving SSO-mediated gene repair in mammalian and prokaryotic cells, and suggest several mechanisms by which the efficiencies may be reliably and substantially increased.
Collapse
Affiliation(s)
- Michael S. Y. Huen
- Department of Biochemistry, The University of Hong Kong3/F Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Xin-tian Li
- Department of Biochemistry, The University of Hong Kong3/F Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC)Beijing 100005, P.R. China
| | - Lin-Yu Lu
- Department of Biochemistry, The University of Hong Kong3/F Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Rory M. Watt
- Open Laboratory of Chemical Biology, The Institute of Molecular Technology for Drug Discovery and Synthesis, Department of Chemistry, The University of Hong Kong Pokfulam RoadHong Kong SAR, China
| | - De-Pei Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC)Beijing 100005, P.R. China
| | - Jian-Dong Huang
- Department of Biochemistry, The University of Hong Kong3/F Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- To whom correspondence should be addressed. Tel: +852 2819 2810; Fax: +852 2855 1254;
| |
Collapse
|
128
|
Manelyte L, Urbanke C, Giron-Monzon L, Friedhoff P. Structural and functional analysis of the MutS C-terminal tetramerization domain. Nucleic Acids Res 2006; 34:5270-9. [PMID: 17012287 PMCID: PMC1636413 DOI: 10.1093/nar/gkl489] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Escherichia coli DNA mismatch repair (MMR) protein MutS is essential for the correction of DNA replication errors. In vitro, MutS exists in a dimer/tetramer equilibrium that is converted into a monomer/dimer equilibrium upon deletion of the C-terminal 53 amino acids. In vivo and in vitro data have shown that this C-terminal domain (CTD, residues 801–853) is critical for tetramerization and the function of MutS in MMR and anti-recombination. We report the expression, purification and analysis of the E.coli MutS-CTD. Secondary structure prediction and circular dichroism suggest that the CTD is folded, with an α-helical content of 30%. Based on sedimentation equilibrium and velocity analyses, MutS-CTD forms a tetramer of asymmetric shape. A single point mutation (D835R) abolishes tetramerization but not dimerization of both MutS-CTD and full-length MutS. Interestingly, the in vivo and in vitro MMR activity of MutSCF/D835R is diminished to a similar extent as a truncated MutS variant (MutS800, residues 1–800), which lacks the CTD. Moreover, the dimer-forming MutSCF/D835R has comparable DNA binding affinity with the tetramer-forming MutS, but is impaired in mismatch-dependent activation of MutH. Our data support the hypothesis that tetramerization of MutS is important but not essential for MutS function in MMR.
Collapse
Affiliation(s)
| | - Claus Urbanke
- Medizinische Hochschule, StrukturanalyseCarl Neuberg Strasse 1, D-30625 Hannover, Germany
| | | | - Peter Friedhoff
- To whom correspondence should be addressed: Tel: +49 641 99 35407; Fax: +49 641 99 35409;
| |
Collapse
|
129
|
Plotz G, Zeuzem S, Raedle J. DNA mismatch repair and Lynch syndrome. J Mol Histol 2006; 37:271-83. [PMID: 16821093 DOI: 10.1007/s10735-006-9038-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 06/06/2006] [Indexed: 01/31/2023]
Abstract
The evolutionary conserved mismatch repair proteins correct a wide range of DNA replication errors. Their importance as guardians of genetic integrity is reflected by the tremendous decrease of replication fidelity (two to three orders of magnitude) conferred by their loss. Germline mutations in mismatch repair genes, predominantly MSH2 and MLH1, have been found to underlie the Lynch syndrome (also called hereditary non-polyposis colorectal cancer, HNPCC), a hereditary predisposition for cancer. Lynch syndrome affects predominantly the colon and accounts for 2-5% of all colon cancer cases. During more than 30 years of biochemical, crystallographic and clinical research, deep insight has been achieved in the function of mismatch repair and the diseases that are associated with its loss. We review the biochemistry of mismatch repair and also introduce the clinical, diagnostic and genetic aspects of Lynch syndrome.
Collapse
Affiliation(s)
- Guido Plotz
- Klinik für Innere Medizin II, Universitätsklinikum des Saarlandes, Kirrberger Strasse, Gebäude 41, D-66421 Homburg, Germany.
| | | | | |
Collapse
|
130
|
Surtees JA, Alani E. Mismatch repair factor MSH2-MSH3 binds and alters the conformation of branched DNA structures predicted to form during genetic recombination. J Mol Biol 2006; 360:523-36. [PMID: 16781730 DOI: 10.1016/j.jmb.2006.05.032] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 05/03/2006] [Accepted: 05/15/2006] [Indexed: 11/20/2022]
Abstract
Genetic studies in Saccharomyces cerevisiae predict that the mismatch repair (MMR) factor MSH2-MSH3 binds and stabilizes branched recombination intermediates that form during single strand annealing and gene conversion. To test this model, we constructed a series of DNA substrates that are predicted to form during these recombination events. We show in an electrophoretic mobility shift assay that S. cerevisiae MSH2-MSH3 specifically binds branched DNA substrates containing 3' single-stranded DNA and that ATP stimulates its release from these substrates. Chemical footprinting analyses indicate that MSH2-MSH3 specifically binds at the double-strand/single-strand junction of branched substrates, alters its conformation and opens up the junction. Therefore, MSH2-MSH3 binding to its substrates creates a unique nucleoprotein structure that may signal downstream steps in repair that include interactions with MMR and nucleotide excision repair factors.
Collapse
Affiliation(s)
- Jennifer A Surtees
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | |
Collapse
|
131
|
Abstract
The molecular mechanisms of the DNA mismatch repair (MMR) system have been uncovered over the last decade, especially in prokaryotes. The results obtained for prokaryotic MMR proteins have provided a framework for the study of the MMR system in eukaryotic organisms, such as yeast, mouse and human, because the functions of MMR proteins have been conserved during evolution from bacteria to humans. However, mutations in eukaryotic MMR genes result in pleiotropic phenotypes in addition to MMR defects, suggesting that eukaryotic MMR proteins have evolved to gain more diverse and specific roles in multicellular organisms. Here, we summarize recent advances in the understanding of both prokaryotic and eukaryotic MMR systems and describe various new functions of MMR proteins that have been intensively researched during the last few years, including DNA damage surveillance and diversification of antibodies.
Collapse
Affiliation(s)
- Sung-Hoon Jun
- Department of Chemistry and Division of Molecular & Life Science, Pohang University of Science and Technology, Korea
| | | | | |
Collapse
|
132
|
Salsbury FR, Clodfelter JE, Gentry MB, Hollis T, Scarpinato KD. The molecular mechanism of DNA damage recognition by MutS homologs and its consequences for cell death response. Nucleic Acids Res 2006; 34:2173-85. [PMID: 16648361 PMCID: PMC1450329 DOI: 10.1093/nar/gkl238] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We determined the molecular mechanism of cell death response by MutS homologs in distinction to the repair event. Key protein–DNA contacts differ in the interaction of MutS homologs with cisplatinated versus mismatched DNA. Mutational analyses of protein–DNA contacts, which were predicted by molecular dynamics (MD) simulations, were performed. Mutations in suggested interaction sites can affect repair and cell death response independently, and to different extents. A glutamate residue is identified as the key contact with cisplatin-DNA. Mutation of the residue increases cisplatin resistance due to increased non-specific DNA binding. In contrast, the conserved phenylalanine that is instrumental and indispensable for mismatch recognition during repair is not required for cisplatin cytotoxicity. These differences in protein–DNA interactions are translated into localized conformational changes that affect nucleotide requirements and inter-subunit interactions. Specifically, the ability for ATP binding/hydrolysis has little consequence for the MMR-dependent damage response. As a consequence, intersubunit contacts are altered that most likely affect the interaction with downstream proteins. We here describe the interaction of MutS homologs with DNA damage, as it differs from the interaction with a mismatch, and its structural translation into all other functional regions of the protein as a mechanism to initiate cell death response and concomitantly inhibit repair.
Collapse
Affiliation(s)
| | - Jill E. Clodfelter
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center BoulevardWinston-Salem, NC 27157, USA
| | - Michael B. Gentry
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center BoulevardWinston-Salem, NC 27157, USA
| | - Thomas Hollis
- Department of Biochemistry, Wake Forest University School of Medicine, Medical Center BoulevardWinston-Salem, NC 27157, USA
| | - Karin Drotschmann Scarpinato
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center BoulevardWinston-Salem, NC 27157, USA
- To whom correspondence should be addressed. Tel: +1 336 713 4077; Fax: +1 336 716 0255;
| |
Collapse
|
133
|
Affiliation(s)
- Ravi R Iyer
- Department of Biochemistry and Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
134
|
Wang H, DellaVecchia MJ, Skorvaga M, Croteau DL, Erie DA, Van Houten B. UvrB domain 4, an autoinhibitory gate for regulation of DNA binding and ATPase activity. J Biol Chem 2006; 281:15227-37. [PMID: 16595666 DOI: 10.1074/jbc.m601476200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UvrB, a central DNA damage recognition protein in bacterial nucleotide excision repair, has weak affinity for DNA, and its ATPase activity is activated by UvrA and damaged DNA. Regulation of DNA binding and ATP hydrolysis by UvrB is poorly understood. Using atomic force microscopy and biochemical assays, we found that truncation of domain 4 of Bacillus caldotenax UvrB (UvrBDelta4) leads to multiple changes in protein function. Protein dimerization decreases with an approximately 8-fold increase of the equilibrium dissociation constant and an increase in DNA binding. Loss of domain 4 causes the DNA binding mode of UvrB to change from dimer to monomer, and affinity increases with the apparent dissociation constants on nondamaged and damaged single-stranded DNA decreasing 22- and 14-fold, respectively. ATPase activity by UvrBDelta4 increases 14- and 9-fold with and without single-stranded DNA, respectively, and UvrBDelta4 supports UvrA-independent damage-specific incision by Cho on a bubble DNA substrate. We propose that other than its previously discovered role in regulating protein-protein interactions, domain 4 is an autoinhibitory domain regulating the DNA binding and ATPase activities of UvrB.
Collapse
Affiliation(s)
- Hong Wang
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | |
Collapse
|
135
|
Nag N, Krishnamoorthy G, Rao BJ. A single mismatch in the DNA induces enhanced aggregation of MutS. Hydrodynamic analyses of the protein-DNA complexes. FEBS J 2006; 272:6228-43. [PMID: 16336261 DOI: 10.1111/j.1742-4658.2005.04997.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Changes in the oligomeric status of MutS protein was probed in solution by dynamic light scattering (DLS), and corroborated by sedimentation analyses. In the absence of any nucleotide cofactor, free MutS protein [hydrodynamic radius (Rh) of 10-12 nm] shows a small increment in size (Rh 14 nm) following the addition of homoduplex DNA (121 bp), whereas the same increases to about 18-20 nm with heteroduplex DNA containing a mismatch. MutS forms large aggregates (Rh > 500 nm) with ATP, but not in the presence of a poorly hydrolysable analogue of ATP (ATPgammaS). Addition of either homo- or heteroduplex DNA attenuates the same, due to protein recruitment to DNA. However, the same protein/DNA complexes, at high concentration of ATP (10 mm), manifest an interesting property where the presence of a single mismatch provokes a much larger oligomerization of MutS on DNA (Rh > 500 nm in the presence of MutL) as compared to the normal homoduplex (Rh approximately 100-200 nm) and such mismatch induced MutS aggregation is entirely sustained by the ongoing hydrolysis of ATP in the reaction. We speculate that the surprising property of a single mismatch, in nucleating a massive aggregation of MutS encompassing the bound DNA might play an important role in mismatch repair system.
Collapse
Affiliation(s)
- Nabanita Nag
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | | | |
Collapse
|
136
|
Jiang J, Bai L, Surtees JA, Gemici Z, Wang MD, Alani E. Detection of high-affinity and sliding clamp modes for MSH2-MSH6 by single-molecule unzipping force analysis. Mol Cell 2006; 20:771-81. [PMID: 16337600 DOI: 10.1016/j.molcel.2005.10.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 09/28/2005] [Accepted: 10/11/2005] [Indexed: 02/04/2023]
Abstract
Mismatch repair (MMR) is initiated by MutS family proteins (MSH) that recognize DNA mismatches and recruit downstream repair factors. We used a single-molecule DNA-unzipping assay to probe interactions between S. cerevisiae MSH2-MSH6 and a variety of DNA mismatch substrates. This work revealed a high-specificity binding state of MSH proteins for mismatch DNA that was not observed in bulk assays and allowed us to measure the affinity of MSH2-MSH6 for mismatch DNA as well as its footprint on DNA surrounding the mismatch site. Unzipping analysis with mismatch substrates containing an end blocked by lac repressor allowed us to identify MSH proteins present on DNA between the mismatch and the block, presumably in an ATP-dependent sliding clamp mode. These studies provide a high-resolution approach to study MSH interactions with DNA mismatches and supply evidence to support and refute different models proposed for initiation steps in MMR.
Collapse
Affiliation(s)
- Jingjing Jiang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
137
|
Joseph N, Duppatla V, Rao DN. Prokaryotic DNA Mismatch Repair. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2006; 81:1-49. [PMID: 16891168 DOI: 10.1016/s0079-6603(06)81001-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nimesh Joseph
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
138
|
Abstract
Evolutionarily-conserved mismatch-repair (MMR) systems correct all or almost all base-mismatch errors from DNA replication via excision-resynthesis pathways, and respond to many different DNA lesions. Consideration of DNA polymerase error rates and possible consequences of excess gratuitous excision of perfectly paired (homoduplex) DNA in vivo suggests that MMR needs to discriminate against homoduplex DNA by three to six orders of magnitude. However, numerous binding studies using MMR base-mispair-recognition proteins, bacterial MutS or eukaryotic MSH2.MSH6 (MutSalpha), have typically shown discrimination factors between mismatched and homoduplex DNA to be 5-30, depending on the binding conditions, the particular mismatches, and the DNA-sequence contexts. Thus, downstream post-binding steps must increase MMR discrimination without interfering with the versatility needed to recognize a large variety of base-mismatches and lesions. We use a complex but highly MMR-active model system, human nuclear extracts mixed with plasmid substrates containing specific mismatches and defined nicks 0.15 kbp away, to measure the earliest quantifiable committed step in mismatch correction, initiation of mismatch-provoked 3'-5' excision at the nicks. We compared these results to binding of purified MutSalpha to synthetic oligoduplexes containing the same mismatches in the same sequence contexts, under conditions very similar to those prevailing in the nuclear extracts. Discrimination against homoduplex DNA, only two-to five-fold in the binding studies, increased to 60- to 230-fold or more for excision initiation, depending on the particular mismatches. Remarkably, the mismatch-preference order for excision initiation was substantially altered from the order for hMutSalpha binding. This suggests that post-binding steps not only strongly discriminate against homoduplex DNA, but do so by mechanisms not tightly constrained by initial binding preferences. Pairs of homoduplexes (40, 50, and 70 bp) prepared from synthetic oligomers or cut out of plasmids showed virtually identical hMutSalpha binding affinities, suggesting that high hMutSalpha binding to homoduplex DNA is not the result of misincorporations or lesions introduced during chemical synthesis. Intrinsic affinities of MutS homologs for perfectly paired DNA may help these proteins efficiently position themselves to carry out subsequent mismatch-specific steps in MMR pathways.
Collapse
Affiliation(s)
- John B Hays
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, 97331-7301, USA.
| | | | | |
Collapse
|
139
|
Yuan C, Rhoades E, Heuer DM, Archer LA. Mismatch-induced DNA unbending upon duplex opening. Biophys J 2005; 89:2564-73. [PMID: 16085769 PMCID: PMC1366756 DOI: 10.1529/biophysj.105.065722] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 07/18/2005] [Indexed: 11/18/2022] Open
Abstract
A DNA duplex can be torn open at a specific position by introducing a branch or bulge to create an asymmetric three-way junction (TWJ). The opened duplex manifests a bent conformation (bending angle approximately 60 degrees , relative to the unopened form), which leads to a dramatic decrease in gel electrophoretic mobility. In the presence of a basepair mismatch at the opening position, the DNA backbone becomes less bent and assumes a distorted T-shaped structure, resulting in an increase in polyacrylamide gel electrophoretic mobility. Both conformational changes are confirmed using fluorescence resonance energy transfer experiments and found to be similar to the signature conformational changes of DNA duplex upon MutS protein binding. Our results imply that some structural rearrangements essential for mismatch recognition are achievable without protein interference. The gel electrophoretic mobility data for DNA TWJs with and without base mismatches correlates well with rotational diffusivity, computed by taking into account the conformational change of TWJ induced by base mismatch.
Collapse
Affiliation(s)
- Chongli Yuan
- School of Chemical and Biomolecular Engineering, Department of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
140
|
Abstract
DNA mismatch repair (MMR) is an evolutionarily conserved process that corrects mismatches generated during DNA replication and escape proofreading. MMR proteins also participate in many other DNA transactions, such that inactivation of MMR can have wide-ranging biological consequences, which can be either beneficial or detrimental. We begin this review by briefly considering the multiple functions of MMR proteins and the consequences of impaired function. We then focus on the biochemical mechanism of MMR replication errors. Emphasis is on structure-function studies of MMR proteins, on how mismatches are recognized, on the process by which the newly replicated strand is identified, and on excision of the replication error.
Collapse
Affiliation(s)
- Thomas A Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | |
Collapse
|
141
|
Macpherson P, Barone F, Maga G, Mazzei F, Karran P, Bignami M. 8-oxoguanine incorporation into DNA repeats in vitro and mismatch recognition by MutSalpha. Nucleic Acids Res 2005; 33:5094-105. [PMID: 16174844 PMCID: PMC1233161 DOI: 10.1093/nar/gki813] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 07/28/2005] [Accepted: 08/17/2005] [Indexed: 01/10/2023] Open
Abstract
DNA 8-oxoguanine (8-oxoG) causes transversions and is also implicated in frameshifts. We previously identified the dNTP pool as a likely source of mutagenic DNA 8-oxoG and demonstrated that DNA mismatch repair prevented oxidation-related frameshifts in mononucleotide repeats. Here, we show that both Klenow fragment and DNA polymerase alpha can utilize 8-oxodGTP and incorporate the oxidized purine into model frameshift targets. Both polymerases incorporated 8-oxodGMP opposite C and A in repetitive DNA sequences and efficiently extended a terminal 8-oxoG. The human MutSalpha mismatch repair factor recognized DNA 8-oxoG efficiently in some contexts that resembled frameshift intermediates in the same C or A repeats. DNA 8-oxoG in other slipped/mispaired structures in the same repeats adopted configurations that prevented recognition by MutSalpha and by the OGG1 DNA glycosylase thereby rendering it invisible to DNA repair. These findings are consistent with a contribution of oxidative DNA damage to frameshifts. They also suggest how mismatch repair might reduce the burden of DNA 8-oxoG and prevent frameshift formation.
Collapse
Affiliation(s)
- Peter Macpherson
- Cancer Research UK London Research Institute, Clare Hall LaboratoriesSouth Mimms, Herts, EN6 3LD, UK
- Department of Environment and Primary Prevention, Istituto Superiore di Sanita'Viale Regina Elena 299, 00161 Roma, Italy
- Istituto di Genetica Molecolare, IGM-CNR, National Research CouncilVia Abbiategrasso 207, 27100 Pavia, Italy
| | - Flavia Barone
- Department of Environment and Primary Prevention, Istituto Superiore di Sanita'Viale Regina Elena 299, 00161 Roma, Italy
| | - Giovanni Maga
- Istituto di Genetica Molecolare, IGM-CNR, National Research CouncilVia Abbiategrasso 207, 27100 Pavia, Italy
| | - Filomena Mazzei
- Department of Environment and Primary Prevention, Istituto Superiore di Sanita'Viale Regina Elena 299, 00161 Roma, Italy
| | - Peter Karran
- Cancer Research UK London Research Institute, Clare Hall LaboratoriesSouth Mimms, Herts, EN6 3LD, UK
- Department of Environment and Primary Prevention, Istituto Superiore di Sanita'Viale Regina Elena 299, 00161 Roma, Italy
- Istituto di Genetica Molecolare, IGM-CNR, National Research CouncilVia Abbiategrasso 207, 27100 Pavia, Italy
| | - Margherita Bignami
- Department of Environment and Primary Prevention, Istituto Superiore di Sanita'Viale Regina Elena 299, 00161 Roma, Italy
| |
Collapse
|
142
|
Yang Y, Sass LE, Du C, Hsieh P, Erie DA. Determination of protein-DNA binding constants and specificities from statistical analyses of single molecules: MutS-DNA interactions. Nucleic Acids Res 2005; 33:4322-34. [PMID: 16061937 PMCID: PMC1182163 DOI: 10.1093/nar/gki708] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Atomic force microscopy (AFM) is a powerful technique for examining the conformations of protein–DNA complexes and determining the stoichiometries and affinities of protein–protein complexes. We extend the capabilities of AFM to the determination of protein–DNA binding constants and specificities. The distribution of positions of the protein on the DNA fragments provides a direct measure of specificity and requires no knowledge of the absolute binding constants. The fractional occupancies of the protein at a given position in conjunction with the protein and DNA concentrations permit the determination of the absolute binding constants. We present the theoretical basis for this analysis and demonstrate its utility by characterizing the interaction of MutS with DNA fragments containing either no mismatch or a single mismatch. We show that MutS has significantly higher specificities for mismatches than was previously suggested from bulk studies and that the apparent low specificities are the result of high affinity binding to DNA ends. These results resolve the puzzle of the apparent low binding specificity of MutS with the expected high repair specificities. In conclusion, from a single set of AFM experiments, it is possible to determine the binding affinity, specificity and stoichiometry, as well as the conformational properties of the protein–DNA complexes.
Collapse
Affiliation(s)
- Yong Yang
- Department of Chemistry, University of North Carolina at Chapel HillChapel Hill, NC 27599-3290, USA
| | - Lauryn E. Sass
- Department of Chemistry, University of North Carolina at Chapel HillChapel Hill, NC 27599-3290, USA
| | - Chunwei Du
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD 20892, USA
| | - Peggy Hsieh
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD 20892, USA
| | - Dorothy A. Erie
- Department of Chemistry, University of North Carolina at Chapel HillChapel Hill, NC 27599-3290, USA
- Curriculum in Applied and Materials Sciences, University of North Carolina at Chapel HillChapel Hill, NC 27599-3290, USA
- To whom correspondence should be addressed. Tel: +1 919 962 6370; Fax: +1 919 966 3675;
| |
Collapse
|
143
|
Tessmer I, Moore T, Lloyd RG, Wilson A, Erie DA, Allen S, Tendler SJB. AFM studies on the role of the protein RdgC in bacterial DNA recombination. J Mol Biol 2005; 350:254-62. [PMID: 15923011 DOI: 10.1016/j.jmb.2005.04.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 04/04/2005] [Accepted: 04/19/2005] [Indexed: 02/03/2023]
Abstract
Genetic studies of rdgC in different bacterial systems suggest that it may play a role in replication and recombination. However, the exact function of the corresponding protein, RdgC, is unknown. In this study, we have imaged complexes of RdgC with both linear and supercoiled circular plasmid DNA using atomic force microscopy. We confirm that RdgC does not target any specific sequences in double-stranded DNA, as has been suggested from biochemical data. However, we detect an increased affinity of the protein to DNA ends, and an ability to promote bending of DNA. Similar binding preferences have been reported for enzymes involved in recombination. Protein complexes with supercoiled plasmid DNA further enabled us to study the effect of RdgC on DNA superstructure. At high concentrations of protein we observed promotion of DNA condensation. Recombination is largely enhanced by close contacts of distant regions along the DNA strands, as can occur, for instance, through condensation. Our data thus support a possible function of RdgC as a midwife of recombination.
Collapse
MESH Headings
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Bacterial/ultrastructure
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- DNA, Superhelical/ultrastructure
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/metabolism
- Escherichia coli Proteins/ultrastructure
- Microscopy, Atomic Force
- Nucleic Acid Conformation
- Plasmids/chemistry
- Plasmids/genetics
- Plasmids/metabolism
- Plasmids/ultrastructure
- Protein Structure, Quaternary
- Recombination, Genetic
Collapse
Affiliation(s)
- Ingrid Tessmer
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | |
Collapse
|
144
|
Panigrahi GB, Lau R, Montgomery SE, Leonard MR, Pearson CE. Slipped (CTG)*(CAG) repeats can be correctly repaired, escape repair or undergo error-prone repair. Nat Struct Mol Biol 2005; 12:654-62. [PMID: 16025129 DOI: 10.1038/nsmb959] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 06/06/2005] [Indexed: 01/23/2023]
Abstract
Expansion of (CTG)*(CAG) repeats, the cause of 14 or more diseases, is presumed to arise through escaped repair of slipped DNAs. We report the fidelity of slipped-DNA repair using human cell extracts and DNAs with slip-outs of (CAG)(20) or (CTG)(20). Three outcomes occurred: correct repair, escaped repair and error-prone repair. The choice of repair path depended on nick location and slip-out composition (CAG or CTG). A new form of error-prone repair was detected whereby excess repeats were incompletely excised, constituting a previously unknown path to generate expansions but not deletions. Neuron-like cell extracts yielded each of the three repair outcomes, supporting a role for these processes in (CTG)*(CAG) instability in patient post-mitotic brain cells. Mismatch repair (MMR) and nucleotide excision repair (NER) proteins hMSH2, hMSH3, hMLH1, XPF, XPG or polymerase beta were not required-indicating that their role in instability may precede that of slip-out processing. Differential processing of slipped repeats may explain the differences in mutation patterns between various disease loci or tissues.
Collapse
Affiliation(s)
- Gagan B Panigrahi
- Program of Genetics & Genomic Biology, The Hospital for Sick Children, 555 University Avenue, Elm Wing 11-135, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | |
Collapse
|
145
|
Hoffmann ER, Borts RH. Meiotic recombination intermediates and mismatch repair proteins. Cytogenet Genome Res 2005; 107:232-48. [PMID: 15467368 DOI: 10.1159/000080601] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Accepted: 03/21/2004] [Indexed: 11/19/2022] Open
Abstract
Mismatch repair proteins are a highly diverse group of proteins that interact with numerous DNA structures during DNA repair and replication. Here we review data for the role of Msh4, Msh5, Mlh1, Mlh3 and Exo1 in crossing over. Based on the paradigm of interactions developed from studies of mismatch repair, we propose models for the mechanism of crossover implementation by Msh4/Msh5 and Mlh1/Mlh3.
Collapse
Affiliation(s)
- E R Hoffmann
- Department of Genetics, University of Leicester, Leicester, UK
| | | |
Collapse
|
146
|
Recognition and binding of mismatch repair proteins at an oncogenic hot spot. BMC Mol Biol 2005; 6:6. [PMID: 15766387 PMCID: PMC555755 DOI: 10.1186/1471-2199-6-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Accepted: 03/14/2005] [Indexed: 12/02/2022] Open
Abstract
Background The current investigation was undertaken to determine key steps differentiating G:T and G:A repair at the H-ras oncogenic hot spot within the nuclear environment because of the large difference in repair efficiency of these two mismatches. Results Electrophoretic mobility shift (gel shift) experiments demonstrate that DNA containing mismatched bases are recognized and bound equally efficiently by hMutSα in both MMR proficient and MMR deficient (hMLH1-/-) nuclear extracts. Competition experiments demonstrate that while hMutSα predictably binds the G:T mismatch to a much greater extent than G:A, hMutSα demonstrates a surprisingly equal ratio of competitive inhibition for both G:T and G:A mismatch binding reactions at the H-ras hot spot of mutation. Further, mismatch repair assays reveal almost 2-fold higher efficiency of overall G:A repair (5'-nick directed correct MMR to G:C and incorrect repair to T:A), as compared to G:T overall repair. Conversely, correct MMR of G:T → G:C is significantly higher (96%) than that of G:A → G:C (60%). Conclusion Combined, these results suggest that initiation of correct MMR requires the contribution of two separate steps; initial recognition by hMutSα followed by subsequent binding. The 'avidity' of the binding step determines the extent of MMR pathway activation, or the activation of a different cellular pathway. Thus, initial recognition by hMutSα in combination with subsequent decreased binding to the G:A mismatch (as compared to G:T) may contribute to the observed increased frequency of incorrect repair of G:A, resulting in the predominant GGC → GTC (Gly → Val) ras-activating mutation found in a high percentage of human tumors.
Collapse
|
147
|
Hansma HG, Kasuya K, Oroudjev E. Atomic force microscopy imaging and pulling of nucleic acids. Curr Opin Struct Biol 2004; 14:380-5. [PMID: 15193320 DOI: 10.1016/j.sbi.2004.05.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent advances in atomic force microscopy (AFM) imaging of nucleic acids include the visualization of DNA and RNA incorporated into devices and patterns, and into structures based on their sequences or sequence recognition. AFM imaging of nuclear structures has contributed to advances in telomere research and to our understanding of nucleosome formation. Highlights of force spectroscopy or pulling of nucleic acids include the use of DNA as a programmable force sensor, and the analysis of RNA flexibility and drug binding to DNA.
Collapse
Affiliation(s)
- Helen G Hansma
- Department of Physics, University of California, Santa Barbara, CA 93106, USA.
| | | | | |
Collapse
|
148
|
Drotschmann K, Topping RP, Clodfelter JE, Salsbury FR. Mutations in the nucleotide-binding domain of MutS homologs uncouple cell death from cell survival. DNA Repair (Amst) 2004; 3:729-42. [PMID: 15177182 DOI: 10.1016/j.dnarep.2004.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 02/19/2004] [Accepted: 02/20/2004] [Indexed: 10/26/2022]
Abstract
After genotoxic insult, the decision to repair or undergo cell death is pivotal for undamaged cell survival, and requires a highly controlled coordination of both pathways. Disruption of this regulation results in tumorigenesis and failure of cancer therapy. Mismatch repair (MMR) proteins have a unique role by contributing to both pathways, though direct evidence for their function in the DNA damage response is ambiguous. We report separation of function mutants in the ATPase domains of yeast MutS homologous (MSH) proteins that uncouple MMR-dependent DNA repair from damage response to cisplatin. While mutations in the ATPase domain have devastating effects on the mutation rate of the cell, ATPase processing is mostly dispensable for the cell death phenotype; only limited processing by the MSH6 subunit is required in DNA damage response. Different DNA binding patterns and nucleotide sensitivity of Msh2/Msh6-DNA adduct and protein-mismatch complexes, respectively, suggest that the presence of different DNA lesions influences the requirement for ATP. Limited proteolysis of purified protein gives first indications for differences in nucleotide-induced conformational changes in the presence of platinated DNA. Structural modeling of bacterial MutS proteins reinforces nucleotide-dependent differences in structures that contribute to the distinction between DNA damage response and repair. Our results demonstrate the uncoupling of MMR-dependent damage response from repair and present first indications for the involvement of distinct conformational changes in MSH proteins in this process. These data present evidence for a mechanism of MMR-dependent damage response that differs from MMR; these results have strong implications for the chemotherapeutic treatment of MMR-defective tumors.
Collapse
Affiliation(s)
- Karin Drotschmann
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | | | |
Collapse
|
149
|
Antony E, Hingorani MM. Asymmetric ATP binding and hydrolysis activity of the Thermus aquaticus MutS dimer is key to modulation of its interactions with mismatched DNA. Biochemistry 2004; 43:13115-28. [PMID: 15476405 PMCID: PMC2839884 DOI: 10.1021/bi049010t] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Prokaryotic MutS and eukaryotic Msh proteins recognize base pair mismatches and insertions or deletions in DNA and initiate mismatch repair. These proteins function as dimers (and perhaps higher order oligomers) and possess an ATPase activity that is essential for DNA repair. Previous studies of Escherichia coli MutS and eukaryotic Msh2-Msh6 proteins have revealed asymmetry within the dimer with respect to both DNA binding and ATPase activities. We have found the Thermus aquaticus MutS protein amenable to detailed investigation of the nature and role of this asymmetry. Here, we show that (a) in a MutS dimer one subunit (S1) binds nucleotide with high affinity and the other (S2) with 10-fold weaker affinity, (b) S1 hydrolyzes ATP rapidly while S2 hydrolyzes ATP at a 30-50-fold slower rate, (c) mismatched DNA binding to MutS inhibits ATP hydrolysis at S1 but slow hydrolysis continues at S2, and (d) interaction between mismatched DNA and MutS is weakened when both subunits are occupied by ATP but remains stable when S1 is occupied by ATP and S2 by ADP. These results reveal key MutS species in the ATPase pathway; S1(ADP)-S2(ATP) is formed preferentially in the absence of DNA or in the presence of fully matched DNA, while S1(ATP)-S2(ATP) and S1(ATP)-S2(ADP) are formed preferentially in the presence of mismatched DNA. These MutS species exhibit differences in interaction with mismatched DNA that are likely important for the mechanism of MutS action in DNA repair.
Collapse
|
150
|
Protozanova E, Yakovchuk P, Frank-Kamenetskii MD. Stacked-unstacked equilibrium at the nick site of DNA. J Mol Biol 2004; 342:775-85. [PMID: 15342236 DOI: 10.1016/j.jmb.2004.07.075] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Revised: 06/24/2004] [Accepted: 07/18/2004] [Indexed: 11/23/2022]
Abstract
Stability of duplex DNA with respect to separation of complementary strands is crucial for DNA executing its major functions in the cell and it also plays a central role in major biotechnology applications of DNA: DNA sequencing, polymerase chain reaction, and DNA microarrays. Two types of interaction are well known to contribute to DNA stability: stacking between adjacent base-pairs and pairing between complementary bases. However, their contribution into the duplex stability is yet to be determined. Now we fill this fundamental gap in our knowledge of the DNA double helix. We have prepared a series of 32, 300 bp-long DNA fragments with solitary nicks in the same position differing only in base-pairs flanking the nick. Electrophoretic mobility of these fragments in the gel has been studied. Assuming the equilibrium between stacked and unstacked conformations at the nick site, all 32 stacking free energy parameters have been obtained. Only ten of them are essential and they govern the stacking interactions between adjacent base-pairs in intact DNA double helix. A full set of DNA stacking parameters has been determined for the first time. From these data and from a well-known dependence of DNA melting temperature on G.C content, the contribution of base-pairing into duplex stability has been estimated. The obtained energy parameters of the DNA double helix are of paramount importance for understanding sequence-dependent DNA flexibility and for numerous biotechnology applications.
Collapse
Affiliation(s)
- Ekaterina Protozanova
- Center for Advanced Biotechnology and Department of Biomedical Engineering, Boston University, 36 Cummington Street, Boston, MA 02215, USA
| | | | | |
Collapse
|